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A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text comprises a three–volume series on Calculus. The first part covers
material taught in many “Calc ϭ” courses: limits, derivaƟves, and the basics of
integraƟon, found in Chapters ϭ through ϲ.ϭ. The second text covers material
oŌen taught in “Calc Ϯ:” integraƟon and its applicaƟons, along with an introduc-
Ɵon to sequences, series and Taylor Polynomials, found in Chapters ϱ through
ϴ. The third text covers topics common in “Calc ϯ” or “mulƟvariable calc:” para-
metric equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of
more than one variable, found in Chapters ϵ through ϭϯ. All three are available
separately for free at www.apexcalculus.com.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some pre-
fer to have a nice, bound copy of the text. Therefore this text has been split into
these three manageable parts, each of which can be purchased for under $ϭϱ
at Amazon.com.

For Students: How to Read this Text

MathemaƟcs textbooks have a reputaƟon for being hard to read. High–level
mathemaƟcal wriƟng oŌen seeks to say much with few words, and this style
oŌen seeps into texts of lower–level topics. This book was wriƩen with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and secƟon starts with an introducƟon of the coming material,
hopefully seƫng the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is wriƩen to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definiƟons, the truth
of theorems, and the applicaƟon of mathemaƟcal techniques. When you en-
counter a sentence you don’t understand, read it again. If it sƟll doesn’t make
sense, read on anyway, as someƟmes confusing sentences are explained by later
sentences.

You don’t have to read every equaƟon. The examples generally show “all”
the steps needed to solve a problem. SomeƟmes reading through each step is
helpful; someƟmes it is confusing. When the steps are illustraƟng a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathemaƟcs needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of geƫng bogged down in reading how the number was found.

Most proofs have been omiƩed. In mathemaƟcs, proving something is al-
ways true is extremely important, and entails much more than tesƟng to see if
it works twice. However, students oŌen are confused by the details of a proof,
or become concerned that they should have been able to construct this proof

http://apexcalculus.com
http://amazon.com


on their own. To alleviate this potenƟal problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

InteracƟve, ϯD Graphics

New to Version ϯ.Ϭ is the addiƟon of interacƟve, ϯD graphics in the .pdf ver-
sion. Nearly all graphs of objects in space can be rotated, shiŌed, and zoomed
in/out so the reader can beƩer understand the object illustrated.

As of this wriƟng, the only pdf viewers that support these ϯD graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To acƟvate the interacƟve mode, click on
the image. Once acƟvated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to invesƟgate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object leŌ/right or up/down. By right-clicking on the graph one can access
a menu of other opƟons, such as changing the lighƟng scheme or perspecƟve.
One can also revert the graph back to its default view. If you wish to deacƟve
the interacƟvity, one can right-click and choose the “Disable Content” opƟon.

Thanks

There are many people who deserve recogniƟon for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my Ɵme
and aƩenƟon at home. Many thanks to Troy Siemers, whose most important
contribuƟons extend far beyond the secƟons he wrote or the ϮϮϳ figures he
coded in Asymptote for ϯD interacƟon. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contribuƟons and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica LiberƟni and other faculty of VMI who have given me
numerous suggesƟons and correcƟons based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their paƟence in teaching
Calc III while I was sƟll wriƟng the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the soluƟons, and thanks to the tutors for spending their Ɵme doing so.
A very special thanks to KrisƟ Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meƟculously checking every soluƟon
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra Ɵme to work on this project. I am blessed to
have so many people give of their Ɵme to make this book beƩer.

APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements



alone are substanƟal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This text
“cost” the authors of this book their Ɵme, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military InsƟtute, through a generous
Jackson–Hope grant, given the lead author significant Ɵme away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial ϰ.Ϭ copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX




ϭ: L®Ã®ãÝ
Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the ϭϳth century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
– can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behavior of a funcƟon. This chapter begins our study of the limit by ap-
proximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

ϭ.ϭ An IntroducƟon To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the funcƟon y = sin x
x . When x is near the value ϭ, what value (if

any) is y near?
While our quesƟon is not precisely formed (what consƟtutes “near the value
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Figure ϭ.ϭ: sin(x)/x near x = ϭ.
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Figure ϭ.Ϯ: sin(x)/x near x = Ϭ.

x sin(x)/x
Ϭ.ϵ Ϭ.ϴϳϬϯϲϯ
Ϭ.ϵϵ Ϭ.ϴϰϰϰϳϭ
Ϭ.ϵϵϵ Ϭ.ϴϰϭϳϳϮ
ϭ Ϭ.ϴϰϭϰϳϭ

ϭ.ϬϬϭ Ϭ.ϴϰϭϭϳ
ϭ.Ϭϭ Ϭ.ϴϯϴϰϰϳ
ϭ.ϭ Ϭ.ϴϭϬϭϴϵ

Figure ϭ.ϯ: Values of sin(x)/x with x near
ϭ.

Chapter ϭ Limits

ϭ”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this funcƟon to approximate the appropriate y values. Consider Figure
ϭ.ϭ, where y = sin x

x is graphed. For values of x near ϭ, it seems that y takes on
values near Ϭ.ϴϱ. In fact, when x = ϭ, then y = sin ϭ

ϭ ≈ Ϭ.ϴϰ, so it makes sense
that when x is “near” ϭ, y will be “near” Ϭ.ϴϰ.

Consider this again at a different value for x. When x is near Ϭ, what value (if
any) is y near? By considering Figure ϭ.Ϯ, one can see that it seems that y takes
on values near ϭ. But what happens when x = Ϭ? We have

y → sin Ϭ
Ϭ

→
“ Ϭ
Ϭ
”
.

The expression “Ϭ/Ϭ” has no value; it is indeterminate. Such an expression gives
no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = Ϭ for this funcƟon simply by leƫng x = Ϭ.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches ϭ” describes a number, oŌen referred to as L, that y
nears as x nears ϭ. We write all this as

lim
x→ϭ

y = lim
x→ϭ

f(x) = L.

This is not a complete definiƟon (that will come in the next secƟon); this is a
pseudo-definiƟon that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→ϭ

sin x
x

≈ Ϭ.ϴϰ and lim
x→Ϭ

sin x
x

≈ ϭ.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

Once we have the true definiƟon of a limit, we will find limits analyƟcally;
that is, exactly using a variety of mathemaƟcal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a funcƟon can provide
a good approximaƟon, though oŌen not very precise. Numerical methods can
provide a more accurate approximaƟon. We have already approximated limits
graphically, so we now turn our aƩenƟon to numerical approximaƟons.

Consider again limx→ϭ sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” ϭ. This is done in Figure
ϭ.ϯ.

NoƟce that for values of xnear ϭ, wehave sin(x)/xnear Ϭ.ϴϰϭ. The x = ϭ row
is in bold to highlight the fact thatwhen considering limits, we are not concerned

Notes:

Ϯ



x sin(x)/x
-Ϭ.ϭ Ϭ.ϵϵϴϯϯϰϭϲϲϱ
-Ϭ.Ϭϭ Ϭ.ϵϵϵϵϴϯϯϯϯϰ
-Ϭ.ϬϬϭ Ϭ.ϵϵϵϵϵϵϴϯϯϯ

Ϭ not defined
Ϭ.ϬϬϭ Ϭ.ϵϵϵϵϵϵϴϯϯϯ
Ϭ.Ϭϭ Ϭ.ϵϵϵϵϴϯϯϯϯϰ
Ϭ.ϭ Ϭ.ϵϵϴϯϯϰϭϲϲϱ

Figure ϭ.ϰ: Values of sin(x)/x with x near
ϭ.
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Figure ϭ.ϱ: Graphically approximaƟng a
limit in Example ϭ.

x xϮ−x−ϲ
ϲxϮ−ϭϵx+ϯ

Ϯ.ϵ Ϭ.Ϯϵϴϳϴ
Ϯ.ϵϵ Ϭ.Ϯϵϰϱϲϵ
Ϯ.ϵϵϵ Ϭ.Ϯϵϰϭϲϯ
ϯ not defined

ϯ.ϬϬϭ Ϭ.ϮϵϰϬϳϯ
ϯ.Ϭϭ Ϭ.Ϯϵϯϲϲϵ
ϯ.ϭ Ϭ.Ϯϴϵϳϳϯ

Figure ϭ.ϲ: Numerically approximaƟng a
limit in Example ϭ.

ϭ.ϭ An IntroducƟon To Limits

with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near ϭ.

Now approximate limx→Ϭ sin(x)/x numerically. We already approximated
the value of this limit as ϭ graphically in Figure ϭ.Ϯ. The table in Figure ϭ.ϰ shows
the value of sin(x)/x for values of x near Ϭ. Ten places aŌer the decimal point
are shown to highlight how close to ϭ the value of sin(x)/x gets as x takes on
values very near Ϭ. We include the x = Ϭ row in bold again to stress that we are
not concerned with the value of our funcƟon at x = Ϭ, only on the behavior of
the funcƟon near Ϭ.

This numerical method gives confidence to say that ϭ is a good approxima-
Ɵon of limx→Ϭ sin(x)/x; that is,

lim
x→Ϭ

sin(x)/x ≈ ϭ.

Later we will be able to prove that the limit is exactly ϭ.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example ϭ ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→ϯ

xϮ − x− ϲ
ϲxϮ − ϭϵx+ ϯ

.

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (xϮ − x− ϲ)/(ϲxϮ − ϭϵx+ ϯ)

on a small interval that contains ϯ. To numerically approximate the limit, create
a table of values where the x values are near ϯ. This is done in Figures ϭ.ϱ and
ϭ.ϲ, respecƟvely.

The graph shows that when x is near ϯ, the value of y is very near Ϭ.ϯ. By
considering values of x near ϯ, we see that y = Ϭ.Ϯϵϰ is a beƩer approximaƟon.
The graph and the table imply that

lim
x→ϯ

xϮ − x− ϲ
ϲxϮ − ϭϵx+ ϯ

≈ Ϭ.Ϯϵϰ.

This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

ϭ. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

Ϯ. How many values of x in a table are “enough?” In the previous example,
could we have just used x = ϯ.ϬϬϭ and found a fine approximaƟon?

Notes:

ϯ
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Figure ϭ.ϳ: Graphically approximaƟng a
limit in Example Ϯ.

x f(x)
-Ϭ.ϭ Ϭ.ϵ
-Ϭ.Ϭϭ Ϭ.ϵϵ
-Ϭ.ϬϬϭ Ϭ.ϵϵϵ
Ϭ.ϬϬϭ Ϭ.ϵϵϵϵϵϵ
Ϭ.Ϭϭ Ϭ.ϵϵϵϵ
Ϭ.ϭ Ϭ.ϵϵ

Figure ϭ.ϴ: Numerically approximaƟng a
limit in Example Ϯ.

Chapter ϭ Limits

Graphs are useful since they give a visual understanding concerning the be-
havior of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example ϭ, we used both values less
than and greater than ϯ. Had we used just x = ϯ.ϬϬϭ, we might have been
tempted to conclude that the limit had a value of Ϭ.ϯ. While this is not far off,
we could do beƩer. Using values “on both sides of ϯ” helps us idenƟfy trends.

Example Ϯ ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches Ϭ,
where

f(x) =
{

x+ ϭ x < Ϭ
−xϮ + ϭ x > Ϭ .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
Ϭ to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of Ϭ. Figure ϭ.ϳ shows a graph of f(x), and on
either side of Ϭ it seems the y values approach ϭ. Note that f(Ϭ) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure ϭ.ϴ shows values of f(x) for values of x near Ϭ. It
is clear that as x takes on values very near Ϭ, f(x) takes on values very near ϭ.
It turns out that if we let x = Ϭ for either “piece” of f(x), ϭ is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→Ϭ f(x) ≈ ϭ; in fact, we are
probably very sure it equals ϭ.

IdenƟfying When Limits Do Not Exist

A funcƟon may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three ways in which a limit may fail
to exist.

ϭ. The funcƟon f(x)may approach different values on either side of c.

Ϯ. The funcƟon may grow without upper or lower bound as x approaches c.

ϯ. The funcƟon may oscillate as x approaches c.

Notes:
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Figure ϭ.ϵ: Observing no limit as x → ϭ in
Example ϯ.

x f(x)
Ϭ.ϵ Ϯ.Ϭϭ
Ϭ.ϵϵ Ϯ.ϬϬϬϭ
Ϭ.ϵϵϵ Ϯ.ϬϬϬϬϬϭ
ϭ.ϬϬϭ ϭ.ϬϬϭ
ϭ.Ϭϭ ϭ.Ϭϭ
ϭ.ϭ ϭ.ϭ

Figure ϭ.ϭϬ: Values of f(x) near x = ϭ in
Example ϯ.
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Figure ϭ.ϭϭ: Observing no limit as x → ϭ
in Example ϰ.

x f(x)
Ϭ.ϵ ϭϬϬ.
Ϭ.ϵϵ ϭϬϬϬϬ.
Ϭ.ϵϵϵ ϭ.× ϭϬϲ

ϭ.ϬϬϭ ϭ.× ϭϬϲ

ϭ.Ϭϭ ϭϬϬϬϬ.
ϭ.ϭ ϭϬϬ.

Figure ϭ.ϭϮ: Values of f(x) near x = ϭ in
Example ϰ.

ϭ.ϭ An IntroducƟon To Limits

We’ll explore each of these in turn.

Example ϯ Different Values Approached From LeŌ and Right
Explore why lim

x→ϭ
f(x) does not exist, where

f(x) =
{

xϮ − Ϯx+ ϯ x ≤ ϭ
x x > ϭ .

SÊ½çã®ÊÄ A graph of f(x) around x = ϭ and a table are given Figures
ϭ.ϵ and ϭ.ϭϬ, respecƟvely. It is clear that as x approaches ϭ, f(x) does not seem
to approach a single number. Instead, it seems as though f(x) approaches two
different numbers. When considering values of x less than ϭ (approaching ϭ
from the leŌ), it seems that f(x) is approaching Ϯ; when considering values of
x greater than ϭ (approaching ϭ from the right), it seems that f(x) is approach-
ing ϭ. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches ϭ.

Example ϰ The FuncƟon Grows Without Bound
Explore why lim

x→ϭ
ϭ/(x− ϭ)Ϯ does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = ϭ/(x − ϭ)Ϯ are given in Figures
ϭ.ϭϭ and ϭ.ϭϮ, respecƟvely. Both show that as x approaches ϭ, f(x) grows larger
and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near ϭ, then (x− ϭ)Ϯ is very small, and:

ϭ
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→ϭ

ϭ
(x− ϭ)Ϯ

does not exist.

Example ϱ The FuncƟon Oscillates
Explore why lim

x→Ϭ
sin(ϭ/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(ϭ/x) are given in Figures ϭ.ϭϯ. Fig-
ure ϭ.ϭϯ(a) shows f(x) on the interval [−ϭ, ϭ]; noƟce how f(x) seems to oscillate

Notes:
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Figure ϭ.ϭϰ: InterpreƟng a difference
quoƟent as the slope of a secant line.

Chapter ϭ Limits

near x = Ϭ. One might think that despite the oscillaƟon, as x approaches Ϭ,
f(x) approaches Ϭ. However, Figure ϭ.ϭϯ(b) zooms in on sin(ϭ/x), on the inter-
val [−Ϭ.ϭ, Ϭ.ϭ]. Here the oscillaƟon is even more pronounced. Finally, in the
table in Figure ϭ.ϭϯ(c), we see sin(x)/x evaluated for values of x near Ϭ. As x
approaches Ϭ, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches Ϭ, sin(ϭ/x) takes on all values
between−ϭ and ϭ infinite Ɵmes! Because of this oscillaƟon,

lim
x→Ϭ

sin(ϭ/x) does not exist.
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x sin(ϭ/x)
Ϭ.ϭ −Ϭ.ϱϰϰϬϮϭ
Ϭ.Ϭϭ −Ϭ.ϱϬϲϯϲϲ
Ϭ.ϬϬϭ Ϭ.ϴϮϲϴϴ
Ϭ.ϬϬϬϭ −Ϭ.ϯϬϱϲϭϰ

ϭ.× ϭϬ−ϱ Ϭ.Ϭϯϱϳϰϴϴ
ϭ.× ϭϬ−ϲ −Ϭ.ϯϰϵϵϵϰ
ϭ.× ϭϬ−ϳ Ϭ.ϰϮϬϱϰϴ

(a) (b) (c)

Figure ϭ.ϭϯ: Observing that f(x) = sin(ϭ/x) has no limit as x → Ϭ in Example ϱ.

Limits of Difference QuoƟents

We have approximated limits of funcƟons as x approached a parƟcular num-
ber. We will consider another important kind of limit aŌer explaining a few key
ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = ϭ,
the parƟcle is at posiƟon ϭϬ Ō., and when x = ϱ, the parƟcle is at ϮϬ Ō. Another
way of expressing this is to say

f(ϭ) = ϭϬ and f(ϱ) = ϮϬ.

Since the parƟcle traveled ϭϬ feet in ϰ seconds, we can say the parƟcle’s average
velocity was Ϯ.ϱ Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(ϱ)− f(ϭ)
ϱ− ϭ

=
ϭϬ
ϰ

= Ϯ.ϱŌ/s.

Notes:
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Figure ϭ.ϭϱ: Secant lines of f(x) at x = ϭ
and x = ϭ + h, for shrinking values of h
(i.e., h → Ϭ).

h f(ϭ+h)−f(ϭ)
h

−Ϭ.ϱ ϵ.Ϯϱ
−Ϭ.ϭ ϴ.ϲϱ
−Ϭ.Ϭϭ ϴ.ϱϭϱ
Ϭ.Ϭϭ ϴ.ϰϴϱ
Ϭ.ϭ ϴ.ϯϱ
Ϭ.ϱ ϳ.ϳϱ

Figure ϭ.ϭϲ: The difference quoƟent eval-
uated at values of h near Ϭ.

ϭ.ϭ An IntroducƟon To Limits

This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure ϭ.ϭϰ.

Now consider finding the average speed on another Ɵme interval. We again
start at x = ϭ, but consider the posiƟon of the parƟcle h seconds later. That is,
consider the posiƟons of the parƟcle when x = ϭ and when x = ϭ + h. The
difference quoƟent is now

f(ϭ+ h)− f(ϭ)
(ϭ+ h)− ϭ

=
f(ϭ+ h)− f(ϭ)

h
.

Let f(x) = −ϭ.ϱxϮ + ϭϭ.ϱx; note that f(ϭ) = ϭϬ and f(ϱ) = ϮϬ, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = Ϭ, for then we get “Ϭ/Ϭ,” the indeterminate form
introduced earlier. For all values h ̸= Ϭ, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = ϭ.

For small values of h, i.e., values of h close to Ϭ, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
Figure ϭ.ϭϱ. This leads us to wonder what the limit of the difference quoƟent is
as h approaches Ϭ. That is,

lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure ϭ.ϭϲ. The table gives us reason to assume the value of the limit is
about ϴ.ϱ.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

In the next secƟon we give the formal definiƟon of the limit and begin our
study of finding limits analyƟcally. In the following exercises, we conƟnue our
introducƟon and approximate the value of limits.

Notes:

ϳ



Exercises ϭ.ϭ
Terms and Concepts
ϭ. In your own words, what does it mean to “find the limit of

f(x) as x approaches ϯ”?

Ϯ. An expression of the form Ϭ
Ϭ is called .

ϯ. T/F: The limit of f(x) as x approaches ϱ is f(ϱ).

ϰ. Describe three situaƟons where lim
x→c

f(x) does not exist.

ϱ. In your own words, what is a difference quoƟent?

Problems
In Exercises ϲ – ϭϲ, approximate the given limits both numer-
ically and graphically.

ϲ. lim
x→ϭ

xϮ + ϯx− ϱ

ϳ. lim
x→Ϭ

xϯ − ϯxϮ + x− ϱ

ϴ. lim
x→Ϭ

x+ ϭ
xϮ + ϯx

ϵ. lim
x→ϯ

xϮ − Ϯx− ϯ
xϮ − ϰx+ ϯ

ϭϬ. lim
x→−ϭ

xϮ + ϴx+ ϳ
xϮ + ϲx+ ϱ

ϭϭ. lim
x→Ϯ

xϮ + ϳx+ ϭϬ
xϮ − ϰx+ ϰ

ϭϮ. lim
x→Ϯ

f(x), where

f(x) =
{

x+ Ϯ x ≤ Ϯ
ϯx− ϱ x > Ϯ .

ϭϯ. lim
x→ϯ

f(x), where

f(x) =
{

xϮ − x+ ϭ x ≤ ϯ
Ϯx+ ϭ x > ϯ .

ϭϰ. lim
x→Ϭ

f(x), where

f(x) =
{

cos x x ≤ Ϭ
xϮ + ϯx+ ϭ x > Ϭ .

ϭϱ. lim
x→π/Ϯ

f(x), where

f(x) =
{

sin x x ≤ π/Ϯ
cos x x > π/Ϯ .

In Exercises ϭϲ – Ϯϰ, a funcƟon f and a value a are
given. Approximate the limit of the difference quoƟent,

lim
h→Ϭ

f(a+ h)− f(a)
h

, using h = ±Ϭ.ϭ,±Ϭ.Ϭϭ.

ϭϲ. f(x) = −ϳx+ Ϯ, a = ϯ

ϭϳ. f(x) = ϵx+ Ϭ.Ϭϲ, a = −ϭ

ϭϴ. f(x) = xϮ + ϯx− ϳ, a = ϭ

ϭϵ. f(x) =
ϭ

x+ ϭ
, a = Ϯ

ϮϬ. f(x) = −ϰxϮ + ϱx− ϭ, a = −ϯ

Ϯϭ. f(x) = ln x, a = ϱ

ϮϮ. f(x) = sin x, a = π

Ϯϯ. f(x) = cos x, a = π

ϴ



ϭ.Ϯ Epsilon-Delta DefiniƟon of a Limit

ϭ.Ϯ Epsilon-Delta DefiniƟon of a Limit

This secƟon introduces the formal definiƟon of a limit. Many refer to this as “the
epsilon–delta,” definiƟon, referring to the leƩers ε and δ of the Greek alphabet.

Before we give the actual definiƟon, let’s consider a few informal ways of
describing a limit. Given a funcƟon y = f(x) and an x-value, c, we say that “the
limit of the funcƟon f, as x approaches c, is a value L”:

ϭ. if “y tends to L” as “x tends to c.”

Ϯ. if “y approaches L” as “x approaches c.”

ϯ. if “y is near L” whenever “x is near c.”

The problem with these definiƟons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respecƟvely?

The definiƟon we describe in this secƟon comes from formalizing ϯ. A quick
restatement gets us closer to what we want:

ϯ′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The tradiƟonal notaƟon for the x-tolerance is the lowercase Greek leƩer
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of ϯ′ nearly gets us to the actual definiƟon:

ϯ′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathemaƟcally as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Leƫng the symbol “−→” represent the word “implies,” we can rewrite ϯ′′ as

|x− c| < δ −→ |y− L| < ε or c− δ < x < c+ δ −→ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any posiƟve (but typically
small) values. Finally, we have the formal definiƟon of the limit with the notaƟon
seen in the previous secƟon.

Notes:
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Figure ϭ.ϭϳ: IllustraƟng the ε− δ process.

Chapter ϭ Limits

DefiniƟon ϭ The Limit of a FuncƟon f

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > Ϭ, there exists δ > Ϭ such that for all x ̸= c, if
|x− c| < δ, then |f(x)− L| < ε.

(MathemaƟcians oŌen enjoy wriƟng ideas without using any words. Here is
the wordless definiƟon of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > Ϭ, ∃ δ > Ϭ s.t. Ϭ < |x− c| < δ −→ |f(x)− L| < ε.)

Note the order in which ε and δ are given. In the definiƟon, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An example will help us understand this definiƟon. Note that the explana-
Ɵon is long, but it will take one through all steps necessary to understand the
ideas.

Example ϲ EvaluaƟng a limit using the definiƟon
Show that lim

x→ϰ

√
x = Ϯ.

SÊ½çã®ÊÄ Beforeweuse the formal definiƟon, let’s try somenumerical
tolerances. What if the y tolerance is Ϭ.ϱ, or ε = Ϭ.ϱ? How close to ϰ does x
have to be so that y is within Ϭ.ϱ units of Ϯ, i.e., ϭ.ϱ < y < Ϯ.ϱ? In this case, we
can proceed as follows:

ϭ.ϱ < y < Ϯ.ϱ
ϭ.ϱ <

√
x < Ϯ.ϱ

ϭ.ϱϮ < x < Ϯ.ϱϮ

Ϯ.Ϯϱ < x < ϲ.Ϯϱ.

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely ϰ− δ < x < ϰ+ δ. The lower bound of Ϯ.Ϯϱ is ϭ.ϳϱ
units from ϰ; the upper bound of ϲ.Ϯϱ is Ϯ.Ϯϱ units from ϰ. We need the smaller
of these two distances; we must have δ ≤ ϭ.ϳϱ. See Figure ϭ.ϭϳ.

Notes:

ϭϬ



ϭ.Ϯ Epsilon-Delta DefiniƟon of a Limit

Given the y tolerance ε = Ϭ.ϱ, we have found an x tolerance, δ ≤ ϭ.ϳϱ, such
that whenever x is within δ units of ϰ, then y is within ε units of Ϯ. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is Ϭ.Ϭϭ, i.e., ε = Ϭ.Ϭϭ? How close to ϰ does x have to
be in order for y to be within Ϭ.Ϭϭ units of Ϯ (or ϭ.ϵϵ < y < Ϯ.Ϭϭ)? Again, we
just square these values to get ϭ.ϵϵϮ < x < Ϯ.ϬϭϮ, or

ϯ.ϵϲϬϭ < x < ϰ.ϬϰϬϭ.

What is the desired x tolerance? In this case we must have δ ≤ Ϭ.Ϭϯϵϵ, which
is the minimum distance from ϰ of the two bounds given above.

What we have so far: if ε = Ϭ.ϱ, then δ ≤ ϭ.ϳϱ and if ε = Ϭ.Ϭϭ, then δ ≤
Ϭ.Ϭϯϵϵ. A paƩern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of Ϯ:

|y− Ϯ| < ε

−ε < y− Ϯ < ε (DefiniƟon of absolute value)
−ε <

√
x− Ϯ < ε (y =

√
x)

Ϯ− ε <
√
x < Ϯ+ ε (Add Ϯ)

(Ϯ− ε)Ϯ < x < (Ϯ+ ε)Ϯ (Square all)
ϰ− ϰε+ εϮ < x < ϰ+ ϰε+ εϮ (Expand)

ϰ− (ϰε− εϮ) < x < ϰ+ (ϰε+ εϮ). (Rewrite in the desired form)

The “desired form” in the last step is “ϰ− something < x < ϰ+ something.”
Sincewewant this last interval to describe an x tolerance around ϰ, we have that
either δ ≤ ϰε− εϮ or δ ≤ ϰε+ εϮ, whichever is smaller:

δ ≤ min{ϰε− εϮ, ϰε+ εϮ}.

Since ε > Ϭ, the minimum is δ ≤ ϰε − εϮ. That’s the formula: given an ε, set
δ ≤ ϰε− εϮ.

We can check this for our previous values. If ε = Ϭ.ϱ, the formula gives
δ ≤ ϰ(Ϭ.ϱ)−(Ϭ.ϱ)Ϯ = ϭ.ϳϱ andwhen ε = Ϭ.Ϭϭ, the formula gives δ ≤ ϰ(Ϭ.Ϭϭ)−
(Ϭ.Ϭϭ)Ϯ = Ϭ.ϯϵϵ.

So given any ε > Ϭ, set δ ≤ ϰε − εϮ. Then if |x − ϰ| < δ (and x ̸= ϰ), then
|f(x) − Ϯ| < ε, saƟsfying the definiƟon of the limit. We have shown formally
(and finally!) that lim

x→ϰ

√
x = Ϯ.

Notes:

ϭϭ



Chapter ϭ Limits

The previous examplewas a liƩle long in thatwe sampled a few specific cases
of ε before handling the general case. Normally this is not done. The previous
example is also a bit unsaƟsfying in that

√
ϰ = Ϯ; why work so hard to prove

something so obvious? Many ε-δ proofs are long and difficult to do. In this sec-
Ɵon, we will focus on examples where the answer is, frankly, obvious, because
the non–obvious examples are even harder. In the next secƟon we will learn
some theorems that allow us to evaluate limits analyƟcally, that is, without us-
ing the ε-δ definiƟon.

Example ϳ EvaluaƟng a limit using the definiƟon
Show that lim

x→Ϯ
xϮ = ϰ.

SÊ½çã®ÊÄ Let’s do this example symbolically from the start. Let ε > Ϭ
be given; we want |y − ϰ| < ε, i.e., |xϮ − ϰ| < ε. How do we find δ such that
when |x− Ϯ| < δ, we are guaranteed that |xϮ − ϰ| < ε?

This is a bit trickier than the previous example, but let’s start by noƟcing that
|xϮ − ϰ| = |x− Ϯ| · |x+ Ϯ|. Consider:

|xϮ − ϰ| < ε −→ |x− Ϯ| · |x+ Ϯ| < ε −→ |x− Ϯ| < ε

|x+ Ϯ| . (ϭ.ϭ)

Could we not set δ =
ε

|x+ Ϯ|?
Weare close to an answer, but the catch is that δmust be a constant value (so

it can’t contain x). There is a way towork around this, but we do have tomake an
assumpƟon. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In parƟcular, we can (probably) assume that
δ < ϭ. If this is true, then |x − Ϯ| < δ would imply that |x − Ϯ| < ϭ, giving
ϭ < x < ϯ.

Now, back to the fracƟon
ε

|x+ Ϯ| . If ϭ < x < ϯ, then ϯ < x + Ϯ < ϱ (add Ϯ

to all terms in the inequality). Taking reciprocals, we have

ϭ
ϱ
<

ϭ
|x+ Ϯ| <

ϭ
ϯ

which implies

ϭ
ϱ
<

ϭ
|x+ Ϯ| which implies

ε

ϱ
<

ε

|x+ Ϯ| . (ϭ.Ϯ)

This suggests that we set δ ≤ ε

ϱ
. To see why, let consider what follows when

we assume |x− Ϯ| < δ:

Notes:
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Figure ϭ.ϭϴ: Choosing δ = ε/ϱ in Exam-
ple ϳ.

ϭ.Ϯ Epsilon-Delta DefiniƟon of a Limit

|x− Ϯ| < δ

|x− Ϯ| < ε

ϱ
(Our choice of δ)

|x− Ϯ| · |x+ Ϯ| < |x+ Ϯ| · ε
ϱ

(MulƟply by |x+ Ϯ|)

|xϮ − ϰ| < |x+ Ϯ| · ε
ϱ

(Combine leŌ side)

|xϮ − ϰ| < |x+ Ϯ| · ε
ϱ
< |x+ Ϯ| · ε

|x+ Ϯ| = ε (Using (ϭ.Ϯ) as long as δ < ϭ)

We have arrived at |xϮ−ϰ| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than ϭ. That is a safe assumpƟon; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure ϭ.ϭϴ. The dashed outer lines show the
boundaries defined by our choice of ε. The doƩed inner lines show the bound-
aries defined by seƫng δ = ε/ϱ. Note how these doƩed lines are within the
dashed lines. That is perfectly fine; by choosing xwithin the doƩed lines we are
guaranteed that f(x) will be within ε of ϰ.

In summary, given ε > Ϭ, set δ =≤ ε/ϱ. Then |x−Ϯ| < δ implies |xϮ−ϰ| < ε
(i.e. |y − ϰ| < ε) as desired. This shows that lim

x→Ϯ
xϮ = ϰ. Figure ϭ.ϭϴ gives a

visualizaƟon of this; by restricƟng x to values within δ = ε/ϱ of Ϯ, we see that
f(x) is within ε of ϰ.

Make note of the general paƩern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

ϭ. start with |x− c| < δ and conclude that

Ϯ. |f(x)− L| < ε,

we actually start by assuming

ϭ. |f(x) − L| < ε, then perform some algebraic manipulaƟons to give an
inequality of the form

Ϯ. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch–work” phase
of our proof. Once we have δ, we can formally start with |x − c| < δ and use
algebraic manipulaƟons to conclude that |f(x) − L| < ε, usually by using the
same steps of our “scratch–work” in reverse order.

Notes:
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Chapter ϭ Limits

We highlight this process in the following example.

Example ϴ EvaluaƟng a limit using the definiƟon
Prove that lim

x→ϭ
xϯ − Ϯx = −ϭ.

SÊ½çã®ÊÄ We start our scratch–work by considering |f(x)−(−ϭ)| < ε:

|f(x)− (−ϭ)| < ε

|xϯ − Ϯx+ ϭ| < ε (Now factor)

|(x− ϭ)(xϮ + x− ϭ)| < ε

|x− ϭ| < ε

|xϮ + x− ϭ| . (ϭ.ϯ)

We are at the phase of saying that |x − ϭ| < something, where something=
ε/|xϮ + x− ϭ|. We want to turn that something into δ.

Since x is approaching ϭ, we are safe to assume that x is between Ϭ and Ϯ.
So

Ϭ < x < Ϯ

Ϭ < xϮ < ϰ. (squared each term)

Since Ϭ < x < Ϯ, we can add Ϭ, x and Ϯ, respecƟvely, to each part of the inequal-
ity and maintain the inequality.

Ϭ < xϮ + x < ϲ

−ϭ < xϮ + x− ϭ < ϱ. (subtracted ϭ from each part)

In EquaƟon (ϭ.ϯ), we wanted |x− ϭ| < ε/|xϮ+ x− ϭ|. The above shows that
given any x in [Ϭ, Ϯ], we know that

xϮ + x− ϭ < ϱ which implies that
ϭ
ϱ
<

ϭ
xϮ + x− ϭ

which implies that

ε

ϱ
<

ε

xϮ + x− ϭ
. (ϭ.ϰ)

So we set δ ≤ ε/ϱ. This ends our scratch–work, and we begin the formal proof
(which also helps us understand why this was a good choice of δ).

Given ε, let δ ≤ ε/ϱ. We want to show that when |x − ϭ| < δ, then |(xϯ −

Notes:

ϭϰ



Note: Recall ln ϭ = Ϭ and ln x < Ϭ when
Ϭ < x < ϭ. So ln(ϭ − ε) < Ϭ, hence we
consider its absolute value.

ϭ.Ϯ Epsilon-Delta DefiniƟon of a Limit

Ϯx)− (−ϭ)| < ε. We start with |x− ϭ| < δ:

|x− ϭ| < δ

|x− ϭ| < ε

ϱ
|x− ϭ| < ε

ϱ
<

ε

|xϮ + x− ϭ| (for x near ϭ, from EquaƟon (ϭ.ϰ))

|x− ϭ| · |xϮ + x− ϭ| < ε

|xϯ − Ϯx+ ϭ| < ε

|(xϯ − Ϯx)− (−ϭ)| < ε,

which is what we wanted to show. Thus lim
x→ϭ

xϯ − Ϯx = −ϭ.

We illustrate evaluaƟng limits once more.

Example ϵ EvaluaƟng a limit using the definiƟon
Prove that lim

x→Ϭ
ex = ϭ.

SÊ½çã®ÊÄ Symbolically, we want to take the equaƟon |ex − ϭ| < ε and
unravel it to the form |x− Ϭ| < δ. Here is our scratch–work:

|ex − ϭ| < ε

−ε < ex − ϭ < ε (DefiniƟon of absolute value)
ϭ− ε < ex < ϭ+ ε (Add ϭ)

ln(ϭ− ε) < x < ln(ϭ+ ε) (Take natural logs)

Making the safe assumpƟon that ε < ϭ ensures the last inequality is valid (i.e.,
so that ln(ϭ−ε) is defined). We can then set δ to be the minimum of | ln(ϭ−ε)|
and ln(ϭ+ ε); i.e.,

δ = min{| ln(ϭ− ε)|, ln(ϭ+ ε)} = ln(ϭ+ ε).

Now, we work through the actual the proof:

|x− Ϭ| < δ

−δ < x < δ (DefiniƟon of absolute value)
− ln(ϭ+ ε) < x < ln(ϭ+ ε).

ln(ϭ− ε) < x < ln(ϭ+ ε). (since ln(ϭ− ε) < − ln(ϭ+ ε))

Notes:
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Chapter ϭ Limits

The above line is true by our choice of δ and by the fact that since | ln(ϭ− ε)| >
ln(ϭ+ ε) and ln(ϭ− ε) < Ϭ, we know ln(ϭ− ε) < − ln(ϭ+ ε).

ϭ− ε < ex < ϭ+ ε (ExponenƟate)
−ε < ex − ϭ < ε (Subtract ϭ)

In summary, given ε > Ϭ, let δ = ln(ϭ + ε). Then |x − Ϭ| < δ implies
|ex − ϭ| < ε as desired. We have shown that lim

x→Ϭ
ex = ϭ.

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
ϭ instead. By using the subsƟtuƟonu = x−c, this reduces to showing limu→Ϭ eu =
ϭ which we just did in the last example. As an added benefit, this shows that in
fact the funcƟon f(x) = ex is conƟnuous at all values of x, an important concept
we will define in SecƟon ϭ.ϱ.

This formal definiƟon of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” funcƟons like polynomials, square–
roots and exponenƟals. It is very difficult to prove, using the techniques given
above, that lim

x→Ϭ
(sin x)/x = ϭ, as we approximated in the previous secƟon.

There is hope. The next secƟon shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathemaƟcs), rarely are
limits evaluated using the definiƟon. Rather, the techniques of the following
secƟon are employed.

Notes:
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Exercises ϭ.Ϯ
Terms and Concepts

ϭ. What is wrong with the following “definiƟon” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > Ϭ there exists ε > Ϭ
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

Ϯ. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

ϯ. T/F: εmust always be posiƟve.

ϰ. T/F: δ must always be posiƟve.

Problems
In Exercises ϱ – ϭϭ, prove the given limit using an ε− δ proof.

ϱ. lim
x→ϱ

ϯ− x = −Ϯ

ϲ. lim
x→ϯ

xϮ − ϯ = ϲ

ϳ. lim
x→ϰ

xϮ + x− ϱ = ϭϱ

ϴ. lim
x→Ϯ

xϯ − ϭ = ϳ

ϵ. lim
x→Ϯ

ϱ = ϱ

ϭϬ. lim
x→Ϭ

eϮx − ϭ = Ϭ

ϭϭ. lim
x→Ϭ

sin x = Ϭ (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = Ϭ.)

ϭϳ



Chapter ϭ Limits

ϭ.ϯ Finding Limits AnalyƟcally

In SecƟon ϭ.ϭ we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. In the previous secƟon we gave
the definiƟon of the limit and demonstrated how to use it to verify our approxi-
maƟons were correct. Thus far, our method of finding a limit is ϭ) make a really
good approximaƟon either graphically or numerically, and Ϯ) verify our approx-
imaƟon is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this secƟon gives a series of
theorems which allow us to find limits much more quickly and intuiƟvely.

Suppose that limx→Ϯ f(x) = Ϯ and limx→Ϯ g(x) = ϯ. What is limx→Ϯ(f(x) +
g(x))? IntuiƟon tells us that the limit should be ϱ, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem ϭ Basic Limit ProperƟes

Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f and g be
funcƟons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.

ϭ. Constants: lim
x→c

b = b

Ϯ. IdenƟty lim
x→c

x = c

ϯ. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

ϰ. Scalar MulƟples: lim
x→c

b · f(x) = bL

ϱ. Products: lim
x→c

f(x) · g(x) = LK

ϲ. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= Ϭ)

ϳ. Powers: lim
x→c

f(x)n = Ln

ϴ. Roots: lim
x→c

n
√

f(x) = n√L

ϵ. ComposiƟons: Adjust our previously given limit situaƟon to:

lim
x→c

f(x) = L and lim
x→L

g(x) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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ϭ.ϯ Finding Limits AnalyƟcally

We make a note about Property #ϴ: when n is even, Lmust be greater than
Ϭ. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example ϭϬ Using basic limit properƟes
Let

lim
x→Ϯ

f(x) = Ϯ, lim
x→Ϯ

g(x) = ϯ and p(x) = ϯxϮ − ϱx+ ϳ.

Find the following limits:

ϭ. lim
x→Ϯ

(
f(x) + g(x)

)

Ϯ. lim
x→Ϯ

(
ϱf(x) + g(x)Ϯ

)

ϯ. lim
x→Ϯ

p(x)

SÊ½çã®ÊÄ

ϭ. Using the Sum/Difference rule, we know that lim
x→Ϯ

(
f(x)+g(x)

)
= Ϯ+ϯ =

ϱ.

Ϯ. Using the ScalarMulƟple and Sum/Difference rules, wefind that lim
x→Ϯ

(
ϱf(x)+

g(x)Ϯ
)
= ϱ · Ϯ+ ϯϮ = ϭϵ.

ϯ. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→Ϯ

p(x) = lim
x→Ϯ

(ϯxϮ − ϱx+ ϳ)

= lim
x→Ϯ

ϯxϮ − lim
x→Ϯ

ϱx+ lim
x→Ϯ

ϳ

= ϯ · ϮϮ − ϱ · Ϯ+ ϳ
= ϵ

Part ϯ of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem ϭ. Not only that,
recognize that

lim
x→Ϯ

p(x) = ϵ = p(Ϯ);

i.e., the limit at Ϯ was found just by plugging Ϯ into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Notes:

ϭϵ



Chapter ϭ Limits

Theorem Ϯ Limits of Polynomial and RaƟonal FuncƟons

Let p(x) and q(x) be polynomials and c a real number. Then:

ϭ. lim
x→c

p(x) = p(c)

Ϯ. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= Ϭ.

Example ϭϭ Finding a limit of a raƟonal funcƟon
Using Theorem Ϯ, find

lim
x→−ϭ

ϯxϮ − ϱx+ ϭ
xϰ − xϮ + ϯ

.

SÊ½çã®ÊÄ Using Theorem Ϯ, we can quickly state that

lim
x→−ϭ

ϯxϮ − ϱx+ ϭ
xϰ − xϮ + ϯ

=
ϯ(−ϭ)Ϯ − ϱ(−ϭ) + ϭ
(−ϭ)ϰ − (−ϭ)Ϯ + ϯ

=
ϵ
ϯ
= ϯ.

It was likely frustraƟng in SecƟon ϭ.Ϯ to do a lot of work to prove that

lim
x→Ϯ

xϮ = ϰ

as it seemed fairly obvious. The previous theorems state that many funcƟons
behave in such an “obvious” fashion, as demonstrated by the raƟonal funcƟon
in Example ϭϭ.

Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behavior is parƟcularly “nice” in terms of limits. In the next secƟon, we will give
a formal name to these funcƟons that behave “nicely.”

Theorem ϯ Special Limits

Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

ϭ. lim
x→c

sin x = sin c

Ϯ. lim
x→c

cos x = cos c

ϯ. lim
x→c

tan x = tan c

ϰ. lim
x→c

csc x = csc c

ϱ. lim
x→c

sec x = sec c

ϲ. lim
x→c

cot x = cot c

ϳ. lim
x→c

ax = ac (a > Ϭ)

ϴ. lim
x→c

ln x = ln c

ϵ. lim
x→c

n
√
x = n

√
c

Notes:
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ϭ.ϯ Finding Limits AnalyƟcally

Example ϭϮ EvaluaƟng limits analyƟcally
Evaluate the following limits.

ϭ. lim
x→π

cos x

Ϯ. lim
x→ϯ

(secϮ x− tanϮ x)

ϯ. lim
x→π/Ϯ

cos x sin x

ϰ. lim
x→ϭ

eln x

ϱ. lim
x→Ϭ

sin x
x

SÊ½çã®ÊÄ

ϭ. This is a straighƞorward applicaƟon of Theorem ϯ. lim
x→π

cos x = cos π =

−ϭ.

Ϯ. We can approach this in at least two ways. First, by directly applying The-
orem ϯ, we have:

lim
x→ϯ

(secϮ x− tanϮ x) = secϮ ϯ− tanϮ ϯ.

Using the Pythagorean Theorem, this last expression is ϭ; therefore

lim
x→ϯ

(secϮ x− tanϮ x) = ϭ.

We can also use the Pythagorean Theorem from the start.

lim
x→ϯ

(secϮ x− tanϮ x) = lim
x→ϯ

ϭ = ϭ,

using the Constant limit rule. Either way, we find the limit is ϭ.

ϯ. Applying the Product limit rule of Theorem ϭ and Theorem ϯ gives

lim
x→π/Ϯ

cos x sin x = cos(π/Ϯ) sin(π/Ϯ) = Ϭ · ϭ = Ϭ.

ϰ. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→ϭ
eln x = lim

x→ϭ
x = ϭ.

We can also use the ComposiƟon limit rule of Theorem ϭ. Using Theorem
ϯ, we have lim

x→ϭ
ln x = ln ϭ = Ϭ. Applying the ComposiƟon rule,

lim
x→ϭ

eln x = lim
x→Ϭ

ex = eϬ = ϭ.

Both approaches are valid, giving the same result.

Notes:
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ϱ. We encountered this limit in SecƟon ϭ.ϭ. Applying our theorems, we at-
tempt to find the limit as

lim
x→Ϭ

sin x
x

→ sin Ϭ
Ϭ

→
“ Ϭ
Ϭ
”
.

This, of course, violates a condiƟon of Theorem ϭ, as the limit of the de-
nominator is not allowed to be Ϭ. Therefore, we are sƟll unable to evaluate
this limit with tools we currently have at hand.

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem ϰ Squeeze Theorem

Let f, g and h be funcƟons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
the given funcƟon of which you are trying to evaluate a limit. However, that is
generally the only place work is necessary; the theorem makes the “evaluaƟng
the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that

lim
x→Ϭ

sin x
x

= ϭ.

Notes:

ϮϮ



.. θ.

(1, tan θ)

.

(cos θ, sin θ)

.
(1, 0)

Figure ϭ.ϭϵ: The unit circle and related tri-
angles.

ϭ.ϯ Finding Limits AnalyƟcally

Example ϭϯ Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→Ϭ

sin x
x

= ϭ.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure ϭ.ϭϵ.
Using similar triangles, we can extend the line from the origin through the point
to the point (ϭ, tan θ), as shown. (Here we are assuming that Ϭ ≤ θ ≤ π/Ϯ.
Later we will show that we can also consider θ ≤ Ϭ.)

Figure ϭ.ϭϵ shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is ϭ

Ϯ tan θ; the area of the sector is θ/Ϯ; the area of the triangle
contained inside the sector is ϭ

Ϯ sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
Ϯ

≥ θ

Ϯ
≥ sin θ

Ϯ

MulƟply all terms by
Ϯ

sin θ
, giving

ϭ
cos θ

≥ θ

sin θ
≥ ϭ.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ

≤ ϭ.

(These inequaliƟes hold for all values of θ near Ϭ, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→Ϭ

cos θ ≤ lim
θ→Ϭ

sin θ
θ

≤ lim
θ→Ϭ

ϭ

Notes:

Ϯϯ
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cos Ϭ ≤ lim
θ→Ϭ

sin θ
θ

≤ ϭ

ϭ ≤ lim
θ→Ϭ

sin θ
θ

≤ ϭ

Clearly this means that lim
θ→Ϭ

sin θ
θ

= ϭ.

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this textwe
will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches Ϭ, sin(x)/x
approaches ϭ. Both x and sin x are approaching Ϭ, but the raƟo of x and sin x
approaches ϭ, meaning that they are approaching Ϭ in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem ϱ Special Limits

ϭ. lim
x→Ϭ

sin x
x

= ϭ

Ϯ. lim
x→Ϭ

cos x− ϭ
x

= Ϭ

ϯ. lim
x→Ϭ

(ϭ+ x)
ϭ
x = e

ϰ. lim
x→Ϭ

ex − ϭ
x

= ϭ

A short word on how to interpret the laƩer three limits. We know that as
x goes to Ϭ, cos x goes to ϭ. So, in the second limit, both the numerator and
denominator are approaching Ϭ. However, since the limit is Ϭ, we can interpret
this as saying that “cos x is approaching ϭ faster than x is approaching Ϭ.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching ϭ (though never equaling ϭ), and we know that ϭ raised to any power
is sƟll ϭ. At the same Ɵme, the power is growing toward infinity. What happens
to a number near ϭ raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately Ϯ.ϳϭϴ.

In the fourth limit, we see that as x → Ϭ, ex approaches ϭ “just as fast” as
x → Ϭ, resulƟng in a limit of ϭ.

Notes:

Ϯϰ
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Figure ϭ.ϮϬ: Graphing f in Example ϭϰ to
understand a limit.

ϭ.ϯ Finding Limits AnalyƟcally

Our final theorem for this secƟon will be moƟvated by the following exam-
ple.

Example ϭϰ Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→ϭ

xϮ − ϭ
x− ϭ

.

SÊ½çã®ÊÄ Webegin by aƩempƟng to apply Theoremϯand subsƟtuƟng
ϭ for x in the quoƟent. This gives:

lim
x→ϭ

xϮ − ϭ
x− ϭ

=
ϭϮ − ϭ
ϭ− ϭ

=
“ Ϭ
Ϭ
”
,

and indeterminate form. We cannot apply the theorem.
By graphing the funcƟon, as in Figure ϭ.ϮϬ, we see that the funcƟon seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

xϮ − ϭ
x− ϭ

=
(x− ϭ)(x+ ϭ)

x− ϭ
.

The funcƟon is not defined when x = ϭ, but for all other x,

xϮ − ϭ
x− ϭ

=
(x− ϭ)(x+ ϭ)

x− ϭ
=

(x− ϭ)(x+ ϭ)
x− ϭ

= x+ ϭ.

Clearly lim
x→ϭ

x+ϭ = Ϯ. Recall that when considering limits, we are not concerned
with the value of the funcƟon at ϭ, only the value the funcƟon approaches as x
approaches ϭ. Since (xϮ− ϭ)/(x− ϭ) and x+ ϭ are the same at all points except
x = ϭ, they both approach the same value as x approaches ϭ. Therefore we can
conclude that

lim
x→ϭ

xϮ − ϭ
x− ϭ

= Ϯ.

The key to the above example is that the funcƟons y = (xϮ− ϭ)/(x− ϭ) and
y = x+ϭ are idenƟcal except at x = ϭ. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Notes:

Ϯϱ
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Theorem ϲ Limits of FuncƟons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “Ϭ/Ϭ”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem ϲ. We demonstrate
this once more.

Example ϭϱ EvaluaƟng a limit using Theorem ϲ

Evaluate lim
x→ϯ

xϯ − ϮxϮ − ϱx+ ϲ
Ϯxϯ + ϯxϮ − ϯϮx+ ϭϱ

.

SÊ½çã®ÊÄ We begin by applying Theorem ϯ and subsƟtuƟng ϯ for x.
This returns the familiar indeterminate form of “Ϭ/Ϭ”. Since the numerator and
denominator are each polynomials, we know that (x−ϯ) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−ϯ) from each (using
polynomial division, syntheƟc division, a computer algebra system, etc.). We
find that

xϯ − ϮxϮ − ϱx+ ϲ
Ϯxϯ + ϯxϮ − ϯϮx+ ϭϱ

=
(x− ϯ)(xϮ + x− Ϯ)

(x− ϯ)(ϮxϮ + ϵx− ϱ)
.

We can cancel the (x−ϯ) terms as long as x ̸= ϯ. Using Theorem ϲwe conclude:

lim
x→ϯ

xϯ − ϮxϮ − ϱx+ ϲ
Ϯxϯ + ϯxϮ − ϯϮx+ ϭϱ

= lim
x→ϯ

(x− ϯ)(xϮ + x− Ϯ)
(x− ϯ)(ϮxϮ + ϵx− ϱ)

= lim
x→ϯ

(xϮ + x− Ϯ)
(ϮxϮ + ϵx− ϱ)

=
ϭϬ
ϰϬ

=
ϭ
ϰ
.

We end this secƟon by revisiƟng a limit first seen in SecƟon ϭ.ϭ, a limit of
a difference quoƟent. Let f(x) = −ϭ.ϱxϮ + ϭϭ.ϱx; we approximated the limit

lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

≈ ϴ.ϱ. We formally evaluate this limit in the following ex-
ample.

Notes:

Ϯϲ
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Example ϭϲ EvaluaƟng the limit of a difference quoƟent

Let f(x) = −ϭ.ϱxϮ + ϭϭ.ϱx; find lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-
ploy Theorem ϯ and subsƟtute Ϭ for h. However, we see that this gives us “Ϭ/Ϭ.”
Knowing that we have a raƟonal funcƟon hints that some algebra will help. Con-
sider the following steps:

lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

= lim
h→Ϭ

−ϭ.ϱ(ϭ+ h)Ϯ + ϭϭ.ϱ(ϭ+ h)−
(
−ϭ.ϱ(ϭ)Ϯ + ϭϭ.ϱ(ϭ)

)

h

= lim
h→Ϭ

−ϭ.ϱ(ϭ+ Ϯh+ hϮ) + ϭϭ.ϱ+ ϭϭ.ϱh− ϭϬ
h

= lim
h→Ϭ

−ϭ.ϱhϮ + ϴ.ϱh
h

= lim
h→Ϭ

h(−ϭ.ϱh+ ϴ.ϱ)
h

= lim
h→Ϭ

(−ϭ.ϱh+ ϴ.ϱ) (using Theorem ϲ, as h ̸= Ϭ)

= ϴ.ϱ (using Theorem ϯ)

This matches our previous approximaƟon.

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem ϯ; it states that many funcƟons that we
use regularly behave in a very nice, predictable way. In the next secƟon we give
a name to this nice behavior; we label such funcƟons as conƟnuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.

Notes:

Ϯϳ



Exercises ϭ.ϯ
Terms and Concepts

ϭ. Explain in your ownwords, without using ε-δ formality, why
lim
x→c

b = b.

Ϯ. Explain in your ownwords, without using ε-δ formality, why
lim
x→c

x = c.

ϯ. What does the text mean when it says that certain func-
Ɵons’ “behavior is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

ϰ. Sketch a graph that visually demonstrates the Squeeze The-
orem.

ϱ. You are given the following informaƟon:

(a) lim
x→ϭ

f(x) = Ϭ

(b) lim
x→ϭ

g(x) = Ϭ

(c) lim
x→ϭ

f(x)/g(x) = Ϯ

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches ϭ?

Problems

Using:
lim
x→ϵ

f(x) = ϲ lim
x→ϲ

f(x) = ϵ
lim
x→ϵ

g(x) = ϯ lim
x→ϲ

g(x) = ϯ

evaluate the limits given in Exercises ϲ – ϭϯ, where possible.
If it is not possible to know, state so.

ϲ. lim
x→ϵ

(f(x) + g(x))

ϳ. lim
x→ϵ

(ϯf(x)/g(x))

ϴ. lim
x→ϵ

(

f(x)− Ϯg(x)
g(x)

)

ϵ. lim
x→ϲ

(

f(x)
ϯ− g(x)

)

ϭϬ. lim
x→ϵ

g
(

f(x)
)

ϭϭ. lim
x→ϲ

f
(

g(x)
)

ϭϮ. lim
x→ϲ

g
(

f(f(x))
)

ϭϯ. lim
x→ϲ

f(x)g(x)− f Ϯ(x) + gϮ(x)

Using:
lim
x→ϭ

f(x) = Ϯ lim
x→ϭϬ

f(x) = ϭ
lim
x→ϭ

g(x) = Ϭ lim
x→ϭϬ

g(x) = π

evaluate the limits given in Exercises ϭϰ – ϭϳ, where possible.
If it is not possible to know, state so.

ϭϰ. lim
x→ϭ

f(x)g(x)

ϭϱ. lim
x→ϭϬ

cos
(

g(x)
)

ϭϲ. lim
x→ϭ

f(x)g(x)

ϭϳ. lim
x→ϭ

g
(

ϱf(x)
)

In Exercises ϭϴ – ϯϮ, evaluate the given limit.

ϭϴ. lim
x→ϯ

xϮ − ϯx+ ϳ

ϭϵ. lim
x→π

(

x− ϯ
x− ϱ

)ϳ

ϮϬ. lim
x→π/ϰ

cos x sin x

Ϯϭ. lim
x→Ϭ

ln x

ϮϮ. lim
x→ϯ

ϰx
ϯ−ϴx

Ϯϯ. lim
x→π/ϲ

csc x

Ϯϰ. lim
x→Ϭ

ln(ϭ+ x)

Ϯϱ. lim
x→π

xϮ + ϯx+ ϱ
ϱxϮ − Ϯx− ϯ

Ϯϲ. lim
x→π

ϯx+ ϭ
ϭ− x

Ϯϳ. lim
x→ϲ

xϮ − ϰx− ϭϮ
xϮ − ϭϯx+ ϰϮ

Ϯϴ. lim
x→Ϭ

xϮ + Ϯx
xϮ − Ϯx

Ϯϵ. lim
x→Ϯ

xϮ + ϲx− ϭϲ
xϮ − ϯx+ Ϯ

ϯϬ. lim
x→Ϯ

xϮ − ϭϬx+ ϭϲ
xϮ − x− Ϯ

ϯϭ. lim
x→−Ϯ

xϮ − ϱx− ϭϰ
xϮ + ϭϬx+ ϭϲ

ϯϮ. lim
x→−ϭ

xϮ + ϵx+ ϴ
xϮ − ϲx− ϳ

Ϯϴ



Use the Squeeze Theorem in Exercises ϯϯ – ϯϲ, where appro-
priate, to evaluate the given limit.

ϯϯ. lim
x→Ϭ

x sin
(

ϭ
x

)

ϯϰ. lim
x→Ϭ

sin x cos
(

ϭ
xϮ

)

ϯϱ. lim
x→ϭ

f(x), where ϯx− Ϯ ≤ f(x) ≤ xϯ.

ϯϲ. lim
x→ϯ+

f(x), where ϲx− ϵ ≤ f(x) ≤ xϮ on [Ϭ, ϯ].

Exercises ϯϳ – ϰϬ challenge your understanding of limits but
can be evaluated using the knowledge gained in this secƟon.

ϯϳ. lim
x→Ϭ

sin ϯx
x

ϯϴ. lim
x→Ϭ

sin ϱx
ϴx

ϯϵ. lim
x→Ϭ

ln(ϭ+ x)
x

ϰϬ. lim
x→Ϭ

sin x
x

, where x is measured in degrees, not radians.

Ϯϵ



Chapter ϭ Limits

ϭ.ϰ One Sided Limits
We introduced the concept of a limit gently, approximaƟng their values graphi-
cally and numerically. Next came the rigorous definiƟon of the limit, along with
an admiƩedly tediousmethod for evaluaƟng them. The previous secƟon gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and raƟonal, trigono-
metric, exponenƟal and logarithmic funcƟons (and their sums, products, etc.) all
behave “nicely.” In this secƟon we rigorously define what we mean by “nicely.”

In SecƟon ϭ.ϭ we explored the three ways in which limits of funcƟons failed
to exist:

ϭ. The funcƟon approached different values from the leŌ and right,

Ϯ. The funcƟon grows without bound, and

ϯ. The funcƟon oscillates.

In this secƟon we explore in depth the concepts behind #ϭ by introducing
the one-sided limit. We begin with formal definiƟons that are very similar to the
definiƟon of the limit given in SecƟon ϭ.Ϯ, but the notaƟon is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

DefiniƟon Ϯ One Sided Limits

LeŌ-Hand Limit
Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. The limit of f(x), as x approaches c from the leŌ,
is L, or, the leŌ–hand limit of f at c is L, denoted by

lim
x→c−

f(x) = L,

means that given any ε > Ϭ, there exists δ > Ϭ such that for all x < c, if
|x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let I be an open interval containing c, and let f be a funcƟon defined on I,
except possibly at c. The limit of f(x), as x approaches c from the right,
is L, or, the right–hand limit of f at c is L, denoted by

lim
x→c+

f(x) = L,

means that given any ε > Ϭ, there exists δ > Ϭ such that for all x > c, if
|x− c| < δ, then |f(x)− L| < ε.

Notes:

ϯϬ
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Figure ϭ.Ϯϭ: A graph of f in Example ϭϳ.

ϭ.ϰ One Sided Limits

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar
statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

We pracƟce evaluaƟng leŌ and right-hand limits through a series of exam-
ples.

Example ϭϳ EvaluaƟng one sided limits

Let f(x) =

{
x Ϭ ≤ x ≤ ϭ

ϯ− x ϭ < x < Ϯ , as shown in Figure ϭ.Ϯϭ. Find each of the

following:

ϭ. lim
x→ϭ−

f(x)

Ϯ. lim
x→ϭ+

f(x)

ϯ. lim
x→ϭ

f(x)

ϰ. f(ϭ)

ϱ. lim
x→Ϭ+

f(x)

ϲ. f(Ϭ)

ϳ. lim
x→Ϯ−

f(x)

ϴ. f(Ϯ)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

ϭ. As x goes to ϭ from the leŌ, we see that f(x) is approaching the value of ϭ.
Therefore lim

x→ϭ−
f(x) = ϭ.

Ϯ. As x goes to ϭ from the right, we see that f(x) is approaching the value of Ϯ.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→ϭ+
f(x) = Ϯ.

ϯ. The limit of f as x approaches ϭ does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

ϰ. Using the definiƟon and by looking at the graph we see that f(ϭ) = ϭ.

ϱ. As x goes to Ϭ from the right, we see that f(x) is also approaching Ϭ. There-
fore lim

x→Ϭ+
f(x) = Ϭ. Note we cannot consider a leŌ-hand limit at Ϭ as f is

not defined for values of x < Ϭ.

Notes:

ϯϭ
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Figure ϭ.ϮϮ: A graph of f from Example ϭϴ

Chapter ϭ Limits

ϲ. Using the definiƟon and the graph, f(Ϭ) = Ϭ.

ϳ. As x goes to Ϯ from the leŌ, we see that f(x) is approaching the value of
ϭ. Therefore lim

x→Ϯ−
f(x) = ϭ.

ϴ. The graph and the definiƟon of the funcƟon show that f(Ϯ) is not defined.

Note how the leŌ and right-hand limits were different at x = ϭ. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuiƟve: the limit exists precisely when the leŌ and right-hand limits are equal.

Theorem ϳ Limits and One Sided Limits

Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples ϭϳ – ϮϬ is that the value of the funcƟon
may/may not be equal to the value(s) of its leŌ/right-hand limits, even when
these limits agree.

Example ϭϴ EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
Ϯ− x Ϭ < x < ϭ

(x− Ϯ)Ϯ ϭ < x < Ϯ , as shown in Figure ϭ.ϮϮ. Evaluate the

following.

ϭ. lim
x→ϭ−

f(x)

Ϯ. lim
x→ϭ+

f(x)

ϯ. lim
x→ϭ

f(x)

ϰ. f(ϭ)

ϱ. lim
x→Ϭ+

f(x)

ϲ. f(Ϭ)

ϳ. lim
x→Ϯ−

f(x)

ϴ. f(Ϯ)

Notes:
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Figure ϭ.Ϯϯ: Graphing f in Example ϭϵ

ϭ.ϰ One Sided Limits

SÊ½çã®ÊÄ Againwewill evaluate each using both the definiƟon of f and
its graph.

ϭ. As x approaches ϭ from the leŌ, we see that f(x) approaches ϭ. Therefore
lim

x→ϭ−
f(x) = ϭ.

Ϯ. As x approaches ϭ from the right, we see that again f(x) approaches ϭ.
Therefore lim

x→ϭ+
f(x) = ϭ.

ϯ. The limit of f as x approaches ϭ exists and is ϭ, as f approaches ϭ from both
the right and leŌ. Therefore lim

x→ϭ
f(x) = ϭ.

ϰ. f(ϭ) is not defined. Note that ϭ is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = ϭ.

ϱ. As x goes to Ϭ from the right, f(x) approaches Ϯ. So lim
x→Ϭ+

f(x) = Ϯ.

ϲ. f(Ϭ) is not defined as Ϭ is not in the domain of f.

ϳ. As x goes to Ϯ from the leŌ, f(x) approaches Ϭ. So lim
x→Ϯ−

f(x) = Ϭ.

ϴ. f(Ϯ) is not defined as Ϯ is not in the domain of f.

Example ϭϵ EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
(x− ϭ)Ϯ Ϭ ≤ x ≤ Ϯ, x ̸= ϭ

ϭ x = ϭ , as shown in Figure ϭ.Ϯϯ. Evaluate

the following.

ϭ. lim
x→ϭ−

f(x)

Ϯ. lim
x→ϭ+

f(x)

ϯ. lim
x→ϭ

f(x)

ϰ. f(ϭ)

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches ϭ, is Ϭ. Thus it is also clear that the limit is Ϭ;
i.e., lim

x→ϭ
f(x) = Ϭ. It is also clearly stated that f(ϭ) = ϭ.

Example ϮϬ EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =
{

xϮ Ϭ ≤ x ≤ ϭ
Ϯ− x ϭ < x ≤ Ϯ , as shown in Figure ϭ.Ϯϰ. Evaluate the follow-

ing.

Notes:

ϯϯ
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Figure ϭ.Ϯϰ: Graphing f in Example ϮϬ

Chapter ϭ Limits

ϭ. lim
x→ϭ−

f(x)

Ϯ. lim
x→ϭ+

f(x)

ϯ. lim
x→ϭ

f(x)

ϰ. f(ϭ)

SÊ½çã®ÊÄ It is clear from the definiƟon of the funcƟon and its graph
that all of the following are equal:

lim
x→ϭ−

f(x) = lim
x→ϭ+

f(x) = lim
x→ϭ

f(x) = f(ϭ) = ϭ.

In Examples ϭϳ – ϮϬ we were asked to find both lim
x→ϭ

f(x) and f(ϭ). Consider
the following table:

lim
x→ϭ

f(x) f(ϭ)

Example ϭϳ does not exist ϭ
Example ϭϴ ϭ not defined
Example ϭϵ Ϭ ϭ
Example ϮϬ ϭ ϭ

Only in Example ϮϬ do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in the next secƟon, enƟtled “ConƟnuity.” In short, a conƟnu-
ous funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.

Notes:

ϯϰ



Exercises ϭ.ϰ
Terms and Concepts

ϭ. What are the three ways in which a limit may fail to exist?

Ϯ. T/F: If lim
x→ϭ−

f(x) = ϱ, then lim
x→ϭ

f(x) = ϱ

ϯ. T/F: If lim
x→ϭ−

f(x) = ϱ, then lim
x→ϭ+

f(x) = ϱ

ϰ. T/F: If lim
x→ϭ

f(x) = ϱ, then lim
x→ϭ−

f(x) = ϱ

Problems

In Exercises ϱ – ϭϮ, evaluate each expression using the given
graph of f(x).

ϱ.

.....
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

. x.

y

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

(e) lim
x→Ϭ−

f(x)

(f) lim
x→Ϭ+

f(x)

ϲ.

.....
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

. x.

y

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

(e) lim
x→Ϯ−

f(x)

(f) lim
x→Ϯ+

f(x)

ϳ.

.....
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

. x.

y

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

(e) lim
x→Ϯ−

f(x)

(f) lim
x→Ϭ+

f(x)

ϴ.

.....
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

. x.

y

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

ϵ.

.....
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

Ϭ.5

.

ϭ

.

ϭ.5

.

Ϯ

. x.

y

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

ϭϬ.

.....

−ϰ

.

−ϯ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. −ϰ.

−Ϯ

.

Ϯ

.

ϰ

.

x

.

y

(a) lim
x→Ϭ−

f(x)

(b) lim
x→Ϭ+

f(x)

(c) lim
x→Ϭ

f(x)

(d) f(Ϭ)

ϯϱ



ϭϭ.

.....

−ϰ

.

−ϯ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. −ϰ.

−Ϯ

.

Ϯ

.

ϰ

.

x

.

y

(a) lim
x→−Ϯ−

f(x)

(b) lim
x→−Ϯ+

f(x)

(c) lim
x→−Ϯ

f(x)

(d) f(−Ϯ)

(e) lim
x→Ϯ−

f(x)

(f) lim
x→Ϯ+

f(x)

(g) lim
x→Ϯ

f(x)

(h) f(Ϯ)

ϭϮ.

.....

−ϰ

.

−ϯ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. −ϰ.

−Ϯ

.

Ϯ

.

ϰ

.

x

.

y

Let−ϯ ≤ a ≤ ϯ be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises ϭϯ – Ϯϭ, evaluate the given limits of the piecewise
defined funcƟons f.

ϭϯ. f(x) =
{

x+ ϭ x ≤ ϭ
xϮ − ϱ x > ϭ

(a) lim
x→ϭ−

f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

ϭϰ. f(x) =
{

ϮxϮ + ϱx− ϭ x < Ϭ
sin x x ≥ Ϭ

(a) lim
x→Ϭ−

f(x)

(b) lim
x→Ϭ+

f(x)

(c) lim
x→Ϭ

f(x)

(d) f(Ϭ)

ϭϱ. f(x) =







xϮ − ϭ x < −ϭ
xϯ + ϭ −ϭ ≤ x ≤ ϭ
xϮ + ϭ x > ϭ

(a) lim
x→−ϭ−

f(x)

(b) lim
x→−ϭ+

f(x)

(c) lim
x→−ϭ

f(x)

(d) f(−ϭ)

(e) lim
x→ϭ−

f(x)

(f) lim
x→ϭ+

f(x)

(g) lim
x→ϭ

f(x)

(h) f(ϭ)

ϭϲ. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

ϭϳ. f(x) =
{

ϭ− cosϮ x x < a
sinϮ x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

ϭϴ. f(x) =







x+ ϭ x < ϭ
ϭ x = ϭ

x− ϭ x > ϭ
(a) lim

x→ϭ−
f(x)

(b) lim
x→ϭ+

f(x)

(c) lim
x→ϭ

f(x)

(d) f(ϭ)

ϭϵ. f(x) =







xϮ x < Ϯ
x+ ϭ x = Ϯ

−xϮ + Ϯx+ ϰ x > Ϯ
(a) lim

x→Ϯ−
f(x)

(b) lim
x→Ϯ+

f(x)

(c) lim
x→Ϯ

f(x)

(d) f(Ϯ)

ϮϬ. f(x) =
{

a(x− b)Ϯ + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

Ϯϭ. f(x) =
{ |x|

x x ̸= Ϭ
Ϭ x = Ϭ

(a) lim
x→Ϭ−

f(x)

(b) lim
x→Ϭ+

f(x)

(c) lim
x→Ϭ

f(x)

(d) f(Ϭ)

Review

ϮϮ. Evaluate the limit: lim
x→−ϭ

xϮ + ϱx+ ϰ
xϮ − ϯx− ϰ

.

Ϯϯ. Evaluate the limit: lim
x→−ϰ

xϮ − ϭϲ
xϮ − ϰx− ϯϮ

.

Ϯϰ. Evaluate the limit: lim
x→−ϲ

xϮ − ϭϱx+ ϱϰ
xϮ − ϲx

.

Ϯϱ. Approximate the limit numerically: lim
x→Ϭ.ϰ

xϮ − ϰ.ϰx+ ϭ.ϲ
xϮ − Ϭ.ϰx

.

Ϯϲ. Approximate the limit numerically: lim
x→Ϭ.Ϯ

xϮ + ϱ.ϴx− ϭ.Ϯ
xϮ − ϰ.Ϯx+ Ϭ.ϴ

.

ϯϲ
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Figure ϭ.Ϯϱ: A graph of f in Example Ϯϭ.

ϭ.ϱ ConƟnuity

ϭ.ϱ ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→ϭ
f(x) = ϯ, then as x is close to ϭ,

f(x) is close to ϯ. We have seen, though, that this is not necessarily a good in-
dicator of what f(ϭ) actually this. This can be problemaƟc; funcƟons can tend
to one value but aƩain another. This secƟon focuses on funcƟons that do not
exhibit such behavior.

DefiniƟon ϯ ConƟnuous FuncƟon

Let f be a funcƟon defined on an open interval I containing c.

ϭ. f is conƟnuous at c if lim
x→c

f(x) = f(c).

Ϯ. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If f
is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

ϭ. lim
x→c

f(x) exists,

Ϯ. f(c) is defined, and

ϯ. lim
x→c

f(x) = f(c).

Example Ϯϭ Finding intervals of conƟnuity
Let f be defined as shown in Figure ϭ.Ϯϱ. Give the interval(s) on which f is con-
Ɵnuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

ϭ. The limits lim
x→c

f(x) exists for all c between Ϭ and ϯ.

Ϯ. f(c) is defined for all c between Ϭ and ϯ, except for c = ϭ. We know
immediately that f cannot be conƟnuous at x = ϭ.

ϯ. The limit lim
x→c

f(x) = f(c) for all c between Ϭ and ϯ, except, of course, for
c = ϭ.

We conclude that f is conƟnuous at every point of (Ϭ, ϯ) except at x = ϭ.
Therefore f is conƟnuous on (Ϭ, ϭ) ∪ (ϭ, ϯ).

Notes:

ϯϳ
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Figure ϭ.Ϯϲ: A graph of the step funcƟon
in Example ϮϮ.

Chapter ϭ Limits

Example ϮϮ Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than the input
x. (For example, f(π) = ⌊π⌋ = ϯ.) The graph of f in Figure ϭ.Ϯϲ demonstrates
why this is oŌen called a “step funcƟon.”

Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.

ϭ. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

Ϯ. The funcƟon is defined for all values of c.

ϯ. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−Ϯ,−ϭ), (−ϭ, Ϭ), (Ϭ, ϭ), (ϭ, Ϯ), . . . .

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. We can extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

DefiniƟon ϰ ConƟnuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a, b.
f is conƟnuous on [a, b] if:

ϭ. f is conƟnuous on (a, b),

Ϯ. lim
x→a+

f(x) = f(a) and

ϯ. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Notes:

ϯϴ



ϭ.ϱ ConƟnuity

Example Ϯϯ Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

ϭ. f(x) = ϭ/x

Ϯ. f(x) = sin x

ϯ. f(x) =
√
x

ϰ. f(x) =
√
ϭ− xϮ

ϱ. f(x) = |x|

SÊ½çã®ÊÄ We examine each in turn.

ϭ. The domain of f(x) = ϭ/x is (−∞, Ϭ)∪ (Ϭ,∞). As it is a raƟonal funcƟon,
we apply Theorem Ϯ to recognize that f is conƟnuous on all of its domain.

Ϯ. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem ϯ shows that sin x is conƟnuous everywhere.

ϯ. The domain of f(x) =
√
x is [Ϭ,∞). Applying Theoremϯ shows that f(x) =√

x is conƟnuous on its domain of [Ϭ,∞).

ϰ. The domain of f(x) =
√
ϭ− xϮ is [−ϭ, ϭ]. Applying Theorems ϭ and ϯ

shows that f is conƟnuous on all of its domain, [−ϭ, ϭ].

ϱ. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =
{

−x x < Ϭ
x x ≥ Ϭ . Each “piece” of this piecewise defined

funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous on
(−∞, Ϭ) and [Ϭ,∞). We cannot assume this implies that f is conƟnuous
on (−∞,∞); we need to check that lim

x→Ϭ
f(x) = f(Ϭ), as x = Ϭ is the point

where f transiƟons from one “piece” of its definiƟon to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is conƟnuous everywhere.

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems ϭ and Ϯ apply to conƟnuity as well. Fur-
ther, now knowing the definiƟon of conƟnuity we can re–read Theorem ϯ as
giving a list of funcƟons that are conƟnuous on their domains. The following
theorem states how conƟnuous funcƟons can be combined to form other con-
Ɵnuous funcƟons, followed by a theorem which formally lists funcƟons that we
know are conƟnuous on their domains.

Notes:

ϯϵ
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Theorem ϴ ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous funcƟons on an interval I, let c be a real number
and let n be a posiƟve integer. The following funcƟons are conƟnuous on
I.

ϭ. Sums/Differences: f± g

Ϯ. Constant MulƟples: c · f

ϯ. Products: f · g

ϰ. QuoƟents: f/g (as long as g ̸= Ϭ on I)

ϱ. Powers: f n

ϲ. Roots: n
√
f (if n is even then f ≥ Ϭ on I; if n is odd,

then true for all values of f on I.)

ϳ. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on I, where the range of f on I is J,
and let g be conƟnuous on J. Then g ◦ f, i.e.,
g(f(x)), is conƟnuous on I.

Theorem ϵ ConƟnuous FuncƟons

The following funcƟons are conƟnuous on their domains.

ϭ. f(x) = sin x

ϯ. f(x) = tan x

ϱ. f(x) = sec x

ϳ. f(x) = ln x

ϵ. f(x) = ax (a > Ϭ)

Ϯ. f(x) = cos x

ϰ. f(x) = cot x

ϲ. f(x) = csc x

ϴ. f(x) = n
√
x,

(where n is a posiƟve integer)

We apply these theorems in the following Example.

Notes:

ϰϬ
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Figure ϭ.Ϯϳ: A graph of f in Example Ϯϰ(a).

ϭ.ϱ ConƟnuity

Example Ϯϰ Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

ϭ. f(x) =
√
x− ϭ+

√
ϱ− x

Ϯ. f(x) = x sin x

ϯ. f(x) = tan x

ϰ. f(x) =
√
ln x

SÊ½çã®ÊÄ We examine each in turn, applying Theorems ϴ and ϵ as ap-
propriate.

ϭ. The square–root terms are conƟnuous on the intervals [ϭ,∞) and (−∞, ϱ],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [ϭ, ϱ], the intersecƟon of these two intervals. A graph of f
is given in Figure ϭ.Ϯϳ.

Ϯ. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

ϯ. Theorem ϵ states that f(x) = tan x is conƟnuous “on its domain.” Its do-
main includes all real numbers except odd mulƟples of π/Ϯ. Thus f(x) =
tan x is conƟnuous on

. . .

(

−ϯπ
Ϯ
,−π

Ϯ

)

,
(

−π

Ϯ
,
π

Ϯ

)

,

(
π

Ϯ
,
ϯπ
Ϯ

)

, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
Ϯ , n is an odd integer}.

ϰ. The domain of y =
√
x is [Ϭ,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [ϭ,∞) its range is [Ϭ,∞). So restricƟng y = ln x
to the domain of [ϭ,∞) restricts its output is [Ϭ,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [ϭ,∞).

A common way of thinking of a conƟnuous funcƟon is that “its graph can
be sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [ϭ, Ϯ] and f(ϭ) = −ϭϬ and
f(Ϯ) = ϱ. If f is conƟnuous on [ϭ, Ϯ] (i.e., its graph can be sketched as a conƟnu-
ous curve from (ϭ,−ϭϬ) to (Ϯ, ϱ)) then we know intuiƟvely that somewhere on
[ϭ, Ϯ] f must be equal to −ϵ, and −ϴ, and −ϳ, −ϲ, . . . , Ϭ, ϭ/Ϯ, etc. In short, f

Notes:
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takes on all intermediate values between −ϭϬ and ϱ. It may take on more val-
ues; fmay actually equal ϲ at some Ɵme, for instance, but we are guaranteed all
values between−ϭϬ and ϱ.

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem ϭϬ Intermediate Value Theorem

Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is a
value c in [a, b] such that f(c) = y.

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = Ϭ. These roots may be very difficult to find exactly. Good approximaƟons
can be found through successive applicaƟons of this theorem. Suppose through
direct computaƟon we find that f(a) < Ϭ and f(b) > Ϭ, where a < b. The Inter-
mediate Value Theorem states that there is a c in [a, b] such that f(c) = Ϭ. The
theorem does not give us any clue as to where that value is in the interval [a, b],
just that it exists.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

ϭ. f(d) = Ϭ – we got lucky and stumbled on the actual value. We stop as we
found a root.

Ϯ. f(d) < Ϭ Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

ϯ. f(d) > Ϭ Then we know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

Example Ϯϱ Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure ϭ.Ϯϴ.
It is clear that the graph crosses the x-axis somewhere near x = Ϭ.ϴ. To start the

Notes:
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Figure ϭ.Ϯϴ: Graphing a root of f(x) = x−
cos x.

IteraƟon # Interval Midpoint Sign
ϭ [Ϭ.ϳ, Ϭ.ϵ] f(Ϭ.ϴ) > Ϭ
Ϯ [Ϭ.ϳ, Ϭ.ϴ] f(Ϭ.ϳϱ) > Ϭ
ϯ [Ϭ.ϳ, Ϭ.ϳϱ] f(Ϭ.ϳϮϱ) < Ϭ
ϰ [Ϭ.ϳϮϱ, Ϭ.ϳϱ] f(Ϭ.ϳϯϳϱ) < Ϭ
ϱ [Ϭ.ϳϯϳϱ, Ϭ.ϳϱ] f(Ϭ.ϳϰϯϴ) > Ϭ
ϲ [Ϭ.ϳϯϳϱ, Ϭ.ϳϰϯϴ] f(Ϭ.ϳϰϬϳ) > Ϭ
ϳ [Ϭ.ϳϯϳϱ, Ϭ.ϳϰϬϳ] f(Ϭ.ϳϯϵϭ) > Ϭ
ϴ [Ϭ.ϳϯϳϱ, Ϭ.ϳϯϵϭ] f(Ϭ.ϳϯϴϯ) < Ϭ
ϵ [Ϭ.ϳϯϴϯ, Ϭ.ϳϯϵϭ] f(Ϭ.ϳϯϴϳ) < Ϭ
ϭϬ [Ϭ.ϳϯϴϳ, Ϭ.ϳϯϵϭ] f(Ϭ.ϳϯϴϵ) < Ϭ
ϭϭ [Ϭ.ϳϯϴϵ, Ϭ.ϳϯϵϭ] f(Ϭ.ϳϯϵϬ) < Ϭ
ϭϮ [Ϭ.ϳϯϵϬ, Ϭ.ϳϯϵϭ]

Figure ϭ.Ϯϵ: IteraƟons of the BisecƟon
Method of Root Finding

ϭ.ϱ ConƟnuity

BisecƟonMethod, pick an interval that contains Ϭ.ϴ. We choose [Ϭ.ϳ, Ϭ.ϵ]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

IteraƟon ϭ: f(Ϭ.ϳ) < Ϭ, f(Ϭ.ϵ) > Ϭ, and f(Ϭ.ϴ) > Ϭ. So replace Ϭ.ϵ with Ϭ.ϴ and
repeat.

IteraƟon Ϯ: f(Ϭ.ϳ) < Ϭ, f(Ϭ.ϴ) > Ϭ, and at themidpoint, Ϭ.ϳϱ, wehave f(Ϭ.ϳϱ) >
Ϭ. So replace Ϭ.ϴ with Ϭ.ϳϱ and repeat. Note that we don’t need to con-
Ɵnue to check the endpoints, just the midpoint. Thus we put the rest of
the iteraƟons in Table ϭ.Ϯϵ.

NoƟce that in the ϭϮth iteraƟon we have the endpoints of the interval each
starƟng with Ϭ.ϳϯϵ. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(Ϭ.ϳϯϵϬ) = −Ϭ.ϬϬϬϭϰ, f(Ϭ.ϳϯϵϭ) = Ϭ.ϬϬϬϬϮϰ.

Either endpoint of the interval gives a good approximaƟon of where f is Ϭ. The
IntermediateValue Theoremstates that the actual zero is sƟllwithin this interval.
While we do not know its exact value, we know it starts with Ϭ.ϳϯϵ.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to ϭϬ places aŌer the decimal, to be Ϭ.ϳϯϵϬϴϱϭϯϯϮ. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary ϯϱ iteraƟons. In less than ϴ hun-
dredths of a second, the zero was calculated to ϭϬϬ decimal places (with less
than ϮϬϬ iteraƟons).

It is a simplemaƩer to extend theBisecƟonMethod to solve problems similar
to “Find x, where f(x) = Ϭ.” For instance, we can find x, where f(x) = ϭ. It
actually works very well to define a new funcƟon gwhere g(x) = f(x)−ϭ. Then
use the BisecƟon Method to solve g(x) = Ϭ.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = Ϭ.

In SecƟon ϰ.ϭ another equaƟon solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathemaƟcs, though, so we will wait before introducing it.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next secƟon we examine onemore aspect of limits: limits that involve
infinity.

Notes:
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Exercises ϭ.ϱ
Terms and Concepts

ϭ. In your own words, describe what it means for a funcƟon
to be conƟnuous.

Ϯ. In your own words, describe what the Intermediate Value
Theorem states.

ϯ. What is a “root” of a funcƟon?

ϰ. Given funcƟons f and g on an interval I, how can the Bisec-
Ɵon Method be used to find a value c where f(c) = g(c)?

ϱ. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is conƟnuous at c.

ϲ. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

ϳ. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

ϴ. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

ϵ. T/F: If f is conƟnuous on [Ϭ, ϭ) and [ϭ, Ϯ), then f is conƟnu-
ous on [Ϭ, Ϯ).

ϭϬ. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises ϭϭ – ϭϳ, a graph of a funcƟon f is given along with
a value a. Determine if f is conƟnuous at a; if it is not, state
why it is not.
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In Exercises ϭϴ – Ϯϭ, determine if f is conƟnuous at the indi-
cated values. If not, explain why.

ϭϴ. f(x) =
{

ϭ x = Ϭ
sin x
x x > Ϭ

(a) x = Ϭ

(b) x = π

ϭϵ. f(x) =
{

xϯ − x x < ϭ
x− Ϯ x ≥ ϭ

(a) x = Ϭ

(b) x = ϭ

ϮϬ. f(x) =

{

xϮ+ϱx+ϰ
xϮ+ϯx+Ϯ x ̸= −ϭ

ϯ x = −ϭ

(a) x = −ϭ

(b) x = ϭϬ

Ϯϭ. f(x) =

{

xϮ−ϲϰ
xϮ−ϭϭx+Ϯϰ x ̸= ϴ

ϱ x = ϴ

(a) x = Ϭ

(b) x = ϴ

In Exercises ϮϮ – ϯϮ, give the intervals on which the given
funcƟon is conƟnuous.

ϮϮ. f(x) = xϮ − ϯx+ ϵ

Ϯϯ. g(x) =
√
xϮ − ϰ

Ϯϰ. h(k) =
√
ϭ− k+

√
k+ ϭ

Ϯϱ. f(t) =
√
ϱtϮ − ϯϬ

Ϯϲ. g(t) =
ϭ√

ϭ− tϮ

Ϯϳ. g(x) =
ϭ

ϭ+ xϮ

Ϯϴ. f(x) = ex

Ϯϵ. g(s) = ln s

ϯϬ. h(t) = cos t

ϯϭ. f(k) =
√

ϭ− ek

ϯϮ. f(x) = sin(ex + xϮ)

ϯϯ. Let f be conƟnuous on [ϭ, ϱ] where f(ϭ) = −Ϯ and f(ϱ) =
−ϭϬ. Does a value ϭ < c < ϱ exist such that f(c) = −ϵ?
Why/why not?

ϯϰ. Let g be conƟnuous on [−ϯ, ϳ]where g(Ϭ) = Ϭ and g(Ϯ) =
Ϯϱ. Does a value −ϯ < c < ϳ exist such that g(c) = ϭϱ?
Why/why not?

ϯϱ. Let f be conƟnuous on [−ϭ, ϭ] where f(−ϭ) = −ϭϬ and
f(ϭ) = ϭϬ. Does a value −ϭ < c < ϭ exist such that
f(c) = ϭϭ? Why/why not?

ϯϲ. Let h be a funcƟon on [−ϭ, ϭ] where h(−ϭ) = −ϭϬ and
h(ϭ) = ϭϬ. Does a value −ϭ < c < ϭ exist such that
h(c) = Ϭ? Why/why not?

In Exercises ϯϳ – ϰϬ, use the BisecƟon Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given funcƟon in the given interval.

ϯϳ. f(x) = xϮ + Ϯx− ϰ on [ϭ, ϭ.ϱ].

ϯϴ. f(x) = sin x− ϭ/Ϯ on [Ϭ.ϱ, Ϭ.ϱϱ]

ϯϵ. f(x) = ex − Ϯ on [Ϭ.ϲϱ, Ϭ.ϳ].

ϰϬ. f(x) = cos x− sin x on [Ϭ.ϳ, Ϭ.ϴ].

Review

ϰϭ. Let f(x) =
{

xϮ − ϱ x < ϱ
ϱx x ≥ ϱ .

(a) lim
x→ϱ−

f(x)

(b) lim
x→ϱ+

f(x)

(c) lim
x→ϱ

f(x)

(d) f(ϱ)

ϰϮ. Numerically approximate the following limits:

(a) lim
x→−ϰ/ϱ+

xϮ − ϴ.Ϯx− ϳ.Ϯ
xϮ + ϱ.ϴx+ ϰ

(b) lim
x→−ϰ/ϱ−

xϮ − ϴ.Ϯx− ϳ.Ϯ
xϮ + ϱ.ϴx+ ϰ

ϰϯ. Give an example of funcƟon f(x) for which lim
x→Ϭ

f(x) does not
exist.

ϰϱ
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Figure ϭ.ϯϬ: Graphing f(x) = ϭ/xϮ for val-
ues of x near Ϭ.
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Figure ϭ.ϯϭ: Observing infinite limit as
x → ϭ in Example Ϯϲ.

Chapter ϭ Limits

ϭ.ϲ Limits Involving Infinity
In DefiniƟon ϭ we stated that in the equaƟon lim

x→c
f(x) = L, both c and L were

numbers. In this secƟon we relax that definiƟon a bit by considering situaƟons
when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = ϭ/xϮ, as shown in Figure ϭ.ϯϬ.
Note how, as x approaches Ϭ, f(x) grows very, very large. It seems appropriate,
and descripƟve, to state that

lim
x→Ϭ

ϭ
xϮ

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

ϭ
xϮ

= Ϭ.

We explore both types of use of∞ in turn.

DefiniƟon ϱ Limit of Infinity,∞
We say lim

x→c
f(x) = ∞ if for everyM > Ϭ there exists δ > Ϭ such that for

all x ̸= c, if |x− c| < δ, then f(x) ≥ M.

This is just like the ε–δ definiƟon from SecƟon ϭ.Ϯ. In that definiƟon, given
any (small) value ε, if we let x get close enough to c (within δ units of c) then f(x)
is guaranteed to be within ε of f(c). Here, given any (large) valueM, if we let x
get close enough to c (within δ units of c), then f(x) will be at least as large as
M. In other words, if we get close enough to c, then we can make f(x) as large
as we want. We can define limits equal to−∞ in a similar way.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly staƟng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because it is helpful and descripƟve.

Example Ϯϲ EvaluaƟng limits involving infinity
Find lim

x→ϭ

ϭ
(x− ϭ)Ϯ

as shown in Figure ϭ.ϯϭ.

SÊ½çã®ÊÄ In Example ϰ of SecƟon ϭ.ϭ, by inspecƟng values of x close
to ϭ we concluded that this limit does not exist. That is, it cannot equal any real

Notes:
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Figure ϭ.ϯϯ: Graphing f(x) =
ϯx

xϮ − ϰ
.

ϭ.ϲ Limits Involving Infinity

number. But the limit could be infinite. And in fact, we see that the funcƟon
does appear to be growing larger and larger, as f(.ϵϵ) = ϭϬϰ, f(.ϵϵϵ) = ϭϬϲ,
f(.ϵϵϵϵ) = ϭϬϴ. A similar thing happens on the other side of ϭ. In general,
let a “large” value M be given. Let δ = ϭ/

√
M. If x is within δ of ϭ, i.e., if

|x− ϭ| < ϭ/
√
M, then:

|x− ϭ| < ϭ√
M

(x− ϭ)Ϯ <
ϭ
M

ϭ
(x− ϭ)Ϯ

> M,

which is what we wanted to show. So we may say lim
x→ϭ

ϭ/(x− ϭ)Ϯ = ∞.

Example Ϯϳ EvaluaƟng limits involving infinity
Find lim

x→Ϭ

ϭ
x
, as shown in Figure ϭ.ϯϮ.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
Ϭ, but it does so in different ways on different sides of Ϭ. Since its behavior is not

consistent, we cannot say that lim
x→Ϭ

ϭ
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→Ϭ+

ϭ
x
= ∞ and lim

x→Ϭ−

ϭ
x
= −∞.

VerƟcal asymptotes

If the limit of f(x) as x approaches c from either the leŌ or right (or both) is
∞ or−∞, we say the funcƟon has a verƟcal asymptote at c.

Example Ϯϴ Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

ϯx
xϮ − ϰ

.

SÊ½çã®ÊÄ VerƟcal asymptotes occurwhere the funcƟon growswithout
bound; this can occur at values of c where the denominator is Ϭ. When x is
near c, the denominator is small, which in turn can make the funcƟon take on
large values. In the case of the given funcƟon, the denominator is Ϭ at x = ±Ϯ.
SubsƟtuƟng in values of x close to Ϯ and−Ϯ seems to indicate that the funcƟon
tends toward ∞ or −∞ at those points. We can graphically confirm this by
looking at Figure ϭ.ϯϯ. Thus the verƟcal asymptotes are at x = ±Ϯ.

Notes:
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Figure ϭ.ϯϰ: Graphically showing that

f(x) =
xϮ − ϭ
x− ϭ

does not have an asymp-
tote at x = ϭ.

Chapter ϭ Limits

When a raƟonal funcƟon has a verƟcal asymptote at x = c, we can conclude
that the denominator is Ϭ at x = c. However, just because the denominator
is Ϭ at a certain point does not mean there is a verƟcal asymptote there. For
instance, f(x) = (xϮ − ϭ)/(x − ϭ) does not have a verƟcal asymptote at x = ϭ,
as shown in Figure ϭ.ϯϰ. While the denominator does get small near x = ϭ,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− ϭ)(x+ ϭ)

x− ϭ
.

Canceling the common term, we get that f(x) = x + ϭ for x ̸= ϭ. So there is
clearly no asymptote, rather a hole exists in the graph at x = ϭ.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this

funcƟon several Ɵmes in the previous secƟons. We found that lim
x→Ϭ

sin x
x

= ϭ;
i.e., there is no verƟcal asymptote. No simple algebraic cancellaƟon makes this
fact obvious; we used the Squeeze Theorem in SecƟon ϭ.ϯ to prove this.

If the denominator is Ϭ at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→Ϭ

sin x
x

and lim
x→ϭ

xϮ − ϭ
x− ϭ

each return the indeterminate form “Ϭ/Ϭ” when we blindly plug in x = Ϭ and
x = ϭ, respecƟvely. However, Ϭ/Ϭ is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are ϭ and Ϯ.

With a liƩle cleverness, one can come up Ϭ/Ϭ expressions which have a limit
of∞, Ϭ, or any other real number. That is why this expression is called indeter-
minate.

A key concept to understand is that such limits do not really return Ϭ/Ϭ.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to Ϭ while the denominator is also shrinking to Ϭ.
The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

Notes:
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ϭ.ϲ Limits Involving Infinity

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later secƟon we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·Ϭ,∞/∞, ϬϬ,∞Ϭ

and ϭ∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that ϭ/Ϭ and ∞/Ϭ are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. In each, the funcƟon is growing
without bound, indicaƟng that the limit will be∞,−∞, or simply not exist if the
leŌ- and right-hand limits do not match.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this secƟonwebriefly consideredwhat happens to f(x) =
ϭ/xϮ as x grew very large. Graphically, it concerns the behavior of the funcƟon to
the “far right” of the graph. We make this noƟon more explicit in the following
definiƟon.

DefiniƟon ϲ Limits at Infinity and Horizontal Asymptote

ϭ. We say lim
x→∞

f(x) = L if for every ε > Ϭ there exists M > Ϭ such
that if x ≥ M, then |f(x)− L| < ε.

Ϯ. We say lim
x→−∞

f(x) = L if for every ε > Ϭ there existsM < Ϭ such

that if x ≤ M, then |f(x)− L| < ε.

ϯ. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say that y = L is a horizontal
asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definiƟon
with DefiniƟon ϱ.

Notes:
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Figure ϭ.ϯϱ: Using a graph and a table
to approximate a horizontal asymptote in
Example Ϯϵ.

Chapter ϭ Limits

Example Ϯϵ ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
xϮ

xϮ + ϰ
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

xϮ

xϮ + ϰ
and lim

x→∞
xϮ

xϮ + ϰ
.

Figure ϭ.ϯϱ(a) shows a sketch of f, and part (b) gives values of f(x) for large mag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = ϭ.

Later, we will show how to determine this analyƟcally.

Horizontal asymptotes can take on a variety of forms. Figure ϭ.ϯϲ(a) shows
that f(x) = x/(xϮ + ϭ) has a horizontal asymptote of y = Ϭ, where Ϭ is ap-
proached from both above and below.

Figure ϭ.ϯϲ(b) shows that f(x) = x/
√
xϮ + ϭ has two horizontal asymptotes;

one at y = ϭ and the other at y = −ϭ.
Figure ϭ.ϯϲ(c) shows that f(x) = (sin x)/x has even more interesƟng behav-

ior than at just x = Ϭ; as x approaches±∞, f(x) approaches Ϭ, but oscillates as
it does this.
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.
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.
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.
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.

Ϭ.5

.

ϭ

.
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Figure ϭ.ϯϲ: Considering different types of horizontal asymptotes.

We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we
understand lim

x→∞
ϭ/x. As x gets larger and larger, the ϭ/x gets smaller and smaller,

approaching Ϭ. We can, in fact, make ϭ/x as small as wewant by choosing a large

Notes:
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enough value of x. Given ε, we can make ϭ/x < ε by choosing x > ϭ/ε. Thus
we have limx→∞ ϭ/x = Ϭ.

It is now not much of a jump to conclude the following:

lim
x→∞

ϭ
xn

= Ϭ and lim
x→−∞

ϭ
xn

= Ϭ

Now suppose we need to compute the following limit:

lim
x→∞

xϯ + Ϯx+ ϭ
ϰxϯ − ϮxϮ + ϵ

.

A good way of approaching this is to divide through the numerator and denom-
inator by xϯ (hence dividing by ϭ), which is the largest power of x to appear in
the funcƟon. Doing this, we get

lim
x→∞

xϯ + Ϯx+ ϭ
ϰxϯ − ϮxϮ + ϵ

= lim
x→∞

ϭ/xϯ

ϭ/xϯ
· xϯ + Ϯx+ ϭ
ϰxϯ − ϮxϮ + ϵ

= lim
x→∞

xϯ/xϯ + Ϯx/xϯ + ϭ/xϯ

ϰxϯ/xϯ − ϮxϮ/xϯ + ϵ/xϯ

= lim
x→∞

ϭ+ Ϯ/xϮ + ϭ/xϯ

ϰ− Ϯ/x+ ϵ/xϯ
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of ϭ/xn, we see that the limit becomes

ϭ+ Ϭ+ Ϭ
ϰ− Ϭ+ Ϭ

=
ϭ
ϰ
.

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing theorem.

Theorem ϭϭ Limits of RaƟonal FuncƟons at Infinity

Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−ϭxn−ϭ + · · ·+ aϭx+ aϬ
bmxm + bm−ϭxm−ϭ + · · ·+ bϭx+ bϬ

,

where any of the coefficients may be Ϭ except for an and bm.

ϭ. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

Ϯ. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = Ϭ.

ϯ. If n > m, then lim
x→∞

f(x) and limx→−∞ f(x) are both infinite.

Notes:
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Chapter ϭ Limits

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situaƟon like the
example above, where we will divide by xn and in the limit all the terms will
approach Ϭ except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then aŌer dividing through by xm, all the terms in the
numerator will approach Ϭ in the limit, leaving us with Ϭ/bm or Ϭ. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward Ϭ, while the xn term in the numerator does not approach Ϭ. This
is indicaƟve of some sort of infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward Ϭ. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
funcƟons by considering the largest powers of x. For instance, consider again
lim

x→±∞
x√

xϮ + ϭ
, graphed in Figure ϭ.ϯϲ(b). When x is very large, xϮ + ϭ ≈ xϮ.

Thus

√

xϮ + ϭ ≈
√
xϮ = |x|, and

x√
xϮ + ϭ

≈ x
|x| .

This expression is ϭ when x is posiƟve and−ϭ when x is negaƟve. Hence we get
asymptotes of y = ϭ and y = −ϭ, respecƟvely.

Example ϯϬ Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = ϭ is the horizontal asymptote of f(x) =
xϮ

xϮ + ϰ
, as

approximated in Example Ϯϵ.

SÊ½çã®ÊÄ Before using Theorem ϭϭ, let’s use the technique of evalu-
aƟng limits at infinity of raƟonal funcƟons that led to that theorem. The largest
power of x in f is Ϯ, so divide the numerator and denominator of f by xϮ, then

Notes:
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Figure ϭ.ϯϳ: Visualizing the funcƟons in
Example ϯϭ.

ϭ.ϲ Limits Involving Infinity

take limits.

lim
x→∞

xϮ

xϮ + ϰ
= lim

x→∞
xϮ/xϮ

xϮ/xϮ + ϰ/xϮ

= lim
x→∞

ϭ
ϭ+ ϰ/xϮ

=
ϭ

ϭ+ Ϭ
= ϭ.

We can also use Theorem ϭϭ directly; in this case n = m so the limit is the
raƟo of the leading coefficients of the numerator and denominator, i.e., ϭ/ϭ = ϭ.

Example ϯϭ Finding limits of raƟonal funcƟons
Use Theorem ϭϭ to evaluate each of the following limits.

ϭ. lim
x→−∞

xϮ + Ϯx− ϭ
xϯ + ϭ

Ϯ. lim
x→∞

xϮ + Ϯx− ϭ
ϭ− x− ϯxϮ

ϯ. lim
x→∞

xϮ − ϭ
ϯ− x

SÊ½çã®ÊÄ

ϭ. The highest power of x is in the denominator. Therefore, the limit is Ϭ; see
Figure ϭ.ϯϳ(a).

Ϯ. The highest power of x is xϮ, which occurs in both the numerator and de-
nominator. The limit is therefore the raƟo of the coefficients of xϮ, which
is−ϭ/ϯ. See Figure ϭ.ϯϳ(b).

ϯ. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are xϮ and−x. The expression in the limit will behave
like xϮ/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure ϭ.ϯϳ(c).

Notes:
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Chapter ϭ Limits

Chapter Summary

In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined conƟnuity and explored properƟes of conƟnuous funcƟons, and

• considered limits that involved infinity.

Why? MathemaƟcs is famous for building on itself and calculus proves to be
no excepƟon. In the next chapter we will be interested in “dividing by Ϭ.” That
is, we will want to divide a quanƟty by a smaller and smaller number and see
what value the quoƟent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posiƟon informaƟon.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum oŌen is finite; that is,
we can add up an infinite list of numbers and get, for instance, ϰϮ.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over Ɵme an
appreciaƟon is oŌen formed based on the scope of its applicability.

Notes:
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Exercises ϭ.ϲ
Terms and Concepts

ϭ. T/F: If lim
x→ϱ

f(x) = ∞, then we are implicitly staƟng that the
limit exists.

Ϯ. T/F: If lim
x→∞

f(x) = ϱ, then we are implicitly staƟng that the
limit exists.

ϯ. T/F: If lim
x→ϭ−

f(x) = −∞, then lim
x→ϭ+

f(x) = ∞

ϰ. T/F: If lim
x→ϱ

f(x) = ∞, then f has a verƟcal asymptote at
x = ϱ.

ϱ. T/F:∞/Ϭ is not an indeterminate form.

ϲ. List ϱ indeterminate forms.

ϳ. Construct a funcƟon with a verƟcal asymptote at x = ϱ and
a horizontal asymptote at y = ϱ.

ϴ. Let lim
x→ϳ

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = ϳ.

Problems

In Exercises ϵ – ϭϰ, evaluate the given limits using the graph
of the funcƟon.

ϵ. f(x) =
ϭ

(x+ ϭ)Ϯ

(a) lim
x→−ϭ−

f(x)

(b) lim
x→−ϭ+

f(x)

.....
−Ϯ

.
−ϭ

.

5Ϭ

.

ϭϬϬ

. x.

y

ϭϬ. f(x) =
ϭ

(x− ϯ)(x− ϱ)Ϯ
.

(a) lim
x→ϯ−

f(x)

(b) lim
x→ϯ+

f(x)

(c) lim
x→ϯ

f(x)

(d) lim
x→ϱ−

f(x)

(e) lim
x→ϱ+

f(x)

(f) lim
x→ϱ

f(x)

...

..

2

.

ϰ

.

ϲ

.

−ϱ0

.

ϱ0

.

x

.

y

ϭϭ. f(x) =
ϭ

ex + ϭ

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→Ϭ−

f(x)

(d) lim
x→Ϭ+

f(x)
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.
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ϭϮ. f(x) = xϮ sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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ϭϯ. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

..... −ϭ.

−Ϭ.ϱ

.

Ϭ.ϱ

.

ϭ

.

−ϰπ

.

−ϯπ

.

−Ϯπ

.

−π

.

π

.

Ϯπ

.

ϯπ

.

ϰπ

.

x

.

y

ϭϰ. f(x) = Ϯx + ϭϬ

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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100
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150
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In Exercises ϭϱ – ϭϴ, numerically approximate the following
limits:

(a) lim
x→ϯ−

f(x)

(b) lim
x→ϯ+

f(x)

(c) lim
x→ϯ

f(x)

ϭϱ. f(x) =
xϮ − ϭ

xϮ − x− ϲ

ϭϲ. f(x) =
xϮ + ϱx− ϯϲ

xϯ − ϱxϮ + ϯx+ ϵ

ϭϳ. f(x) =
xϮ − ϭϭx+ ϯϬ

xϯ − ϰxϮ − ϯx+ ϭϴ

ϭϴ. f(x) =
xϮ − ϵx+ ϭϴ
xϮ − x− ϲ

In Exercises ϭϵ – Ϯϰ, idenƟfy the horizontal and verƟcal
asymptotes, if any, of the given funcƟon.

ϭϵ. f(x) =
ϮxϮ − Ϯx− ϰ
xϮ + x− ϮϬ

ϮϬ. f(x) =
−ϯxϮ − ϵx− ϲ
ϱxϮ − ϭϬx− ϭϱ

Ϯϭ. f(x) =
xϮ + x− ϭϮ

ϳxϯ − ϭϰxϮ − Ϯϭx

ϮϮ. f(x) =
xϮ − ϵ
ϵx− ϵ

Ϯϯ. f(x) =
xϮ − ϵ
ϵx+ Ϯϳ

Ϯϰ. f(x) =
xϮ − ϭ
−xϮ − ϭ

In Exercises Ϯϱ – Ϯϴ, evaluate the given limit.

Ϯϱ. lim
x→∞

xϯ + ϮxϮ + ϭ
x− ϱ

Ϯϲ. lim
x→∞

xϯ + ϮxϮ + ϭ
ϱ− x

Ϯϳ. lim
x→−∞

xϯ + ϮxϮ + ϭ
xϮ − ϱ

Ϯϴ. lim
x→−∞

xϯ + ϮxϮ + ϭ
ϱ− xϮ

Review
Ϯϵ. Use an ε− δ proof to show that

lim
x→ϭ

ϱx− Ϯ = ϯ.

ϯϬ. Let lim
x→Ϯ

f(x) = ϯ and lim
x→Ϯ

g(x) = −ϭ. Evaluate the following
limits.

(a) lim
x→Ϯ

(f+ g)(x)

(b) lim
x→Ϯ

(fg)(x)

(c) lim
x→Ϯ

(f/g)(x)

(d) lim
x→Ϯ

f(x)g(x)

ϯϭ. Let f(x) =
{

xϮ − ϭ x < ϯ
x+ ϱ x ≥ ϯ .

Is f conƟnuous everywhere?

ϯϮ. Evaluate the limit: lim
x→e

ln x.

ϱϲ
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The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

Ϯ.ϭ Instantaneous Rates of Change: The DerivaƟve

A common amusement park ride liŌs riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of ϭϱϬ feet. Student of physics may recall that the
height (in feet) of the riders, t seconds aŌer freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −ϭϲtϮ + ϭϱϬ.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = Ϯ.ϱ

√
ϭ.ϱ ≈ ϯ.Ϭϲ seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall aŌer Ϯ seconds (corresponding
to a height of ϴϲ Ō.). How fast will the riders be traveling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel ϲϬ miles in Ϯ hours, we know we had an average velocity
of ϯϬ mph.) We looked at this concept in SecƟon ϭ.ϭ when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = Ϯ by considering the
average velocity over some Ɵme period containing t = Ϯ. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = Ϯ to t = ϯ (just before the riders hit the
ground). On that interval, the average velocity is

f(ϯ)− f(Ϯ)
ϯ− Ϯ

=
f(ϯ)− f(Ϯ)

ϭ
= −ϴϬ Ō/s,



h
Average Velocity

Ō/s

ϭ −ϴϬ
Ϭ.ϱ −ϳϮ
Ϭ.ϭ −ϲϱ.ϲ
Ϭ.Ϭϭ −ϲϰ.ϭϲ
Ϭ.ϬϬϭ −ϲϰ.Ϭϭϲ

Figure Ϯ.ϭ: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.

Chapter Ϯ DerivaƟves

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [Ϯ, Ϯ.ϱ] we have

f(Ϯ.ϱ)− f(Ϯ)
Ϯ.ϱ− Ϯ

=
f(Ϯ.ϱ)− f(Ϯ)

Ϭ.ϱ
= −ϳϮ Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of ϭ/ϭϬth of a second, i.e., on [Ϯ, Ϯ.ϭ], we have

f(Ϯ.ϭ)− f(Ϯ)
Ϯ.ϭ− Ϯ

=
f(Ϯ.ϭ)− f(Ϯ)

Ϭ.ϭ
= −ϲϱ.ϲ Ō/s.

Over a Ɵme span of ϭ/ϭϬϬth of a second, on [Ϯ, Ϯ.Ϭϭ], the average velocity is

f(Ϯ.Ϭϭ)− f(Ϯ)
Ϯ.Ϭϭ− Ϯ

=
f(Ϯ.Ϭϭ)− f(Ϯ)

Ϭ.Ϭϭ
= −ϲϰ.ϭϲ Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [Ϯ, Ϯ+h]
for small values of h. That is, we are compuƟng

f(Ϯ+ h)− f(Ϯ)
h

where h is small.
What we really want is for h = Ϭ, but this, of course, returns the familiar

“Ϭ/Ϭ” indeterminate form. So we employ a limit, as we did in SecƟon ϭ.ϭ.
We can approximate the value of this limit numerically with small values of

h as seen in Figure Ϯ.ϭ. It looks as though the velocity is approaching −ϲϰ Ō/s.
CompuƟng the limit directly gives

lim
h→Ϭ

f(Ϯ+ h)− f(Ϯ)
h

= lim
h→Ϭ

−ϭϲ(Ϯ+ h)Ϯ + ϭϱϬ− (−ϭϲ(Ϯ)Ϯ + ϭϱϬ)
h

= lim
h→Ϭ

−ϲϰh− ϭϲhϮ

h
= lim

h→Ϭ
−ϲϰ− ϭϲh

= −ϲϰ.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (Ϯ, f(Ϯ)) and
(Ϯ+h, f(Ϯ+h)). In Figure Ϯ.Ϯ, the secant line corresponding to h = ϭ is shown in
three contexts. Figure Ϯ.Ϯ(a) shows a “zoomed out” version of f with its secant
line. In (b), we zoom in around the points of intersecƟon between f and the
secant line. NoƟce how well this secant line approximates f between those two
points – it is a common pracƟce to approximate funcƟons with straight lines.

Notes:
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Ϯ.ϭ Instantaneous Rates of Change: The DerivaƟve

As h → Ϭ, these secant lines approach the tangent line, a line that goes
through the point (Ϯ, f(Ϯ)) with the special slope of −ϲϰ. In parts (c) and (d) of
Figure Ϯ.Ϯ, we zoom in around the point (Ϯ, ϴϲ). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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(c) (d)

Figure Ϯ.Ϯ: Parts (a), (b) and (c) show the secant line to f(x) with h = ϭ, zoomed in
different amounts. Part (d) shows the tangent line to f at x = Ϯ.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

Notes:
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DefiniƟon ϳ DerivaƟve at a Point

Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→Ϭ

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differenƟable
at c; if the limit does not exist, then f is not differenƟable at c. If f is
differenƟable at every point in I, then f is differenƟable on I.

DefiniƟon ϴ Tangent Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivaƟve of f at c.

Some examples will help us understand these definiƟons.

Example ϯϮ Finding derivaƟves and tangent lines
Let f(x) = ϯxϮ + ϱx− ϳ. Find:

ϭ. f ′(ϭ)

Ϯ. The equaƟon of the tangent line
to the graph of f at x = ϭ.

ϯ. f ′(ϯ)

ϰ. The equaƟon of the tangent line
to the graph f at x = ϯ.

SÊ½çã®ÊÄ

ϭ. We compute this directly using DefiniƟon ϳ.

f ′(ϭ) = lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

= lim
h→Ϭ

ϯ(ϭ+ h)Ϯ + ϱ(ϭ+ h)− ϳ− (ϯ(ϭ)Ϯ + ϱ(ϭ)− ϳ)
h

= lim
h→Ϭ

ϯhϮ + ϭϭh
h

= lim
h→Ϭ

ϯh+ ϭϭ = ϭϭ.

Notes:

ϲϬ



..... ϭ. Ϯ. ϯ. ϰ.

ϮϬ

.

ϰϬ

.

6Ϭ

.
x

.

y

Figure Ϯ.ϯ: A graph of f(x) = ϯxϮ+ϱx−ϳ
and its tangent lines at x = ϭ and x = ϯ.
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Ϯ. The tangent line at x = ϭ has slope f ′(ϭ) and goes through the point
(ϭ, f(ϭ)) = (ϭ, ϭ). Thus the tangent line has equaƟon, in point-slope form,
y = ϭϭ(x− ϭ) + ϭ. In slope-intercept form we have y = ϭϭx− ϭϬ.

ϯ. Again, using the definiƟon,

f ′(ϯ) = lim
h→Ϭ

f(ϯ+ h)− f(ϯ)
h

= lim
h→Ϭ

ϯ(ϯ+ h)Ϯ + ϱ(ϯ+ h)− ϳ− (ϯ(ϯ)Ϯ + ϱ(ϯ)− ϳ)
h

= lim
h→Ϭ

ϯhϮ + Ϯϯh
h

= lim
h→Ϭ

ϯh+ Ϯϯ

= Ϯϯ.

ϰ. The tangent line at x = ϯhas slope Ϯϯ and goes through thepoint (ϯ, f(ϯ)) =
(ϯ, ϯϱ). Thus the tangent line has equaƟon y = Ϯϯ(x−ϯ)+ϯϱ = Ϯϯx−ϯϰ.

A graph of f is given in Figure Ϯ.ϯ along with the tangent lines at x = ϭ and
x = ϯ.

Another important line that canbe createdusing informaƟon from thederiva-
Ɵve is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.

DefiniƟon ϵ Normal Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The normal line to the graph of f at c is the line with equaƟon

n(x) =
−ϭ
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= Ϭ. When f ′(c) = Ϭ, the normal line is the verƟcal line
through

(
c, f(c)

)
; that is, x = c.

Example ϯϯ Finding equaƟons of normal lines
Let f(x) = ϯxϮ+ϱx−ϳ, as in Example ϯϮ. Find the equaƟons of the normal lines
to the graph of f at x = ϭ and x = ϯ.

SÊ½çã®ÊÄ In Example ϯϮ, we found that f ′(ϭ) = ϭϭ. Hence at x = ϭ,

Notes:
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Figure Ϯ.ϰ: A graph of f(x) = ϯxϮ+ϱx−ϳ,
along with its normal line at x = ϭ.
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the normal line will have slope−ϭ/ϭϭ. An equaƟon for the normal line is

n(x) =
−ϭ
ϭϭ

(x− ϭ) + ϭ.

The normal line is ploƩed with y = f(x) in Figure Ϯ.ϰ. Note how the line looks
perpendicular to f. (A key word here is “looks.” MathemaƟcally, we say that the
normal line is perpendicular to f at x = ϭ as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect raƟo of the picture of the graph plays
a big role in this.)

We also found that f ′(ϯ) = Ϯϯ, so the normal line to the graph of f at x = ϯ
will have slope−ϭ/Ϯϯ. An equaƟon for the normal line is

n(x) =
−ϭ
Ϯϯ

(x− ϯ) + ϯϱ.

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common pracƟce
in mathemaƟcal problem solving is to approximate difficult funcƟons with not–
so–difficult funcƟons. Lines are a common choice. It turns out that at any given
point on the graph of a differenƟable funcƟon f, the best linear approximaƟon
to f is its tangent line. That is one reason we’ll spend considerable Ɵme finding
tangent lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example ϯϰ Finding the DerivaƟve of a Line
Consider f(x) = ϯx + ϱ. Find the equaƟon of the tangent line to f at x = ϭ and
x = ϳ.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon ϳ.

f ′(ϭ) = lim
h→Ϭ

f(ϭ+ h)− f(ϭ)
h

= lim
h→Ϭ

ϯ(ϭ+ h) + ϱ− (ϯ+ ϱ)
h

= lim
h→Ϭ

ϯh
h

= lim
h→Ϭ

ϯ

= ϯ.

Notes:
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Figure Ϯ.ϱ: f(x) = sin x graphed with an
approximaƟon to its tangent line at x = Ϭ.
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We just found that f ′(ϭ) = ϯ. That is, we found the instantaneous rate of
change of f(x) = ϯx + ϱ is ϯ. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = ϭ is just f,
with the same being true for x = ϳ.

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example ϯϱ Numerical ApproximaƟon of the Tangent Line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = Ϭ.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (Ϭ, sin Ϭ) = (Ϭ, Ϭ). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(Ϭ) ≈ sin(Ϭ+ h)− sin Ϭ
h

for a small value of h. We choose (somewhat arbitrarily) to let h = Ϭ.ϭ. Thus

f ′(Ϭ) ≈ sin(Ϭ.ϭ)− sin Ϭ
Ϭ.ϭ

≈ Ϭ.ϵϵϴϯ.

Thus our approximaƟon of the equaƟon of the tangent line is y = Ϭ.ϵϵϴϯ(x −
Ϭ) + Ϭ = Ϭ.ϵϵϴϯx; it is graphed in Figure Ϯ.ϱ. The graph seems to imply the
approximaƟon is rather good.

Recall from SecƟon ϭ.ϯ that lim
x→Ϭ

sin x
x

= ϭ, meaning for values of x near Ϭ,
sin x ≈ x. Since the slope of the line y = x is ϭ at x = Ϭ, it should seem rea-
sonable that “the slope of f(x) = sin x” is near ϭ at x = Ϭ. In fact, since we
approximated the value of the slope to be Ϭ.ϵϵϴϯ, we might guess the actual
value is ϭ. We’ll come back to this later.

Consider again Example ϯϮ. To find the derivaƟve of f at x = ϭ, we needed to
evaluate a limit. To find the derivaƟve of f at x = ϯ, we needed to again evaluate
a limit. We have this process:

Notes:
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input specific
number c

do something
to f and c

return
number f ′(c)

This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

DefiniƟon ϭϬ DerivaƟve FuncƟon

Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→Ϭ

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟons all represent the derivaƟve:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

Example ϯϲ Finding the derivaƟve of a funcƟon
Let f(x) = ϯxϮ + ϱx− ϳ as in Example ϯϮ. Find f ′(x).

Notes:
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SÊ½çã®ÊÄ We apply DefiniƟon ϭϬ.

f ′(x) = lim
h→Ϭ

f(x+ h)− f(x)
h

= lim
x→Ϭ

ϯ(x+ h)Ϯ + ϱ(x+ h)− ϳ− (ϯxϮ + ϱx− ϳ)
h

= lim
x→Ϭ

ϯhϮ + ϲxh+ ϱh
h

= lim
x→Ϭ

ϯh+ ϲx+ ϱ

= ϲx+ ϱ

So f ′(x) = ϲx+ϱ. Recall earlier we found that f ′(ϭ) = ϭϭ and f ′(ϯ) = Ϯϯ. Note
our new computaƟon of f ′(x) affirm these facts.

Example ϯϳ Finding the derivaƟve of a funcƟon
Let f(x) =

ϭ
x+ ϭ

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon ϭϬ.

f ′(x) = lim
h→Ϭ

f(x+ h)− f(x)
h

= lim
h→Ϭ

ϭ
x+h+ϭ − ϭ

x+ϭ

h

Now find common denominator then subtract; pull ϭ/h out front to facilitate
reading.

= lim
h→Ϭ

ϭ
h
·
(

x+ ϭ
(x+ ϭ)(x+ h+ ϭ)

− x+ h+ ϭ
(x+ ϭ)(x+ h+ ϭ)

)

= lim
h→Ϭ

ϭ
h
·
(
x+ ϭ− (x+ h+ ϭ)
(x+ ϭ)(x+ h+ ϭ)

)

= lim
h→Ϭ

ϭ
h
·
( −h
(x+ ϭ)(x+ h+ ϭ)

)

= lim
h→Ϭ

−ϭ
(x+ ϭ)(x+ h+ ϭ)

=
−ϭ

(x+ ϭ)(x+ ϭ)

=
−ϭ

(x+ ϭ)Ϯ

Notes:
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So f ′(x) =
−ϭ

(x+ ϭ)Ϯ
. To pracƟce using our notaƟon, we could also state

d
dx

(
ϭ

x+ ϭ

)

=
−ϭ

(x+ ϭ)Ϯ
.

Example ϯϴ Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applying DefiniƟon ϭϬ, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = Ϭ, whereas we seƩled
for an approximaƟon in Example ϯϱ.

f ′(x) = lim
h→Ϭ

sin(x+ h)− sin x
h

(

Use trig idenƟty
sin(x + h) = sin x cos h + cos x sin h

)

= lim
h→Ϭ

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→Ϭ

sin x(cos h− ϭ) + cos x sin h
h

(split into two fracƟons)

= lim
h→Ϭ

(

sin x(cos h− ϭ)
h

+
cos x sin h

h

)

(

use lim
h→Ϭ

cos h − ϭ
h

= Ϭ and lim
h→Ϭ

sin h
h

= ϭ
)

= sin x · Ϭ+ cos x · ϭ
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine funcƟon is a nice
funcƟon. Then again, perhaps this is not enƟrely surprising. The sine funcƟon
is periodic – it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
derivaƟve would be periodic; we now know exactly which periodic funcƟon it is.

Thinking back to Example ϯϱ, we can find the slope of the tangent line to
f(x) = sin x at x = Ϭ using our derivaƟve. We approximated the slope as Ϭ.ϵϵϴϯ;
we now know the slope is exactly cos Ϭ = ϭ.

Example ϯϵ Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =
{

−x x < Ϭ
x x ≥ Ϭ .

See Figure Ϯ.ϲ.

SÊ½çã®ÊÄ We need to evaluate lim
h→Ϭ

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < Ϭ and when x > Ϭ.

Notes:
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When x < Ϭ:

d
dx
(
− x
)
= lim

h→Ϭ

−(x+ h)− (−x)
h

= lim
h→Ϭ

−h
h

= lim
h→Ϭ

−ϭ

= −ϭ.

When x > Ϭ, a similar computaƟon shows that
d
dx
(
x
)
= ϭ.

We need to also find the derivaƟve at x = Ϭ. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(Ϭ) = lim
h→Ϭ

f(Ϭ+ h)− f(Ϭ)
h

.

Since x = Ϭ is the point where our funcƟon’s definiƟon switches from one piece
to other, we need to consider leŌ and right-hand limits. Consider the following,
where we compute the leŌ and right hand limits side by side.

lim
h→Ϭ−

f(Ϭ+ h)− f(Ϭ)
h

=

lim
h→Ϭ−

−h− Ϭ
h

=

lim
h→Ϭ−

−ϭ = −ϭ

lim
h→Ϭ+

f(Ϭ+ h)− f(Ϭ)
h

=

lim
h→Ϭ+

h− Ϭ
h

=

lim
h→Ϭ+

ϭ = ϭ

The last lines of each column tell the story: the leŌ and right hand limits are not
equal. Therefore the limit does not exist at Ϭ, and f is not differenƟable at Ϭ. So
we have

f ′(x) =
{

−ϭ x < Ϭ
ϭ x > Ϭ .

At x = Ϭ, f ′(x) does not exist; there is a jump disconƟnuity at Ϭ; see Figure Ϯ.ϳ.
So f(x) = |x| is differenƟable everywhere except at Ϭ.

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example ϰϬ Finding the derivaƟve of a piecewise defined funcƟon

Find the derivaƟve of f(x), where f(x) =
{

sin x x ≤ π/Ϯ
ϭ x > π/Ϯ . See Figure Ϯ.ϴ.

Notes:
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SÊ½çã®ÊÄ Using Example ϯϴ, we know that when x < π/Ϯ, f ′(x) =
cos x. It is easy to verify that when x > π/Ϯ, f ′(x) = Ϭ; consider:

lim
x→Ϭ

f(x+ h)− f(x)
h

= lim
x→Ϭ

ϭ− ϭ
h

= lim
h→Ϭ

Ϭ = Ϭ.

So far we have
f ′(x) =

{
cos x x < π/Ϯ
Ϭ x > π/Ϯ .

We sƟll need to find f ′(π/Ϯ). NoƟce at x = π/Ϯ that both pieces of f ′ are Ϭ,
meaning we can state that f ′(π/Ϯ) = Ϭ.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/Ϯ, uƟlizing again leŌ and right–hand limits:

lim
h→Ϭ−

f(π/Ϯ+ h)− f(π/Ϯ)
h

=

lim
h→Ϭ−

sin(π/Ϯ+ h)− sin(π/Ϯ)
h

=

lim
h→Ϭ−

sin( π
Ϯ ) cos(h) + sin(h) cos( π

Ϯ )− sin( π
Ϯ )

h
=

lim
h→Ϭ−

ϭ · cos(h) + sin(h) · Ϭ− ϭ
h

=

Ϭ

lim
h→Ϭ+

f(π/Ϯ+ h)− f(π/Ϯ)
h

=

lim
h→Ϭ+

ϭ− ϭ
h

=

lim
h→Ϭ+

Ϭ
h
=

Ϭ

Since both the leŌ and right hand limits are Ϭ at x = π/Ϯ, the limit exists and
f ′(π/Ϯ) exists (and is Ϭ). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/Ϯ
Ϭ x > π/Ϯ .

See Figure Ϯ.ϵ for a graph of this funcƟon.

Recall we pseudo–defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure Ϯ.ϲ. Even though the func-
Ɵon f in Example ϰϬ is piecewise–defined, the transiƟon is “smooth” hence it is
differenƟable. Note how in the graph of f in Figure Ϯ.ϴ it is difficult to tell when
f switches from one piece to the other; there is no “corner.”

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”

Notes:
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Exercises Ϯ.ϭ
Terms and Concepts
ϭ. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

Ϯ. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

ϯ. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

ϰ. In your own words, explain the difference between Defini-
Ɵons ϳ and ϭϬ.

ϱ. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

Problems
In Exercises ϲ – ϭϮ, use the definiƟon of the derivaƟve to com-
pute the derivaƟve of the given funcƟon.

ϲ. f(x) = ϲ

ϳ. f(x) = Ϯx

ϴ. f(t) = ϰ− ϯt

ϵ. g(x) = xϮ

ϭϬ. f(x) = ϯxϮ − x+ ϰ

ϭϭ. r(x) =
ϭ
x

ϭϮ. r(s) =
ϭ

s− Ϯ

In Exercises ϭϯ – ϭϵ, a funcƟon and an x–value c are given.
(Note: these funcƟons are the same as those given in Exer-
cises ϲ through ϭϮ.)

(a) Find the tangent line to the graph of the funcƟon at c.
(b) Find the normal line to the graph of the funcƟon at c.

ϭϯ. f(x) = ϲ, at x = −Ϯ.

ϭϰ. f(x) = Ϯx, at x = ϯ.

ϭϱ. f(x) = ϰ− ϯx, at x = ϳ.

ϭϲ. g(x) = xϮ, at x = Ϯ.

ϭϳ. f(x) = ϯxϮ − x+ ϰ, at x = −ϭ.

ϭϴ. r(x) =
ϭ
x
, at x = −Ϯ.

ϭϵ. r(x) =
ϭ

x− Ϯ
, at x = ϯ.

In Exercises ϮϬ – Ϯϯ, a funcƟon f and an x–value a are given.
Approximate the equaƟon of the tangent line to the graph of
f at x = a by numerically approximaƟng f ′(a), using h = Ϭ.ϭ.

ϮϬ. f(x) = xϮ + Ϯx+ ϭ, x = ϯ

Ϯϭ. f(x) =
ϭϬ

x+ ϭ
, x = ϵ

ϮϮ. f(x) = ex, x = Ϯ

Ϯϯ. f(x) = cos x, x = Ϭ

Ϯϰ. The graph of f(x) = xϮ − ϭ is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−ϭ, Ϭ), (Ϭ,−ϭ)
and (Ϯ, ϯ).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points
(−ϭ, Ϭ), (Ϭ,−ϭ) and (Ϯ, ϯ).
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Ϯϱ. The graph of f(x) =
ϭ

x+ ϭ
is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (Ϭ, ϭ) and
(ϭ, Ϭ.ϱ).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points (Ϭ, ϭ)
and (ϭ, Ϭ.ϱ).
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In Exercises Ϯϲ – Ϯϵ, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).
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ϯϬ. Using the graph of g(x) below, answer the following ques-
Ɵons.

(a) Where is g(x) > Ϭ?

(b) Where is g(x) < Ϭ?

(c) Where is g(x) = Ϭ?

(c) Where is g′(x) < Ϭ?

(d) Where is g′(x) > Ϭ?

(e) Where is g′(x) = Ϭ?
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Review

ϯϭ. Approximate lim
x→ϱ

xϮ + Ϯx− ϯϱ
xϮ − ϭϬ.ϱx+ Ϯϳ.ϱ

.

ϯϮ. Use the BisecƟon Method to approximate, accurate to two
decimal places, the root of g(x) = xϯ + xϮ + x − ϭ on
[Ϭ.ϱ, Ϭ.ϲ].

ϯϯ. Give intervals on which each of the following funcƟons are
conƟnuous.

(a)
ϭ

ex + ϭ

(b)
ϭ

xϮ − ϭ

(c)
√
ϱ− x

(d)
√
ϱ− xϮ

ϯϰ. Use the graph of f(x) provided to answer the following.

(a) lim
x→−ϯ−

f(x) =?

(b) lim
x→−ϯ+

f(x) =?

(c) lim
x→−ϯ

f(x) =?

(d) Where is f conƟnu-
ous?

...

..

−ϰ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

x

.

y

ϳϬ
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Ϯ.Ϯ InterpretaƟons of the DerivaƟve

The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #ϭ: Instantaneous Rate of Change

The previous secƟon started with an example of using the posiƟon of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is oŌen used when introducing the derivaƟve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posiƟon. In general, if f is a funcƟon of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
Ɵve answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When Ɵme changed, at what rate did the
height change?” and found the answer to be “By−ϲϰ feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “ϲϬ
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those ϱ minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to ϮϬ mph as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those ϱ minutes. What is a good approximaƟon of
the distance traveled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of ϲϬ mph with a Ɵme of ϱ/ϲϬ hours. Hence we would approxi-
mate the distance traveled as ϱ miles.

Referring back to the falling amusement–park ride, knowing that at t = Ϯ the
velocity was −ϲϰ Ō/s, we could reasonably assume that ϭ second later the rid-

Notes:
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ers’ height would have dropped by about ϲϰ feet. Knowing that the riders were
acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(Ϯ) = ϴϲ and f ′(Ϯ) = −ϲϰ, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon
of x, i.e., y = f(x) for some funcƟon f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wriƩen as “Ō/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like behavior
of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

Example ϰϭ The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer ϭϮ:ϬϬ a.m., January ϭ,
ϮϬϭϮ. It is fairly accurate to say that P(Ϭ) = ϳ, ϬϮϴ, ϳϯϰ, ϭϳϴ (www.prb.org). It
is also fairly accurate to state that P ′(Ϭ) = ϭϱϲ; that is, at midnight on January ϭ,
ϮϬϭϮ, the populaƟon of the world was growing by about ϭϱϲ people per minute
(note the units). Twenty days later (or, Ϯϴ,ϴϬϬ minutes later) we could reason-
ably assume the populaƟon grew by about Ϯϴ, ϴϬϬ ·ϭϱϲ = ϰ, ϰϵϮ, ϴϬϬ people.

Example ϰϮ The meaning of the derivaƟve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $ϭϬ per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
iƟve) profit making just one widget; the start–up costs will likely exceed $ϭϬ.
MathemaƟcally, we would write this as P(ϭ) < Ϭ.

What doP(ϭϬϬϬ) = ϱϬϬ andP ′(ϭϬϬϬ) = Ϭ.Ϯϱmean? ApproximateP(ϭϭϬϬ).

SÊ½çã®ÊÄ The equaƟon P(ϭϬϬϬ) = ϱϬϬ means that selling ϭ,ϬϬϬ wid-
gets returns a profit of $ϱϬϬ. We interpret P ′(ϭϬϬϬ) = Ϭ.Ϯϱ as meaning that
the profit is increasing at rate of $Ϭ.Ϯϱ per widget (the units are “dollars per
widget.”) Since we have no other informaƟon to use, our best approximaƟon
for P(ϭϭϬϬ) is:

P(ϭϭϬϬ) ≈ P(ϭϬϬϬ) + P ′(ϭϬϬϬ)× ϭϬϬ = $ϱϬϬ+ ϭϬϬ · Ϭ.Ϯϱ = $ϱϮϱ.

We approximate that selling ϭ,ϭϬϬ widgets returns a profit of $ϱϮϱ.

Notes:
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The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at ϲϬ mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance traveled assumed the rate of change was constant.
In Examples ϰϭ and ϰϮ we made similar approximaƟons. We were given rate of
change informaƟon which we used to approximate total change. NotaƟonally,
we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = ϮϮ days = Ϯϴ,ϴϬϬ minutes is small in
comparison to years. When manufacturing widgets, ϭϬϬ widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon

One of the most fundamental applicaƟons of the derivaƟve is the study of
moƟon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s couldmeasure the height of a projecƟle or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object aŌer t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v ′(t), gives the instantaneous rate of
velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from Ϭ to ϲϬ in ϰ.ϴ seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v ′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/sϮ, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = ϯϮŌ/sϮ or g = ϵ.ϴm/sϮ. What do these numbers mean?

A constant acceleraƟon of ϯϮ(Ō/s)/s means that the velocity changes by
ϯϮŌ/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while traveling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −ϯϮŌ/sϮ. If v(ϭ) = ϮϬŌ/s, then
when t = Ϯ, the velocity will have decreased by ϯϮŌ/s; that is, v(Ϯ) = −ϭϮŌ/s.
We can conƟnue: v(ϯ) = −ϰϰŌ/s, and we can also figure that v(Ϭ) = ϰϮŌ/s.

These ideas are so important we write them out as a Key Idea.

Notes:

ϳϯ



.....
ϭ

.
Ϯ

.
ϯ

.
ϰ

.

ϰ

.

8

.

ϭϮ

.

ϭ6

. x.

y

Figure Ϯ.ϭϬ: A graph of f(x) = xϮ.
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Figure Ϯ.ϭϭ: A graph of f(x) = xϮ and tan-
gent lines.
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Key Idea ϭ The DerivaƟve and MoƟon

ϭ. Let s(t) be the posiƟon funcƟon of an object. Then s ′(t) is the
velocity funcƟon of the object.

Ϯ. Let v(t) be the velocity funcƟon of an object. Then v ′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #Ϯ: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to Ϭ, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example ϰϯ Understanding the derivaƟve: the rate of change
Consider f(x) = xϮ as shown in Figure Ϯ.ϭϬ. It is clear that at x = ϯ the funcƟon
is growing faster than at x = ϭ, as it is steeper at x = ϯ. How much faster is it
growing?

SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at a
parƟcular point. In Figure Ϯ.ϭϭ, we have sketched the tangent lines to f at x = ϭ
and x = ϯ, along with a grid to help us measure the slopes of these lines. At

Notes:
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Figure Ϯ.ϭϮ: Graphs of f and f ′ in Example
ϰϰ, along with tangent lines in (b).
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Figure Ϯ.ϭϯ: Zooming in on f at x = ϯ for
the funcƟon given in Examples ϰϰ and ϰϱ.
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x = ϭ, the slope is Ϯ; at x = ϯ, the slope is ϲ. Thus we can say not only is f
growing faster at x = ϯ than at x = ϭ, it is growing three Ɵmes as fast.

Example ϰϰ Understanding the graph of the derivaƟve
Consider the graph of f(x) and its derivaƟve, f ′(x), in Figure Ϯ.ϭϮ(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = ϭ, x = Ϯ,
and x = ϯ.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = ϭ is f ′(ϭ); this looks to be about−ϭ.
The slope of the tangent line to f at x = Ϯ is f ′(Ϯ); this looks to be about ϰ.
The slope of the tangent line to f at x = ϯ is f ′(ϯ); this looks to be about ϯ.
Using these slopes, the tangent lines to f are sketched in Figure Ϯ.ϭϮ(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = ϭ, x = Ϯ and
x = ϯ to help beƩer visualize the y value of f ′ at those points.

Example ϰϱ ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example ϰϰ. Use the
tangent line to f at x = ϯ to approximate the value of f(ϯ.ϭ).

SÊ½çã®ÊÄ Figure Ϯ.ϭϯ shows the graph of f along with its tangent line,
zoomed in at x = ϯ. NoƟce that near x = ϯ, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example ϰϰ, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(ϯ) = ϰ. Recalling that
f ′(ϯ) = ϯ, we can compute the tangent line to be approximately y = ϯ(x−ϯ)+ϰ.
It is oŌen useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(ϯ.ϭ), we simply evaluate y at ϯ.ϭ
instead of f.

f(ϯ.ϭ) ≈ y(ϯ.ϭ) = ϯ(ϯ.ϭ− ϯ) + ϰ = .ϭ ∗ ϯ+ ϰ = ϰ.ϯ.

We approximate f(ϯ.ϭ) ≈ ϰ.ϯ.

To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example ϰϱ, f(x) = −xϯ+ ϳxϮ− ϭϮx+ ϰ. We can evaluate f(ϯ.ϭ) =
ϰ.Ϯϳϵ. Had we known f all along, certainly we could have just made this compu-
taƟon. In reality, we oŌen only know two things:

Notes:
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ϭ. What f(c) is, for some value of c, and

Ϯ. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example ϰϮ. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example ϰϱ, we used the
tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding thederivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises Ϯ.Ϯ
Terms and Concepts

ϭ. What is the instantaneous rate of change of posiƟon
called?

Ϯ. Given a funcƟon y = f(x), in your own words describe how
to find the units of f ′(x).

ϯ. What funcƟons have a constant rate of change?

Problems

ϰ. Given f(ϱ) = ϭϬ and f ′(ϱ) = Ϯ, approximate f(ϲ).

ϱ. Given P(ϭϬϬ) = −ϲϳ and P ′(ϭϬϬ) = ϱ, approximate
P(ϭϭϬ).

ϲ. Given z(Ϯϱ) = ϭϴϳ and z′(Ϯϱ) = ϭϳ, approximate z(ϮϬ).

ϳ. Knowing f(ϭϬ) = Ϯϱ and f ′(ϭϬ) = ϱ and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(ϭϬ.ϭ), f(ϭϭ), or f(ϮϬ)? Explain your rea-
soning.

ϴ. Given f(ϳ) = Ϯϲ and f(ϴ) = ϮϮ, approximate f ′(ϳ).

ϵ. Given H(Ϭ) = ϭϳ and H(Ϯ) = Ϯϵ, approximate H ′(Ϯ).

ϭϬ. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

ϭϭ. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v ′(t)?

ϭϮ. The heightH, in feet, of a river is recorded t hours aŌermid-
night, April ϭ. What are the units of H ′(t)?

ϭϯ. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(Ϭ)?

ϭϰ. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July ϰ in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(ϴ) likely greater than or less than Ϭ? Why?

(c) Is T(ϴ) likely greater than or less than Ϭ? Why?

In Exercises ϭϱ – ϭϴ, graphs of funcƟons f(x) and g(x) are
given. IdenƟfy which funcƟon is the derivaƟve of the other.)
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Review
In Exercises ϭϵ – ϮϬ, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

ϭϵ. f(x) = ϱxϮ

ϮϬ. f(x) = (x− Ϯ)ϯ

In Exercises Ϯϭ – ϮϮ, numerically approximate the value of
f ′(x) at the indicated x value.

Ϯϭ. f(x) = cos x at x = π.

ϮϮ. f(x) =
√
x at x = ϵ.

ϳϳ



Chapter Ϯ DerivaƟves

Ϯ.ϯ Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+b. What is y ′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y ′, gives the instan-
taneous rate of change; with a linear funcƟon, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = axϮ + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→Ϭ

a(x+ h)Ϯ + b(x+ h) + c− (axϮ + bx+ c)
h

= lim
h→Ϭ

ahϮ + Ϯahx+ bh
h

= lim
h→Ϭ

ah+ Ϯax+ b

= Ϯax+ b.

So if y = ϲxϮ + ϭϭx− ϭϯ, we can immediately compute y ′ = ϭϮx+ ϭϭ.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

Theorem ϭϮ DerivaƟves of Common FuncƟons

ϭ. Constant Rule:
d
dx
(
c
)
= Ϭ, where c is a constant.

ϯ.
d
dx

(sin x) = cos x

ϱ.
d
dx

(ex) = ex

Ϯ. Power Rule:
d
dx

(xn) = nxn−ϭ, where n is an integer, n > Ϭ.

ϰ.
d
dx

(cos x) = − sin x

ϲ.
d
dx

(ln x) =
ϭ
x

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have no
rate of change as they are constant. Therefore their derivaƟve is Ϭ (they change

Notes:
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Figure Ϯ.ϭϰ: A graph of f(x) = xϯ, along
with its derivaƟve f ′(x) = ϯxϮ and its tan-
gent line at x = −ϭ.

Ϯ.ϯ Basic DifferenƟaƟon Rules

at the rate of Ϭ). The theorem then states some fairly amazing things. The Power
Rule states that the derivaƟves of Power FuncƟons (of the form y = xn) are very
straighƞorward: mulƟply by the power, then subtract ϭ from the power. We see
something incredible about the funcƟon y = ex: it is its own derivaƟve. We also
see a new connecƟon between the sine and cosine funcƟons.

One special case of the Power Rule is when n = ϭ, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
xϭ
)
= ϭ · xϬ = ϭ.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: ϭ. They change at the same rate.

Let’s pracƟce using this theorem.

Example ϰϲ Using Theorem ϭϮ to find, and use, derivaƟves
Let f(x) = xϯ.

ϭ. Find f ′(x).

Ϯ. Find the equaƟon of the line tangent to the graph of f at x = −ϭ.

ϯ. Use the tangent line to approximate (−ϭ.ϭ)ϯ.

ϰ. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

ϭ. The Power Rule states that if f(x) = xϯ, then f ′(x) = ϯxϮ.

Ϯ. To find the equaƟon of the line tangent to the graph of f at x = −ϭ, we
need a point and the slope. The point is (−ϭ, f(−ϭ)) = (−ϭ,−ϭ). The
slope is f ′(−ϭ) = ϯ. Thus the tangent line has equaƟon y = ϯ(x−(−ϭ))+
(−ϭ) = ϯx+ Ϯ.

ϯ. We can use the tangent line to approximate (−ϭ.ϭ)ϯ as −ϭ.ϭ is close to
−ϭ. We have

(−ϭ.ϭ)ϯ ≈ ϯ(−ϭ.ϭ) + Ϯ = −ϭ.ϯ.

We can easily find the actual answer; (−ϭ.ϭ)ϯ = −ϭ.ϯϯϭ.

ϰ. See Figure Ϯ.ϭϰ.

Notes:

ϳϵ



Chapter Ϯ DerivaƟves

Theorem ϭϮ gives useful informaƟon, but we will need much more. For in-
stance, using the theorem, we can easily find the derivaƟve of y = xϯ, but it does
not tell how to compute the derivaƟve of y = Ϯxϯ, y = xϯ+sin x nor y = xϯ sin x.
The following theorem helps with the first two of these examples (the third is
answered in the next secƟon).

Theorem ϭϯ ProperƟes of the DerivaƟve

Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

ϭ. Sum/Difference Rule:
d
dx

(

f(x)± g(x)
)

=
d
dx

(

f(x)
)

± d
dx

(

g(x)
)

= f ′(x)± g ′(x)

Ϯ. Constant MulƟple Rule:
d
dx

(

c · f(x)
)

= c · d
dx

(

f(x)
)

= c · f ′(x).

Theorem ϭϯ allows us to find the derivaƟves of a wide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example ϯϲ that we found, using the limit definiƟon, the
derivaƟve of f(x) = ϯxϮ+ϱx−ϳ. We cannowfind its derivaƟvewithout expressly
using limits:

d
dx

(

ϯxϮ + ϱx+ ϳ
)

= ϯ
d
dx

(

xϮ
)

+ ϱ
d
dx

(

x
)

+
d
dx

(

ϳ
)

= ϯ · Ϯx+ ϱ · ϭ+ Ϭ
= ϲx+ ϱ.

We were a bit pedanƟc here, showing every step. Normally we would do all

the arithmeƟc and steps in our head and readily find
d
dx

(

ϯxϮ+ϱx+ϳ
)

= ϲx+ϱ.

Example ϰϳ Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ Ϯx+ ϭ. Approximate f(ϯ) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(ϯ) = sin ϯ+ϳ, where the real problem spot is sin ϯ. What
is sin ϯ?

Notes:
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Note: DefiniƟon ϭϭ comes with the
caveat “Where the corresponding limits
exist.” With f differenƟable on I, it is pos-
sible that f ′ is not differenƟable on all of
I, and so on.

Ϯ.ϯ Basic DifferenƟaƟon Rules

Since ϯ is close to π, we can assume sin ϯ ≈ sin π = Ϭ. Thus one guess is
f(ϯ) ≈ ϳ. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem ϭϮ we find f ′(x) = cos x+ Ϯ. The slope of the tangent line is
thus f ′(π) = cos π+ Ϯ = ϭ. Also, f(π) = Ϯπ+ ϭ ≈ ϳ.Ϯϴ. So the tangent line to
the graph of f at x = π is y = ϭ(x−π)+Ϯπ+ϭ = x+π+ϭ ≈ x+ϰ.ϭϰ. Evaluated
at x = ϯ, our tangent line gives y = ϯ + ϰ.ϭϰ = ϳ.ϭϰ. Using the tangent line,
our final approximaƟon is that f(ϯ) ≈ ϳ.ϭϰ.

Using a calculator, we get an answer accurate to ϰ places aŌer the decimal:
f(ϯ) = ϳ.ϭϰϭϭ. Our iniƟal guesswas ϳ; our tangent line approximaƟonwasmore
accurate, at ϳ.ϭϰ.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate.

Higher Order DerivaƟves

The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its
derivaƟve. The following definiƟon gives a name to this concept and introduces
its notaƟon.

DefiniƟon ϭϭ Higher Order DerivaƟves

Let y = f(x) be a differenƟable funcƟon on I.

ϭ. The second derivaƟve of f is:

f ′′(x) =
d
dx

(

f ′(x)
)

=
d
dx

(
dy
dx

)

=
dϮy
dxϮ

= y ′′.

Ϯ. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(

f ′′(x)
)

=
d
dx

(
dϮy
dxϮ

)

=
dϯy
dxϯ

= y ′′′.

ϯ. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(

f (n−ϭ)(x)
)

=
d
dx

(
dn−ϭy
dxn−ϭ

)

=
dny
dxn

= y(n).

Notes:
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Chapter Ϯ DerivaƟves

In general, when finding the fourth derivaƟve and on, we resort to the f (ϰ)(x)
notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is too confusing.

Let’s pracƟce using this new concept.

Example ϰϴ Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

ϭ. f(x) = ϰxϮ

Ϯ. f(x) = sin x

ϯ. f(x) = ϱex

SÊ½çã®ÊÄ

ϭ. Using the Power and Constant MulƟple Rules, we have: f ′(x) = ϴx. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
ϴx
)
= ϴ; f ′′′(x) = Ϭ; f (ϰ)(x) = Ϭ.

NoƟce how all successive derivaƟves will also be Ϭ.

Ϯ. We employ Theorem ϭϮ repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (ϰ)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (Ϯϯ)(x) is?)

ϯ. Employing Theorem ϭϮ and the Constant MulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (ϰ)(x) = ϱex.

InterpreƟng Higher Order DerivaƟves

What do higher order derivaƟves mean? What is the pracƟcal interpreta-
Ɵon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

Notes:
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Oneway to grasp this concept is to let f describe a posiƟon funcƟon. Then, as
stated in Key Idea ϭ, f ′ describes the rate of posiƟon change: velocity. We now
consider f ′′, which describes the rate of velocity change. Sports car enthusiasts
talk of how fast a car can go from Ϭ to ϲϬ mph; they are bragging about the
acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −ϭϲtϮ + ϭϱϬ. It is easy to compute f ′(t) = −ϯϮt Ō/s and
f ′′(t) = −ϯϮ (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/sϮ.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.

Notes:
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Exercises Ϯ.ϯ
Terms and Concepts

ϭ. What is the name of the rule which states that
d
dx
(

xn
)

=

nxn−ϭ, where n > Ϭ is an integer?

Ϯ. What is
d
dx
(

ln x
)

?

ϯ. Give an example of a funcƟon f(x) where f ′(x) = f(x).

ϰ. Give an example of a funcƟon f(x) where f ′(x) = Ϭ.

ϱ. The derivaƟve rules introduced in this secƟon explain how
to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) =
ϯ
xϮ

• g(x) = ϯxϮ − x+ ϭϳ

• h(x) = ϱ ln x

• j(x) = sin x cos x

• k(x) = ex
Ϯ

• m(x) =
√
x

ϲ. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

ϳ. Give an example of a funcƟonwhere f ′(x) ̸= Ϭ and f ′′(x) =
Ϭ.

ϴ. Explain in your own words what the second derivaƟve
“means.”

ϵ. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

ϭϬ. Let f(x) be a funcƟon measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises ϭϭ – Ϯϱ, compute the derivaƟve of the given func-
Ɵon.

ϭϭ. f(x) = ϳxϮ − ϱx+ ϳ

ϭϮ. g(x) = ϭϰxϯ + ϳxϮ + ϭϭx− Ϯϵ

ϭϯ. m(t) = ϵtϱ − ϭ
ϴ t

ϯ + ϯt− ϴ

ϭϰ. f(θ) = ϵ sin θ + ϭϬ cos θ

ϭϱ. f(r) = ϲer

ϭϲ. g(t) = ϭϬtϰ − cos t+ ϳ sin t

ϭϳ. f(x) = Ϯ ln x− x

ϭϴ. p(s) = ϭ
ϰ s

ϰ + ϭ
ϯ s

ϯ + ϭ
Ϯ s

Ϯ + s+ ϭ

ϭϵ. h(t) = et − sin t− cos t

ϮϬ. f(x) = ln(ϱxϮ)

Ϯϭ. f(t) = ln(ϭϳ) + eϮ + sin π/Ϯ

ϮϮ. g(t) = (ϭ+ ϯt)Ϯ

Ϯϯ. g(x) = (Ϯx− ϱ)ϯ

Ϯϰ. f(x) = (ϭ− x)ϯ

Ϯϱ. f(x) = (Ϯ− ϯx)Ϯ

Ϯϲ. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > Ϭ, ̸= ϭ.

(a) Rewrite this idenƟty when b = e, i.e., using loge x =
ln x.

(b) Use part (a) to find the derivaƟve of y = loga x.
(c) Give the derivaƟve of y = logϭϬ x.

In Exercises Ϯϳ – ϯϮ, compute the first four derivaƟves of the
given funcƟon.

Ϯϳ. f(x) = xϲ

Ϯϴ. g(x) = Ϯ cos x

Ϯϵ. h(t) = tϮ − et

ϯϬ. p(θ) = θϰ − θϯ

ϯϭ. f(θ) = sin θ − cos θ

ϯϮ. f(x) = ϭ, ϭϬϬ

In Exercises ϯϯ – ϯϴ, find the equaƟons of the tangent and
normal lines to the graph of the funcƟon at the given point.

ϯϯ. f(x) = xϯ − x at x = ϭ

ϯϰ. f(t) = et + ϯ at t = Ϭ

ϯϱ. g(x) = ln x at x = ϭ

ϯϲ. f(x) = ϰ sin x at x = π/Ϯ

ϯϳ. f(x) = −Ϯ cos x at x = π/ϰ

ϯϴ. f(x) = Ϯx+ ϯ at x = ϱ

Review
ϯϵ. Given that eϬ = ϭ, approximate the value of eϬ.ϭ using the

tangent line to f(x) = ex at x = Ϭ.

ϰϬ. Approximate the value of (ϯ.Ϭϭ)ϰ using the tangent line to
f(x) = xϰ at x = ϯ.

ϴϰ
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Figure Ϯ.ϭϱ: A graph of y = ϱxϮ sin x and
its tangent line at x = π/Ϯ.

Ϯ.ϰ The Product and QuoƟent Rules

Ϯ.ϰ The Product and QuoƟent Rules
The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = ϱxϮ + sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = ϱxϮ sin x and h(x) = ϱxϮ

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

Theorem ϭϰ Product Rule

Let f and g be differenƟable funcƟons on an open interval I. Then fg is a
differenƟable funcƟon on I, and

d
dx

(

f(x)g(x)
)

= f(x)g ′(x) + f ′(x)g(x).

Important:
d
dx

(

f(x)g(x)
)

̸= f ′(x)g ′(x)! While this answer is simpler than
the Product Rule, it is wrong.

We pracƟce using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example ϰϵ Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = ϱxϮ sin x. Evaluate the
derivaƟve at x = π/Ϯ.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
ϱxϮ and g(x) = sin x. We easily compute/recall that f ′(x) = ϭϬx and g ′(x) =
cos x. Employing the rule, we have

d
dx

(

ϱxϮ sin x
)

= ϱxϮ cos x+ ϭϬx sin x.

At x = π/Ϯ, we have

y ′(π/Ϯ) = ϱ
(π

Ϯ

)Ϯ
cos
(π

Ϯ

)

+ ϭϬ
π

Ϯ
sin
(π

Ϯ

)

= ϱπ.

We graph y and its tangent line at x = π/Ϯ, which has a slope of ϱπ, in Figure
Ϯ.ϭϱ. While this does not prove that the Produce Rule is the correct way to han-
dle derivaƟves of products, it helps validate its truth.

Notes:
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We now invesƟgate why the Product Rule is true.

Example ϱϬ A proof of the Product Rule
Use the definiƟon of the derivaƟve to prove Theorem ϭϰ.

SÊ½çã®ÊÄ By the limit definiƟon, we have

d
dx

(

f(x)g(x)
)

= lim
h→Ϭ

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add Ϭ to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
as shown.

d
dx

(

f(x)g(x)
)

= lim
h→Ϭ

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add Ϭ to the numerator)

= lim
h→Ϭ

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→Ϭ

(

f(x+ h)g(x+ h)− f(x+ h)g(x)
)

+
(

f(x+ h)g(x)− f(x)g(x)
)

h

= lim
h→Ϭ

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→Ϭ

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→Ϭ

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→Ϭ

f(x+ h)− f(x)
h

g(x) (apply limits)

= f(x)g ′(x) + f ′(x)g(x)

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

Example ϱϭ Exploring alternate derivaƟve methods
Let y = (xϮ + ϯx + ϭ)(ϮxϮ − ϯx + ϭ). Find y ′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = Ϯxϰ + ϯxϯ − ϲxϮ + ϭ. It is easy to compute y ′;

y ′ = ϴxϯ + ϵxϮ − ϭϮx.

Notes:

ϴϲ
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Now apply the Product Rule.

y ′ = (xϮ + ϯx+ ϭ)(ϰx− ϯ) + (Ϯx+ ϯ)(ϮxϮ − ϯx+ ϭ)

=
(
ϰxϯ + ϵxϮ − ϱx− ϯ

)
+
(
ϰxϯ − ϳx+ ϯ

)

= ϴxϯ + ϵxϮ − ϭϮx.

The uninformed usually assume that “the derivaƟve of the product is the
product of the derivaƟves.” Thus we are tempted to say that y ′ = (Ϯx+ϯ)(ϰx−
ϯ) = ϴxϮ + ϲx− ϵ. Obviously this is not correct.

Example ϱϮ Using the Product Rule with a product of three funcƟons
Let y = xϯ ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three funcƟonswhile the Product Rule
only specifies how to handle a product of two funcƟons. Ourmethod of handling
this problem is to simply group the laƩer two funcƟons together, and consider
y = xϯ

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (xϯ)
(
ln x cos x

)′
+ ϯxϮ

(
ln x cos x

)

To evaluate
(
ln x cos x

)′, we apply the Product Rule again:

= (xϯ)
(
ln x(− sin x) +

ϭ
x
cos x

)
+ ϯxϮ

(
ln x cos x

)

= xϯ ln x(− sin x) + xϯ
ϭ
x
cos x+ ϯxϮ ln x cos x

Recognize the paƩern in our answer above: when applying the Product Rule to
a product of three funcƟons, there are three terms added together in the final
derivaƟve. Each terms contains only one derivaƟve of one of the original func-
Ɵons, and each funcƟon’s derivaƟve shows up in only one term. It is straighƞor-
ward to extend this paƩern to finding the derivaƟve of a product of ϰ or more
funcƟons.

We consider one more example before discussing another derivaƟve rule.

Example ϱϯ Using the Product Rule
Find the derivaƟves of the following funcƟons.

ϭ. f(x) = x ln x

Ϯ. g(x) = x ln x− x.

Notes:
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SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is ϭ/x, we use the Product
Rule to find our answers.

ϭ.
d
dx

(

x ln x
)

= x · ϭ/x+ ϭ · ln x = ϭ+ ln x.

Ϯ. Using the result from above, we compute

d
dx

(

x ln x− x
)

= ϭ+ ln x− ϭ = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Theorem ϭϱ QuoƟent Rule

Let f and g be funcƟons defined on an open interval I, where g(x) ̸= Ϭ
on I. Then f/g is differenƟable on I, and

d
dx

(
f(x)
g(x)

)

=
g(x)f ′(x)− f(x)g ′(x)

g(x)Ϯ
.

The QuoƟent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fracƟon’s numerator
and denominator as “HI” and “LO”, respecƟvely. Then

d
dx

(
HI
LO

)

=
LO· dHI – HI· dLO

LOLO
,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivaƟves of the numerator and denominator, respecƟvely.

Let’s pracƟce using the QuoƟent Rule.

Example ϱϰ Using the QuoƟent Rule

Let f(x) =
ϱxϮ

sin x
. Find f ′(x).

Notes:
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Figure Ϯ.ϭϲ: A graph of y = tan x along
with its tangent line at x = π/ϰ.

Ϯ.ϰ The Product and QuoƟent Rules

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
ϱxϮ

sin x

)

=
sin x · ϭϬx− ϱxϮ · cos x

sinϮ x

=
ϭϬx sin x− ϱxϮ cos x

sinϮ x
.

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

Example ϱϱ Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.
But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(

tan x
)

=
d
dx

(
sin x
cos x

)

=
cos x cos x− sin x(− sin x)

cosϮ x

=
cosϮ x+ sinϮ x

cosϮ x

=
ϭ

cosϮ x
= secϮ x.

This is beauƟful result. To confirm its truth, we can find the equaƟon of the tan-
gent line to y = tan x at x = π/ϰ. The slope is secϮ(π/ϰ) = Ϯ; y = tan x, along
with its tangent line, is graphed in Figure Ϯ.ϭϲ.

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Example
ϯϴ and stated the derivaƟve of the cosine funcƟon in Theorem ϭϮ. The deriva-
Ɵves of the cotangent, cosecant and secant funcƟons can all be computed di-
rectly using Theorem ϭϮ and the QuoƟent Rule.

Notes:
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Theorem ϭϲ DerivaƟves of Trigonometric FuncƟons

ϭ.
d
dx
(
sin x

)
= cos x

ϯ.
d
dx
(
tan x

)
= secϮ x

ϱ.
d
dx
(
sec x

)
= sec x tan x

Ϯ.
d
dx
(
cos x

)
= − sin x

ϰ.
d
dx
(
cot x

)
= − cscϮ x

ϲ.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
Ɵves of the trigonometric funcƟons that start with “c” have aminus sign in them.

Example ϱϲ Exploring alternate derivaƟve methods

In Example ϱϰ the derivaƟve of f(x) =
ϱxϮ

sin x
was found using the QuoƟent Rule.

RewriƟng f as f(x) = ϱxϮ csc x, find f ′ using Theorem ϭϲ and verify the two
answers are the same.

SÊ½çã®ÊÄ Wefound in Example ϱϰ that the f ′(x) =
ϭϬx sin x− ϱxϮ cos x

sinϮ x
.

We now find f ′ using the Product Rule, considering f as f(x) = ϱxϮ csc x.

f ′(x) =
d
dx

(

ϱxϮ csc x
)

= ϱxϮ(− csc x cot x) + ϭϬx csc x (now rewrite trig funcƟons)

= ϱxϮ · −ϭ
sin x

· cos x
sin x

+
ϭϬx
sin x

=
−ϱxϮ cos x

sinϮ x
+

ϭϬx
sin x

(get common denominator)

=
ϭϬx sin x− ϱxϮ cos x

sinϮ x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. Work to “simplify” your results into a form that is most readable and
useful to you.

The QuoƟent Rule gives other useful results, as show in the next example.

Notes:
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Example ϱϳ Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

ϭ. f(x) =
ϭ
x

Ϯ. f(x) =
ϭ
xn
, where n > Ϭ is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

ϭ. f ′(x) =
x · Ϭ− ϭ · ϭ

xϮ
= − ϭ

xϮ
.

Ϯ. f ′(x) =
xn · Ϭ− ϭ · nxn−ϭ

(xn)Ϯ
= −nxn−ϭ

xϮn
= − n

xn+ϭ .

The derivaƟve of y =
ϭ
xn

turned out to be rather nice. It gets beƩer. Con-
sider:

d
dx

(
ϭ
xn

)

=
d
dx

(

x−n
)

(apply result from Example ϱϳ)

= − n
xn+ϭ (rewrite algebraically)

= −nx−(n+ϭ)

= −nx−n−ϭ.

This is reminiscent of the Power Rule: mulƟply by the power, then subtract ϭ
from the power. We now add to our previous Power Rule, which had the re-
stricƟon of n > Ϭ.

Theorem ϭϳ Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= Ϭ is an integer. Then

f ′(x) = n · xn−ϭ.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to

Notes:
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the same result, the derivaƟve. We demonstrate this concept in an example.

Example ϱϴ Exploring alternate derivaƟve methods

Let f(x) =
xϮ − ϯx+ ϭ

x
. Find f ′(x) in each of the following ways:

ϭ. By applying the QuoƟent Rule,

Ϯ. by viewing f as f(x) =
(
xϮ − ϯx + ϭ

)
· x−ϭ and applying the Product and

Power Rules, and

ϯ. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

ϭ. Applying the QuoƟent Rule gives:

f ′(x) =
x ·
(
Ϯx− ϯ

)
−
(
xϮ − ϯx+ ϭ

)
· ϭ

xϮ
=

xϮ − ϭ
xϮ

= ϭ− ϭ
xϮ
.

Ϯ. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
xϮ − ϯx+ ϭ

)
· (−ϭ)x−Ϯ +

(
Ϯx− ϯ

)
· x−ϭ

= −xϮ − ϯx+ ϭ
xϮ

+
Ϯx− ϯ

x

= −xϮ − ϯx+ ϭ
xϮ

+
ϮxϮ − ϯx

xϮ

=
xϮ − ϭ
xϮ

= ϭ− ϭ
xϮ
,

the same result as above.

ϯ. As x ̸= Ϭ, we can divide through by x first, giving f(x) = x − ϯ +
ϭ
x
. Now

apply the Power Rule.

f ′(x) = ϭ− ϭ
xϮ
,

the same result as before.

Example ϱϴ demonstrates three methods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: reduce the answer

Notes:
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to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

ϭ− ϭ
xϮ

=
x ·
(

Ϯx− ϯ
)

−
(

xϮ − ϯx+ ϭ
)

· ϭ
xϮ

=
(

xϮ − ϯx+ ϭ
)

· (−ϭ)x−Ϯ +
(

Ϯx− ϯ
)

· x−ϭ.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next secƟon we conƟnue to learn rules that allow us to more easily
compute derivaƟves than using the limit definiƟon directly. We have to memo-
rize the derivaƟves of a certain set of funcƟons, such as “the derivaƟve of sin x
is cos x.” The Sum/Difference, Constant MulƟple, Power, Product and QuoƟent
Rules show us how to find the derivaƟves of certain combinaƟons of these func-
Ɵons. The next secƟon shows how to find the derivaƟves when we compose
these funcƟons together.

Notes:
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Exercises Ϯ.ϰ
Terms and Concepts

ϭ. T/F: The Product Rule states that
d
dx
(

xϮ sin x
)

= Ϯx cos x.

Ϯ. T/F: The QuoƟent Rule states that
d
dx

(

xϮ

sin x

)

=
cos x
Ϯx

.

ϯ. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

ϰ. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

ϱ. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

ϲ. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises ϳ – ϭϬ:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

ϳ. f(x) = x(xϮ + ϯx)

ϴ. g(x) = ϮxϮ(ϱxϯ)

ϵ. h(s) = (Ϯs− ϭ)(s+ ϰ)

ϭϬ. f(x) = (xϮ + ϱ)(ϯ− xϯ)

In Exercises ϭϭ – ϭϰ:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

ϭϭ. f(x) =
xϮ + ϯ

x

ϭϮ. g(x) =
xϯ − ϮxϮ

ϮxϮ

ϭϯ. h(s) =
ϯ
ϰsϯ

ϭϰ. f(t) =
tϮ − ϭ
t+ ϭ

In Exercises ϭϱ – Ϯϵ, compute the derivaƟve of the given func-
Ɵon.

ϭϱ. f(x) = x sin x

ϭϲ. f(t) =
ϭ
tϮ
(csc t− ϰ)

ϭϳ. g(x) =
x+ ϳ
x− ϱ

ϭϴ. g(t) =
tϱ

cos t− ϮtϮ

ϭϵ. h(x) = cot x− ex

ϮϬ. h(t) = ϳtϮ + ϲt− Ϯ

Ϯϭ. f(x) =
xϰ + Ϯxϯ

x+ Ϯ

ϮϮ. f(x) = (ϭϲxϯ + ϮϰxϮ + ϯx)
ϳx− ϭ

ϭϲxϯ + ϮϰxϮ + ϯx

Ϯϯ. f(t) = tϱ(sec t+ et)

Ϯϰ. f(x) =
sin x

cos x+ ϯ

Ϯϱ. g(x) = eϮ
(

sin(π/ϰ)− ϭ
)

Ϯϲ. g(t) = ϰtϯet − sin t cos t

Ϯϳ. h(t) =
tϮ sin t+ ϯ
tϮ cos t+ Ϯ

Ϯϴ. f(x) = xϮex tan x

Ϯϵ. g(x) = Ϯx sin x sec x

In Exercises ϯϬ – ϯϯ, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

ϯϬ. g(s) = es(sϮ + Ϯ) at (Ϭ, Ϯ).

ϯϭ. g(t) = t sin t at ( ϯπ
Ϯ ,− ϯπ

Ϯ )

ϯϮ. g(x) =
xϮ

x− ϭ
at (Ϯ, ϰ)

ϯϯ. g(θ) =
cos θ − ϴθ

θ + ϭ
at (Ϭ,−ϱ)

In Exercises ϯϰ – ϯϳ, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

ϯϰ. f(x) = ϲxϮ − ϭϴx− Ϯϰ

ϯϱ. f(x) = x sin x on [−ϭ, ϭ]

ϵϰ



ϯϲ. f(x) =
x

x+ ϭ

ϯϳ. f(x) =
xϮ

x+ ϭ

In Exercises ϯϴ – ϰϭ, find the requested derivaƟve.

ϯϴ. f(x) = x sin x; find f ′′(x).

ϯϵ. f(x) = x sin x; find f (ϰ)(x).

ϰϬ. f(x) = csc x; find f ′′(x).

ϰϭ. f(x) = (xϯ − ϱx+ Ϯ)(xϮ + x− ϳ); find f (ϴ)(x).

In Exercises ϰϮ – ϰϱ, use the graph of f(x) to sketch f ′(x).
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Ϯ.ϱ The Chain Rule

We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(xϮ). We currently
do not know how to compute this derivaƟve. If forced to guess, one would likely
guess f ′(x) = − sin(Ϯx), where we recognize − sin x as the derivaƟve of cos x
and Ϯx as the derivaƟve of xϮ. However, this is not the case; f ′(x) ̸= − sin(Ϯx).
In Example ϲϮ we’ll see the correct answer, which employs the new rule this
secƟon introduces, the Chain Rule.

Before we define this new rule, recall the notaƟon for composiƟon of func-
Ɵons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differenƟaƟon rule, we note that the rule extends to
mulƟple composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

Example ϱϵ Exploring similar derivaƟves
Find the derivaƟves of Fϭ(x) = (ϭ − x)Ϯ, FϮ(x) = (ϭ − x)ϯ, and Fϯ(x) = (ϭ −
x)ϰ. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as Fϭ(x) = ϭ − Ϯx + xϮ, FϮ(x) = ϭ − ϯx + ϯxϮ − xϯ and
Fϯ(x) = ϭ− ϰx+ ϲxϮ − ϰxϯ + xϰ.

It is not hard to see that:

F′ϭ(x) = −Ϯ+ Ϯx,
F′Ϯ(x) = −ϯ+ ϲx− ϯxϮ and
F′ϯ(x) = −ϰ+ ϭϮx− ϭϮxϮ + ϰxϯ.

An interesƟng fact is that these can be rewriƩen as

F′ϭ(x) = −Ϯ(ϭ− x), F′Ϯ(x) = −ϯ(ϭ− x)Ϯ and F′ϯ(x) = −ϰ(ϭ− x)ϯ.

A paƩern might jump out at you. Recognize that each of these funcƟons is a

Notes:
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Ϯ.ϱ The Chain Rule

composiƟon, leƫng g(x) = ϭ− x:

Fϭ(x) = fϭ(g(x)), where fϭ(x) = xϮ,
FϮ(x) = fϮ(g(x)), where fϮ(x) = xϯ,
Fϯ(x) = fϯ(g(x)), where fϯ(x) = xϰ.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern.

Theorem ϭϴ The Chain Rule

Let y = f(u) be a differenƟable funcƟon of u and let u = g(x) be a
differenƟable funcƟon of x. Then y = f(g(x)) is a differenƟable funcƟon
of x, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example ϱϵ.

Example ϲϬ Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the following funcƟons, as given in
Example ϱϵ.

SÊ½çã®ÊÄ Example ϱϵ endedwith the recogniƟon that eachof the given
funcƟonswas actually a composiƟon of funcƟons. To avoid confusion, we ignore
most of the subscripts here.

Fϭ(x) = (ϭ− x)Ϯ:

We found that

y = (ϭ− x)Ϯ = f(g(x)), where f(x) = xϮ and g(x) = ϭ− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = Ϯx and g ′(x) = −ϭ.
Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the

equaƟon for f ′(x). That is, f ′(x) = Ϯ(ϭ − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = Ϯ(ϭ− x) · (−ϭ) = −Ϯ(ϭ− x) = Ϯx− Ϯ.

FϮ(x) = (ϭ− x)ϯ:

Notes:
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Let y = (ϭ − x)ϯ = f(g(x)), where f(x) = xϯ and g(x) = (ϭ − x). We have
f ′(x) = ϯxϮ, so f ′(g(x)) = ϯ(ϭ− x)Ϯ. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = ϯ(ϭ− x)Ϯ · (−ϭ) = −ϯ(ϭ− x)Ϯ.

Fϯ(x) = (ϭ− x)ϰ:

Finally, when y = (ϭ − x)ϰ, we have f(x) = xϰ and g(x) = (ϭ − x). Thus
f ′(x) = ϰxϯ and f ′(g(x)) = ϰ(ϭ− x)ϯ. Thus

y ′ = f ′(g(x)) · g ′(x) = ϰ(ϭ− x)ϯ · (−ϭ) = −ϰ(ϭ− x)ϯ.

Example ϲϬ demonstrated a parƟcular paƩern: when f(x) = xn, then y ′ =
n · (g(x))n−ϭ · g ′(x). This is called the Generalized Power Rule.

Theorem ϭϵ Generalized Power Rule

Let g(x) be a differenƟable funcƟon and let n ̸= Ϭ be an integer. Then

d
dx

(

g(x)n
)

= n ·
(
g(x)

)n−ϭ · g ′(x).

This allows us to quickly find the derivaƟve of funcƟons like y = (ϯxϮ − ϱx+
ϳ + sin x)ϮϬ. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y ′ = ϮϬ(ϯxϮ − ϱx+ ϳ+ sin x)ϭϵ · (ϲx− ϱ+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by ϮϬ, the rewrite the inside of the parentheses, raising it all to
the ϭϵth power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

We now consider more examples that employ the Chain Rule.

Example ϲϭ Using the Chain Rule
Find the derivaƟves of the following funcƟons:

ϭ. y = sin Ϯx Ϯ. y = ln(ϰxϯ− ϮxϮ) ϯ. y = e−xϮ

SÊ½çã®ÊÄ

ϭ. Consider y = sin Ϯx. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = Ϯx. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(Ϯx) · Ϯ = Ϯ cos Ϯx.

Notes:
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Figure Ϯ.ϭϳ: f(x) = cos xϮ sketched along
with its tangent line at x = ϭ.

Ϯ.ϱ The Chain Rule

Ϯ. Recognize that y = ln(ϰxϯ − ϮxϮ) is the composiƟon of f(x) = ln x and
g(x) = ϰxϯ − ϮxϮ. Also, recall that

d
dx

(

ln x
)

=
ϭ
x
.

This leads us to:

y ′ =
ϭ

ϰxϯ − ϮxϮ
· (ϭϮxϮ − ϰx) =

ϭϮxϮ − ϰx
ϰxϯ − ϮxϮ

=
ϰx(ϯx− ϭ)
Ϯx(ϮxϮ − x)

=
Ϯ(ϯx− ϭ)
ϮxϮ − x

.

ϯ. Recognize that y = e−xϮ is the composiƟon of f(x) = ex and g(x) = −xϮ.
Remembering that f ′(x) = ex, we have

y ′ = e−xϮ · (−Ϯx) = (−Ϯx)e−xϮ .

Example ϲϮ Using the Chain Rule to find a tangent line
Let f(x) = cos xϮ. Find the equaƟon of the line tangent to the graph of f at x = ϭ.

SÊ½çã®ÊÄ The tangent line goes through the point (ϭ, f(ϭ)) ≈ (ϭ, Ϭ.ϱϰ)
with slope f ′(ϭ). To find f ′, we need the Chain Rule.

f ′(x) = − sin(xϮ) · (Ϯx) = −Ϯx sin xϮ. Evaluated at x = ϭ, we have f ′(ϭ) =
−Ϯ sin ϭ ≈ −ϭ.ϲϴ. Thus the equaƟon of the tangent line is

y = −ϭ.ϲϴ(x− ϭ) + Ϭ.ϱϰ.

The tangent line is sketched along with f in Figure Ϯ.ϭϳ.

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(

ln(anything)
)

=
ϭ

anything
· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(

ln(ϯxϭϱ − cos x+ ex)
)

=
ϰϱxϭϰ + sin x+ ex

ϯxϭϱ − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

Notes:
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This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(

ln u
)

=
u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

ϭ.
d
dx

(

un
)

= n · un−ϭ · u ′.

Ϯ.
d
dx

(

eu
)

= u ′ · eu.

ϯ.
d
dx

(

sin u
)

= u ′ · cos u.

ϰ.
d
dx

(

cos u
)

= −u ′ · sin u.

ϱ.
d
dx

(

tan u
)

= u ′ · secϮ u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

Example ϲϯ Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

ϭ. f(x) = xϱ sin Ϯxϯ Ϯ. f(x) =
ϱxϯ

e−xϮ .

SÊ½çã®ÊÄ

ϭ. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = xϱ
(
ϲxϮ cos Ϯxϯ

)
+ ϱxϰ

(
sin Ϯxϯ

)
= ϲxϳ cos Ϯxϯ + ϱxϰ sin Ϯxϯ.

Ϯ. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−xϮ(ϭϱxϮ

)
− ϱxϯ

(
(−Ϯx)e−xϮ)

(
e−xϮ

)Ϯ =
e−xϮ(ϭϬxϰ + ϭϱxϮ

)

e−ϮxϮ

= ex
Ϯ(
ϭϬxϰ + ϭϱxϮ

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product

Notes:
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Ϯ.ϱ The Chain Rule

and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerward.

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Example ϲϰ Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tanϱ(ϲxϯ − ϳx).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(ϲxϯ − ϳx) funcƟon
“inside” the f(x) = xϱ funcƟon; that is, we have y =

(
tan(ϲxϯ−ϳx)

)ϱ. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y ′ = ϱ
(
tan(ϲxϯ − ϳx)

)ϰ · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = secϮ(ϲxϯ − ϳx) · (ϭϴxϮ − ϳ).

Combine this with what we found above to give

y ′ = ϱ
(
tan(ϲxϯ − ϳx)

)ϰ · secϮ(ϲxϯ − ϳx) · (ϭϴxϮ − ϳ)

= (ϵϬxϮ − ϯϱ) secϮ(ϲxϯ − ϳx) tanϰ(ϲxϯ − ϳx).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and ϲxϯ − ϳx grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one must take
several simple steps and be careful to keep track of how to apply each of these
steps.

It is a tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrarily
complicated funcƟons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example ϲϱ Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−Ϯ)− sinϮ(eϰx)

ln(xϮ + ϱxϰ)
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It

Notes:
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employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.

f ′(x) =




ln(xϮ + ϱxϰ) ·

[(
x · (− sin(x−Ϯ)) · (−Ϯx−ϯ) + ϭ · cos(x−Ϯ)

)
− Ϯ sin(eϰx) · cos(eϰx) · (ϰeϰx)

]

−
(

x cos(x−Ϯ) − sinϮ(eϰx)
)

· Ϯx+ϮϬxϯ

xϮ+ϱxϰ





(
ln(xϮ + ϱxϰ)

)Ϯ .

The reader is highly encouraged to look at each term and recognize why it
is there. (I.e., the QuoƟent Rule is used; in the numerator, idenƟfy the “LOdHI”
term, etc.) This example demonstrates that derivaƟves can be computed sys-
temaƟcally, no maƩer how arbitrarily complicated the funcƟon is.

The Chain Rule also has theoreƟc value. That is, it can be used to find the
derivaƟves of funcƟons that we have not yet learned as we do in the following
example.

Example ϲϲ The Chain Rule and exponenƟal funcƟons
Use the Chain Rule to find the derivaƟve of y = ax where a > Ϭ, a ̸= ϭ is
constant.

SÊ½çã®ÊÄ We only know how to find the derivaƟve of one exponenƟal
funcƟon: y = ex; this problem is asking us to find the derivaƟve of funcƟons
such as y = Ϯx.

This can be accomplished by rewriƟng ax in terms of e. Recalling that ex and
ln x are inverse funcƟons, we can write

a = eln a and so y = ax = eln(a
x).

By the exponent property of logarithms, we can “bring down” the power to
get

y = ax = ex(ln a).

The funcƟon is now the composiƟon y = f(g(x)), with f(x) = ex and g(x) =
x(ln a). Since f ′(x) = ex and g ′(x) = ln a, the Chain Rule gives

y ′ = ex(ln a) · ln a.

Recall that the ex(ln a) term on the right hand side is just ax, our original funcƟon.
Thus, the derivaƟve contains the original funcƟon itself. We have

y ′ = y · ln a = ax · ln a.

Notes:
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Ϯ.ϱ The Chain Rule

The Chain Rule, coupled with the derivaƟve rule of ex, allows us to find the
derivaƟves of all exponenƟal funcƟons.

The previous example produced a result worthy of its own “box.”

Theorem ϮϬ DerivaƟves of ExponenƟal FuncƟons

Let f(x) = ax, for a > Ϭ, a ̸= ϭ. Then f is differenƟable for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule NotaƟon

It is instrucƟve to understand what the Chain Rule “looks like” using “ dydx” no-
taƟon instead of y ′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where
u = g(x) is a funcƟon of x, as stated in Theorem ϭϴ. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not canceling these terms; the derivaƟve
notaƟon of dy

dx is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mulƟple variables. For instance,

dy
dt

=
dy
d⃝ · d⃝

d△ · d△
dt

.

where⃝ and△ are any variables you’d like to use.

Notes:
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One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure Ϯ.ϭϴ. The gears have ϯϲ, ϭϴ, and ϲ teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revoluƟon is twice as fast
as the rate at which the x gear makes a revoluƟon. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = Ϯ.
Likewise, every revoluƟon of u causes ϯ revoluƟons of y: dy

du = ϯ. How does
y change with respect to x? For each revoluƟon of x, y revolves ϲ Ɵmes; that is,

dy
dx

=
dy
du

· du
dx

= Ϯ · ϯ = ϲ.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So oŌen the
funcƟons thatwe dealwith are composiƟons of twoormore funcƟons, requiring
us to use this rule to compute derivaƟves. It is oŌen used in pracƟcewhen actual
funcƟons are unknown. Rather, through measurement, we can calculate dy

du and
du
dx . With our knowledge of the Chain Rule, finding dy

dx is straighƞorward.
In the next secƟon, we use the Chain Rule to jusƟfy another differenƟaƟon

technique. There are many curves that we can draw in the plane that fail the
“verƟcal line test.” For instance, consider xϮ + yϮ = ϭ, which describes the unit
circle. Wemay sƟll be interested in finding slopes of tangent lines to the circle at
various points. The next secƟon shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situaƟons, implicit differenƟaƟon is indispensable.

Notes:
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Exercises Ϯ.ϱ
Terms and Concepts
ϭ. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

Ϯ. T/F: The Generalized Power Rule states that
d
dx

(

g(x)n
)

=

n
(

g(x)
)n−ϭ.

ϯ. T/F:
d
dx
(

ln(xϮ)
)

=
ϭ
xϮ
.

ϰ. T/F:
d
dx
(

ϯx
)

≈ ϭ.ϭ · ϯx.

ϱ. T/F:
dx
dy

=
dx
dt

· dt
dy

ϲ. T/F: Taking the derivaƟve of f(x) = xϮ sin(ϱx) requires the
use of both the Product and Chain Rules.

Problems
In Exercises ϳ – Ϯϴ, compute the derivaƟve of the given func-
Ɵon.

ϳ. f(x) = (ϰxϯ − x)ϭϬ

ϴ. f(t) = (ϯt− Ϯ)ϱ

ϵ. g(θ) = (sin θ + cos θ)ϯ

ϭϬ. h(t) = eϯt
Ϯ+t−ϭ

ϭϭ. f(x) =
(

x+ ϭ
x

)ϰ

ϭϮ. f(x) = cos(ϯx)

ϭϯ. g(x) = tan(ϱx)

ϭϰ. h(t) = sinϰ(Ϯt)

ϭϱ. p(t) = cosϯ(tϮ + ϯt+ ϭ)

ϭϲ. f(x) = ln(cos x)

ϭϳ. f(x) = ln(xϮ)

ϭϴ. f(x) = Ϯ ln(x)

ϭϵ. g(r) = ϰr

ϮϬ. g(t) = ϱcos t

Ϯϭ. g(t) = ϭϱϮ

ϮϮ. m(w) =
ϯw

Ϯw

Ϯϯ. h(t) =
Ϯt + ϯ
ϯt + Ϯ

Ϯϰ. m(w) =
ϯw + ϭ
Ϯw

Ϯϱ. f(x) =
ϯx

Ϯ
+ x

ϮxϮ

Ϯϲ. f(x) = xϮ sin(ϱx)

Ϯϳ. g(t) = cos(tϮ + ϯt) sin(ϱt− ϳ)

Ϯϴ. g(t) = cos( ϭ
t )e

ϱtϮ

In Exercises Ϯϵ – ϯϮ, find the equaƟons of tangent and normal
lines to the graphof the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises ϳ through ϭϬ.

Ϯϵ. f(x) = (ϰxϯ − x)ϭϬ at x = Ϭ

ϯϬ. f(t) = (ϯt− Ϯ)ϱ at t = ϭ

ϯϭ. g(θ) = (sin θ + cos θ)ϯ at θ = π/Ϯ

ϯϮ. h(t) = eϯt
Ϯ+t−ϭ at t = −ϭ

ϯϯ. Compute
d
dx
(

ln(kx)
)

two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.

ϯϰ. Compute
d
dx
(

ln(xk)
)

two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ap) = p ln a, then
taking the derivaƟve.

Review

ϯϱ. The “wind chill factor” is a measurement of how cold it
“feels” during cold, windy weather. Let W(w) be the wind
chill factor, in degrees Fahrenheit, when it is Ϯϱ◦F outside
with a wind of wmph.

(a) What are the units ofW′(w)?

(b) What would you expect the sign ofW′(ϭϬ) to be?

ϯϲ. Find the derivaƟves of the following funcƟons.

(a) f(x) = xϮex cot x

(b) g(x) = Ϯxϯxϰx

ϭϬϱ
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Figure Ϯ.ϭϵ: A graph of the implicit func-
Ɵon sin(y) + yϯ = ϲ− xϯ.
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Ϯ.ϲ Implicit DifferenƟaƟon

In the previous secƟons we learned to find the derivaƟve, dy
dx , or y

′, when y is
given explicitly as a funcƟon of x. That is, if we know y = f(x) for some funcƟon
f, we can find y ′. For example, given y = ϯxϮ − ϳ, we can easily find y ′ = ϲx.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

SomeƟmes the relaƟonship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that xϮ − y = ϰ. This equality defines a
relaƟonship between x and y; if we know x, we could figure out y. Can we sƟll
find y ′? In this case, sure; we solve for y to get y = xϮ − ϰ (hence we now know
y explicitly) and then differenƟate to get y ′ = Ϯx.

SomeƟmes the implicit relaƟonship between x and y is complicated. Sup-
pose we are given sin(y)+ yϯ = ϲ− xϯ. A graph of this implicit funcƟon is given
in Figure Ϯ.ϭϵ. In this case there is absolutely no way to solve for y in terms of
elementary funcƟons. The surprising thing is, however, that we can sƟll find y ′
via a process known as implicit differenƟaƟon.

Implicit differenƟaƟon is a technique based on the Chain Rule that is used to
find a derivaƟve when the relaƟonship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be funcƟons of x. Then

d
dx

(

f(g(x))
)

= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(

f(y))
)

= f ′(y)) · y ′, or
d
dx

(

f(y))
)

= f ′(y) · dy
dx

. (Ϯ.ϭ)

These equaƟons look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example ϲϳ Using Implicit DifferenƟaƟon
Find y ′ given that sin(y) + yϯ = ϲ− xϯ.

SÊ½çã®ÊÄ We start by taking the derivaƟve of both sides (thus main-
taining the equality.) We have :

d
dx

(

sin(y) + yϯ
)

=
d
dx

(

ϲ− xϯ
)

.

Notes:
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Ϯ.ϲ Implicit DifferenƟaƟon

The right hand side is easy; it returns−ϯxϮ.
The leŌhand side requiresmore consideraƟon. We take thederivaƟve term–

by–term. Using the technique derived from EquaƟon Ϯ.ϭ above, we can see that

d
dx

(

sin y
)

= cos y · y ′.

We apply the same process to the yϯ term.

d
dx

(

yϯ
)

=
d
dx

(

(y)ϯ
)

= ϯ(y)Ϯ · y ′.

Puƫng this together with the right hand side, we have

cos(y)y ′ + ϯyϮy ′ = −ϯxϮ.

Now solve for y ′.

cos(y)y ′ + ϯyϮy ′ = −ϯxϮ.
(
cos y+ ϯyϮ

)
y ′ = −ϯxϮ

y ′ =
−ϯxϮ

cos y+ ϯyϮ

This equaƟon for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit funcƟons are generally harder to deal with than explicit funcƟons.
With an explicit funcƟon, given an x value, we have an explicit formula for com-
puƟng the corresponding y value. With an implicit funcƟon, one oŌen has to
find x and y values at the same Ɵme that saƟsfy the equaƟon. It is much eas-
ier to demonstrate that a given point saƟsfies the equaƟon than to actually find
such a point.

For instance, we can affirm easily that the point ( ϯ
√
ϲ, Ϭ) lies on the graph of

the implicit funcƟon sin y+ yϯ = ϲ− xϯ. Plugging in Ϭ for y, we see the leŌ hand
side is Ϭ. Seƫng x = ϯ

√
ϲ, we see the right hand side is also Ϭ; the equaƟon is

saƟsfied. The following example finds the equaƟon of the tangent line to this
funcƟon at this point.

Example ϲϴ Using Implicit DifferenƟaƟon to find a tangent line
Find the equaƟon of the line tangent to the curve of the implicitly defined func-
Ɵon sin y+ yϯ = ϲ− xϯ at the point ( ϯ

√
ϲ, Ϭ).

SÊ½çã®ÊÄ In Example ϲϳ we found that

y ′ =
−ϯxϮ

cos y+ ϯyϮ
.

Notes:
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Figure Ϯ.ϮϬ: The funcƟon sin y + yϯ =
ϲ − xϯ and its tangent line at the point
( ϯ
√
ϲ, Ϭ).
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We find the slope of the tangent line at the point ( ϯ
√
ϲ, Ϭ) by subsƟtuƟng ϯ

√
ϲ for

x and Ϭ for y. Thus at the point ( ϯ
√
ϲ, Ϭ), we have the slope as

y ′ =
−ϯ( ϯ

√
ϲ)Ϯ

cos Ϭ+ ϯ · ϬϮ =
−ϯ ϯ

√
ϯϲ

ϭ
≈ −ϵ.ϵϭ.

Therefore the equaƟon of the tangent line to the implicitly defined funcƟon
sin y+ yϯ = ϲ− xϯ at the point ( ϯ

√
ϲ, Ϭ) is

y = −ϯ ϯ
√
ϯϲ(x− ϯ

√
ϲ) + Ϭ ≈ −ϵ.ϵϭx+ ϭϴ.

The curve and this tangent line are shown in Figure Ϯ.ϮϬ.

This suggests a general method for implicit differenƟaƟon. For the steps be-
low assume y is a funcƟon of x.

ϭ. Take the derivaƟve of each term in the equaƟon. Treat the x terms like
normal. When taking the derivaƟves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mulƟply each term
by y ′.

Ϯ. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

ϯ. Factor out y ′; solve for y ′ by dividing.

PracƟcal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y ′, as the laƩer can be easily confused for y or yϭ.

Example ϲϵ Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon yϯ + xϮyϰ = ϭ+ Ϯx, find y ′.

SÊ½çã®ÊÄ Wewill take the implicit derivaƟves termby term. Thederiva-
Ɵve of yϯ is ϯyϮy ′.

The second term, xϮyϰ, is a liƩle tricky. It requires the Product Rule as it is the
product of two funcƟons of x: xϮ and yϰ. Its derivaƟve is xϮ(ϰyϯy ′) + Ϯxyϰ. The
first part of this expression requires a y ′ becausewe are taking the derivaƟve of a
y term. The second part does not require it because we are taking the derivaƟve
of xϮ.

The derivaƟve of the right hand side is easily found to be Ϯ. In all, we get:

ϯyϮy ′ + ϰxϮyϯy ′ + Ϯxyϰ = Ϯ.

Move terms around so that the leŌ side consists only of the y ′ terms and the
right side consists of all the other terms:

ϯyϮy ′ + ϰxϮyϯy ′ = Ϯ− Ϯxyϰ.

Notes:

ϭϬϴ
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Figure Ϯ.Ϯϭ: A graph of the implicitly de-
fined funcƟon yϯ + xϮyϰ = ϭ + Ϯx along
with its tangent line at the point (Ϭ, ϭ).
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Figure Ϯ.ϮϮ: A graph of the implicitly de-
fined funcƟon sin(xϮyϮ) + yϯ = x+ y.

Ϯ.ϲ Implicit DifferenƟaƟon

Factor out y ′ from the leŌ side and solve to get

y ′ =
Ϯ− Ϯxyϰ

ϯyϮ + ϰxϮyϯ
.

To confirm the validity of our work, let’s find the equaƟon of a tangent line
to this funcƟon at a point. It is easy to confirm that the point (Ϭ, ϭ) lies on the
graph of this funcƟon. At this point, y ′ = Ϯ/ϯ. So the equaƟon of the tangent
line is y = Ϯ/ϯ(x−Ϭ)+ϭ. The funcƟon and its tangent line are graphed in Figure
Ϯ.Ϯϭ.

NoƟce how our funcƟon looks much different than other funcƟons we have
seen. For one, it fails the verƟcal line test. Such funcƟons are important in many
areas of mathemaƟcs, so developing tools to deal with them is also important.

Example ϳϬ Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(xϮyϮ) + yϯ = x+ y, find y ′.

SÊ½çã®ÊÄ DifferenƟaƟng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(

sin(xϮyϮ)
)

= cos(xϮyϮ) · d
dx

(

xϮyϮ
)

= cos(xϮyϮ) ·
(
xϮ(Ϯyy ′) + ϮxyϮ

)

= Ϯ(xϮyy ′ + xyϮ) cos(xϮyϮ).

We leave the derivaƟves of the other terms to the reader. AŌer taking the
derivaƟves of both sides, we have

Ϯ(xϮyy ′ + xyϮ) cos(xϮyϮ) + ϯyϮy ′ = ϭ+ y ′.

We now have to be careful to properly solve for y ′, parƟcularly because of
the product on the leŌ. It is best to mulƟply out the product. Doing this, we get

ϮxϮy cos(xϮyϮ)y ′ + ϮxyϮ cos(xϮyϮ) + ϯyϮy ′ = ϭ+ y ′.

From here we can safely move around terms to get the following:

ϮxϮy cos(xϮyϮ)y ′ + ϯyϮy ′ − y ′ = ϭ− ϮxyϮ cos(xϮyϮ).

Then we can solve for y ′ to get

y ′ =
ϭ− ϮxyϮ cos(xϮyϮ)

ϮxϮy cos(xϮyϮ) + ϯyϮ − ϭ
.

Notes:

ϭϬϵ
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Figure Ϯ.Ϯϯ: A graph of the implicitly de-
fined funcƟon sin(xϮyϮ) + yϯ = x+ y and
certain tangent lines.
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A graph of this implicit funcƟon is given in Figure Ϯ.ϮϮ. It is easy to verify that
the points (Ϭ, Ϭ), (Ϭ, ϭ) and (Ϭ,−ϭ) all lie on the graph. We can find the slopes
of the tangent lines at each of these points using our formula for y ′.

At (Ϭ, Ϭ), the slope is−ϭ.
At (Ϭ, ϭ), the slope is ϭ/Ϯ.
At (Ϭ,−ϭ), the slope is also ϭ/Ϯ.
The tangent lines have been added to the graph of the funcƟon in Figure

Ϯ.Ϯϯ.

Quite a few “famous” curves have equaƟons that are given implicitly. We can
use implicit differenƟaƟon to find the slope at various points on those curves.
We invesƟgate two such curves in the next examples.

Example ϳϭ Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle xϮ+yϮ = ϭ at the point (ϭ/Ϯ,

√
ϯ/Ϯ).

SÊ½çã®ÊÄ Taking derivaƟves, we get Ϯx+Ϯyy ′ = Ϭ. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (ϭ/Ϯ,
√
ϯ/Ϯ), we have the tangent line’s slope as

y ′ =
−ϭ/Ϯ√
ϯ/Ϯ

=
−ϭ√
ϯ
≈ −Ϭ.ϱϳϳ.

A graph of the circle and its tangent line at (ϭ/Ϯ,
√
ϯ/Ϯ) is given in Figure

Ϯ.Ϯϰ, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This secƟon has shown how to find the derivaƟves of implicitly defined func-
Ɵons, whose graphs include a wide variety of interesƟng and unusual shapes.
Implicit differenƟaƟon can also be used to further our understanding of “regu-
lar” differenƟaƟon.

One hole in our current understanding of derivaƟves is this: what is the
derivaƟve of the square root funcƟon? That is,

d
dx
(√

x
)
=

d
dx
(
xϭ/Ϯ

)
= ?

Notes:

ϭϭϬ



Ϯ.ϲ Implicit DifferenƟaƟon

We allude to a possible soluƟon, as we can write the square root funcƟon as
a power funcƟon with a raƟonal (or, fracƟonal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
xϭ/Ϯ

)
=

ϭ
Ϯ
x−ϭ/Ϯ =

ϭ
Ϯ
√
x
.

The trouble with this is that the Power Rule was iniƟally defined only for
posiƟve integer powers, n > Ϭ. While we did not jusƟfy this at the Ɵme, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posiƟve integers. The QuoƟent Rule allowed us to extend
the Power Rule to negaƟve integer powers. Implicit DifferenƟaƟon allows us to
extend the Power Rule to raƟonal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = Ϯ
and n = ϱ is fine, but m = Ϯ and n = ϰ is not). We can rewrite this explicit
funcƟon implicitly as yn = xm. Now apply implicit differenƟaƟon.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−ϭ · y ′ = m · xm−ϭ

y ′ =
m
n
xm−ϭ

yn−ϭ (now subsƟtute xm/n for y)

=
m
n

xm−ϭ

(xm/n)n−ϭ (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−ϭ.

The above derivaƟon is the key to the proof extending the Power Rule to ra-
Ɵonal powers. Using limits, we can extend this once more to include all powers,
including irraƟonal (even transcendental!) powers, giving the following theo-
rem.

Theorem Ϯϭ Power Rule for DifferenƟaƟon

Let f(x) = xn, where n ̸= Ϭ is a real number. Then f is a differenƟable
funcƟon, and f ′(x) = n · xn−ϭ.

Notes:

ϭϭϭ
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This theorem allows us to say the derivaƟve of xπ is πxπ−ϭ.

We now apply this final version of the Power Rule in the next example, the
second invesƟgaƟon of a “famous” curve.

Example ϳϮ Using the Power Rule
Find the slope of xϮ/ϯ + yϮ/ϯ = ϴ at the point (ϴ, ϴ).

SÊ½çã®ÊÄ This is a parƟcularly interesƟng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure Ϯ.Ϯϱ.

To find the slope of the astroid at the point (ϴ, ϴ), we take the derivaƟve
implicitly.

Ϯ
ϯ
x−ϭ/ϯ +

Ϯ
ϯ
y−ϭ/ϯy ′ = Ϭ

Ϯ
ϯ
y−ϭ/ϯy ′ = −Ϯ

ϯ
x−ϭ/ϯ

y ′ = −x−ϭ/ϯ

y−ϭ/ϯ

y ′ = −yϭ/ϯ

xϭ/ϯ
= − ϯ

√
y
x
.

Plugging in x = ϴ and y = ϴ, we get a slope of −ϭ. The astroid, with its
tangent line at (ϴ, ϴ), is shown in Figure Ϯ.Ϯϲ.

Implicit DifferenƟaƟon and the Second DerivaƟve

Wecan use implicit differenƟaƟon to find higher order derivaƟves. In theory,
this is simple: first find dy

dx , then take its derivaƟve with respect to x. In pracƟce,
it is not hard, but it oŌen requires a bit of algebra. We demonstrate this in an
example.

Example ϳϯ Finding the second derivaƟve

Given xϮ + yϮ = ϭ, find
dϮy
dxϮ

= y ′′.

SÊ½çã®ÊÄ We found that y ′ = dy
dx = −x/y in Example ϳϭ. To find y ′′,

Notes:

ϭϭϮ
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Figure Ϯ.Ϯϳ: A plot of y = xx.

Ϯ.ϲ Implicit DifferenƟaƟon

we apply implicit differenƟaƟon to y ′.

y ′′ =
d
dx
(
y ′
)

=
d
dx

(

−x
y

)

(Now use the QuoƟent Rule.)

= −y(ϭ)− x(y ′)
yϮ

replace y ′ with−x/y:

= −y− x(−x/y)
yϮ

= −y+ xϮ/y
yϮ

.

While this is not a parƟcularly simple expression, it is usable. We can see that
y ′′ > Ϭ when y < Ϭ and y ′′ < Ϭ when y > Ϭ. In SecƟon ϯ.ϰ, we will see how
this relates to the shape of the graph.

Logarithmic DifferenƟaƟon

Consider the funcƟon y = xx; it is graphed in Figure Ϯ.Ϯϳ. It is well–defined
for x > Ϭ and we might be interested in finding equaƟons of lines tangent and
normal to its graph. How do we take its derivaƟve?

The funcƟon is not a power funcƟon: it has a “power” of x, not a constant.
It is not an exponenƟal funcƟon: it has a “base” of x, not a constant.

A differenƟaƟon technique known as logarithmic differenƟaƟon becomes
useful here. The basic principle is this: take the natural log of both sides of an
equaƟon y = f(x), then use implicit differenƟaƟon to find y ′. We demonstrate
this in the following example.

Example ϳϰ Using Logarithmic DifferenƟaƟon
Given y = xx, use logarithmic differenƟaƟon to find y ′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of

Notes:

ϭϭϯ
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Figure Ϯ.Ϯϴ: A graph of y = xx and its tan-
gent line at x = ϭ.ϱ.
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both sides then applying implicit differenƟaƟon.

y = xx

ln(y) = ln(xx) (apply logarithm rule)

ln(y) = x ln x (now use implicit differenƟaƟon)
d
dx

(

ln(y)
)

=
d
dx

(

x ln x
)

y ′

y
= ln x+ x · ϭ

x
y ′

y
= ln x+ ϭ

y ′ = y
(
ln x+ ϭ

)
(subsƟtute y = xx)

y ′ = xx
(
ln x+ ϭ

)
.

To “test” our answer, let’s use it to find the equaƟonof the tangent line at x =
ϭ.ϱ. The point on the graph our tangent linemust pass through is (ϭ.ϱ, ϭ.ϱϭ.ϱ) ≈
(ϭ.ϱ, ϭ.ϴϯϳ). Using the equaƟon for y ′, we find the slope as

y ′ = ϭ.ϱϭ.ϱ
(
ln ϭ.ϱ+ ϭ

)
≈ ϭ.ϴϯϳ(ϭ.ϰϬϱ) ≈ Ϯ.ϱϴϮ.

Thus the equaƟon of the tangent line is y = ϭ.ϲϴϯϯ(x − ϭ.ϱ) + ϭ.ϴϯϳ. Figure
Ϯ.Ϯϱ graphs y = xx along with this tangent line.

Implicit differenƟaƟon proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of funcƟons. In parƟcular, it extended the
Power Rule to raƟonal exponents, which we then extended to all real numbers.
In the next secƟon, implicit differenƟaƟon will be used to find the derivaƟves of
inverse funcƟons, such as y = sin−ϭ x.

Notes:

ϭϭϰ



Exercises Ϯ.ϲ
Terms and Concepts
ϭ. In your own words, explain the difference between implicit

funcƟons and explicit funcƟons.

Ϯ. Implicit differenƟaƟon is based on what other differenƟa-
Ɵon rule?

ϯ. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y =

√
x.

ϰ. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y = xϯ/ϰ.

Problems
In Exercises ϱ – ϭϮ, compute the derivaƟve of the given func-
Ɵon.

ϱ. f(x) =
√
x+

ϭ√
x

ϲ. f(x) = ϯ
√
x+ xϮ/ϯ

ϳ. f(t) =
√
ϭ− tϮ

ϴ. g(t) =
√
t sin t

ϵ. h(x) = xϭ.ϱ

ϭϬ. f(x) = xπ + xϭ.ϵ + πϭ.ϵ

ϭϭ. g(x) =
x+ ϳ√

x

ϭϮ. f(t) = ϱ
√
t(sec t+ et)

In Exercises ϭϯ – Ϯϱ, find
dy
dx

using implicit differenƟaƟon.

ϭϯ. xϰ + yϮ + y = ϳ

ϭϰ. xϮ/ϱ + yϮ/ϱ = ϭ

ϭϱ. cos(x) + sin(y) = ϭ

ϭϲ.
x
y
= ϭϬ

ϭϳ.
y
x
= ϭϬ

ϭϴ. xϮeϮ + Ϯy = ϱ

ϭϵ. xϮ tan y = ϱϬ

ϮϬ. (ϯxϮ + Ϯyϯ)ϰ = Ϯ

Ϯϭ. (yϮ + Ϯy− x)Ϯ = ϮϬϬ

ϮϮ.
xϮ + y
x+ yϮ

= ϭϳ

Ϯϯ.
sin(x) + y
cos(y) + x

= ϭ

Ϯϰ. ln(xϮ + yϮ) = e

Ϯϱ. ln(xϮ + xy+ yϮ) = ϭ

Ϯϲ. Show that
dy
dx

is the same for each of the following implicitly
defined funcƟons.

(a) xy = ϭ

(b) xϮyϮ = ϭ

(c) sin(xy) = ϭ

(d) ln(xy) = ϭ

In Exercises Ϯϳ – ϯϭ, find the equaƟon of the tangent line to
the graph of the implicitly defined funcƟon at the indicated
points. As a visual aid, each funcƟon is graphed.

Ϯϳ. xϮ/ϱ + yϮ/ϱ = ϭ

(a) At (ϭ, Ϭ).

(b) At (Ϭ.ϭ, Ϭ.Ϯϴϭ) (which does not exactly lie on the
curve, but is very close).

.....

−ϭ

.

−Ϭ.5

.

Ϭ.5

.

ϭ

. −ϭ.

−Ϭ.5

.

Ϭ.5

.

ϭ

.

(Ϭ.ϭ, Ϭ.Ϯ8ϭ)

.

x

.

y

Ϯϴ. xϰ + yϰ = ϭ

(a) At (ϭ, Ϭ).

(b) At (
√
Ϭ.ϲ,

√
Ϭ.ϴ).

(c) At (Ϭ, ϭ).

.....
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.

−0.5

.
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(
√
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√
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.

x
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ϭϭϱ



Ϯϵ. (xϮ + yϮ − ϰ)ϯ = ϭϬϴyϮ

(a) At (Ϭ, ϰ).
(b) At (Ϯ,− ϰ

√
ϭϬϴ).

.....

−4

.

−Ϯ

.

Ϯ

.

4

. −4.

−Ϯ

.

Ϯ

.

4

. (Ϯ,− 4√ϭϬ8).

x

.

y

ϯϬ. (xϮ + yϮ + x)Ϯ = xϮ + yϮ

(a) At (Ϭ, ϭ).

(b) At
(

−ϯ
ϰ
,
ϯ
√
ϯ

ϰ

)

.

.....

−Ϯ

.

−ϭ

.

−ϭ

.

ϭ

.

(
−

ϯ
ϰ ,

ϯ
√

ϯ
ϰ

)

.

x

.

y

ϯϭ. (x− Ϯ)Ϯ + (y− ϯ)Ϯ = ϵ

(a) At
(

ϳ
Ϯ
,
ϲ+ ϯ

√
ϯ

Ϯ

)

.

(b) At
(

ϰ+ ϯ
√
ϯ

Ϯ
,
ϯ
Ϯ

)

.

..... Ϯ. ϰ. ϲ.

Ϯ

.

ϰ

.

ϲ

.

(
ϰ+ϯ

√

ϯ
Ϯ , ϭ.ϱ

)

.

(
ϯ.ϱ, ϲ+ϯ

√

ϯ
Ϯ

)

.
x

.

y

In Exercises ϯϮ – ϯϱ, an implicitly defined funcƟon is given.

Find
dϮy
dxϮ

. Note: these are the same problems used in Exer-
cises ϭϯ through ϭϲ.

ϯϮ. xϰ + yϮ + y = ϳ

ϯϯ. xϮ/ϱ + yϮ/ϱ = ϭ

ϯϰ. cos x+ sin y = ϭ

ϯϱ.
x
y
= ϭϬ

In Exercises ϯϲ – ϰϭ, use logarithmic differenƟaƟon to find
dy
dx

, then find the equaƟon of the tangent line at the indicated
x–value.

ϯϲ. y = (ϭ+ x)ϭ/x, x = ϭ

ϯϳ. y = (Ϯx)x
Ϯ
, x = ϭ

ϯϴ. y =
xx

x+ ϭ
, x = ϭ

ϯϵ. y = xsin(x)+Ϯ, x = π/Ϯ

ϰϬ. y =
x+ ϭ
x+ Ϯ

, x = ϭ

ϰϭ. y =
(x+ ϭ)(x+ Ϯ)
(x+ ϯ)(x+ ϰ)

, x = Ϭ

ϭϭϲ
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Figure Ϯ.ϯϬ: Corresponding tangent lines
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Ϯ.ϳ DerivaƟves of Inverse FuncƟons

Ϯ.ϳ DerivaƟves of Inverse FuncƟons

Recall that a funcƟon y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values xϭ and xϮ, we donot have f(xϭ) = f(xϮ).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = xϮ. Clearly, f(−ϭ) = f(ϭ), so f is not one to one on its
regular domain, but by restricƟng f to (Ϭ,∞), f is one to one.

Now recall that one to one funcƟons have inverses. That is, if f is one to
one, it has an inverse funcƟon, denoted by f−ϭ, such that if f(a) = b, then
f−ϭ(b) = a. The domain of f−ϭ is the range of f, and vice-versa. For ease of
notaƟon, we set g = f−ϭ and treat g as a funcƟon of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two funcƟons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflecƟon of f across the
line y = x. In Figure Ϯ.Ϯϵ we see a funcƟon graphed along with its inverse. See
how the point (ϭ, ϭ.ϱ) lies on one graph, whereas (ϭ.ϱ, ϭ) lies on the other. Be-
cause of this relaƟonship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure Ϯ.ϯϬ where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflecƟon across y = x, we

can see that the tangent line to g at the point (b, a) should have slope
ϭ

f ′(a)
.

This then tells us that g ′(b) =
ϭ

f ′(a)
.

Consider:

InformaƟon about f InformaƟon about g = f−ϭ

(−Ϭ.ϱ, Ϭ.ϯϳϱ) lies on f (Ϭ.ϯϳϱ,−Ϭ.ϱ) lies on g

Slope of tangent line to f
at x = −Ϭ.ϱ is ϯ/ϰ

Slope of tangent line to
g at x = Ϭ.ϯϳϱ is ϰ/ϯ

f ′(−Ϭ.ϱ) = ϯ/ϰ g ′(Ϭ.ϯϳϱ) = ϰ/ϯ

We have discovered a relaƟonship between f ′ and g ′ in a mostly graphical
way. We can realize this relaƟonship analyƟcally as well. Let y = g(x), where
again g = f−ϭ. Wewant to find y ′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit DifferenƟaƟon, take the derivaƟve of both sides of

Notes:

ϭϭϳ
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this last equality.

d
dx

(

f(y)
)

=
d
dx

(

x
)

f ′(y) · y ′ = ϭ

y ′ =
ϭ

f ′(y)

y ′ =
ϭ

f ′(g(x))

This leads us to the following theorem.

Theorem ϮϮ DerivaƟves of Inverse FuncƟons

Let fbe differenƟable and one to one on an open interval I, where f ′(x) ̸=
Ϭ for all x in I, let J be the range of f on I, let g be the inverse funcƟon of
f, and let f(a) = b for some a in I. Then g is a differenƟable funcƟon on
J, and in parƟcular,

ϭ.
(
f−ϭ)′ (b) = g ′(b) =

ϭ
f ′(a)

and Ϯ.
(
f−ϭ)′ (x) = g ′(x) =

ϭ
f ′(g(x))

The results of Theorem ϮϮ are not trivial; the notaƟon may seem confusing
at first. Careful consideraƟon, along with examples, should earn understanding.

In the next example we apply Theorem ϮϮ to the arcsine funcƟon.

Example ϳϱ Finding the derivaƟve of an inverse trigonometric funcƟon
Let y = arcsin x = sin−ϭ x. Find y ′ using Theorem ϮϮ.

SÊ½çã®ÊÄ AdopƟngour previously definednotaƟon, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g ′(x) =
ϭ

f ′(g(x))

=
ϭ

cos(arcsin x)
.

This last expression is not immediately illuminaƟng. Drawing a figure will
help, as shown in Figure Ϯ.ϯϮ. Recall that the sine funcƟon can be viewed as
taking in an angle and returning a raƟo of sides of a right triangle, specifically,
the raƟo “opposite over hypotenuse.” Thismeans that the arcsine funcƟon takes
as input a raƟo of sides and returns an angle. The equaƟon y = arcsin x can
be rewriƩen as y = arcsin(x/ϭ); that is, consider a right triangle where the

Notes:
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hypotenuse has length ϭ and the side opposite of the angle with measure y has
length x. This means the final side has length

√
ϭ− xϮ, using the Pythagorean

Theorem.

Therefore cos(sin−ϭ x) = cos y =
√
ϭ− xϮ/ϭ =

√
ϭ− xϮ, resulƟng in

d
dx
(
arcsin x

)
= g ′(x) =

ϭ√
ϭ− xϮ

.

Remember that the input x of the arcsine funcƟon is a raƟo of a side of a right
triangle to its hypotenuse; the absolute value of this raƟo will never be greater
than ϭ. Therefore the inside of the square root will never be negaƟve.

In order tomake y = sin x one to one, we restrict its domain to [−π/Ϯ, π/Ϯ];
on this domain, the range is [−ϭ, ϭ]. Therefore the domain of y = arcsin x is
[−ϭ, ϭ] and the range is [−π/Ϯ, π/Ϯ]. When x = ±ϭ, note how the derivaƟve of
the arcsine funcƟon is undefined; this corresponds to the fact that as x → ±ϭ,
the tangent lines to arcsine approach verƟcal lines with undefined slopes.

In Figure Ϯ.ϯϯ we see f(x) = sin x and f−ϭ = sin−ϭ x graphed on their re-
specƟve domains. The line tangent to sin x at the point (π/ϯ,

√
ϯ/Ϯ) has slope

cos π/ϯ = ϭ/Ϯ. The slope of the corresponding point on sin−ϭ x, the point
(
√
ϯ/Ϯ, π/ϯ), is

ϭ
√

ϭ− (
√
ϯ/Ϯ)Ϯ

=
ϭ

√

ϭ− ϯ/ϰ
=

ϭ
√

ϭ/ϰ
=

ϭ
ϭ/Ϯ

= Ϯ,

verifying yet again that at corresponding points, a funcƟon and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederivaƟves of all the inverse trigono-
metric funcƟons. In Figure Ϯ.ϯϭ we show the restricƟons of the domains of the
standard trigonometric funcƟons that allow them to be inverƟble.

Notes:
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FuncƟon Domain Range
Inverse
FuncƟon Domain Range

sin x [−π/Ϯ, π/Ϯ] [−ϭ, ϭ] sin−ϭ x [−ϭ, ϭ] [−π/Ϯ, π/Ϯ]

cos x [Ϭ, π] [−ϭ, ϭ] cos−ϭ(x) [−ϭ, ϭ] [Ϭ, π]

tan x (−π/Ϯ, π/Ϯ) (−∞,∞) tan−ϭ(x) (−∞,∞) (−π/Ϯ, π/Ϯ)

csc x [−π/Ϯ, Ϭ) ∪ (Ϭ, π/Ϯ] (−∞,−ϭ] ∪ [ϭ,∞) csc−ϭ x (−∞,−ϭ] ∪ [ϭ,∞) [−π/Ϯ, Ϭ) ∪ (Ϭ, π/Ϯ]

sec x [Ϭ, π/Ϯ) ∪ (π/Ϯ, π] (−∞,−ϭ] ∪ [ϭ,∞) sec−ϭ(x) (−∞,−ϭ] ∪ [ϭ,∞) [Ϭ, π/Ϯ) ∪ (π/Ϯ, π]

cot x (Ϭ, π) (−∞,∞) cot−ϭ(x) (−∞,∞) (Ϭ, π)

Figure Ϯ.ϯϭ: Domains and ranges of the trigonometric and inverse trigonometric funcƟons.

Theorem Ϯϯ DerivaƟves of Inverse Trigonometric FuncƟons

The inverse trigonometric funcƟons are differenƟable on all open sets
contained in their domains (as listed in Figure Ϯ.ϯϭ) and their derivaƟves
are as follows:

ϭ.
d
dx
(

sin−ϭ(x)
)

=
ϭ√

ϭ− xϮ

Ϯ.
d
dx
(

sec−ϭ(x)
)

=
ϭ

|x|
√
xϮ − ϭ

ϯ.
d
dx
(

tan−ϭ(x)
)

=
ϭ

ϭ+ xϮ

ϰ.
d
dx
(

cos−ϭ(x)
)

= − ϭ√
ϭ− xϮ

ϱ.
d
dx
(

csc−ϭ(x)
)

= − ϭ
|x|

√
xϮ − ϭ

ϲ.
d
dx
(

cot−ϭ(x)
)

= − ϭ
ϭ+ xϮ

Note how the last three derivaƟves are merely the opposites of the first
three, respecƟvely. Because of this, the first three are used almost exclusively
throughout this text.

In SecƟon Ϯ.ϯ, we stated without proof or explanaƟon that
d
dx
(
ln x
)
=

ϭ
x
.

We can jusƟfy that now using Theorem ϮϮ, as shown in the example.

Example ϳϲ Finding the derivaƟve of y = ln x

Use Theorem ϮϮ to compute
d
dx
(
ln x
)
.

SÊ½çã®ÊÄ View y = ln x as the inverse of y = ex. Therefore, using our
standard notaƟon, let f(x) = ex and g(x) = ln x. Wewish to find g ′(x). Theorem

Notes:

ϭϮϬ



Ϯ.ϳ DerivaƟves of Inverse FuncƟons

ϮϮ gives:

g ′(x) =
ϭ

f ′(g(x))

=
ϭ

eln x

=
ϭ
x
.

In this chapter we have defined the derivaƟve, given rules to facilitate its
computaƟon, and given the derivaƟves of a number of standard funcƟons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem Ϯϰ Glossary of DerivaƟves of Elementary FuncƟons

Let u and v be differenƟable funcƟons, and let a, c and n be real
numbers, a > Ϭ, n ̸= Ϭ.

ϭ. d
dx

(
cu
)
= cu′

ϯ. d
dx

(
u · v

)
= uv′ + u′v

ϱ. d
dx

(
u(v)

)
= u′(v)v′

ϳ. d
dx

(
x
)
= ϭ

ϵ. d
dx

(
ex
)
= ex

ϭϭ. d
dx

(
ln x
)
= ϭ

x

ϭϯ. d
dx

(
sin x

)
= cos x

ϭϱ. d
dx

(
csc x

)
= − csc x cot x

ϭϳ. d
dx

(
tan x

)
= secϮ x

ϭϵ. d
dx

(
sin−ϭ x

)
= ϭ√

ϭ−xϮ

Ϯϭ. d
dx

(
csc−ϭ x

)
= − ϭ

|x|
√
xϮ−ϭ

Ϯϯ. d
dx

(
tan−ϭ x

)
= ϭ

ϭ+xϮ

Ϯ. d
dx

(
u± v

)
= u′ ± v′

ϰ. d
dx

( u
v

)
= u′v−uv′

vϮ

ϲ. d
dx

(
c
)
= Ϭ

ϴ. d
dx

(
xn
)
= nxn−ϭ

ϭϬ. d
dx

(
ax
)
= ln a · ax

ϭϮ. d
dx

(
loga x

)
= ϭ

ln a · ϭ
x

ϭϰ. d
dx

(
cos x

)
= − sin x

ϭϲ. d
dx

(
sec x

)
= sec x tan x

ϭϴ. d
dx

(
cot x

)
= − cscϮ x

ϮϬ. d
dx

(
cos−ϭ x

)
= − ϭ√

ϭ−xϮ

ϮϮ. d
dx

(
sec−ϭ x

)
= ϭ

|x|
√
xϮ−ϭ

Ϯϰ. d
dx

(
cot−ϭ x

)
= − ϭ

ϭ+xϮ

Notes:
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Exercises Ϯ.ϳ
Terms and Concepts
ϭ. T/F: Every funcƟon has an inverse.

Ϯ. In your own words explain what it means for a funcƟon to
be “one to one.”

ϯ. If (ϭ, ϭϬ) lies on the graph of y = f(x), what can be said
about the graph of y = f−ϭ(x)?

ϰ. If (ϭ, ϭϬ) lies on the graph of y = f(x) and f ′(ϭ) = ϱ, what
can be said about y = f−ϭ(x)?

Problems
In Exercises ϱ – ϴ, verify that the given funcƟons are inverses.

ϱ. f(x) = Ϯx+ ϲ and g(x) = ϭ
Ϯ x− ϯ

ϲ. f(x) = xϮ + ϲx+ ϭϭ, x ≥ ϯ and
g(x) =

√
x− Ϯ− ϯ, x ≥ Ϯ

ϳ. f(x) =
ϯ

x− ϱ
, x ̸= ϱ and

g(x) =
ϯ+ ϱx

x
, x ̸= Ϭ

ϴ. f(x) =
x+ ϭ
x− ϭ

, x ̸= ϭ and g(x) = f(x)

In Exercises ϵ – ϭϰ, an inverƟble funcƟon f(x) is given along
with a point that lies on its graph. Using Theorem ϮϮ, evalu-
ate
(

f−ϭ)′ (x) at the indicated value.

ϵ. f(x) = ϱx+ ϭϬ
Point= (Ϯ, ϮϬ)
Evaluate

(

f−ϭ)′ (ϮϬ)

ϭϬ. f(x) = xϮ − Ϯx+ ϰ, x ≥ ϭ
Point= (ϯ, ϳ)
Evaluate

(

f−ϭ)′ (ϳ)

ϭϭ. f(x) = sin Ϯx,−π/ϰ ≤ x ≤ π/ϰ
Point= (π/ϲ,

√
ϯ/Ϯ)

Evaluate
(

f−ϭ)′ (
√
ϯ/Ϯ)

ϭϮ. f(x) = xϯ − ϲxϮ + ϭϱx− Ϯ
Point= (ϭ, ϴ)
Evaluate

(

f−ϭ)′ (ϴ)

ϭϯ. f(x) =
ϭ

ϭ+ xϮ
, x ≥ Ϭ

Point= (ϭ, ϭ/Ϯ)
Evaluate

(

f−ϭ)′ (ϭ/Ϯ)

ϭϰ. f(x) = ϲeϯx

Point= (Ϭ, ϲ)
Evaluate

(

f−ϭ)′ (ϲ)

In Exercises ϭϱ – Ϯϰ, compute the derivaƟve of the given func-
Ɵon.

ϭϱ. h(t) = sin−ϭ(Ϯt)

ϭϲ. f(t) = sec−ϭ(Ϯt)

ϭϳ. g(x) = tan−ϭ(Ϯx)

ϭϴ. f(x) = x sin−ϭ x

ϭϵ. g(t) = sin t cos−ϭ t

ϮϬ. f(t) = ln tet

Ϯϭ. h(x) =
sin−ϭ x
cos−ϭ x

ϮϮ. g(x) = tan−ϭ(
√
x)

Ϯϯ. f(x) = sec−ϭ(ϭ/x)

Ϯϰ. f(x) = sin(sin−ϭ x)

In Exercises Ϯϱ – Ϯϳ, compute the derivaƟve of the given func-
Ɵon in two ways:

(a) By simplifying first, then taking the derivaƟve, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

Ϯϱ. f(x) = sin(sin−ϭ x)

Ϯϲ. f(x) = tan−ϭ(tan x)

Ϯϳ. f(x) = sin(cos−ϭ x)

In Exercises Ϯϴ – Ϯϵ, find the equaƟon of the line tangent to
the graph of f at the indicated x value.

Ϯϴ. f(x) = sin−ϭ x at x =
√

Ϯ
Ϯ

Ϯϵ. f(x) = cos−ϭ(Ϯx) at x =
√

ϯ
ϰ

Review

ϯϬ. Find dy
dx , where x

Ϯy− yϮx = ϭ.

ϯϭ. Find the equaƟon of the line tangent to the graph of xϮ +
yϮ + xy = ϳ at the point (ϭ, Ϯ).

ϯϮ. Let f(x) = xϯ + x.

Evaluate lim
s→Ϭ

f(x+ s)− f(x)
s

.

ϭϮϮ



Note: The extreme values of a funcƟon
are “y” values, values the funcƟon aƩains,
not the input values.
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Figure ϯ.ϭ: Graphs of funcƟons with and
without extreme values.
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Our study of limits led to conƟnuous funcƟons, which is a certain class of func-
Ɵons that behave in a parƟcularly nice way. Limits then gave us an even nicer
class of funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

ϯ.ϭ Extreme Values

Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a funcƟon describes the value of a stock, we might want
to know how the highest/lowest values the stock aƩained over the past year.
We call such values extreme values.

DefiniƟon ϭϮ Extreme Values

Let f be defined on an interval I containing c.

ϭ. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

Ϯ. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure ϯ.ϭ. The funcƟon displayed in (a) has a maximum, but no
minimum, as the interval over which the funcƟon is defined is open. In (b), the
funcƟon has a minimum, but no maximum; there is a disconƟnuity in the “natu-
ral” place for themaximum to occur. Finally, the funcƟon shown in (c) has both a
maximum and a minimum; note that the funcƟon is conƟnuous and the interval
on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.
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Note: The terms local minimum and local
maximum are oŌen used as synonyms for
relaƟve minimum and relaƟve maximum.

Chapter ϯ The Graphical Behavior of FuncƟons

Theorem Ϯϱ The Extreme Value Theorem

Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. AŌer the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.

Example ϳϳ ApproximaƟng extreme values
Consider f(x) = Ϯxϯ−ϵxϮ on I = [−ϭ, ϱ], as graphed in Figure ϯ.Ϯ. Approximate
the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −Ϯϳ, found when x = ϯ.
It also seems that the largest y value is Ϯϱ, found at the endpoint of I, x = ϱ.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −Ϯϳ. Since the problem asks for an approximaƟon, we
approximate the extreme values to be Ϯϱ and−Ϯϳ.

NoƟce how theminimum value came at “the boƩom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while Ϭ is not an extreme value,
it would be if we narrowed our interval to [−ϭ, ϰ]. The idea that the point (Ϭ, Ϭ)
is the locaƟon of an extreme value for some interval is important, leading us to
a definiƟon.

DefiniƟon ϭϯ RelaƟve Minimum and RelaƟve Maximum

Let f be defined on an interval I containing c.

ϭ. If there is an open interval containing c such that f(c) is the mini-
mum value, then f(c) is a relaƟve minimum of f. We also say that
f has a relaƟve minimum at (c, f(c)).

Ϯ. If there is an open interval containing c such that f(c) is the maxi-
mum value, then f(c) is a relaƟve maximum of f. We also say that
f has a relaƟve maximum at (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve ex-
trema of f.

Notes:

ϭϮϰ



.....

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

ϯ

. −6.

−ϰ

.

−Ϯ

.

Ϯ

.

ϰ

.

6

.

x

.

y

Figure ϯ.ϯ: A graph of f(x) = (ϯxϰ−ϰxϯ−
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as in Example ϳϵ.

ϯ.ϭ Extreme Values

We briefly pracƟce using these definiƟons.

Example ϳϴ ApproximaƟng relaƟve extrema
Consider f(x) = (ϯxϰ − ϰxϯ − ϭϮxϮ + ϱ)/ϱ, as shown in Figure ϯ.ϯ. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −ϭ and x = Ϯ, with values of f(−ϭ) = Ϭ and
f(Ϯ) = −ϱ.ϰ. It also seems that f has a relaƟve maximum at the point (Ϭ, ϭ).

We approximate the relaƟve minima to be Ϭ and−ϱ.ϰ; we approximate the
relaƟve maximum to be ϭ.

It is straighƞorward to evaluate f ′(x) = ϭ
ϱ (ϭϮx

ϯ − ϭϮxϮ − Ϯϰx) at x = Ϭ, ϭ
and Ϯ. In each case, f ′(x) = Ϭ.

Example ϳϵ ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x− ϭ)Ϯ/ϯ + Ϯ, shown in Figure ϯ.ϰ.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (ϭ, Ϯ). In fact, the graph suggests that not only is
this point a relaƟve minimum, y = f(ϭ) = Ϯ theminimum value of the funcƟon.

We compute f ′(x) = Ϯ
ϯ (x− ϭ)−ϭ/ϯ. When x = ϭ, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either Ϭ or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

DefiniƟon ϭϰ CriƟcal Numbers and CriƟcal Points

Let f be defined at c. The value c is a criƟcal number (or criƟcal value)
of f if f ′(c) = Ϭ or f ′(c) is not defined.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of f.

Notes:
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Figure ϯ.ϱ: A graph of f(x) = xϯ which has
a criƟcal value of x = Ϭ, but no relaƟve
extrema.
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Figure ϯ.ϲ: A graph of f(x) = Ϯxϯ + ϯxϮ −
ϭϮx on [Ϭ, ϯ] as in Example ϴϬ.
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Theorem Ϯϲ RelaƟve Extrema and CriƟcal Points

Let a funcƟon f have a relaƟve extrema at the point (c, f(c)). Then c is a
criƟcal number of f.

Be careful to understand that this theorem states “All relaƟve extrema occur
at criƟcal points.” It does not say “All criƟcal numbers produce relaƟve extrema.”
For instance, consider f(x) = xϯ. Since f ′(x) = ϯxϮ, it is straighƞorward to de-
termine that x = Ϭ is a criƟcal number of f. However, f has no relaƟve extrema,
as illustrated in Figure ϯ.ϱ.

Theorem Ϯϱ states that a conƟnuous funcƟon on a closed interval will have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at criƟcal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

Key Idea Ϯ Finding Extrema on a Closed Interval

Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

ϭ. Evaluate f at the endpoints a and b of the interval.

Ϯ. Find the criƟcal numbers of f in [a, b].

ϯ. Evaluate f at each criƟcal number.

ϰ. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

Example ϴϬ Finding extreme values
Find the extreme values of f(x) = Ϯxϯ + ϯxϮ − ϭϮx on [Ϭ, ϯ], graphed in Figure
ϯ.ϲ.

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea Ϯ. We first evaluate
f at the endpoints:

f(Ϭ) = Ϭ and f(ϯ) = ϰϱ.
Next, we find the criƟcal values of f on [Ϭ, ϯ]. f ′(x) = ϲxϮ + ϲx − ϭϮ = ϲ(x +
Ϯ)(x− ϭ); therefore the criƟcal values of f are x = −Ϯ and x = ϭ. Since x = −Ϯ

Notes:

ϭϮϲ
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Figure ϯ.ϳ: Finding the extreme values of
f in Example ϴϬ.
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Figure ϯ.ϴ: Finding the extreme values of
f in Example ϴϭ.
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Figure ϯ.ϵ: A graph of f(x) on [−ϰ, Ϯ] as in
Example ϴϭ.
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does not lie in the interval [Ϭ, ϯ], we ignore it. EvaluaƟng f at the only criƟcal
number in our interval gives: f(ϭ) = −ϳ.

The table in Figure ϯ.ϳ gives f evaluated at the “important” x values in [Ϭ, ϯ].
We can easily see the maximum and minimum values of f: the maximum value
is ϰϱ and the minimum value is−ϳ.

Note that all this was done without the aid of a graph; this work followed
an analyƟc algorithm and did not depend on any visualizaƟon. Figure ϯ.ϲ shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

Example ϴϭ Finding extreme values
Find the maximum and minimum values of f on [−ϰ, Ϯ], where

f(x) =
{

(x− ϭ)Ϯ x ≤ Ϭ
x+ ϭ x > Ϭ .

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
Ϯ. EvaluaƟng f at the endpoints gives:

f(−ϰ) = Ϯϱ and f(Ϯ) = ϯ.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

Ϯ(x− ϭ) x < Ϭ
ϭ x > Ϭ .

Note that while f is defined for all of [−ϰ, Ϯ], f ′ is not, as the derivaƟve of f does
not exist when x = Ϭ. (From the leŌ, the derivaƟve approaches −Ϯ; from the
right the derivaƟve is ϭ.) Thus one criƟcal number of f is x = Ϭ.

We now set f ′(x) = Ϭ. When x > Ϭ, f ′(x) is never Ϭ. When x < Ϭ, f ′(x) is
also never Ϭ. (We may be tempted to say that f ′(x) = Ϭ when x = ϭ. However,
this is nonsensical, for we only consider f ′(x) = Ϯ(x− ϭ)when x < Ϭ, so we will
ignore a soluƟon that says x = ϭ.)

So we have three important x values to consider: x = −ϰ, Ϯ and Ϭ. Evalu-
aƟng f at each gives, respecƟvely, Ϯϱ, ϯ and ϭ, shown in Figure ϯ.ϴ. Thus the
absolute minimum of f is ϭ; the absolute maximum of f is Ϯϱ. Our answer is con-
firmed by the graph of f in Figure ϯ.ϵ.

Notes:
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Figure ϯ.ϭϬ: Finding the extrema of
f(x) = cos(xϮ) in Example ϴϮ.
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Figure ϯ.ϭϭ: A graph of f(x) = cos(xϮ) on
[−Ϯ, Ϯ] as in Example ϴϮ.

..... −1. 1.

1

.
x

.

y

Figure ϯ.ϭϮ: A graph of f(x) =
√
ϭ− xϮ

on [−ϭ, ϭ] as in Example ϴϯ.

x f(x)
−ϭ Ϭ
Ϭ ϭ
ϭ Ϭ

Figure ϯ.ϭϯ: Finding the extrema of the
half–circle in Example ϴϯ.

Note: We implicitly found the derivaƟve
of xϮ + yϮ = ϭ, the unit circle, in Exam-
ple ϳϭ as dy

dx = −x/y. In Example ϴϯ, half
of the unit circle is given as y = f(x) =√
ϭ− xϮ. We found f ′(x) = −x√

ϭ−xϮ
. Rec-

ognize that the denominator of this frac-
Ɵon is y; that is, we again found f ′(x) =
dy
dx = −x/y.
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Example ϴϮ Finding extreme values
Find the extrema of f(x) = cos(xϮ) on [−Ϯ, Ϯ].

SÊ½çã®ÊÄ We again use Key Idea Ϯ. EvaluaƟng f at the endpoints of
the interval gives: f(−Ϯ) = f(Ϯ) = cos(ϰ) ≈ −Ϭ.ϲϱϯϲ.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −Ϯx sin(xϮ). Set f ′(x) = Ϭ and
solve for x to find the criƟcal values of f.

We have f ′(x) = Ϭ when x = Ϭ and when sin(xϮ) = Ϭ. In general, sin t = Ϭ
when t = . . .− Ϯπ,−π, Ϭ, π, . . . Thus sin(xϮ) = Ϭ when xϮ = Ϭ, π, Ϯπ, . . . (xϮ is
always posiƟve sowe ignore−π, etc.) So sin(xϮ) = Ϭwhen x = Ϭ,±√

π,±
√
Ϯπ, . . ..

The only values to fall in the given interval of [−Ϯ, Ϯ] are−√
π and

√
π, approx-

imately±ϭ.ϳϳ.
We again construct a table of important values in Figure ϯ.ϭϬ. In this example

we have ϱ values to consider: x = Ϭ,±Ϯ,±√
π.

From the table it is clear that the maximum value of f on [−Ϯ, Ϯ] is ϭ; the
minimum value is−ϭ. The graph in Figure ϯ.ϭϭ confirms our results.

We consider one more example.

Example ϴϯ Finding extreme values
Find the extreme values of f(x) =

√
ϭ− xϮ.

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever ϭ − xϮ ≥ Ϭ; thus the domain of f is
[−ϭ, ϭ]. EvaluaƟng f at either endpoint returns Ϭ.

Using the Chain Rule, we find f ′(x) =
−x√
ϭ− xϮ

. The criƟcal points of f are

found when f ′(x) = Ϭ or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = Ϭ when x = Ϭ, and f ′ is undefined when x = ±ϭ, the endpoints of the
interval. The table of important values is given in Figure ϯ.ϭϯ. The maximum
value is ϭ, and the minimum value is Ϭ.

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter Ϯ). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Notes:

ϭϮϴ



Exercises ϯ.ϭ
Terms and Concepts

ϭ. Describe what an “extreme value” of a funcƟon is in your
own words.

Ϯ. Sketch the graph of a funcƟon f on (−ϭ, ϭ) that has both a
maximum and minimum value.

ϯ. Describe the difference between absolute and relaƟve
maxima in your own words.

ϰ. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = ϭ and f ′(ϭ) is undefined.

ϱ. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

Problems
In Exercises ϲ – ϳ, idenƟfy each of the marked points as being
an absolute maximum or minimum, a relaƟve maximum or
minimum, or none of the above.
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In Exercises ϴ – ϭϰ, evaluate f ′(x) at the points indicated in
the graph.

ϴ. f(x) =
Ϯ

xϮ + ϭ
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√
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ϭϰ. f(x) =
(x− Ϯ)Ϯ/ϯ
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In Exercises ϭϱ – Ϯϰ, find the extreme values of the funcƟon
on the given interval.

ϭϱ. f(x) = xϮ + x+ ϰ on [−ϭ, Ϯ].

ϭϲ. f(x) = xϯ − ϵ
Ϯ
xϮ − ϯϬx+ ϯ on [Ϭ, ϲ].

ϭϳ. f(x) = ϯ sin x on [π/ϰ, Ϯπ/ϯ].

ϭϴ. f(x) = xϮ
√
ϰ− xϮ on [−Ϯ, Ϯ].

ϭϵ. f(x) = x+
ϯ
x

on [ϭ, ϱ].

ϮϬ. f(x) =
xϮ

xϮ + ϱ
on [−ϯ, ϱ].

Ϯϭ. f(x) = ex cos x on [Ϭ, π].

ϮϮ. f(x) = ex sin x on [Ϭ, π].

Ϯϯ. f(x) =
ln x
x

on [ϭ, ϰ].

Ϯϰ. f(x) = xϮ/ϯ − x on [Ϭ, Ϯ].

Review

Ϯϱ. Find dy
dx , where x

Ϯy− yϮx = ϭ.

Ϯϲ. Find the equaƟon of the line tangent to the graph of xϮ +
yϮ + xy = ϳ at the point (ϭ, Ϯ).

Ϯϳ. Let f(x) = xϯ + x.

Evaluate lim
s→Ϭ

f(x+ s)− f(x)
s

.

ϭϯϬ
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ϯ.Ϯ The Mean Value Theorem
We moƟvate this secƟon with the following quesƟon: Suppose you leave your
house and drive to your friend’s house in a city ϭϬϬ miles away, compleƟng the
trip in two hours. At any point during the trip do you necessarily have to be going
ϱϬ miles per hour?

In answering this quesƟon, it is clear that the average speed for the enƟre
trip is ϱϬmph (i.e. ϭϬϬmiles in Ϯ hours), but the quesƟon is whether or not your
instantaneous speed is ever exactly ϱϬmph. More simply, does your speedome-
ter ever read exactly ϱϬ mph?. The answer, under some very reasonable as-
sumpƟons, is “yes.”

Let’s now see why this situaƟon is in a calculus text by translaƟng it into
mathemaƟcal symbols.

First assume that the funcƟon y = f(t) gives the distance (in miles) traveled
from your home at Ɵme t (in hours) where Ϭ ≤ t ≤ Ϯ. In parƟcular, this gives
f(Ϭ) = Ϭ and f(Ϯ) = ϭϬϬ. The slope of the secant line connecƟng the starƟng
and ending points (Ϭ, f(Ϭ)) and (Ϯ, f(Ϯ)) is therefore

∆f
∆t

=
f(Ϯ)− f(Ϭ)

Ϯ− Ϭ
=

ϭϬϬ− Ϭ
Ϯ

= ϱϬmph.

The slope at any point on the graph itself is given by the derivaƟve f ′(t). So,
since the answer to the quesƟon above is “yes,” this means that at some Ɵme
during the trip, the derivaƟve takes on the value of ϱϬ mph. Symbolically,

f ′(c) =
f(Ϯ)− f(Ϭ)

Ϯ− Ϭ
= ϱϬ

for some Ɵme Ϭ ≤ c ≤ Ϯ.

How about more generally? Given any funcƟon y = f(x) and a range a ≤
x ≤ b does the value of the derivaƟve at some point between a and b have to
match the slope of the secant line connecƟng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equaƟon f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two funcƟons in an example.

Example ϴϰ Comparing average and instantaneous rates of change
Consider funcƟons

fϭ(x) =
ϭ
xϮ

and fϮ(x) = |x|

with a = −ϭ and b = ϭ as shown in Figure ϯ.ϭϰ(a) and (b), respecƟvely. Both
funcƟons have a value of ϭ at a and b. Therefore the slope of the secant line

Notes:
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Figure ϯ.ϭϰ: A graph of fϭ(x) = ϭ/xϮ and
fϮ(x) = |x| in Example ϴϰ.
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Figure ϯ.ϭϱ: A graph of f(x) = xϯ − ϱxϮ +
ϯx + ϱ, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = Ϭ.
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connecƟng the end points is Ϭ in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−ϭ, ϭ] such that

f ′(c) =
f(ϭ)− f(−ϭ)
ϭ− (−ϭ)

= Ϭ.

Sowhatwent “wrong”? Itmaynot be surprising to find that the disconƟnuity
of fϭ and the corner of fϮ play a role. If our funcƟons had been conƟnuous and
differenƟable, would we have been able to find that special value c? This is our
moƟvaƟon for the following theorem.

Theorem Ϯϳ The Mean Value Theorem of DifferenƟaƟon

Let y = f(x) be conƟnuous funcƟon on the closed interval [a, b] and
differenƟable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the funcƟons in Example ϴϰ fail are indeed that
fϭ has a disconƟnuity on the interval [−ϭ, ϭ] and fϮ is not differenƟable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem Ϯϴ Rolle’s Theorem

Let f be conƟnuous on [a, b] and differenƟable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = Ϭ.

Consider Figure ϯ.ϭϱ where the graph of a funcƟon f is given, where f(a) =
f(b). It shouldmake intuiƟve sense that if f is differenƟable (and hence, conƟnu-
ous) that there would be a value c in (a, b)where f ′(c) = Ϭ; that is, there would
be a relaƟve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:
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Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is Ϭ, and the theorem
guarantees some c where f ′(c) = Ϭ. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differenƟable on (a, b) where f(a) = f(b). We consider two cases.

Case ϭ: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = Ϭ for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = Ϭ.
Case Ϯ: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a criƟcal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem Ϯϲ, cmust be a criƟcal number of f; since f is differenƟable, we
have that f ′(c) = Ϭ, compleƟng the proof of the theorem. □

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the funcƟon

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differenƟable on (a, b) and conƟnuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = Ϭ, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c ∈ (a, b) such
that g ′(c) = Ϭ. But note that

Ϭ = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the secƟon, we see that the only as-
sumpƟon we would need about our distance funcƟon f(t) is that it be conƟnu-
ous and differenƟable for t from Ϭ to Ϯ hours (both reasonable assumpƟons). By
the Mean Value Theorem, we are guaranteed a Ɵme during the trip where our

Notes:
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instantaneous speed is ϱϬ mph. This fact is used in pracƟce. Some law enforce-
ment agencies monitor traffic speeds while in aircraŌ. They do not measure
speed with radar, but rather by Ɵming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some Ɵme.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indicaƟon about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

Example ϴϱ Using the Mean Value Theorem
Consider f(x) = xϯ + ϱx+ ϱ on [−ϯ, ϯ]. Find c in [−ϯ, ϯ] that saƟsfies the Mean
Value Theorem.

SÊ½çã®ÊÄ The average rate of change of f on [−ϯ, ϯ] is:

f(ϯ)− f(−ϯ)
ϯ− (−ϯ)

=
ϴϰ
ϲ

= ϭϰ.

Wewant to find c such that f ′(c) = ϭϰ. We find f ′(x) = ϯxϮ+ϱ. We set this
equal to ϭϰ and solve for x.

f ′(x) = ϭϰ

ϯxϮ + ϱ = ϭϰ

xϮ = ϯ

x = ±
√
ϯ ≈ ±ϭ.ϳϯϮ

We have found Ϯ values c in [−ϯ, ϯ] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure ϯ.ϭϲ f is graphed with a dashed line represenƟng the aver-
age rate of change; the lines tangent to f at x = ±

√
ϯ are also given. Note how

these lines are parallel (i.e., have the same slope) as the dashed line.

While the Mean Value Theorem has pracƟcal use (for instance, the speed
monitoring applicaƟon menƟoned before), it is mostly used to advance other
theory. We will use it in the next secƟon to relate the shape of a graph to its
derivaƟve.

Notes:
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Exercises ϯ.Ϯ
Terms and Concepts

ϭ. Explain in your own words what the Mean Value Theorem
states.

Ϯ. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises ϯ – ϭϬ, a funcƟon f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = Ϭ.

ϯ. f(x) = ϲ on [−ϭ, ϭ].

ϰ. f(x) = ϲx on [−ϭ, ϭ].

ϱ. f(x) = xϮ + x− ϲ on [−ϯ, Ϯ].

ϲ. f(x) = xϮ + x− Ϯ on [−ϯ, Ϯ].

ϳ. f(x) = xϮ + x on [−Ϯ, Ϯ].

ϴ. f(x) = sin x on [π/ϲ, ϱπ/ϲ].

ϵ. f(x) = cos x on [Ϭ, π].

ϭϬ. f(x) =
ϭ

xϮ − Ϯx+ ϭ
on [Ϭ, Ϯ].

In Exercises ϭϭ – ϮϬ, a funcƟon f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

ϭϭ. f(x) = xϮ + ϯx− ϭ on [−Ϯ, Ϯ].

ϭϮ. f(x) = ϱxϮ − ϲx+ ϴ on [Ϭ, ϱ].

ϭϯ. f(x) =
√
ϵ− xϮ on [Ϭ, ϯ].

ϭϰ. f(x) =
√
Ϯϱ− x on [Ϭ, ϵ].

ϭϱ. f(x) =
xϮ − ϵ
xϮ − ϭ

on [Ϭ, Ϯ].

ϭϲ. f(x) = ln x on [ϭ, ϱ].

ϭϳ. f(x) = tan x on [−π/ϰ, π/ϰ].

ϭϴ. f(x) = xϯ − ϮxϮ + x+ ϭ on [−Ϯ, Ϯ].

ϭϵ. f(x) = Ϯxϯ − ϱxϮ + ϲx+ ϭ on [−ϱ, Ϯ].

ϮϬ. f(x) = sin−ϭ x on [−ϭ, ϭ].

Review
Ϯϭ. Find the extreme values of f(x) = xϮ − ϯx+ ϵ on [−Ϯ, ϱ].

ϮϮ. Describe the criƟcal points of f(x) = cos x.

Ϯϯ. Describe the criƟcal points of f(x) = tan x.

ϭϯϱ



..... 1. 2.

2

.

4

.
x

.

y

Figure ϯ.ϭϳ: A graph of a funcƟon f used
to illustrate the concepts of increasing
and decreasing.

.....
1

.
2

.

1

.

2

.
a

.
b

.

(a, f(a))

.

(b, f(b))

.

x

.

y

Figure ϯ.ϭϴ: Examining the secant line of
an increasing funcƟon.

Chapter ϯ The Graphical Behavior of FuncƟons

ϯ.ϯ Increasing and Decreasing FuncƟons
Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = Ϭ or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure ϯ.ϭϳ, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > ϭ and decreasing when x < ϭ. We formally define these terms here.

DefiniƟon ϭϱ Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

ϭ. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

Ϯ. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A funcƟon is strictly increasingwhen a < b in I implies f(a) < f(b), with
a similar definiƟon holding for strictly decreasing.

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differenƟable funcƟon on an open interval I, such as the one shown in Figure
ϯ.ϭϴ, and let a < b be given in I. The secant line on the graph of f from x = a to
x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > Ϭ
denominator > Ϭ

⇒ slope of the
secant line> Ϭ

⇒
Average rate of
change of f on
[a, b] is> Ϭ.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean

Notes:
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Note: Theorem Ϯϵ also holds if f ′(c) = Ϭ
for a finite number of values of c in I.

ϯ.ϯ Increasing and Decreasing FuncƟons

Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> Ϭ.

By considering all such secant lines in I, we strongly imply that f ′(x) ≥ Ϭ on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posiƟve.” TheoremϮϵ below turns this around by staƟng “If f ′ is posƟve, then f is
increasing.” This leads us to a method for finding when funcƟons are increasing
and decreasing.

Theorem Ϯϵ Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

ϭ. If f ′(c) > Ϭ for all c in (a, b), then f is increasing on [a, b].

Ϯ. If f ′(c) < Ϭ for all c in (a, b), then f is decreasing on [a, b].

ϯ. If f ′(c) = Ϭ for all c in (a, b), then f is constant on [a, b].

Let a and b be in I where f ′(a) > Ϭ and f ′(b) < Ϭ. It follows from the
Intermediate Value Theorem that there must be some value c between a and b
where f ′(c) = Ϭ. This leads us to the following method for finding intervals on
which a funcƟon is increasing or decreasing.

Key Idea ϯ Finding Intervals on Which f is Increasing or Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

ϭ. Find the criƟcal values of f. That is, find all c in I where f ′(c) = Ϭ
or f ′ is not defined.

Ϯ. Use the criƟcal values to divide I into subintervals.

ϯ. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > Ϭ, then f is increasing on that subinterval.

(b) If f ′(p) < Ϭ, then f is decreasing on that subinterval.

Notes:
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We demonstrate using this process in the following example.

Example ϴϲ Finding intervals of increasing/decreasing
Let f(x) = xϯ + xϮ − x+ ϭ. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea ϯ, we first find the criƟcal values of f. We
have f ′(x) = ϯxϮ + Ϯx − ϭ = (ϯx − ϭ)(x + ϭ), so f ′(x) = Ϭ when x = −ϭ and
when x = ϭ/ϯ. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−ϭ),
(−ϭ, ϭ/ϯ) and (ϭ/ϯ,∞). This is shown in Figure ϯ.ϭϵ.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure ϯ.ϭϵ: Number line for f in Example ϴϲ.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval ϭ, (−∞,−ϭ): We (arbitrarily) pick p = −Ϯ. We can compute
f ′(−Ϯ) directly: f ′(−Ϯ) = ϯ(−Ϯ)Ϯ + Ϯ(−Ϯ)− ϭ = ϳ > Ϭ. We conclude that f is
increasing on (−∞,−ϭ).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −ϭϬϬ. The first term in f ′(−ϭϬϬ), i.e., ϯ(−ϭϬϬ)Ϯ is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−ϭϬϬ) > Ϭ. All we need is the sign.

Subinterval Ϯ, (−ϭ, ϭ/ϯ): We pick p = Ϭ since that value seems easy to deal
with. f ′(Ϭ) = −ϭ < Ϭ. We conclude f is decreasing on (−ϭ, ϭ/ϯ).

Subinterval ϯ, (ϭ/ϯ,∞): Pick an arbitrarily large value for p > ϭ/ϯ and note
that f ′(p) = ϯpϮ + Ϯp− ϭ > Ϭ. We conclude that f is increasing on (ϭ/ϯ,∞).

We can verify our calculaƟons by considering Figure ϯ.ϮϬ, where f is graphed.
The graph also presents f ′; note how f ′ > Ϭ when f is increasing and f ′ < Ϭ
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-

Notes:
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pens near x = −ϭ and x = Ϭ.ϯ, but we cannot determine exactly where from
the graph.

One could argue that just finding criƟcal values is important; once we know
the significant points are x = −ϭ and x = ϭ/ϯ, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than Ϭ.”

In SecƟon ϯ.ϭ we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

Theorem ϯϬ First DerivaƟve Test

Let f be differenƟable on I and let c be a criƟcal number in I.

ϭ. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is
a relaƟve maximum of f.

Ϯ. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is
a relaƟve minimum of f.

ϯ. If the sign of f ′ does not change at c, then f(c) is not a relaƟve
extrema of f.

Notes:
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Example ϴϳ Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
xϮ + ϯ
x− ϭ

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, ϭ) ∪ (ϭ,∞). Key
Idea ϯ describes how to find intervals where f is increasing and decreasingwhen
the domain of f is an interval. Since the domain of f in this example is the union
of two intervals, we apply the techniques of Key Idea ϯ to both intervals of the
domain of f.

Since f is not defined at x = ϭ, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = ϭ to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Using the QuoƟent Rule, we find

f ′(x) =
xϮ − Ϯx− ϯ
(x− ϭ)Ϯ

.

We need to find the criƟcal values of f; we want to know when f ′(x) = Ϭ and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is Ϭ, f ′ is undefined. That occurs when x = ϭ, which we’ve already
recognized as an important value.

f ′(x) = Ϭ when the numerator of f ′(x) is Ϭ. That occurs when xϮ− Ϯx− ϯ =
(x− ϯ)(x+ ϭ) = Ϭ; i.e., when x = −ϭ, ϯ.

We have found that f has two criƟcal numbers, x = −ϭ, ϯ, and at x = ϭ
something important might also happen. These three numbers divide the real
number line into ϰ subintervals:

(−∞,−ϭ), (−ϭ, ϭ), (ϭ, ϯ) and (ϯ,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval ϭ, (−∞,−ϭ): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns pϮ − Ϯp − ϯ in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−ϭ).
Interval Ϯ, (−ϭ, ϭ): Choosing Ϭ seems simple: f ′(Ϭ) = −ϯ < Ϭ. We conclude
f is decreasing on (−ϭ, ϭ).

Notes:
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Interval ϯ, (ϭ, ϯ): Choosing Ϯ seems simple: f ′(Ϯ) = −ϯ < Ϭ. Again, f is
decreasing.
Interval ϰ, (ϯ,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (ϯ,∞).

In summary, f is increasing on the set (−∞,−ϭ)∪(ϯ,∞) and is decreasing on
the set (−ϭ, ϭ)∪ (ϭ, ϯ). Since at x = −ϭ, the sign of f ′ switched from posiƟve to
negaƟve, Theorem ϯϬ states that f(−ϭ) is a relaƟve maximum of f. At x = ϯ, the
sign of f ′ switched fromnegaƟve to posiƟve,meaning f(ϯ) is a relaƟveminimum.
At x = ϭ, f is not defined, so there is no relaƟve extrema at x = ϭ.
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Figure ϯ.Ϯϭ: Number line for f in Example ϴϳ.
This is summarized in the number line shown in Figure ϯ.Ϯϭ. Also, Figure ϯ.ϮϮ

shows a graph of f, confirming our calculaƟons. This figure also shows f ′, again
demonstraƟng that f is increasing when f ′ > Ϭ and decreasing when f ′ < Ϭ.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = ϭ was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = ϭ.”

We examine one more example.

Example ϴϴ Using the First DerivaƟve Test
Find the intervals on which f(x) = xϴ/ϯ − ϰxϮ/ϯ is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking derivaƟves. Since we know we
want to solve f ′(x) = Ϭ, we will do some algebra aŌer taking derivaƟves.

f(x) = x
ϴ
ϯ − ϰx

Ϯ
ϯ

f ′(x) =
ϴ
ϯ
x

ϱ
ϯ − ϴ

ϯ
x−

ϭ
ϯ

=
ϴ
ϯ
x−

ϭ
ϯ

(

x
ϲ
ϯ − ϭ

)

=
ϴ
ϯ
x−

ϭ
ϯ (xϮ − ϭ)

=
ϴ
ϯ
x−

ϭ
ϯ (x− ϭ)(x+ ϭ).

Notes:
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This derivaƟon of f ′ shows that f ′(x) = Ϭ when x = ±ϭ and f ′ is not de-
fined when x = Ϭ. Thus we have ϯ criƟcal values, breaking the number line into
ϰ subintervals as shown in Figure ϯ.Ϯϯ.

Interval ϭ, (∞,−ϭ): We choose p = −Ϯ; we can easily verify that f ′(−Ϯ) < Ϭ.
So f is decreasing on (−∞,−ϭ).
Interval Ϯ, (−ϭ, Ϭ): Choose p = −ϭ/Ϯ. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (ϴ/ϯ)p−ϭ/ϯ(p −
ϭ)(p+ ϭ); find the sign of each of the three terms.

f ′(p) =
ϴ
ϯ
· p− ϭ

ϯ
︸︷︷︸

<Ϭ

· (p− ϭ)
︸ ︷︷ ︸

<Ϭ

(p+ ϭ)
︸ ︷︷ ︸

>Ϭ

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−ϭ, Ϭ).
Interval ϯ, (Ϭ, ϭ): We do a similar sign analysis as before, using p in (Ϭ, ϭ).

f ′(p) =
ϴ
ϯ
· p− ϭ

ϯ
︸︷︷︸

>Ϭ

· (p− ϭ)
︸ ︷︷ ︸

<Ϭ

(p+ ϭ)
︸ ︷︷ ︸

>Ϭ

.

We have Ϯ posiƟve factors and one negaƟve factor; f ′(p) < Ϭ and so f is de-
creasing on (Ϭ, ϭ).
Interval ϰ, (ϭ,∞): Similar work to that done for the other three intervals shows
that f ′(x) > Ϭ on (ϭ,∞), so f is increasing on this interval.
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Figure ϯ.Ϯϯ: Number line for f in Example ϴϴ.

Weconclude by staƟng that f is increasing on (−ϭ, Ϭ)∪(ϭ,∞) anddecreasing
on (−∞,−ϭ) ∪ (Ϭ, ϭ). The sign of f ′ changes from negaƟve to posiƟve around
x = −ϭ and x = ϭ, meaning by Theorem ϯϬ that f(−ϭ) and f(ϭ) are relaƟve
minima of f. As the sign of f ′ changes from posiƟve to negaƟve at x = Ϭ, we
have a relaƟve maximum at f(Ϭ). Figure ϯ.Ϯϰ shows a graph of f, confirming our
result. We also graph f ′, highlighƟng once more that f is increasing when f ′ > Ϭ
and is decreasing when f ′ < Ϭ.

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.

Notes:

ϭϰϮ



Exercises ϯ.ϯ
Terms and Concepts

ϭ. In your own words describe what it means for a funcƟon to
be increasing.

Ϯ. What does a decreasing funcƟon “look like”?

ϯ. Sketch a graph of a funcƟon on [Ϭ, Ϯ] that is increasing but
not strictly increasing.

ϰ. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

ϱ. A funcƟon f has derivaƟve f ′(x) = (sin x+ Ϯ)ex
Ϯ+ϭ, where

f ′(x) > ϭ for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises ϲ – ϭϯ, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem Ϯϵ.

ϲ. f(x) = Ϯx+ ϯ

ϳ. f(x) = xϮ − ϯx+ ϱ

ϴ. f(x) = cos x

ϵ. f(x) = tan x

ϭϬ. f(x) = xϯ − ϱxϮ + ϳx− ϭ

ϭϭ. f(x) = Ϯxϯ − xϮ + x− ϭ

ϭϮ. f(x) = xϰ − ϱxϮ + ϰ

ϭϯ. f(x) =
ϭ

xϮ + ϭ

In Exercises ϭϰ – Ϯϯ, a funcƟon f(x) is given.

(a) Give the domain of f.

(b) Find the criƟcal numbers of f.

(c) Create a number line to determine the intervals on
which f is increasing and decreasing.

(d) Use the First DerivaƟve Test to determine whether
each criƟcal point is a relaƟve maximum, minimum,
or neither.

ϭϰ. f(x) = xϮ + Ϯx− ϯ

ϭϱ. f(x) = xϯ + ϯxϮ + ϯ

ϭϲ. f(x) = Ϯxϯ + xϮ − x+ ϯ

ϭϳ. f(x) = xϯ − ϯxϮ + ϯx− ϭ

ϭϴ. f(x) =
ϭ

xϮ − Ϯx+ Ϯ

ϭϵ. f(x) =
xϮ − ϰ
xϮ − ϭ

ϮϬ. f(x) =
x

xϮ − Ϯx− ϴ

Ϯϭ. f(x) =
(x− Ϯ)Ϯ/ϯ

x

ϮϮ. f(x) = sin x cos x on (−π, π).

Ϯϯ. f(x) = xϱ − ϱx

Review
Ϯϰ. Consider f(x) = xϮ − ϯx + ϱ on [−ϭ, Ϯ]; find c guaranteed

by the Mean Value Theorem.

Ϯϱ. Consider f(x) = sin x on [−π/Ϯ, π/Ϯ]; find c guaranteed by
the Mean Value Theorem.

ϭϰϯ



Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure ϯ.Ϯϱ: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.
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Figure ϯ.Ϯϲ: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.

Chapter ϯ The Graphical Behavior of FuncƟons

ϯ.ϰ Concavity and the Second DerivaƟve

Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > Ϭ, f ′ is increasing. When f ′′ < Ϭ, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = Ϭ or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

DefiniƟon ϭϲ Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means
as one looks at a concave up graph from leŌ to right, the slopes of the tangent
lineswill be increasing. Consider Figure ϯ.Ϯϱ, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure ϯ.Ϯϲ, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.

Notes:

ϭϰϰ
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f ′ > 0, increasing

f ′′ < 0, c. down

.

f ′ < 0, decreasing

f ′′ < 0, c. down
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f ′ < 0, decreasing

f ′′ > 0, c. up

.

f ′ > 0, increasing

f ′′ > 0, c. up

Figure ϯ.Ϯϳ: DemonstraƟng the ϰ ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.
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Figure ϯ.Ϯϴ: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.

ϯ.ϰ Concavity and the Second DerivaƟve

Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > Ϭ, etc.

Theorem ϯϭ Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > Ϭ on I, and is concave down if f ′′ < Ϭ on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon ϭϳ Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure ϯ.Ϯϴ shows a graph of a funcƟon with inflecƟon points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem ϯϮ Points of InflecƟon

If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′ = Ϭ or
f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.

Example ϴϵ Finding intervals of concave up/down, inflecƟon points
Let f(x) = xϯ − ϯx+ ϭ. Find the inflecƟon points of f and the intervals on which
it is concave up/down.

Notes:

ϭϰϱ
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Figure ϯ.Ϯϵ: A number line determining
the concavity of f in Example ϴϵ.
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Figure ϯ.ϯϬ: A graph of f(x) used in Exam-
ple ϴϵ.
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SÊ½çã®ÊÄ We start by finding f ′(x) = ϯxϮ − ϯ and f ′′(x) = ϲx. To find
the inflecƟon points, we use Theorem ϯϮ and find where f ′′(x) = Ϭ or where
f ′′ is undefined. We find f ′′ is always defined, and is Ϭ only when x = Ϭ. So the
point (Ϭ, ϭ) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, Ϭ)
and (Ϭ,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < Ϭ; f ′′(c) < Ϭ so f is concave
down on (−∞, Ϭ). Pick any c > Ϭ; f ′′(c) > Ϭ so f is concave up on (Ϭ,∞). Since
the concavity changes at x = Ϭ, the point (Ϭ, ϭ) is an inflecƟon point.

The number line in Figure ϯ.Ϯϵ illustrates the process of determining concav-
ity; Figure ϯ.ϯϬ shows a graph of f and f ′′, confirming our results. NoƟce how f
is concave down precisely when f ′′(x) < Ϭ and concave up when f ′′(x) > Ϭ.

Example ϵϬ Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(xϮ − ϭ). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(ϭ+ xϮ)
(xϮ − ϭ)Ϯ

and f ′′(x) =
Ϯx(xϮ + ϯ)
(xϮ − ϭ)ϯ

.

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = Ϭ and
where f ′′ is not defined. Solving f ′′(x) = Ϭ reduces to solving Ϯx(xϮ + ϯ) = Ϭ;
we find x = Ϭ. We find that f ′′ is not defined when x = ±ϭ, for then the
denominator of f ′′ is Ϭ. We also note that f itself is not defined at x = ±ϭ,
having a domain of (−∞,−ϭ) ∪ (−ϭ, ϭ) ∪ (ϭ,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflecƟon at x = ±ϭ as
they are not part of the domain, but we must sƟll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −ϭ, x = Ϭ
and x = ϭ, which split the number line into four intervals as shown in Figure
ϯ.ϯϭ. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval ϭ, (−∞,−ϭ): Select a number c in this interval with a large magnitude
(for instance, c = −ϭϬϬ). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (cϮ + ϯ) will be posiƟve and the Ϯc term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−ϭ).

Notes:

ϭϰϲ
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Figure ϯ.ϯϮ: A graph of f(x) and f ′′(x) in
Example ϵϬ.
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Figure ϯ.ϯϯ: A graphof S(t) in Example ϵϭ,
modeling the sale of a product over Ɵme.

ϯ.ϰ Concavity and the Second DerivaƟve

Interval Ϯ, (−ϭ, Ϭ): For any number c in this interval, the term Ϯc in the numer-
ator will be negaƟve, the term (cϮ + ϯ) in the numerator will be posiƟve, and
the term (cϮ − ϭ)ϯ in the denominator will be negaƟve. Thus f ′′(c) > Ϭ and f is
concave up on this interval.
Interval ϯ, (Ϭ, ϭ): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < Ϭ
and f is concave down on this interval.
Interval ϰ, (ϭ,∞): Choose a large value for c. It is evident that f ′′(c) > Ϭ, so we
conclude that f is concave up on (ϭ,∞).
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f ′′ > 0 c. up

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

Figure ϯ.ϯϭ: Number line for f in Example ϵϬ.

We conclude that f is concave up on (−ϭ, Ϭ)∪ (ϭ,∞) and concave down on
(−∞,−ϭ)∪(Ϭ, ϭ). There is only one point of inflecƟon, (Ϭ, Ϭ), as f is not defined
at x = ±ϭ. Our work is confirmed by the graph of f in Figure ϯ.ϯϮ. NoƟce how
f is concave upwhenever f ′′ is posiƟve, and concave downwhen f ′′ is negaƟve.

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = Ϭ or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = Ϭ or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding the where f is increasing the
most – where f has the steepest tangent line. A similar statement can be made
for minimizing f ′; it corresponds to where f has the steepest negaƟvely–sloped
tangent line.

We uƟlize this concept in the next example.

Example ϵϭ Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) =
tϰ − ϴtϮ + ϮϬ, where t is the Ɵme in years, shown in Figure ϯ.ϯϯ. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is Ϭ. We
find S ′(t) = ϰtϯ− ϭϲt and S ′′(t) = ϭϮtϮ− ϭϲ. Seƫng S ′′(t) = Ϭ and solving, we
get t =

√

ϰ/ϯ ≈ ϭ.ϭϲ (we ignore the negaƟve value of t since it does not lie in
the domain of our funcƟon S).

This is both the inflecƟon point and the point of maximum decrease. This

Notes:
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Figure ϯ.ϯϰ: A graph of S(t) in Example ϵϭ
along with S ′(t).
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Figure ϯ.ϯϱ: A graphof f(x) = xϰ. Clearly f
is always concave up, despite the fact that
f ′′(x) = Ϭ when x = Ϭ. It this exam-
ple, the possible point of inflecƟon (Ϭ, Ϭ)
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Figure ϯ.ϯϲ: DemonstraƟng the fact that
relaƟve maxima occur when the graph is
concave down and relaƟve minima occur
when the graph is concave up.
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is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure ϯ.ϯϰ. When S ′(t) < Ϭ, sales are
decreasing; note how at t ≈ ϭ.ϭϲ, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ ϭ.ϭϲ. On the interval of (ϭ.ϭϲ, Ϯ), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = xϯ has a
criƟcal point at (Ϭ, Ϭ) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = Ϭ we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = Ϭ
without concavity changing is f(x) = xϰ. At x = Ϭ, f ′′(x) = Ϭ but f is always
concave up, as shown in Figure ϯ.ϯϱ.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure ϯ.ϯϲ for a visualiza-
Ɵon of this.

Theorem ϯϯ The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

ϭ. If f ′′(c) > Ϭ, then f has a local minimum at (c, f(c)).

Ϯ. If f ′′(c) < Ϭ, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following
way. If f ′′(c) > Ϭ, then the graph is concave up at a criƟcal point c and f ′ itself
is growing. Since f ′(c) = Ϭ and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.

Notes:
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Figure ϯ.ϯϳ: A graph of f(x) in Example
ϵϮ. The second derivaƟve is evaluated
at each criƟcal point. When the graph is
concave up, the criƟcal point represents
a local minimum; when the graph is con-
cave down, the criƟcal point represents a
local maximum.

ϯ.ϰ Concavity and the Second DerivaƟve

Example ϵϮ Using the Second DerivaƟve Test
Let f(x) = ϭϬϬ/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −ϭϬϬ/xϮ + ϭ and f ′′(x) = ϮϬϬ/xϯ.We set
f ′(x) = Ϭ and solve for x to find the criƟcal values (note that f ′ is not defined at
x = Ϭ, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±ϭϬ. EvaluaƟng f ′′ at x = ϭϬ gives Ϭ.ϭ > Ϭ, so there is a local minimum
at x = ϭϬ. EvaluaƟng f ′′(−ϭϬ) = −Ϭ.ϭ < Ϭ, determining a relaƟve maximum
at x = −ϭϬ. These results are confirmed in Figure ϯ.ϯϳ.

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter ϭ
we saw how limits explained asymptoƟc behavior. In the next secƟon we com-
bine all of this informaƟon to produce accurate sketches of funcƟons.

Notes:
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Exercises ϯ.ϰ
Terms and Concepts

ϭ. Sketch a graph of a funcƟon f(x) that is concave up on (Ϭ, ϭ)
and is concave down on (ϭ, Ϯ).

Ϯ. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (Ϭ, ϭ),

(b) increasing, concave down on (ϭ, Ϯ),

(c) decreasing, concave down on (Ϯ, ϯ) and

(d) increasing, concave down on (ϯ, ϰ).

ϯ. Is is possible for a funcƟon to be increasing and concave
down on (Ϭ,∞) with a horizontal asymptote of y = ϭ? If
so, give a sketch of such a funcƟon.

ϰ. Is is possible for a funcƟon to be increasing and concave up
on (Ϭ,∞) with a horizontal asymptote of y = ϭ? If so, give
a sketch of such a funcƟon.

Problems

In Exercises ϱ – ϭϱ, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem ϯϭ.

ϱ. f(x) = −ϳx+ ϯ

ϲ. f(x) = −ϰxϮ + ϯx− ϴ

ϳ. f(x) = ϰxϮ + ϯx− ϴ

ϴ. f(x) = xϯ − ϯxϮ + x− ϭ

ϵ. f(x) = −xϯ + xϮ − Ϯx+ ϱ

ϭϬ. f(x) = cos x

ϭϭ. f(x) = sin x

ϭϮ. f(x) = tan x

ϭϯ. f(x) =
ϭ

xϮ + ϭ

ϭϰ. f(x) =
ϭ
x

ϭϱ. f(x) =
ϭ
xϮ

In Exercises ϭϲ – Ϯϴ, a funcƟon f(x) is given.

(a) Find the possible points of inflecƟon of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

ϭϲ. f(x) = xϮ − Ϯx+ ϭ

ϭϳ. f(x) = −xϮ − ϱx+ ϳ

ϭϴ. f(x) = xϯ − x+ ϭ

ϭϵ. f(x) = Ϯxϯ − ϯxϮ + ϵx+ ϱ

ϮϬ. f(x) =
xϰ

ϰ
+

xϯ

ϯ
− Ϯx+ ϯ

Ϯϭ. f(x) = −ϯxϰ + ϴxϯ + ϲxϮ − Ϯϰx+ Ϯ

ϮϮ. f(x) = xϰ − ϰxϯ + ϲxϮ − ϰx+ ϭ

Ϯϯ. f(x) =
ϭ

xϮ + ϭ

Ϯϰ. f(x) =
x

xϮ − ϭ

Ϯϱ. f(x) = sin x+ cos x on (−π, π)

Ϯϲ. f(x) = xϮex

Ϯϳ. f(x) = xϮ ln x

Ϯϴ. f(x) = e−xϮ

In Exercises Ϯϵ – ϰϭ, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises ϭϲ – Ϯϴ.)

Ϯϵ. f(x) = xϮ − Ϯx+ ϭ

ϯϬ. f(x) = −xϮ − ϱx+ ϳ

ϯϭ. f(x) = xϯ − x+ ϭ

ϯϮ. f(x) = Ϯxϯ − ϯxϮ + ϵx+ ϱ

ϯϯ. f(x) =
xϰ

ϰ
+

xϯ

ϯ
− Ϯx+ ϯ

ϯϰ. f(x) = −ϯxϰ + ϴxϯ + ϲxϮ − Ϯϰx+ Ϯ

ϯϱ. f(x) = xϰ − ϰxϯ + ϲxϮ − ϰx+ ϭ

ϯϲ. f(x) =
ϭ

xϮ + ϭ

ϭϱϬ



ϯϳ. f(x) =
x

xϮ − ϭ

ϯϴ. f(x) = sin x+ cos x on (−π, π)

ϯϵ. f(x) = xϮex

ϰϬ. f(x) = xϮ ln x

ϰϭ. f(x) = e−xϮ

In Exercises ϰϮ – ϱϰ, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a relaƟve maximum or minimum. (Note:
these are the same funcƟons as in Exercises ϭϲ – Ϯϴ.)

ϰϮ. f(x) = xϮ − Ϯx+ ϭ

ϰϯ. f(x) = −xϮ − ϱx+ ϳ

ϰϰ. f(x) = xϯ − x+ ϭ

ϰϱ. f(x) = Ϯxϯ − ϯxϮ + ϵx+ ϱ

ϰϲ. f(x) =
xϰ

ϰ
+

xϯ

ϯ
− Ϯx+ ϯ

ϰϳ. f(x) = −ϯxϰ + ϴxϯ + ϲxϮ − Ϯϰx+ Ϯ

ϰϴ. f(x) = xϰ − ϰxϯ + ϲxϮ − ϰx+ ϭ

ϰϵ. f(x) =
ϭ

xϮ + ϭ

ϱϬ. f(x) =
x

xϮ − ϭ

ϱϭ. f(x) = sin x+ cos x on (−π, π)

ϱϮ. f(x) = xϮex

ϱϯ. f(x) = xϮ ln x

ϱϰ. f(x) = e−xϮ

ϭϱϭ



Chapter ϯ The Graphical Behavior of FuncƟons

ϯ.ϱ Curve Sketching

Wehave been learning howwe can understand the behavior of a funcƟon based
on its first and second derivaƟves. While we have been treaƟng the properƟes
of a funcƟon separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the funcƟon
without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We are aƩempƟng to understand the behavior of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to staƟng that one understands howan engineworks aŌer looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea ϰ Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

ϭ. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is Ϭ or where negaƟves appear under the radical.

Ϯ. Find the criƟcal values of f.

ϯ. Find the possible points of inflecƟon of f.

ϰ. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item ϭ above).

ϱ. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the funcƟon.

(conƟnued)

Notes:
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ϯ.ϱ Curve Sketching

Key Idea ϰ Curve Sketching – ConƟnued

ϲ. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

ϳ. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these pointswith curves
exhibiƟng the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example ϵϯ Curve sketching
Use Key Idea ϰ to sketch f(x) = ϯxϯ − ϭϬxϮ + ϳx+ ϱ.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

ϭ. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

Ϯ. Find the criƟcal values of f. We compute f ′(x) = ϵxϮ − ϮϬx+ ϳ. Use the
QuadraƟc Formula to find the roots of f ′:

x =
ϮϬ±

√

(−ϮϬ)Ϯ − ϰ(ϵ)(ϳ)
Ϯ(ϵ)

=
ϭ
ϵ

(

ϭϬ±
√
ϯϳ
)

⇒ x ≈ Ϭ.ϰϯϱ, ϭ.ϳϴϳ.

ϯ. Find the possible points of inflecƟon of f. Compute f ′′(x) = ϭϴx−ϮϬ. We
have

f ′′(x) = Ϭ ⇒ x = ϭϬ/ϵ ≈ ϭ.ϭϭϭ.

ϰ. There are no verƟcal asymptotes.

ϱ. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

ϲ. We place the values x = (ϭϬ ±
√
ϯϳ)/ϵ and x = ϭϬ/ϵ on a number

line, as shown in Figure ϯ.ϯϴ. We mark each subinterval as increasing or

Notes:
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Figure ϯ.ϯϵ: Sketching f in Example ϵϯ.

Chapter ϯ The Graphical Behavior of FuncƟons

decreasing, concave up or down, using the techniques used in SecƟons
ϯ.ϯ and ϯ.ϰ.

..

1
ϵ (10−

√
ϯϳ)

≈ 0.ϰϯϱ

.

10
ϵ ≈ 1.111

.

1
ϵ (10+

√
ϯϳ)

≈ 1.ϳϴϳ

.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. up

Figure ϯ.ϯϴ: Number line for f in Example ϵϯ.

ϳ. We plot the appropriate points on axes as shown in Figure ϯ.ϯϵ(a) and
connect the points with straight lines. In Figure ϯ.ϯϵ(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = ϱ and crosses the x axis near x = −Ϭ.ϰϮϰ. In Figure ϯ.ϯϵ(c) we show a
graph of f drawn with a computer program, verifying the accuracy of our
sketch.

Example ϵϰ Curve sketching

Sketch f(x) =
xϮ − x− Ϯ
xϮ − x− ϲ

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea ϰ.

ϭ. In determining the domain, we assume it is all real numbers and looks for
restricƟons. We find that at x = −Ϯ and x = ϯ, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −Ϯ, ϯ}.

Ϯ. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−ϴx+ ϰ

(xϮ + x− ϲ)Ϯ
=

−ϴx+ ϰ
(x− ϯ)Ϯ(x+ Ϯ)Ϯ

.

f ′(x) = Ϭ when x = ϭ/Ϯ, and f ′ is undefined when x = −Ϯ, ϯ. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = ϭ/Ϯ.

ϯ. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
ϮϰxϮ − Ϯϰx+ ϱϲ
(x− ϯ)ϯ(x+ Ϯ)ϯ

.

Wefind that f ′′(x) is never Ϭ (seƫng the numerator equal to Ϭ and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is

Notes:
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Figure ϯ.ϰϭ: Sketching f in Example ϵϰ.

ϯ.ϱ Curve Sketching

undefined when x = −Ϯ, ϯ. Thus concavity will possibly only change at
x = −Ϯ and x = ϯ.

ϰ. The verƟcal asymptotes of f are at x = −Ϯ and x = ϯ, the places where f
is undefined.

ϱ. There is a horizontal asymptote of y = ϭ, as lim
x→−∞

f(x) = ϭ and lim
x→∞

f(x) =
ϭ.

ϲ. We place the values x = ϭ/Ϯ, x = −Ϯ and x = ϯ on a number line as
shown in Figure ϯ.ϰϬ. We mark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a relaƟve maximum at
x = ϭ/Ϯ; concavity changes only at the verƟcal asymptotes.

..

−Ϯ

.

ϭ
Ϯ

.

ϯ

.

f ′ > Ϭ incr

f ′′ > Ϭ c. up
.

f ′ > Ϭ incr

f ′′ < Ϭ c. down
.

f ′ < Ϭ decr

f ′′ < Ϭ c. down
.

f ′ < Ϭ decr

f ′′ > Ϭ c. up

Figure ϯ.ϰϬ: Number line for f in Example ϵϰ.

ϳ. In Figure ϯ.ϰϭ(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure ϯ.ϰϭ(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −ϭ
and x = Ϯ.

Figure ϯ.ϰϭ(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example ϵϱ Curve sketching

Sketch f(x) =
ϱ(x− Ϯ)(x+ ϭ)
xϮ + Ϯx+ ϰ

.

SÊ½çã®ÊÄ We again follow Key Idea ϰ.

ϭ. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is Ϭ, but this
never occurs. Therefore the domain of f is all real numbers, R.

Ϯ. We find the criƟcal values of f by seƫng f ′(x) = Ϭ and solving for x. We
find

f ′(x) =
ϭϱx(x+ ϰ)

(xϮ + Ϯx+ ϰ)Ϯ
⇒ f ′(x) = Ϭ when x = −ϰ, Ϭ.

Notes:
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Figure ϯ.ϰϯ: Sketching f in Example ϵϱ.
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ϯ. We find the possible points of inflecƟon by solving f ′′(x) = Ϭ for x. We
find

f ′′(x) = −ϯϬxϯ + ϭϴϬxϮ − ϮϰϬ
(xϮ + Ϯx+ ϰ)ϯ

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −ϱ.ϳϱϵ, x = −ϭ.ϯϬϱ and x = ϭ.Ϭϲϰ.

ϰ. There are no verƟcal asymptotes.

ϱ. We have a horizontal asymptote of y = ϱ, as lim
x→−∞

f(x) = lim
x→∞

f(x) = ϱ.

ϲ. We place the criƟcal points and possible points on a number line as shown
in Figure ϯ.ϰϮ and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
−ϱ.ϱϳ9

.
−ϰ

.
−1.ϯ0ϱ

.
0

.
1.0ϲϰ

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ < 0 c. down

.

f ′ < 0 decr

f ′′ > 0 c. up

.

f ′ > 0 incr

f ′′ > 0 c. up

.

f ′ > 0 decr

f ′′ < 0 c. down

Figure ϯ.ϰϮ: Number line for f in Example ϵϱ.

ϳ. In Figure ϯ.ϰϯ(a) we plot the significant points from the number line as
well as the two roots of f, x = −ϭ and x = Ϯ, and connect the points
with straight lines to get a general impression about the graph. In Figure
ϯ.ϰϯ(b), we add concavity. Figure ϯ.ϰϯ(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:
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ϯ.ϱ Curve Sketching

MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure ϯ.ϰϰ, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x
is relaƟvely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behavior” is accurate.)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure ϯ.ϰϰ: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behavior of the
funcƟon at a few key places.” In Example ϵϱ, we were able to accurately sketch
a complicated graph using only ϱ points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.

Notes:
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Exercises ϯ.ϱ
Terms and Concepts
ϭ. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

Ϯ. What does “ubiquitous” mean?

ϯ. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

ϰ. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

ϱ. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

Problems
In Exercises ϲ – ϭϭ, pracƟce using Key Idea ϰ by applying the
principles to the given funcƟons with familiar graphs.

ϲ. f(x) = Ϯx+ ϰ

ϳ. f(x) = −xϮ + ϭ

ϴ. f(x) = sin x

ϵ. f(x) = ex

ϭϬ. f(x) =
ϭ
x

ϭϭ. f(x) =
ϭ
xϮ

In Exercises ϭϮ – Ϯϱ, sketch a graph of the given funcƟon using
Key Idea ϰ. Show all work; check your answer with technol-
ogy.

ϭϮ. f(x) = xϯ − ϮxϮ + ϰx+ ϭ

ϭϯ. f(x) = −xϯ + ϱxϮ − ϯx+ Ϯ

ϭϰ. f(x) = xϯ + ϯxϮ + ϯx+ ϭ

ϭϱ. f(x) = xϯ − xϮ − x+ ϭ

ϭϲ. f(x) = (x− Ϯ) ln(x− Ϯ)

ϭϳ. f(x) = (x− Ϯ)Ϯ ln(x− Ϯ)

ϭϴ. f(x) =
xϮ − ϰ
xϮ

ϭϵ. f(x) =
xϮ − ϰx+ ϯ
xϮ − ϲx+ ϴ

ϮϬ. f(x) =
xϮ − Ϯx+ ϭ
xϮ − ϲx+ ϴ

Ϯϭ. f(x) = x
√
x+ ϭ

ϮϮ. f(x) = xϮex

Ϯϯ. f(x) = sin x cos x on [−π, π]

Ϯϰ. f(x) = (x− ϯ)Ϯ/ϯ + Ϯ

Ϯϱ. f(x) =
(x− ϭ)Ϯ/ϯ

x

In Exercises Ϯϲ – Ϯϴ, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

Ϯϲ. f(x) =
a

xϮ + bϮ

Ϯϳ. f(x) = sin(ax+ b)

Ϯϴ. f(x) = (x− a)(x− b)

Ϯϵ. Given xϮ + yϮ = ϭ, use implicit differenƟaƟon to find dy
dx

and dϮy
dxϮ . Use this informaƟon to jusƟfy the sketch of the

unit circle.

ϭϱϴ
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Figure ϰ.ϭ: DemonstraƟng the geometric
concept behind Newton’s Method.

ϰ: AÖÖ½®��ã®ÊÄÝ Ê¥ ã«�
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In Chapter ϯ, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

ϰ.ϭ Newton’s Method

Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as xϱ+ x+ϭ = Ϭ or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon ϭ.ϱ we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this xϬ. (See Figure ϰ.ϭ(a).) Draw the tangent line to the graph at
(xϬ, f(xϬ)) and see where it meets the x-axis. Call this point xϭ. Then repeat the
process – draw the tangent line to the graph at (xϭ, f(xϭ)) and seewhere itmeets
the x-axis. (See Figure ϰ.ϭ(b).) Call this point xϮ. Repeat the process again to get
xϯ, xϰ, etc. This sequence of points will oŌen converge rather quickly to a root
of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found xϭ. We started with the tangent line to the graph at (xϬ, f(xϬ)).
The slope of this tangent line is f ′(xϬ) and the equaƟon of the line is

y = f ′(xϬ)(x− xϬ) + f(xϬ).

This line crosses the x-axis when y = Ϭ, and the x–value where it crosses is what
we called xϭ. So let y = Ϭ and replace x with xϭ, giving the equaƟon:

Ϭ = f ′(xϬ)(xϭ − xϬ) + f(xϬ).

Now solve for xϭ:

xϭ = xϬ −
f(xϬ)
f ′(xϬ)

.



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approximaƟon is beƩer than it ac-
tually is. These issues will be discussed at
the end of the secƟon.
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Since we repeat the same geometric process to find xϮ from xϭ, we have

xϮ = xϭ −
f(xϭ)
f ′(xϭ)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+ϭ
as follows:

xn+ϭ = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Key Idea ϱ Newton’s Method

Let f be a differenƟable funcƟon on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

ϭ. Choose a value xϬ as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

Ϯ. Create successive approximaƟons iteraƟvely; given an approxima-
Ɵon xn, compute the next approximaƟon xn+ϭ as

xn+ϭ = xn −
f(xn)
f ′(xn)

.

ϯ. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Let’s pracƟce Newton’s Method with a concrete example.

Example ϵϲ Using Newton’s Method
Approximate the real root of xϯ − xϮ − ϭ = Ϭ, accurate to the first ϯ places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of xϬ = ϭ.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = ϯxϮ − Ϯx. Then we apply the

Notes:

ϭϲϬ
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Figure ϰ.Ϯ: A graph of f(x) = xϯ − xϮ − ϭ
in Example ϵϲ.

ϰ.ϭ Newton’s Method

Newton’s Method algorithm, outlined in Key Idea ϱ.

xϭ = ϭ− f(ϭ)
f ′(ϭ)

= ϭ− ϭϯ − ϭϮ − ϭ
ϯ · ϭϮ − Ϯ · ϭ = Ϯ,

xϮ = Ϯ− f(Ϯ)
f ′(Ϯ)

= Ϯ− Ϯϯ − ϮϮ − ϭ
ϯ · ϮϮ − Ϯ · Ϯ = ϭ.ϲϮϱ,

xϯ = ϭ.ϲϮϱ− f(ϭ.ϲϮϱ)
f ′(ϭ.ϲϮϱ)

= ϭ.ϲϮϱ− ϭ.ϲϮϱϯ − ϭ.ϲϮϱϮ − ϭ
ϯ · ϭ.ϲϮϱϮ − Ϯ · ϭ.ϲϮϱ ≈ ϭ.ϰϴϱϳϵ.

xϰ = ϭ.ϰϴϱϳϵ− f(ϭ.ϰϴϱϳϵ)
f ′(ϭ.ϰϴϱϳϵ)

≈ ϭ.ϰϲϱϵϲ

xϱ = ϭ.ϰϲϱϵϲ− f(ϭ.ϰϲϱϵϲ)
f ′(ϭ.ϰϲϱϵϲ)

≈ ϭ.ϰϲϱϱϳ

We performed ϱ iteraƟons of Newton’s Method to find a root accurate to the
first ϯ places aŌer the decimal; our final approximaƟon is ϭ.ϰϲϱ. The exact value
of the root, to six decimal places, is ϭ.ϰϲϱϱϳϭ; It turns out that our xϱ is accurate
to more than just ϯ decimal places.

A graph of f(x) is given in Figure ϰ.Ϯ. We can see from the graph that our
iniƟal approximaƟon of xϬ = ϭ was not parƟcularly accurate; a closer guess
would have been xϬ = ϭ.ϱ. Our choice was based on ease of iniƟal calculaƟon,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate iniƟal approximaƟon.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, xϬ = ϭ.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵmewepress the Enter key, we are finding the successive approximaƟons,
xϭ, xϮ, …, and each one is geƫng closer to the root. In fact, once we get past
around xϳ or so, the approximaƟons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
preƩy confident that we have found an accurate approximaƟon.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

Notes:
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Figure ϰ.ϯ: A graph of f(x) = cos x − x
used to find an iniƟal approximaƟon of its
root.
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Example ϵϳ Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to ϱ
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = Ϭ; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = Ϭ and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = Ϭ. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − ϭ. Next we need a
starƟng value, xϬ. Consider Figure ϰ.ϯ, where f(x) = cos x − x is graphed. It
seems that xϬ = Ϭ.ϳϱ is preƩy close to the root, so we will use that as our xϬ.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = Ϭ.)

We now compute xϭ, xϮ, etc. The formula for xϭ is

xϭ = Ϭ.ϳϱ− cos(Ϭ.ϳϱ)− Ϭ.ϳϱ
− sin(Ϭ.ϳϱ)− ϭ

≈ Ϭ.ϳϯϵϭϭϭϭϯϴϴ.

Apply Newton’s Method again to find xϮ:

xϮ = Ϭ.ϳϯϵϭϭϭϭϯϴϴ− cos(Ϭ.ϳϯϵϭϭϭϭϯϴϴ)− Ϭ.ϳϯϵϭϭϭϭϯϴϴ
− sin(Ϭ.ϳϯϵϭϭϭϭϯϴϴ)− ϭ

≈ Ϭ.ϳϯϵϬϴϱϭϯϯϰ.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing Ϭ.ϳϱ, then Enter, inpuƫng
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximaƟons. We
quickly find:

xϯ = Ϭ.ϳϯϵϬϴϱϭϯϯϮ
xϰ = Ϭ.ϳϯϵϬϴϱϭϯϯϮ.

Our approximaƟons xϮ and xϯ did not differ for at least the first ϱ places aŌer the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding xϰ was not hard. It is interesƟng to see how we
found an approximaƟon, accurate to as many decimal places as our calculator
displays, in just ϰ iteraƟons.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computaƟon in this problem.

Notes:
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Figure ϰ.ϰ: A graph of f(x) = xϯ − xϮ − ϭ,
showing why an iniƟal approximaƟon of
xϬ = Ϭ with Newton’s Method fails.
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Figure ϰ.ϱ: Newton’s Method fails to find
a root of f(x) = xϭ/ϯ, regardless of the
choice of xϬ.

ϰ.ϭ Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates xϭ, xϮ, etc., storing each result in the variable x. The pre-
vious approximaƟon is stored in the variable oldx. We conƟnue looping unƟl
the difference between two successive approximaƟons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the iniƟal guess, xϬ? Generally, the closer to the
actual root the iniƟal guess is, the beƩer. However, some iniƟal guesses should
be avoided. For instance, consider Example ϵϲ where we sought the root to
f(x) = xϯ− xϮ−ϭ. Choosing xϬ = Ϭ would have been a parƟcularly poor choice.
Consider Figure ϰ.ϰ, where f(x) is graphed along with its tangent line at x = Ϭ.
Since f ′(Ϭ) = Ϭ, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

xϭ = Ϭ− f(Ϭ)
f ′(Ϭ)

and f ′(Ϭ) = Ϭ, we see that xϭ is not well defined.
This problem can also occur if, for instance, it turns out that f ′(xϱ) = Ϭ.

AdjusƟng the iniƟal approximaƟon xϬ by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximaƟon is well defined. Consider f(x) = xϭ/ϯ, as shown in Figure ϰ.ϱ. It
is clear that the root is x = Ϭ, but let’s approximate this with xϬ = Ϭ.ϭ. Figure
ϰ.ϱ(a) shows graphically the calculaƟon of xϭ; noƟce how it is farther from the
root than xϬ. Figures ϰ.ϱ(b) and (c) show the calculaƟon of xϮ and xϯ, which are
even farther away; our successive approximaƟons are geƫng worse. (It turns
out that in this parƟcular example, each successive approximaƟon is twice as far
from the true answer as the previous approximaƟon.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,

Notes:

ϭϲϯ
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Newton’s Method can as much as double the number of correct decimal places
with each successive approximaƟon. A course in Numerical Analysis will intro-
duce the reader to more iteraƟve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:

ϭϲϰ



Exercises ϰ.ϭ
Terms and Concepts
ϭ. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = Ϭ.

Ϯ. T/F: In order to get a soluƟon to f(x) = Ϭ accurate to d
places aŌer the decimal, at least d + ϭ iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises ϯ – ϳ, the roots of f(x) are known or are easily
found. Use ϱ iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

ϯ. f(x) = cos x, xϬ = ϭ.ϱ

ϰ. f(x) = sin x, xϬ = ϭ

ϱ. f(x) = xϮ + x− Ϯ, xϬ = Ϭ

ϲ. f(x) = xϮ − Ϯ, xϬ = ϭ.ϱ

ϳ. f(x) = ln x, xϬ = Ϯ

In Exercises ϴ – ϭϭ, use Newton’s Method to approximate all
roots of the given funcƟons accurate to ϯ places aŌer the dec-
imal. If an interval is given, find only the roots that lie in

that interval. Use technology to obtain good iniƟal approx-
imaƟons.

ϴ. f(x) = xϯ + ϱxϮ − x− ϭ

ϵ. f(x) = xϰ + Ϯxϯ − ϳxϮ − x+ ϱ

ϭϬ. f(x) = xϭϳ − Ϯxϭϯ − ϭϬxϴ + ϭϬ on (−Ϯ, Ϯ)

ϭϭ. f(x) = xϮ cos x+ (x− ϭ) sin x on (−ϯ, ϯ)

In Exercises ϭϮ – ϭϱ, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to ϯ places af-
ter the decimal. Use technology to obtain good iniƟal approx-
imaƟons.

ϭϮ. f(x) = xϮ, g(x) = cos x

ϭϯ. f(x) = xϮ − ϭ, g(x) = sin x

ϭϰ. f(x) = ex
Ϯ
, g(x) = cos x

ϭϱ. f(x) = x, g(x) = tan x on [−ϲ, ϲ]

ϭϲ. Why does Newton’s Method fail in finding a root of f(x) =
xϯ − ϯxϮ + x+ ϯ when xϬ = ϭ?

ϭϳ. Why does Newton’s Method fail in finding a root of f(x) =
−ϭϳxϰ + ϭϯϬxϯ − ϯϬϭxϮ + ϭϱϲx+ ϭϱϲ when xϬ = ϭ?

ϭϲϱ



Note: This secƟon relies heavily on im-
plicit differenƟaƟon, so referring back to
SecƟon Ϯ.ϲ may help.
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ϰ.Ϯ Related Rates

When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = Ϯπr; knowing that C = ϲπin determines the
radius must be ϯin.

The topic of related rates takes this one step further: knowing the rate
at which one quanƟty is changing can determine the rate at which the other
changes.

We demonstrate the concepts of related rates through examples.

Example ϵϴ Understanding related rates
The radius of a circle is growing at a rate of ϱin/hr. At what rate is the circumfer-
ence growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
Ϯπr. We are given informaƟon about how the length of r changes with respect
to Ɵme; that is, we are told dr

dt = ϱin/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dC

dt .
Implicitly differenƟate both sides of C = Ϯπr with respect to t:

C = Ϯπr
d
dt
(
C
)
=

d
dt
(
Ϯπr
)

dC
dt

= Ϯπ
dr
dt
.

As we know dr
dt = ϱin/hr, we know

dC
dt

= Ϯπϱ = ϭϬπ ≈ ϯϭ.ϰin/hr.

Consider another, similar example.

Example ϵϵ Finding related rates
Water streams out of a faucet at a rate of Ϯinϯ/s onto a flat surface at a constant
rate, forming a circular puddle that is ϭ/ϴin deep.

ϭ. At what rate is the area of the puddle growing?

Ϯ. At what rate is the radius of the circle growing?

Notes:

ϭϲϲ
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SÊ½çã®ÊÄ

ϭ. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by Ϯinϯ/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at ϭ/ϴin, the area must be growing by ϭϲinϮ/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× ϭ

ϴ . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
ϭ
ϴ
A

d
dt
(
V
)
=

d
dt

(
ϭ
ϴ
A
)

dV
dt

=
ϭ
ϴ
dA
dt

As dV
dt = Ϯ, we know Ϯ = ϭ

ϴ
dA
dt , and hence dA

dt = ϭϲ. Thus the area is
growing by ϭϲinϮ/s.

Ϯ. To start, we need an equaƟon that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πrϮ. We should be able to learn about the rate at which
the radius is growing with this informaƟon.
Implicitly derive both sides of A = πrϮ with respect to t:

A = πrϮ

d
dt
(
A
)
=

d
dt
(
πrϮ
)

dA
dt

= Ϯπr
dr
dt

Our work above told us that dA
dt = ϭϲinϮ/s. Solving for dr

dt , we have

dr
dt

=
ϴ
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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circle already is. If the circle is very large, adding Ϯinϯ of water will not
make the circle much bigger at all. If the circle dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of ϭϬin, the radius is growing at a rate of

dr
dt

=
ϴ

ϭϬπ
=

ϰ
ϱπ

≈ Ϭ.Ϯϱin/s.

Example ϭϬϬ Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “ϱϱmph” means the object is moving
away from the gun at a rate of ϱϱ miles per hour, whereas a measurement of
“−Ϯϱmph” would mean that the object is approaching the gun at a rate of Ϯϱ
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling ϲϬmph and gets a readout of ϭϱmph,
he knows that the car ahead of him is moving away at a rate of ϭϱ miles an hour,
meaning the car is traveling ϳϱmph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at ϯϬ mph and sees a car moving
due east, as shown in Figure ϰ.ϲ. Using his radar gun, he measures a reading of
ϮϬmph. By using landmarks, he believes both he and the other car are about
ϭ/Ϯ mile from the intersecƟon of their two roads.

If the speed limit on the other road is ϱϱmph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure ϰ.ϲ, let’s label what we know
about the situaƟon. As both the police officer and other driver are ϭ/Ϯ mile
from the intersecƟon, we have A = ϭ/Ϯ, B = ϭ/Ϯ, and through the Pythagorean
Theorem, C = ϭ/

√
Ϯ ≈ Ϭ.ϳϬϳ.

We know the police officer is traveling at ϯϬmph; that is, dA
dt = −ϯϬ. The

reason this rate of change is negaƟve is that A is geƫng smaller; the distance
between the officer and the intersecƟon is shrinking. The radar measurement
is dC

dt = ϮϬ. We want to find dB
dt .

We need an equaƟon that relatesB toA and/or C. The Pythagorean Theorem

Notes:
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Note: Example ϭϬϬ is both interesƟng
and impracƟcal. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.
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Figure ϰ.ϳ: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

ϰ.Ϯ Related Rates

is a good choice: AϮ + BϮ = CϮ. DifferenƟate both sides with respect to t:

AϮ + BϮ = CϮ

d
dt
(
AϮ + BϮ

)
=

d
dt
(
CϮ
)

ϮA
dA
dt

+ ϮB
dB
dt

= ϮC
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ ϱϴ.Ϯϴmph.

The other driver appears to be speeding slightly.

Example ϭϬϭ Studying related rates
A camera is placed on a tripod ϭϬŌ from the side of a road. The camera is to turn
to track a car that is to drive by at ϭϬϬmph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure ϰ.ϳ shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure ϰ.ϳ suggests we use a trigonometric equaƟon. Leƫng x represent the
distance the car is from the point on the road directly in front of the camera, we
have

tan θ =
x
ϭϬ

. (ϰ.ϭ)

As the car is moving at ϭϬϬmph, we have dx
dt = −ϭϬϬmph (as in the last example,

since x is geƫng smaller as the car travels, dx
dt is negaƟve). We need to convert

themeasurements so they use the same units; rewrite -ϭϬϬmph in terms of Ō/s:

dx
dt

= −ϭϬϬ
m
hr

= −ϭϬϬ
m
hr

· ϱϮϴϬ Ō
m

· ϭ
ϯϲϬϬ

hr
s

= −ϭϰϲ.ϲŌ/s.

Now take the derivaƟve of both sides of EquaƟon (ϰ.ϭ) using implicit differenƟ-

Notes:

ϭϲϵ
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aƟon:

tan θ =
x
ϭϬ

d
dt
(
tan θ

)
=

d
dt

( x
ϭϬ

)

secϮ θ
dθ
dt

=
ϭ
ϭϬ

dx
dt

dθ
dt

=
cosϮ θ
ϭϬ

dx
dt

(ϰ.Ϯ)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = Ϭ). Our mathe-
maƟcs bears this out. In EquaƟon (ϰ.Ϯ) we see this is when cosϮ θ is largest; this
is when cos θ = ϭ, or when θ = Ϭ.

With dx
dt ≈ −ϭϰϲ.ϲϳŌ/s, we have

dθ
dt

= −ϭrad
ϭϬŌ

ϭϰϲ.ϲϳŌ/s = −ϭϰ.ϲϲϳradians/s.

Wefind that dθ
dt is negaƟve; this matches our diagram in Figure ϰ.ϳ for θ is geƫng

smaller as the car approaches the camera.
What is the pracƟcal meaning of −ϭϰ.ϲϲϳradians/s? Recall that ϭ circular

revoluƟon goes through Ϯπ radians, thus ϭϰ.ϲϲϳrad/s means ϭϰ.ϲϲϳ/(Ϯπ) ≈
Ϯ.ϯϯ revoluƟons per second. The negaƟve sign indicates the camera is rotaƟng
in a clockwise fashion.

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent
lines of funcƟons. This chapter emphasizes using the derivaƟve in other ways.
Newton’s Method uses the derivaƟve to approximate roots of funcƟons; this
secƟon stresses the “rate of change” aspect of the derivaƟve to find a relaƟon-
ship between the rates of change of two related quanƟƟes.

In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

Notes:

ϭϳϬ



Exercises ϰ.Ϯ
Terms and Concepts
ϭ. T/F: Implicit differenƟaƟon is oŌen used when solving “re-

lated rates” type problems.

Ϯ. T/F: A study of related rates is part of the standard police
officer training.

Problems
ϯ. Water flows onto a flat surface at a rate of ϱcmϯ/s forming a

circular puddle ϭϬmm deep. How fast is the radius growing
when the radius is:

(a) ϭ cm?

(b) ϭϬ cm?

(c) ϭϬϬ cm?

ϰ. A circular balloon is inflated with air flowing at a rate of
ϭϬcmϯ/s. How fast is the radius of the balloon increasing
when the radius is:

(a) ϭ cm?

(b) ϭϬ cm?

(c) ϭϬϬ cm?

ϱ. Consider the traffic situaƟon introduced in Example ϭϬϬ.
How fast is the “other car” traveling if the officer and the
other car are each ϭ/Ϯmile from the intersecƟon, the other
car is traveling due west, the officer is traveling north at
ϱϬmph, and the radar reading is−ϴϬmph?

ϲ. Consider the traffic situaƟon introduced in Example ϭϬϬ.
Calculate how fast the “other car” is traveling in each of the
following situaƟons.

(a) The officer is traveling due north at ϱϬmph and is
ϭ/Ϯ mile from the intersecƟon, while the other car
is ϭ mile from the intersecƟon traveling west and the
radar reading is−ϴϬmph?

(b) The officer is traveling due north at ϱϬmph and is
ϭ mile from the intersecƟon, while the other car is
ϭ/Ϯ mile from the intersecƟon traveling west and the
radar reading is−ϴϬmph?

ϳ. An F-ϮϮ aircraŌ is flying at ϱϬϬmph with an elevaƟon of
ϭϬ,ϬϬϬŌ on a straight–line path thatwill take it directly over
an anƟ–aircraŌ gun.

.

.

.

. θ.

x

.

10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) ϭ mile away?

(b) ϭ/ϱ mile away?

(c) Directly overhead?

ϴ. An F-ϮϮ aircraŌ is flying at ϱϬϬmph with an elevaƟon of
ϭϬϬŌ on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise ϳ (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) ϭϬϬϬ feet away?

(b) ϭϬϬ feet away?

(c) Directly overhead?

ϵ. A ϮϰŌ. ladder is leaning against a house while the base is
pulled away at a constant rate of ϭŌ/s.

.

.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) ϭ foot from the house?

(b) ϭϬ feet from the house?

(c) Ϯϯ feet from the house?

(d) Ϯϰ feet from the house?

ϭϬ. A boat is being pulled into a dock at a constant rate of
ϯϬŌ/min by a winch located ϭϬŌ above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) ϱϬ feet out?

(b) ϭϱ feet out?

(c) ϭ foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than ϭϬ feet long?

ϭϭ. An inverted cylindrical cone, ϮϬŌ deep and ϭϬŌ across at
the top, is being filled with water at a rate of ϭϬŌϯ/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) ϭ foot?

(b) ϭϬ feet?

(c) ϭϵ feet?

How long will the tank take to fill when starƟng at empty?

ϭϳϭ



ϭϮ. A rope, aƩached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of ϲϬ Ō) and begins to walk away at a rate
of ϮŌ/s. How fast is the weight rising when the man has
walked:

(a) ϭϬ feet?
(b) ϰϬ feet?

How far must the man walk to raise the weight all the way
to the pulley?

ϭϯ. Consider the situaƟon described in Exercise ϭϮ. Suppose
the man starts ϰϬŌ from the weight and begins to walk
away at a rate of ϮŌ/s.

(a) How long is the rope?

(b) How fast is theweight rising aŌer theman haswalked
ϭϬ feet?

(c) How fast is theweight rising aŌer theman haswalked
ϰϬ feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

ϭϰ. A hot air balloon liŌs off from ground rising verƟcally. From
ϭϬϬ feet away, a ϱ’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a ϰϱ◦ anglewith
the horizontal, she notes the angle is increasing at about
ϱ◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

ϭϱ. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of ϱŌϯ/sec; the physical properƟes of the sand, in conjunc-
Ɵon with gravity, ensure that the cone’s height is roughly
Ϯ/ϯ the length of the diameter of the circular base.
How fast is the cone rising when it has a height of ϯϬ feet?

ϭϳϮ
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Figure ϰ.ϴ: A sketch of the enclosure in
Example ϭϬϮ.

ϰ.ϯ OpƟmizaƟon

ϰ.ϯ OpƟmizaƟon
In SecƟon ϯ.ϭ we learned about extreme values – the largest and smallest values
a funcƟon aƩains on an interval. We moƟvated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this secƟon we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situaƟons that require us to create the appropriate mathemaƟcal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of opƟmizaƟon.

Example ϭϬϮ OpƟmizaƟon: perimeter and area
A man has ϭϬϬ feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice in
Figure ϰ.ϴ, eitherwith green grass and nice fence boards or as a simple rectangle.
Either way, drawing a rectangle forces us to realize that we need to know the
dimensions of this rectangle so we can create an area funcƟon – aŌer all, we are
trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with Ϯ variables; we need to
reduce this down to a single variable. We know more about the situaƟon: the
man has ϭϬϬ feet of fencing. By knowing the perimeter of the rectangle must
be ϭϬϬ, we can create another equaƟon:

Perimeter = ϭϬϬ = Ϯx+ Ϯy.

We now have Ϯ equaƟons and Ϯ unknowns. In the laƩer equaƟon, we solve
for y:

y = ϱϬ− x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(ϱϬ− x).

Note we now have an equaƟon of one variable; we can truly call the Area a
funcƟon of x.

Notes:

ϭϳϯ
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This funcƟon onlymakes sensewhen Ϭ ≤ x ≤ ϱϬ, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [Ϭ, ϱϬ].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
Ϭ, then solve for x.

A(x) = x(ϱϬ− x)

= ϱϬx− xϮ

A′(x) = ϱϬ− Ϯx

We solve ϱϬ− Ϯx = Ϭ to find x = Ϯϱ; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(Ϭ) = Ϭ and A(ϱϬ) = Ϭ, whereas A(Ϯϱ) = ϲϮϱŌϮ. This is the max-
imum. Since we earlier found y = ϱϬ − x, we find that y is also Ϯϱ. Thus the
dimensions of the rectangular enclosure with perimeter of ϭϬϬ Ō. with maxi-
mum area is a square, with sides of length Ϯϱ Ō.

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equaƟons are oŌen
not reducible to a single variable (hence mulƟ–variable calculus is needed) and
the equaƟons themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundaƟon for the mathemaƟcs you will likely en-
counter later.

We outline here the basic process of solving these opƟmizaƟon problems.

Key Idea ϲ Solving OpƟmizaƟon Problems

ϭ. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

Ϯ. Create equaƟons relevant to the context of the problem, using the
informaƟon given. (One of these should describe the quanƟty to
be opƟmized. We’ll call this the fundamental equaƟon.)

ϯ. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

(conƟnued). . .

Notes:

ϭϳϰ
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Figure ϰ.ϵ: A sketch of the enclosure in
Example ϭϬϯ.

ϰ.ϯ OpƟmizaƟon

Key Idea ϲ Solving OpƟmizaƟon Problems – ConƟnued

ϰ. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

ϱ. Find the extreme values of this funcƟon on the determined do-
main.

ϲ. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea ϲ in a variety of examples.

Example ϭϬϯ OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a ϭϬϬ feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea ϲ.

ϭ. We are maximizing area. A sketch of the region will help; Figure ϰ.ϵ gives
two sketches of the proposed enclosed area. A key feature of the sketches
is to acknowledge that one side is not fenced.

Ϯ. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = ϭϬϬ = x+ Ϯy.

Note how this is different than in our previous example.

ϯ. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = ϱϬ− x/Ϯ. We can now write Area as

Area = A(x) = x(ϱϬ− x/Ϯ) = ϱϬx− ϭ
Ϯ
xϮ.

Area is now defined as a funcƟon of one variable.

Notes:

ϭϳϱ
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the power staƟon to an offshore facility
with minimal cost in Example ϭϬϰ.
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Figure ϰ.ϭϭ: Labeling unknown distances
in Example ϭϬϰ.
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ϰ. We want the area to be nonnegaƟve. Since A(x) = x(ϱϬ− x/Ϯ), we want
x ≥ Ϭ and ϱϬ − x/Ϯ ≥ Ϭ. The laƩer inequality implies that x ≤ ϭϬϬ, so
Ϭ ≤ x ≤ ϭϬϬ.

ϱ. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of Ϭ.
Find the criƟcal points. We have A′(x) = ϱϬ − x; seƫng this equal to Ϭ
and solving for x returns x = ϱϬ. This gives an area of

A(ϱϬ) = ϱϬ(Ϯϱ) = ϭϮϱϬ.

ϲ. We earlier set y = ϱϬ − x/Ϯ; thus y = Ϯϱ. Thus our rectangle will have
two sides of length Ϯϱ and one side of length ϱϬ, with a total area of ϭϮϱϬ
ŌϮ.

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a system of equaƟons. These equa-
Ɵons allow us to write a certain quanƟty as a funcƟon of one variable, which we
then opƟmize.

Example ϭϬϰ OpƟmizaƟon: minimizing cost
A power line needs to be run from an power staƟon located on the beach to an
offshore facility. Figure ϰ.ϭϬ shows the distances between the power staƟon to
the facility.

It costs $ϱϬ/Ō. to run a power line along the land, and $ϭϯϬ/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ We will follow the strategy of Key Idea ϲ implicitly, without
specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all ϱϬϬϬ Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure ϰ.ϭϭ.

Notes:

ϭϳϲ
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By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
$ϱϬ× land distance + $ϭϯϬ× water distance

ϱϬ(ϱϬϬϬ− x) + ϭϯϬ
√
xϮ + ϭϬϬϬϮ.

So we have c(x) = ϱϬ(ϱϬϬϬ − x) + ϭϯϬ
√
xϮ + ϭϬϬϬϮ. This funcƟon only

makes sense on the interval [Ϭ, ϱϬϬϬ]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(Ϭ) = ϯϴϬ, ϬϬϬ c(ϱϬϬϬ) ≈ ϲϲϮ, ϴϳϯ.

We now find the criƟcal values of c(x). We compute c ′(x) as

c ′(x) = −ϱϬ+
ϭϯϬx√

xϮ + ϭϬϬϬϮ
.

Recognize that this is never undefined. Seƫng c ′(x) = Ϭ and solving for x,
we have:

−ϱϬ+
ϭϯϬx√

xϮ + ϭϬϬϬϮ
= Ϭ

ϭϯϬx√
xϮ + ϭϬϬϬϮ

= ϱϬ

ϭϯϬϮxϮ

xϮ + ϭϬϬϬϮ
= ϱϬϮ

ϭϯϬϮxϮ = ϱϬϮ(xϮ + ϭϬϬϬϮ)

ϭϯϬϮxϮ − ϱϬϮxϮ = ϱϬϮ · ϭϬϬϬϮ

(ϭϯϬϮ − ϱϬϮ)xϮ = ϱϬ, ϬϬϬϮ

xϮ =
ϱϬ, ϬϬϬϮ

ϭϯϬϮ − ϱϬϮ

x =
ϱϬ, ϬϬϬ√
ϭϯϬϮ − ϱϬϮ

x =
ϱϬ, ϬϬϬ
ϭϮϬ

= ϰϭϲ
Ϯ
ϯ
≈ ϰϭϲ.ϲϳ.

EvaluaƟng c(x) at x = ϰϭϲ.ϲϳ gives a cost of about $ϯϳϬ,ϬϬϬ. The distance
the power line is laid along land is ϱϬϬϬ− ϰϭϲ.ϲϳ = ϰϱϴϯ.ϯϯ Ō., and the under-
water distance is

√
ϰϭϲ.ϲϳϮ + ϭϬϬϬϮ ≈ ϭϬϴϯ Ō.

Notes:

ϭϳϳ
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In the exercises you will see a variety of situaƟons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equaƟons from situaƟons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next secƟon introduces our final applicaƟon of the derivaƟve: differen-
Ɵals. Given y = f(x), they offer a method of approximaƟng the change in y aŌer
x changes by a small amount.

Notes:

ϭϳϴ



Exercises ϰ.ϯ
Terms and Concepts

ϭ. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme
values” problem in a “story problem” seƫng.

Ϯ. T/F: This secƟon teaches one to find the extreme values of
funcƟon that have more than one variable.

Problems

ϯ. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of ϭϬϬ.

ϰ. Find the minimum sum of two numbers whose product is
ϱϬϬ.

ϱ. Find the maximum sum of two numbers whose product is
ϱϬϬ.

ϲ. Find the maximum sum of two numbers, each of which is
in [Ϭ, ϯϬϬ] whose product is ϱϬϬ.

ϳ. Find the maximal area of a right triangle with hypotenuse
of length ϭ.

ϴ. A rancher has ϭϬϬϬ feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

ϵ. A standard soda can is roughly cylindrical and holds ϯϱϱcmϯ

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

ϭϬ. Find the dimensions of a cylindrical can with a volume of
ϮϬϲinϯ that minimizes the surface area.
The “#ϭϬ can”is a standard sized can used by the restau-
rant industry that holds about ϮϬϲinϯ with a diameter of ϲ
Ϯ/ϭϲin and height of ϳin. Does it seem these dimensions
where chosen with minimizaƟon in mind?

ϭϭ. The United States Postal Service charges more for boxes
whose combined length and girth exceeds ϭϬϴ” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., Ϯw+ Ϯh).

What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the ϭϬϴ” stan-
dard?

ϭϮ. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal widthw and the square of its height h;
that is, S = kwhϮ for some constant k.

ϭϮ h

w

Given a circular log with diameter of ϭϮ inches, what sized
beam can be cut from the log with maximum strength?

ϭϯ. A power line is to be run to an offshore facility in the man-
ner described in Example ϭϬϰ. The offshore facility is Ϯ
miles at sea and ϱmiles along the shoreline from the power
plant. It costs $ϱϬ,ϬϬϬ per mile to lay a power line under-
ground and $ϴϬ,ϬϬϬ to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

ϭϰ. A power line is to be run to an offshore facility in the man-
ner described in Example ϭϬϰ. The offshore facility is ϱ
miles at sea and Ϯmiles along the shoreline from the power
plant. It costs $ϱϬ,ϬϬϬ per mile to lay a power line under-
ground and $ϴϬ,ϬϬϬ to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

ϭϱ. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is ϮϬ feet down the shore line and ϭϱ feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about ϮϮŌ/s and
swims about ϭ.ϱŌ/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example ϭϬϰ can be useful.)

ϭϲ. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is ϭϱ feet down the shore line and ϯϬ feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about ϮϮŌ/s and
swims about ϭ.ϱŌ/s.
How far along the shore should the dog run tominimize the
Ɵme it takes to get to the sƟck? (Google “calculus dog” to learn
more about a dog’s ability to minimize Ɵmes.)

ϭϳ. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?

ϭϳϵ
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Figure ϰ.ϭϮ: Graphing f(x) = sin x and its
tangent line at x = π/ϯ in order to esƟ-
mate sin ϭ.ϭ.

Chapter ϰ ApplicaƟons of the DerivaƟve

ϰ.ϰ DifferenƟals

In SecƟon Ϯ.Ϯ we explored the meaning and use of the derivaƟve. This secƟon
starts by revisiƟng some of those ideas.

Recall that the derivaƟve of a funcƟon f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equaƟon

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximaƟons of f(x) for values of x
near c.

For instance, we can approximate sin ϭ.ϭ using the tangent line to the graph
of f(x) = sin x at x = π/ϯ ≈ ϭ.Ϭϱ. Recall that sin(π/ϯ) =

√
ϯ/Ϯ ≈ Ϭ.ϴϲϲ, and

cos(π/ϯ) = ϭ/Ϯ. Thus the tangent line to f(x) = sin x at x = π/ϯ is:

ℓ(x) =
ϭ
Ϯ
(x− π/ϯ) + Ϭ.ϴϲϲ.

In Figure ϰ.ϭϮ(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/ϯ. The small rectangle shows the region that is displayed in
Figure ϰ.ϭϮ(b). In this figure, we see how we are approximaƟng sin ϭ.ϭ with the
tangent line, evaluated at ϭ.ϭ. Together, the two figures show how close these
values are.

Using this line to approximate sin ϭ.ϭ, we have:

ℓ(ϭ.ϭ) =
ϭ
Ϯ
(ϭ.ϭ− π/ϯ) + Ϭ.ϴϲϲ

=
ϭ
Ϯ
(Ϭ.Ϭϱϯ) + Ϭ.ϴϲϲ = Ϭ.ϴϵϮϱ.

(We leave it to the reader to see how good of an approximaƟon this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represenƟng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a funcƟon approximates well the values of that funcƟon
near x = c.

As the x value changes from c to c +∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:

ϭϴϬ
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Replacing f(c+∆x) with its tangent line approximaƟon, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (ϰ.ϯ)

This final equaƟon is important; we’ll come back to it in Key Idea ϳ.
We introduce two new variables, dx and dy in the context of a formal defini-

Ɵon.

DefiniƟon ϭϴ DifferenƟals of x and y.

Let y = f(x) be differenƟable. The differenƟal of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
enƟal of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equaƟon: f ′(x) = dy/dx. This states that
the derivaƟve of f with respect to x is the differenƟal of y divided by the differ-
enƟal of x; this is not the alternate notaƟon for the derivaƟve, dy

dx . This laƩer
notaƟon was chosen because of the fracƟon–like qualiƟes of the derivaƟve, but
again, it is one symbol and not a fracƟon.

It is helpful to organize our new concepts and notaƟons in one place.

Key Idea ϳ DifferenƟal NotaƟon

Let y = f(x) be a differenƟable funcƟon.

ϭ. ∆x represents a small, nonzero change in x value.

Ϯ. dx represents a small, nonzero change in x value (i.e.,∆x = dx).

ϯ. ∆y is the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

ϰ. dy = f ′(x)dx which, by EquaƟon (ϰ.ϯ), is an approximaƟon of the
change in y value as x changes by∆x; dy ≈ ∆y.

Notes:

ϭϴϭ
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What is the value of differenƟals? Like many mathemaƟcal concepts, differ-
enƟals provide both pracƟcal and theoreƟcal benefits. We explore both here.

Example ϭϬϱ Finding and using differenƟals
Consider f(x) = xϮ. Knowing f(ϯ) = ϵ, approximate f(ϯ.ϭ).

SÊ½çã®ÊÄ The x value is changing from x = ϯ to x = ϯ.ϭ; therefore, we
see that dx = Ϭ.ϭ. If we know howmuch the y value changes from f(ϯ) to f(ϯ.ϭ)
(i.e., if we know∆y), we will know exactly what f(ϯ.ϭ) is (since we already know
f(ϯ)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(ϯ)dx
= Ϯ · ϯ · Ϭ.ϭ = Ϭ.ϲ.

We expect the y value to change by about Ϭ.ϲ, so we approximate f(ϯ.ϭ) ≈
ϵ.ϲ.

We leave it to the reader to verify this, but the preceding discussion links the
differenƟal to the tangent line of f(x) at x = ϯ. One can verify that the tangent
line, evaluated at x = ϯ.ϭ, also gives y = ϵ.ϲ.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): ϯ.ϭϮ = ϵ.ϲϭ. (Before we get too cynical and say “Then why bother?”, note
our approximaƟon is really good!)

So why bother?
In “most” real life situaƟons, we do not know the funcƟon that describes

a parƟcular behavior. Instead, we can only take measurements of how things
change – measurements of the derivaƟve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direcƟon (i.e., the velocity) of water at any locaƟon. It is very hard
to create a funcƟon that describes the overall flow, hence it is hard to predict
where a floaƟng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differenƟals. Over small
intervals, the path taken by a floaƟng object is essenƟally linear. DifferenƟals
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
Ɵal EquaƟons courses.

We use differenƟals once more to approximate the value of a funcƟon. Even
though calculators are very accessible, it is neat to see how these techniques can
someƟmes be used to easily compute something that looks rather hard.

Notes:

ϭϴϮ
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Example ϭϬϲ Using differenƟals to approximate a funcƟon value
Approximate

√
ϰ.ϱ.

SÊ½çã®ÊÄ We expect
√
ϰ.ϱ ≈ Ϯ, yet we can do beƩer. Let f(x) =

√
x,

and let c = ϰ. Thus f(ϰ) = Ϯ. We can compute f ′(x) = ϭ/(Ϯ
√
x), so f ′(ϰ) =

ϭ/ϰ.
We approximate the difference between f(ϰ.ϱ) and f(ϰ) using differenƟals,

with dx = Ϭ.ϱ:

f(ϰ.ϱ)− f(ϰ) = ∆y ≈ dy = f ′(ϰ) · dx = ϭ/ϰ · ϭ/Ϯ = ϭ/ϴ = Ϭ.ϭϮϱ.

The approximate change in f from x = ϰ to x = ϰ.ϱ is Ϭ.ϭϮϱ, so we approximate√
ϰ.ϱ ≈ Ϯ.ϭϮϱ.

DifferenƟals are important when we discuss integraƟon. When we study
that topic, we will use notaƟon such as

∫

f(x) dx

quite oŌen. While we don’t discuss here what all of that notaƟon means, note
the existence of the differenƟal dx. Proper handling of integrals comes with
proper handling of differenƟals.

In light of that, we pracƟce finding differenƟals in general.

Example ϭϬϳ Finding differenƟals
In each of the following, find the differenƟal dy.

ϭ. y = sin x Ϯ. y = ex(xϮ + Ϯ) ϯ. y =
√
xϮ + ϯx− ϭ

SÊ½çã®ÊÄ

ϭ. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

Ϯ. y = ex(xϮ + Ϯ): Let f(x) = ex(xϮ + Ϯ). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(xϮ + Ϯ) + Ϯxex, so

dy =
(
ex(xϮ + Ϯ) + Ϯxex

)
dx.

Notes:

ϭϴϯ
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ϯ. y =
√
xϮ + ϯx− ϭ: Let f(x) =

√
xϮ + ϯx− ϭ; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
ϭ
Ϯ
(xϮ + ϯx− ϭ)−

ϭ
Ϯ (Ϯx+ ϯ) =

Ϯx+ ϯ
Ϯ
√
xϮ + ϯx− ϭ

. Thus

dy =
(Ϯx+ ϯ)dx

Ϯ
√
xϮ + ϯx− ϭ

.

Finding the differenƟal dy of y = f(x) is really no harder than finding the
derivaƟve of f; we justmulƟply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of
making certain approximaƟons. Another use is error propagaƟon. Suppose a
length is measured to be x, although the actual value is x+∆x (where we hope
∆x is small). This measurement of xmay be used to compute some other value;
we can think of this as f(x) for some funcƟon f. As the true length is x + ∆x,
one really should have computed f(x + ∆x). The difference between f(x) and
f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values;

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differenƟals.

Example ϭϬϴ Using differenƟals to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of Ϯcm. The manu-
facturing process has a tolerance of ±Ϭ.ϭmm in the diameter. Given that the
density of steel is about ϳ.ϴϱg/cmϯ, esƟmate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equaƟon “mass
= volume× density.” In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = ϳ.ϴϱ ϰ

ϯπr
ϯ. The differenƟal of the mass is

dm = ϯϭ.ϰπrϮdr.

The radius is to be ϭcm; the manufacturing tolerance in the radius is±Ϭ.Ϭϱmm,
or±Ϭ.ϬϬϱcm. The propagated error is approximately:

∆m ≈ dm

= ϯϭ.ϰπ(ϭ)Ϯ(±Ϭ.ϬϬϱ)
= ±Ϭ.ϰϵϯg

Notes:

ϭϴϰ
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Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± Ϭ.ϰϵϯ
ϳ.ϴϱ ϰ

ϯπ

= ±Ϭ.ϰϵϯ
ϯϮ.ϴϴ

= ±Ϭ.Ϭϭϱ,

or±ϭ.ϱ%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be ϭϬcm, the same manufacturing tolerance would give a propa-
gated error inmass of±ϭϮ.ϯϯg, which corresponds to apercent error of±Ϭ.ϭϴϴ%.
While the amount of error is much greater (ϭϮ.ϯϯ > Ϭ.ϰϵϯ), the percent error
is much lower.

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• EquaƟon solving (Newton’s Method)

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change)

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

In the next chapters, we will consider the “reverse” problem to compuƟng
the derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?
Be able to do so opens up an incredible world of mathemaƟcs and applicaƟons.

Notes:

ϭϴϱ



Exercises ϰ.ϰ
Terms and Concepts

ϭ. T/F: Given a differenƟable funcƟon y = f(x), we are gen-
erally free to choose a value for dx, which then determines
the value of dy.

Ϯ. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

ϯ. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

ϰ. T/F: DifferenƟals are important in the study of integraƟon.

ϱ. How are differenƟals and tangent lines related?

Problems
In Exercises ϲ – ϭϳ, use differenƟals to approximate the given
value by hand.

ϲ. Ϯ.ϬϱϮ

ϳ. ϱ.ϵϯϮ

ϴ. ϱ.ϭϯ

ϵ. ϲ.ϴϯ

ϭϬ.
√
ϭϲ.ϱ

ϭϭ.
√
Ϯϰ

ϭϮ. ϯ
√
ϲϯ

ϭϯ. ϯ
√
ϴ.ϱ

ϭϰ. sin ϯ

ϭϱ. cos ϭ.ϱ

ϭϲ. eϬ.ϭ

In Exercises ϭϳ – Ϯϵ, compute the differenƟal dy.

ϭϳ. y = xϮ + ϯx− ϱ

ϭϴ. y = xϳ − xϱ

ϭϵ. y =
ϭ
ϰxϮ

ϮϬ. y = (Ϯx+ sin x)Ϯ

Ϯϭ. y = xϮeϯx

ϮϮ. y =
ϰ
xϰ

Ϯϯ. y =
Ϯx

tan x+ ϭ

Ϯϰ. y = ln(ϱx)

Ϯϱ. y = ex sin x

Ϯϲ. y = cos(sin x)

Ϯϳ. y =
x+ ϭ
x+ Ϯ

Ϯϴ. y = ϯx ln x

Ϯϵ. y = x ln x− x

ϯϬ. A set of plasƟc spheres are to be made with a diameter
of ϭcm. If the manufacturing process is accurate to ϭmm,
what is the propagated error in volume of the spheres?

ϯϭ. The distance, in feet, a stone drops in t seconds is given by
d(t) = ϭϲtϮ. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the boƩom. What
is the propagated error if the Ɵmemeasurement is accurate
to Ϯ/ϭϬths of a second and the measured Ɵme is:

(a) Ϯ seconds?
(b) ϱ seconds?

ϯϮ. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at ϭϱ′′, accurate to ϭ/ϰ′′?

ϯϯ. A wall is to be painted that is ϴ′ high and is measured to
be ϭϬ′, ϳ′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to ϭ/Ϯ′′.

Exercises ϯϰ – ϯϴ explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compuƟng.)

ϯϰ. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
ϴϱ.Ϯ◦, accurate to ϭ◦. Assume that the triangle formed is a
right triangle.

l =?

θ

Ϯϱ′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

ϭϴϲ



ϯϱ. Answer the quesƟons of Exercise ϯϰ, but with a measured
angle of ϳϭ.ϱ◦, accurate to ϭ◦, measured from a point ϭϬϬ′

from the wall.

ϯϲ. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is ϭϰϯ◦, accurate to ϭ◦.

l =?θ ϱϬ′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

ϯϳ. The length of the walls in Exercises ϯϰ – ϯϲ are essenƟally
the same. Which setup gives the most accurate result?

ϯϴ. Consider the setup in Exercises ϯϲ. This Ɵme, assume the
angle measurement of ϭϰϯ◦ is exact but the measured ϱϬ′

from the wall is accurate to ϲ′′. What is the approximate
percent error?

ϭϴϳ





ϱ: IÄã�¦Ù�ã®ÊÄ
We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these funcƟons will help us compute areas, volumes, mass,
force, pressure, work, and much more.

ϱ.ϭ AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = Ϯx.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = Ϯx?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = xϮ. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = xϮ + ϭ also has a derivaƟve of Ϯx. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = xϮ + ϭϮϯ, ϰϱϲ, ϳϴϵ also has a deriva-
Ɵve of Ϯx. The differenƟal equaƟon y ′ = Ϯx has many soluƟons. This leads us
to some definiƟons.

DefiniƟon ϭϵ AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.



Chapter ϱ IntegraƟon

We oŌen use upper-case leƩers to denote anƟderivaƟves.
Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by

adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem ϯϰ AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x). Then there exists a constant
C such that

G(x) = F(x) + C.

Given a funcƟon f and one of its anƟderivaƟves F, we know all anƟderivaƟves
of f have the form F(x)+ C for some constant C. Using DefiniƟon ϭϵ, we can say
that ∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure ϱ.ϭ: Understanding the indefinite integral notaƟon.

Figure ϱ.ϭ shows the typical notaƟon of the indefinite integral. The integra-
Ɵon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.” We

will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Example ϭϬϵ EvaluaƟng indefinite integrals

Evaluate
∫

sin x dx.

Notes:

ϭϵϬ



ϱ.ϭ AnƟderivaƟves and Indefinite IntegraƟon

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill lead us to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite
∫

sin x dx as
∫

dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Example ϭϭϬ EvaluaƟng indefinite integrals

Evaluate
∫

(ϯxϮ + ϰx+ ϱ) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is ϯxϮ + ϰx + ϱ.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of ϯxϮ? Some thought will lead us to a
cubic, specifically xϯ + Cϭ, where Cϭ is a constant.

What funcƟons have a derivaƟve of ϰx? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to ϮxϮ + CϮ,
where CϮ is a constant.

Notes:

ϭϵϭ



Chapter ϱ IntegraƟon

Finally, what funcƟons have a derivaƟve of ϱ? FuncƟons of the form ϱx+Cϯ,
where Cϯ is a constant.

Our answer appears to be

∫

(ϯxϮ + ϰx+ ϱ) dx = xϯ + Cϭ + ϮxϮ + CϮ + ϱx+ Cϯ.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫

(ϯxϮ + ϰx+ ϱ) dx = xϯ + ϮxϮ + ϱx+ C.

It is easy to verify our answer; take the derivaƟve of xϯ + Ϯxϯ + ϱx + C and
see we indeed get ϯxϮ + ϰx+ ϱ.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫

f(x) dx
)

= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

TheoremϮϰgave a list of the derivaƟves of common funcƟonswehad learned
at that point. We restate part of that list here to stress the relaƟonship between
derivaƟves and anƟderivaƟves. This list will also be useful as a glossary of com-
mon anƟderivaƟves as we learn.

Notes:
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Theorem ϯϱ DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

ϭ. d
dx

(
cf(x)

)
= c · f ′(x)

Ϯ. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

ϯ. d
dx

(
C
)
= Ϭ

ϰ. d
dx

(
x
)
= ϭ

ϱ. d
dx

(
xn
)
= n · xn−ϭ

ϲ. d
dx

(
sin x

)
= cos x

ϳ. d
dx

(
cos x

)
= − sin x

ϴ. d
dx

(
tan x

)
= secϮ x

ϵ. d
dx

(
csc x

)
= − csc x cot x

ϭϬ. d
dx

(
sec x

)
= sec x tan x

ϭϭ. d
dx

(
cot x

)
= − cscϮ x

ϭϮ. d
dx

(
ex
)
= ex

ϭϯ. d
dx

(
ax
)
= ln a · ax

ϭϰ. d
dx

(
ln x
)
= ϭ

x

Common Indefinite Integral Rules

ϭ.
∫
c · f(x) dx = c ·

∫
f(x) dx

Ϯ.
∫ (

f(x)± g(x)
)
dx =

∫
f(x) dx±

∫
g(x) dx

ϯ.
∫
Ϭ dx = C

ϰ.
∫
ϭ dx =

∫
dx = x+ C

ϱ.
∫
xn dx = ϭ

n+ϭx
n+ϭ + C (n ̸= −ϭ)

ϲ.
∫
cos x dx = sin x+ C

ϳ.
∫
sin x dx = − cos x+ C

ϴ.
∫
secϮ x dx = tan x+ C

ϵ.
∫
csc x cot x dx = − csc x+ C

ϭϬ.
∫
sec x tan x dx = sec x+ C

ϭϭ.
∫
cscϮ x dx = − cot x+ C

ϭϮ.
∫
ex dx = ex + C

ϭϯ.
∫
ax dx = ϭ

ln a · ax + C

ϭϰ.
∫ ϭ

x dx = ln |x|+ C

We highlight a few important points from Theorem ϯϱ:

• Rule #ϭ states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
ϯxϮ
)
is just as easy to

compute as d
dx

(
xϮ
)
). An example:

∫

ϱ cos x dx = ϱ ·
∫

cos x dx = ϱ · (sin x+ C) = ϱ sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

Notes:
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ϱ, but “ϱ Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #Ϯ is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
ϭϭϬ. So:

∫

(ϯxϮ + ϰx+ ϱ) dx =
∫

ϯxϮ dx+
∫

ϰx dx+
∫

ϱ dx

= ϯ
∫

xϮ dx+ ϰ
∫

x dx+
∫

ϱ dx

= ϯ · ϭ
ϯ
xϯ + ϰ · ϭ

Ϯ
xϮ + ϱx+ C

= xϯ + ϮxϮ + ϱx+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #ϱ is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

ϭ. NoƟce the restricƟon that n ̸= −ϭ. This is important:
∫ ϭ

x dx ̸=
“ ϭϬx

Ϭ + C”; rather, see Rule #ϭϰ.

Ϯ. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of
differenƟaƟon. Here is a useful quote to remember:

“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract ϭ from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #ϭϰ incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon Ϯ.ϯwe saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟondescribes acceleraƟon. We can
now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives a
velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon, there
are infinite anƟderivaƟves. Therefore we cannot ask “What is the velocity of an
object whose acceleraƟon is−ϯϮŌ/sϮ?”, since there is more than one answer.

Notes:
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We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example ϭϭϭ Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −ϯϮ Ō/sϮ. At Ɵme t = ϯ,
a falling object had a velocity of −ϭϬ Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −ϯϮ, and

• the velocity at a specific Ɵme, i.e., v(ϯ) = −ϭϬ.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −ϯϮ. So we begin by finding the indefinite integral of−ϯϮ:

∫

(−ϯϮ) dt = −ϯϮt+ C = v(t).

Now we use the fact that v(ϯ) = −ϭϬ to find C:

v(t) = −ϯϮt+ C
v(ϯ) = −ϭϬ

−ϯϮ(ϯ) + C = −ϭϬ
C = ϴϲ

Thus v(t) = −ϯϮt+ ϴϲ. We can use this equaƟon to understand the moƟon
of the object: when t = Ϭ, the object had a velocity of v(Ϭ) = ϴϲ Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = Ϭ:

−ϯϮt+ ϴϲ = Ϭ ⇒ t =
ϰϯ
ϭϲ

≈ Ϯ.ϲϵs.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example ϭϭϮ Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(Ϭ) = ϯ and f(Ϭ) = ϱ.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):
∫

f ′′(t) dt =
∫

cos t dt = sin t+ C = f ′(t).

Notes:
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So f ′(t) = sin t + C for the correct value of C. We are given that f ′(Ϭ) = ϯ,
so:

f ′(Ϭ) = ϯ ⇒ sin Ϭ+ C = ϯ ⇒ C = ϯ.

Using the iniƟal value, we have found f ′(t) = sin t+ ϯ.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ ϯ) dt = − cos t+ ϯt+ C.

We are given that f(Ϭ) = ϱ, so

− cos Ϭ+ ϯ(Ϭ) + C = ϱ
−ϭ+ C = ϱ

C = ϲ

Thus f(t) = − cos t+ ϯt+ ϲ.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a posiƟon funcƟon given a velocity funcƟon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon ϱ.ϰ, wewill see howareas and anƟderivaƟves are closely Ɵed together.

Notes:
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Exercises ϱ.ϭ
Terms and Concepts

ϭ. Define the term “anƟderivaƟve” in your own words.

Ϯ. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

ϯ. Use your own words to define the indefinite integral of
f(x).

ϰ. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

ϱ. What is an “iniƟal value problem”?

ϲ. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

ϳ. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

Problems
In Exercises ϴ – Ϯϲ, evaluate the given indefinite integral.

ϴ.
∫

ϯxϯ dx

ϵ.
∫

xϴ dx

ϭϬ.
∫

(ϭϬxϮ − Ϯ) dx

ϭϭ.
∫

dt

ϭϮ.
∫

ϭ ds

ϭϯ.
∫

ϭ
ϯtϮ

dt

ϭϰ.
∫

ϯ
tϮ

dt

ϭϱ.
∫

ϭ√
x
dx

ϭϲ.
∫

secϮ θ dθ

ϭϳ.
∫

sin θ dθ

ϭϴ.
∫

(sec x tan x+ csc x cot x) dx

ϭϵ.
∫

ϱeθ dθ

ϮϬ.
∫

ϯt dt

Ϯϭ.
∫

ϱt

Ϯ
dt

ϮϮ.
∫

(Ϯt+ ϯ)Ϯ dt

Ϯϯ.
∫

(tϮ + ϯ)(tϯ − Ϯt) dt

Ϯϰ.
∫

xϮxϯ dx

Ϯϱ.
∫

eπ dx

Ϯϲ.
∫

a dx

Ϯϳ. This problem invesƟgates why Theorem ϯϱ states that
∫

ϭ
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(

ln x
)

.
(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(

ln(−x)
)

.
(e) You should find that ϭ/x has two types of anƟderiva-

Ɵves, depending on whether x > Ϭ or x < Ϭ. In

one expression, give a formula for
∫

ϭ
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises Ϯϴ – ϯϴ, find f(x) described by the given iniƟal
value problem.

Ϯϴ. f ′(x) = sin x and f(Ϭ) = Ϯ

Ϯϵ. f ′(x) = ϱex and f(Ϭ) = ϭϬ

ϯϬ. f ′(x) = ϰxϯ − ϯxϮ and f(−ϭ) = ϵ

ϯϭ. f ′(x) = secϮ x and f(π/ϰ) = ϱ

ϯϮ. f ′(x) = ϳx and f(Ϯ) = ϭ

ϯϯ. f ′′(x) = ϱ and f ′(Ϭ) = ϳ, f(Ϭ) = ϯ

ϯϰ. f ′′(x) = ϳx and f ′(ϭ) = −ϭ, f(ϭ) = ϭϬ

ϯϱ. f ′′(x) = ϱex and f ′(Ϭ) = ϯ, f(Ϭ) = ϱ

ϯϲ. f ′′(θ) = sin θ and f ′(π) = Ϯ, f(π) = ϰ

ϭϵϳ



ϯϳ. f ′′(x) = ϮϰxϮ + Ϯx − cos x and f ′(Ϭ) = ϱ, f(Ϭ) = Ϭ

ϯϴ. f ′′(x) = Ϭ and f ′(ϭ) = ϯ, f(ϭ) = ϭ

Review
ϯϵ. Use informaƟon gained from the first and second deriva-

Ɵves to sketch f(x) =
ϭ

ex + ϭ
.

ϰϬ. Given y = xϮex cos x, find dy.

ϭϵϴ
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ϱ.Ϯ The Definite Integral

ϱ.Ϯ The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of ϱ Ō/s for ϭϬ seconds. How far away from its starƟng point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = ϱŌ/s× ϭϬs= ϱϬ feet.

It is interesƟng to note that this soluƟon of ϱϬ feet can be represented graph-
ically. Consider Figure ϱ.Ϯ, where the constant velocity of ϱŌ/s is graphed on the
axes. Shading the area under the line from t = Ϭ to t = ϭϬ gives a rectangle
with an area of ϱϬ square units; when one considers the units of the axes, we
can say this area represents ϱϬ Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of ϱŌ/s for ϭϬ seconds,
then instantly reverses course at a rate of ϮŌ/s for ϰ seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−ϮŌ/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rateϭ × Timeϭ + RateϮ × TimeϮ,” which is

Distance = ϱ · ϭϬ+ (−Ϯ) · ϰ = ϰϮ Ō.

Hence the object is ϰϮ feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure ϱ.ϯ we have the

velociƟes graphed as straight lines on [Ϭ, ϭϬ] and [ϭϬ, ϭϰ], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as ϱϬ− ϴ = ϰϮ feet.
Now consider a more difficult problem.

Example ϭϭϯ Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −ϯϮt+ϰϴ, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = Ϭ, the object had a height of Ϭ Ō.

ϭ. What was the iniƟal velocity of the object?

Ϯ. What was the maximum height of the object?

ϯ. What was the height of the object at Ɵme t = Ϯ?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = Ϭ,
v(Ϭ) = −ϯϮ · Ϭ+ ϰϴ = ϰϴ Ō/s.

Notes:
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To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is Ϭ, i.e., s(Ϭ) = Ϭ. We
know s ′(t) = v(t) = −ϯϮt+ ϰϴ. To find s, we find the indefinite integral of v(t):

∫

v(t) dt =
∫

(−ϯϮt+ ϰϴ) dt = −ϭϲtϮ + ϰϴt+ C = s(t).

Since s(Ϭ) = Ϭ, we conclude that C = Ϭ and s(t) = −ϭϲtϮ + ϰϴt.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to Ϭ and solving for t:

s ′(t) = −ϯϮt+ ϰϴ = Ϭ ⇒ t = ϰϴ/ϯϮ = ϭ.ϱs.

(NoƟce how we ended up just finding when the velocity was ϬŌ/s!) The first
derivaƟve test shows this is a maximum, so the maximum height of the object
is found at

s(ϭ.ϱ) = −ϭϲ(ϭ.ϱ)Ϯ + ϰϴ(ϭ.ϱ) = ϯϲŌ.

The height at Ɵme t = Ϯ is now straighƞorward to compute: it is s(Ϯ) = ϯϮŌ.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure ϱ.ϰ shows a graph of v(t) on axes from t = Ϭ to t = ϯ. It is again
straighƞorward to find v(Ϭ). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = Ϭ to t = ϭ.ϱ. This region is a triangle; its area is

Area =
ϭ
Ϯ
Base× Height =

ϭ
Ϯ
× ϭ.ϱs× ϰϴŌ/s = ϯϲŌ,

which matches our previous calculaƟon of the maximum height.
Finally, we find the total signed area under the velocity funcƟon from t = Ϭ

to t = Ϯ to find the s(Ϯ), the height at t = Ϯ, which is a displacement, the
distance from the current posiƟon to the starƟng posiƟon. That is,

Displacement = Area above the t–axis− Area below t–axis.

Notes:
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The regions are triangles, and we find

Displacement =
ϭ
Ϯ
(ϭ.ϱs)(ϰϴŌ/s)− ϭ

Ϯ
(.ϱs)(ϭϲŌ/s) = ϯϮŌ.

This also matches our previous calculaƟon of the height at t = Ϯ.
NoƟce howweanswered each quesƟon in this example in twoways. Our first

methodwas tomanipulate equaƟons using our understanding of anƟderivaƟves
and derivaƟves. Our second method was geometric: we answered quesƟons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
ϱ.ϰ will fully establish fact that the area under a velocity funcƟon is displace-
ment.

Given a graph of a funcƟon y = f(x), we will find that there is great use in
compuƟng the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

DefiniƟon ϮϬ The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted

∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

By our definiƟon, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon ϱ.ϰ. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

Notes:

ϮϬϭ
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Figure ϱ.ϱ: A graph of f(x) in Example ϭϭϰ.
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Figure ϱ.ϲ: A graph of ϱf in Example ϭϭϰ.
(Yes, it looks just like the graph of f in Fig-
ure ϱ.ϱ, just with a different y-scale.)

Chapter ϱ IntegraƟon

We pracƟce using this notaƟon.

Example ϭϭϰ EvaluaƟng definite integrals
Consider the funcƟon f given in Figure ϱ.ϱ.

Find:

ϭ.
∫ ϯ

Ϭ
f(x) dx

Ϯ.
∫ ϱ

ϯ
f(x) dx

ϯ.
∫ ϱ

Ϭ
f(x) dx

ϰ.
∫ ϯ

Ϭ
ϱf(x) dx

ϱ.
∫ ϭ

ϭ
f(x) dx

SÊ½çã®ÊÄ

ϭ.
∫ ϯ
Ϭ f(x) dx is the area under f on the interval [Ϭ, ϯ]. This region is a triangle,
so the area is

∫ ϯ
Ϭ f(x) dx = ϭ

Ϯ (ϯ)(ϭ) = ϭ.ϱ.

Ϯ.
∫ ϱ
ϯ f(x) dx represents the area of the triangle found under the x–axis on
[ϯ, ϱ]. The area is ϭ

Ϯ (Ϯ)(ϭ) = ϭ; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ ϱ
ϯ f(x) dx = −ϭ.

ϯ.
∫ ϱ
Ϭ f(x) dx is the total signed area under fon [Ϭ, ϱ]. This is ϭ.ϱ+(−ϭ) = Ϭ.ϱ.

ϰ.
∫ ϯ
Ϭ ϱf(x) dx is the area under ϱf on [Ϭ, ϯ]. This is sketched in Figure ϱ.ϲ.
Again, the region is a triangle, with height ϱ Ɵmes that of the height of
the original triangle. Thus the area is

∫ ϯ
Ϭ ϱf(x) dx = ϭϱ/Ϯ = ϳ.ϱ.

ϱ.
∫ ϭ
ϭ f(x) dx is the area under f on the “interval” [ϭ, ϭ]. This describes a line
segment, not a region; it has no width. Therefore the area is Ϭ.

This example illustrates some of the properƟes of the definite integral, given
here.

Notes:

ϮϬϮ



ϱ.Ϯ The Definite Integral

Theorem ϯϲ ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

ϭ.
∫ a

a
f(x) dx = Ϭ

Ϯ.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

ϯ.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

ϰ.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

ϱ.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem ϯϲ here.

ϭ. As demonstrated in Example ϭϭϰ, there is no “area under the curve”when
the region has no width; hence this definite integral is Ϭ.

Ϯ. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

ϯ. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies

∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (ϱ.ϭ)

However, we sƟll claim that, as originally stated,
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (ϱ.Ϯ)

Notes:
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Figure ϱ.ϳ: A graph of a funcƟon in Exam-
ple ϭϭϱ.
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How do EquaƟons (ϱ.ϭ) and (ϱ.Ϯ) relate? Start with EquaƟon (ϱ.ϭ):
∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx

∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (ϯ) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (ϱ.ϭ) and

(ϱ.Ϯ) are equivalent.
The conclusion is this: by adopƟng the convenƟon of Property (ϯ), Prop-
erty (Ϯ) holds no maƩer the order of a, b and c. Again, in the next secƟon
we will see another jusƟficaƟon for this property.

ϰ,ϱ. Each of these may be non–intuiƟve. Property (ϱ) states that when one
scales a funcƟon by, for instance, ϳ, the area of the enclosed region also
is scaled by a factor of ϳ. Both ProperƟes (ϰ) and (ϱ) can be proved using
geometry. The details are not complicated but are not discussed here.

Example ϭϭϱ EvaluaƟng definite integrals using Theorem ϯϲ.
Consider the graph of a funcƟon f(x) shown in Figure ϱ.ϳ. Answer the following:

ϭ. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

Ϯ. Is
∫ c

a
f(x) dx greater or less than Ϭ?

ϯ. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

ϭ.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas
∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

Ϯ.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than Ϭ.

ϯ. Note how the second integral has thebounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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ϵ− xϮ in (b), from Example

ϭϭϲ.
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Figure ϱ.ϵ: A graph of a velocity in Exam-
ple ϭϭϳ.

ϱ.Ϯ The Definite Integral

The area definiƟon of the definite integral allows us to use geometry com-
pute the definite integral of some simple funcƟons.

Example ϭϭϲ EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

ϭ.
∫ ϱ

−Ϯ
(Ϯx− ϰ) dx Ϯ.

∫ ϯ

−ϯ

√

ϵ− xϮ dx.

SÊ½çã®ÊÄ

ϭ. It is useful to sketch the funcƟon in the integrand, as shown in Figure
ϱ.ϴ(a). We see we need to compute the areas of two regions, which we
have labeled Rϭ and RϮ. Both are triangles, so the area computaƟon is
straighƞorward:

Rϭ :
ϭ
Ϯ
(ϰ)(ϴ) = ϭϲ RϮ :

ϭ
Ϯ
(ϯ)ϲ = ϵ.

Region Rϭ lies under the x–axis, hence it is counted as negaƟve area (we
can think of the triangle’s height as being “−ϴ”), so

∫ ϱ

−Ϯ
(Ϯx− ϰ) dx = −ϭϲ+ ϵ = −ϳ.

Ϯ. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure ϱ.ϴ(b), with radius ϯ. Thus the area is:

∫ ϯ

−ϯ

√

ϵ− xϮ dx =
ϭ
Ϯ
πrϮ =

ϵ
Ϯ
π.

Example ϭϭϳ Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure ϱ.ϵ, where the numbers in the given regions gives the area of that
region. Assume that the definite integral of a velocity funcƟon gives displace-
ment. Find the maximum speed of the object and its maximum displacement
from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be ϭϱŌ/s.

At Ɵme t = Ϭ, the displacement is Ϭ; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward ϭϭ feet. Between Ɵmes t = a and

Notes:
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Figure ϱ.ϭϬ: What is the area below y =
xϮ on [Ϭ, ϯ]? The region is not a usual ge-
ometric shape.

Chapter ϱ IntegraƟon

t = b, the object moves forward ϯϴ feet, bringing it into a posiƟon Ϯϳ feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is Ϯϳ feet from its starƟng posiƟon.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure ϱ.ϭϬ, where a region below y = xϮ is shaded. What
is its area? The funcƟon y = xϮ is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:

ϮϬϲ



Exercises ϱ.Ϯ
Terms and Concepts

ϭ. What is “total signed area”?

Ϯ. What is “displacement”?

ϯ. What is
∫ ϯ

ϯ
sin x dx?

ϰ. Give a single definite integral that has the same value as
∫ ϭ

Ϭ
(Ϯx+ ϯ) dx+

∫ Ϯ

ϭ
(Ϯx+ ϯ) dx.

Problems

In Exercises ϱ – ϵ, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

ϱ.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ ϭ

Ϭ
(−Ϯx+ ϰ) dx

(b)
∫ Ϯ

Ϭ
(−Ϯx+ ϰ) dx

(c)
∫ ϯ

Ϭ
(−Ϯx+ ϰ) dx

(d)
∫ ϯ

ϭ
(−Ϯx+ ϰ) dx

(e)
∫ ϰ

Ϯ
(−Ϯx+ ϰ) dx

(f)
∫ ϭ

Ϭ
(−ϲx+ ϭϮ) dx

ϲ.

.....

y = f(x)

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

.

ϱ

.−Ϯ.

−ϭ

.

ϭ

.

Ϯ

.

x

.

y

(a)
∫ Ϯ

Ϭ
f(x) dx

(b)
∫ ϯ

Ϭ
f(x) dx

(c)
∫ ϱ

Ϭ
f(x) dx

(d)
∫ ϱ

Ϯ
f(x) dx

(e)
∫ ϯ

ϱ
f(x) dx

(f)
∫ ϯ

Ϭ
−Ϯf(x) dx

ϳ.

.....

y = f(x)

. ϭ. Ϯ. ϯ. ϰ.

Ϯ

.

ϰ

.
x

.

y

(a)
∫ Ϯ

Ϭ
f(x) dx

(b)
∫ ϰ

Ϯ
f(x) dx

(c)
∫ ϰ

Ϯ
Ϯf(x) dx

(d)
∫ ϭ

Ϭ
ϰx dx

(e)
∫ ϯ

Ϯ
(Ϯx− ϰ) dx

(f)
∫ ϯ

Ϯ
(ϰx− ϴ) dx

ϴ.

.....

y = x − ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

.
−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

x

.

y

(a)
∫ ϭ

Ϭ
(x− ϭ) dx

(b)
∫ Ϯ

Ϭ
(x− ϭ) dx

(c)
∫ ϯ

Ϭ
(x− ϭ) dx

(d)
∫ ϯ

Ϯ
(x− ϭ) dx

(e)
∫ ϰ

ϭ
(x− ϭ) dx

(f)
∫ ϰ

ϭ

(

(x− ϭ) + ϭ
)

dx

ϵ.

.....

f(x) =

√
ϰ − (x − Ϯ)Ϯ

. ϭ. Ϯ. ϯ. ϰ.

ϭ

.

Ϯ

.

ϯ

.
x

.

y

(a)
∫ Ϯ

Ϭ
f(x) dx

(b)
∫ ϰ

Ϯ
f(x) dx

(c)
∫ ϰ

Ϭ
f(x) dx

(d)
∫ ϰ

Ϭ
ϱf(x) dx

ϮϬϳ



In Exercises ϭϬ – ϭϯ, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

ϭϬ.

.....

y = f(x)

.

59

.

ϭϭ

.

Ϯϭ

.

ϭ

.

Ϯ

.

ϯ

.−ϭϬϬ.

−5Ϭ

.

5Ϭ

.

x

.

y

(a)
∫ ϭ

Ϭ
f(x) dx

(b)
∫ Ϯ

Ϭ
f(x) dx

(c)
∫ ϯ

Ϭ
f(x) dx

(d)
∫ Ϯ

ϭ
−ϯf(x) dx

ϭϭ.

.....

f(x) = sin(πx/Ϯ)

.

ϰ/π

.

ϰ/π

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

.

−ϭ

.

ϭ

.

x

.

y

(a)
∫ Ϯ

Ϭ
f(x) dx

(b)
∫ ϰ

Ϯ
f(x) dx

(c)
∫ ϰ

Ϭ
f(x) dx

(d)
∫ ϭ

Ϭ
f(x) dx

ϭϮ.

.....

f(x) = ϯxϮ − ϯ

.

ϰ

.

ϰ

.

−ϰ

.

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

. −ϱ.

ϱ

.

ϭϬ

.

x

.

y

(a)
∫ −ϭ

−Ϯ
f(x) dx

(b)
∫ Ϯ

ϭ
f(x) dx

(c)
∫ ϭ

−ϭ
f(x) dx

(d)
∫ ϭ

Ϭ
f(x) dx

ϭϯ.

.....

f(x) = xϮ

. ϭ/ϯ. 7/ϯ.
ϭ

.
Ϯ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. x.

y

(a)
∫ Ϯ

Ϭ
ϱxϮ dx

(b)
∫ Ϯ

Ϭ
(xϮ + ϯ) dx

(c)
∫ ϯ

ϭ
(x− ϭ)Ϯ dx

(d)
∫ ϰ

Ϯ

(

(x− Ϯ)Ϯ + ϱ
)

dx

In Exercises ϭϰ – ϭϱ, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

ϭϰ.

.....

ϭ

.

Ϯ

.

ϯ

.−ϭ.

ϭ

.

Ϯ

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [Ϭ, ϯ]?

ϭϱ.

..... ϭ. Ϯ. ϯ. ϰ. ϱ.

ϭ

.

Ϯ

.

ϯ

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [Ϭ, ϱ]?

ϭϲ. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −ϯϮt + ϲϰ, where t is in seconds, from a height
of ϰϴ feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of Ϭ? (Hint: find
when the displacement is−ϰϴŌ.)

ϮϬϴ



ϭϳ. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −ϯϮt + ϵϲ, where t is in seconds, from a height
of ϲϰ feet.

(a) What is the object’s iniƟal velocity?

(b) When is the object’s displacement Ϭ?

(c) How long does it take for the object to return to its
iniƟal height?

(d) When will the object reach a height of ϮϭϬ feet?

In Exercises ϭϴ – Ϯϭ, let

•
∫ Ϯ

Ϭ
f(x) dx = ϱ,

•
∫ ϯ

Ϭ
f(x) dx = ϳ,

•
∫ Ϯ

Ϭ
g(x) dx = −ϯ, and

•
∫ ϯ

Ϯ
g(x) dx = ϱ.

Use these values to evaluate the given definite integrals.

ϭϴ.
∫ Ϯ

Ϭ

(

f(x) + g(x)
)

dx

ϭϵ.
∫ ϯ

Ϭ

(

f(x)− g(x)
)

dx

ϮϬ.
∫ ϯ

Ϯ

(

ϯf(x) + Ϯg(x)
)

dx

Ϯϭ. Find values for a and b such that
∫ ϯ

Ϭ

(

af(x) + bg(x)
)

dx = Ϭ

In Exercises ϮϮ – Ϯϱ, let

•
∫ ϯ

Ϭ
s(t) dt = ϭϬ,

•
∫ ϱ

ϯ
s(t) dt = ϴ,

•
∫ ϱ

ϯ
r(t) dt = −ϭ, and

•
∫ ϱ

Ϭ
r(t) dt = ϭϭ.

Use these values to evaluate the given definite integrals.

ϮϮ.
∫ ϯ

Ϭ

(

s(t) + r(t)
)

dt

Ϯϯ.
∫ Ϭ

ϱ

(

s(t)− r(t)
)

dt

Ϯϰ.
∫ ϯ

ϯ

(

πs(t)− ϳr(t)
)

dt

Ϯϱ. Find values for a and b such that
∫ ϱ

Ϭ

(

ar(t) + bs(t)
)

dt = Ϭ

Review
In Exercises Ϯϲ – Ϯϵ, evaluate the given indefinite integral.

Ϯϲ.
∫

(

xϯ − ϮxϮ + ϳx− ϵ
)

dx

Ϯϳ.
∫

(

sin x− cos x+ secϮ x
)

dx

Ϯϴ.
∫

( ϯ
√
t+

ϭ
tϮ

+ Ϯt
)

dt

Ϯϵ.
∫
(

ϭ
x
− csc x cot x

)

dx

ϮϬϵ
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Figure ϱ.ϭϭ: A graph of f(x) = ϰx − xϮ.
What is the area of the shaded region?
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Figure ϱ.ϭϮ: ApproximaƟng
∫ ϰ
Ϭ (ϰx−xϮ) dx

using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter ϱ IntegraƟon

ϱ.ϯ Riemann Sums

In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure ϱ.ϭϭ, which is the area under y = ϰx−xϮ
on [Ϭ, ϰ]. What is the signed area of this region – i.e., what is

∫ ϰ
Ϭ (ϰx− xϮ) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of ϰ and find the area is approximately ϭϲ square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use ϰ rectangles of equal width of ϭ. This parƟƟons the interval [Ϭ, ϰ]
into ϰ subintervals, [Ϭ, ϭ], [ϭ, Ϯ], [Ϯ, ϯ] and [ϯ, ϰ]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure ϱ.ϭϮ, the rectangle drawn on the
interval [Ϯ, ϯ] has height determined by the LeŌ Hand Rule; it has a height of
f(Ϯ). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [Ϭ, ϭ] is drawn using f(ϭ) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [ϭ, Ϯ]
was made using the Midpoint Rule, with a height of f(ϭ.ϱ). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [ϯ, ϰ] has a height of approximately f(ϯ.ϱϯ), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [ϯ, ϰ]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ ϰ
Ϭ (ϰx − xϮ) dx using

Notes:

ϮϭϬ
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Figure ϱ.ϭϯ: ApproximaƟng
∫ ϰ
Ϭ (ϰx−xϮ) dx

using the LeŌ Hand Rule in Example ϭϭϴ.
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Figure ϱ.ϭϰ: ApproximaƟng
∫ ϰ
Ϭ (ϰx−xϮ) dx

using the Right Hand Rule in Example ϭϭϴ.
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Figure ϱ.ϭϱ: ApproximaƟng
∫ ϰ
Ϭ (ϰx−xϮ) dx

using the Midpoint Rule in Example ϭϭϴ.

ϱ.ϯ Riemann Sums

these rules.

Example ϭϭϴ Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ ϰ
Ϭ (ϰx − xϮ) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using ϰ equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [Ϭ, ϰ] into four subintervals as before.
In Figure ϱ.ϭϯ we see ϰ rectangles drawn on f(x) = ϰx− xϮ using the LeŌ Hand
Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [Ϭ, ϭ], the rectangle has height f(Ϭ) = Ϭ. We
add up the areas of each rectangle (height× width) for our LeŌ Hand Rule ap-
proximaƟon:

f(Ϭ) · ϭ+ f(ϭ) · ϭ+ f(Ϯ) · ϭ+ f(ϯ) · ϭ =

Ϭ+ ϯ+ ϰ+ ϯ = ϭϬ.

Figure ϱ.ϭϰ shows ϰ rectangles drawn under f using the Right Hand Rule;
note how the [ϯ, ϰ] subinterval has a rectangle of height Ϭ.
In this example, these rectangle seem to be the mirror image of those found
in Figure ϱ.ϭϯ. (This is because of the symmetry of our shaded region.) Our
approximaƟon gives the same answer as before, though calculated a different
way:

f(ϭ) · ϭ+ f(Ϯ) · ϭ+ f(ϯ) · ϭ+ f(ϰ) · ϭ =

ϯ+ ϰ+ ϯ+ Ϭ = ϭϬ.

Figure ϱ.ϭϱ shows ϰ rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ ϰ
Ϭ (ϰx− xϮ) dx as:

f(Ϭ.ϱ) · ϭ+ f(ϭ.ϱ) · ϭ+ f(Ϯ.ϱ) · ϭ+ f(ϯ.ϱ) · ϭ =

ϭ.ϳϱ+ ϯ.ϳϱ+ ϯ.ϳϱ+ ϭ.ϳϱ = ϭϭ.

Our three methods provide two approximaƟons of
∫ ϰ
Ϭ (ϰx− xϮ) dx: ϭϬ and ϭϭ.

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: ϭϬ or ϭϭ?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:

Ϯϭϭ
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Suppose we wish to add up a list of numbers aϭ, aϮ, aϯ, …, aϵ. Instead of
wriƟng

aϭ + aϮ + aϯ + aϰ + aϱ + aϲ + aϳ + aϴ + aϵ,

we use summaƟon notaƟon and write

..

9∑

i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure ϱ.ϭϲ: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

Example ϭϭϵ Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = Ϯi − ϭ for integers i, where i ≥ ϭ. So
aϭ = ϭ, aϮ = ϯ, aϯ = ϱ, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

ϭ.
ϲ∑

i=ϭ

ai Ϯ.
ϳ∑

i=ϯ

(ϯai − ϰ) ϯ.
ϰ∑

i=ϭ

(ai)Ϯ

SÊ½çã®ÊÄ

ϭ.
ϲ∑

i=ϭ

ai = aϭ + aϮ + aϯ + aϰ + aϱ + aϲ

= ϭ+ ϯ+ ϱ+ ϳ+ ϵ+ ϭϭ
= ϯϲ.

Ϯ. Note the starƟng value is different than ϭ:

ϳ∑

i=ϯ

ai = (ϯaϯ − ϰ) + (ϯaϰ − ϰ) + (ϯaϱ − ϰ) + (ϯaϲ − ϰ) + (ϯaϳ − ϰ)

= ϭϭ+ ϭϳ+ Ϯϯ+ Ϯϵ+ ϯϱ
= ϭϭϱ.

Notes:

ϮϭϮ
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ϯ.
ϰ∑

i=ϭ

(ai)Ϯ = (aϭ)Ϯ + (aϮ)Ϯ + (aϯ)Ϯ + (aϰ)Ϯ

= ϭϮ + ϯϮ + ϱϮ + ϳϮ

= ϴϰ

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

Theorem ϯϳ ProperƟes of SummaƟons

ϭ.
n∑

i=ϭ

c = c · n, where c is a constant.

Ϯ.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

ϯ.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

ϰ.
j
∑

i=m

ai +
n∑

i=j+ϭ

ai =
n∑

i=m

ai

ϱ.
n∑

i=ϭ

i =
n(n+ ϭ)

Ϯ

ϲ.
n∑

i=ϭ

iϮ =
n(n+ ϭ)(Ϯn+ ϭ)

ϲ

ϳ.
n∑

i=ϭ

iϯ =
(
n(n+ ϭ)

Ϯ

)Ϯ

Example ϭϮϬ EvaluaƟng summaƟons using Theorem ϯϳ
Revisit Example ϭϭϵ and, using Theorem ϯϳ, evaluate

ϲ∑

i=ϭ

ai =
ϲ∑

i=ϭ

(Ϯi− ϭ).

Notes:

Ϯϭϯ
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Figure ϱ.ϭϳ: Dividing [Ϭ, ϰ] into ϭϲ equally
spaced subintervals.
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SÊ½çã®ÊÄ

ϲ∑

i=ϭ

(Ϯi− ϭ) =
ϲ∑

i=ϭ

Ϯi−
ϲ∑

i=ϭ

(ϭ)

=

(

Ϯ
ϲ∑

i=ϭ

i

)

− ϲ

= Ϯ
ϲ(ϲ+ ϭ)

Ϯ
− ϲ

= ϰϮ− ϲ = ϯϲ

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem ϯϳ is incredibly important when dealing with large sums as we’ll soon
see.

Riemann Sums

Consider again
∫ ϰ
Ϭ (ϰx − xϮ) dx. We will approximate this definite integral

using ϭϲ equally spaced subintervals and the Right Hand Rule in Example ϭϮϭ.
Before doing so, it will pay to do some careful preparaƟon.

Figure ϱ.ϭϳ shows a number line of [Ϭ, ϰ] divided into ϭϲ equally spaced
subintervals. We denote Ϭ as xϭ; we have marked the values of xϱ, xϵ, xϭϯ and
xϭϳ. We could mark them all, but the figure would get crowded. While it is easy
to figure that xϭϬ = Ϯ.Ϯϱ, in general, wewant amethod of determining the value
of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So xϭϬ = xϭ + ϵ(ϰ/ϭϲ) = Ϯ.Ϯϱ.
If we had parƟƟoned [Ϭ, ϰ] into ϭϬϬ equally spaced subintervals, each subin-

terval would have length∆x = ϰ/ϭϬϬ = Ϭ.Ϭϰ. We could compute xϯϮ as

xϯϮ = xϭ + ϯϭ(ϰ/ϭϬϬ) = ϭ.Ϯϰ.

(That was far faster than creaƟng a sketch first.)

Notes:

Ϯϭϰ
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Given any subdivision of [Ϭ, ϰ], the first subinterval is [xϭ, xϮ]; the second is
[xϮ, xϯ]; the i th subinterval is [xi, xi+ϭ].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).

Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+ϭ).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+ϭ

Ϯ

)

.

Thus approximaƟng
∫ ϰ
Ϭ (ϰx− xϮ) dx with ϭϲ equally spaced subintervals can

be expressed as follows, where∆x = ϰ/ϭϲ = ϭ/ϰ:

LeŌ Hand Rule:
ϭϲ∑

i=ϭ

f(xi)∆x

Right Hand Rule:
ϭϲ∑

i=ϭ

f(xi+ϭ)∆x

Midpoint Rule:
ϭϲ∑

i=ϭ

f
(
xi + xi+ϭ

Ϯ

)

∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem ϯϳ.

Example ϭϮϭ ApproximaƟng definite integrals using sums
Approximate

∫ ϰ
Ϭ (ϰx−xϮ) dx using the Right Hand Rule and summaƟon formulas

with ϭϲ and ϭϬϬϬ equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using ϭϲ equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

ϭϲ∑

i=ϭ

f(xi+ϭ)∆x.

We have∆x = ϰ/ϭϲ = Ϭ.Ϯϱ. Since xi = Ϭ+ (i− ϭ)∆x, we have

xi+ϭ = Ϭ+
(
(i+ ϭ)− ϭ

)
∆x

= i∆x

Notes:

Ϯϭϱ
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Figure ϱ.ϭϴ: ApproximaƟng
∫ ϰ
Ϭ (ϰx−xϮ) dx

with the Right Hand Rule and ϭϲ evenly
spaced subintervals.
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Using the summaƟon formulas, consider:

∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈

ϭϲ∑

i=ϭ

f(xi+ϭ)∆x

=
ϭϲ∑

i=ϭ

f(i∆x)∆x

=
ϭϲ∑

i=ϭ

(
ϰi∆x− (i∆x)Ϯ

)
∆x

=
ϭϲ∑

i=ϭ

(ϰi∆xϮ − iϮ∆xϯ)

= (ϰ∆xϮ)
ϭϲ∑

i=ϭ

i−∆xϯ
ϭϲ∑

i=ϭ

iϮ (ϱ.ϯ)

= (ϰ∆xϮ)
ϭϲ · ϭϳ

Ϯ
−∆xϯ

ϭϲ(ϭϳ)(ϯϯ)
ϲ

= ϰ · Ϭ.ϮϱϮ · ϭϯϲ− Ϭ.Ϯϱϯ · ϭϰϵϲ
= ϭϬ.ϲϮϱ

We were able to sum up the areas of ϭϲ rectangles with very liƩle computa-
Ɵon. In Figure ϱ.ϭϴ the funcƟon and the ϭϲ rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of ϭϬ.ϲϮϱ is likely a fairly
good approximaƟon.

NoƟce EquaƟon (ϱ.ϯ); by changing the ϭϲ’s to ϭ,ϬϬϬ’s (and appropriately
changing the value of ∆x), we can use that equaƟon to sum up ϭϬϬϬ rectan-
gles! We do so here, skipping from the original summand to the equivalent of
EquaƟon (ϱ.ϯ) to save space. Note that∆x = ϰ/ϭϬϬϬ = Ϭ.ϬϬϰ.

∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈

ϭϬϬϬ∑

i=ϭ

f(xi+ϭ)∆x

= (ϰ∆xϮ)
ϭϬϬϬ∑

i=ϭ

i−∆xϯ
ϭϬϬϬ∑

i=ϭ

iϮ

= (ϰ∆xϮ)
ϭϬϬϬ · ϭϬϬϭ

Ϯ
−∆xϯ

ϭϬϬϬ(ϭϬϬϭ)(ϮϬϬϭ)
ϲ

= ϰ · Ϭ.ϬϬϰϮ · ϱϬϬϱϬϬ− Ϭ.ϬϬϰϯ · ϯϯϯ, ϴϯϯ, ϱϬϬ
= ϭϬ.ϲϲϲϲϱϲ

Notes:

Ϯϭϲ
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Figure ϱ.ϭϵ: An example of a general Rie-
mann sum to approximate

∫ ϰ
Ϭ (ϰx−xϮ) dx.

ϱ.ϯ Riemann Sums

Usingmany,many rectangles, wehave a likely good approximaƟonof
∫ ϰ
Ϭ (ϰx−

xϮ)∆x. That is,
∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈ ϭϬ.ϲϲϲϲϱϲ.

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

ϭ. each rectangle has the same width, which we referred to as∆x, and

Ϯ. each rectangle’s height is determined by evaluaƟng f at a parƟcular point
in each subinterval. For instance, the LeŌ Hand Rule states that each rect-
angle’s height is determined by evaluaƟng f at the leŌ hand endpoint of
the subinterval the rectangle lives on.

One could parƟƟon an interval [a, b]with subintervals that did not have the same
size. We refer to the length of the first subinterval as∆xϭ, the length of the sec-
ond subinterval as∆xϮ, and so on, giving the length of the i th subinterval as∆xi.
Also, one could determine each rectangle’s height by evaluaƟng f at any point in
the i th subinterval. We refer to the point picked in the first subinterval as cϭ, the
point picked in the second subinterval as cϮ, and so on, with ci represenƟng the
point picked in the i th subinterval. Thus the height of the i th subinterval would
be f(ci), and the area of the i th rectangle would be f(ci)∆xi.

SummaƟons of rectangleswith area f(ci)∆xi are named aŌermathemaƟcian
Georg Friedrich Bernhard Riemann, as given in the following definiƟon.

DefiniƟon Ϯϭ Riemann Sum

Let f be defined on the closed interval [a, b] and let∆x be a parƟƟon of
[a, b], with

a = xϭ < xϮ < . . . < xn < xn+ϭ = b.

Let∆xi denote the length of the i th subinterval [xi, xi+ϭ] and let ci denote
any value in the i th subinterval.
The sum

n∑

i=ϭ

f(ci)∆xi

is a Riemann sum of f on [a, b].

Figure ϱ.ϭϵ shows the approximaƟng rectangles of a Riemann sumof
∫ ϰ
Ϭ (ϰx−

xϮ) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a parƟcular rule.

Notes:

Ϯϭϳ
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“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea ϴ Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑

i=ϭ

f(ci)∆xi.

ϭ. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

Ϯ. The i th term of the parƟƟon is xi = a + (i − ϭ)∆x. (This makes
xn+ϭ = b.)

ϯ. The LeŌ Hand Rule summaƟon is:
n∑

i=ϭ

f(xi)∆x.

ϰ. The Right Hand Rule summaƟon is:
n∑

i=ϭ

f(xi+ϭ)∆x.

ϱ. The Midpoint Rule summaƟon is:
n∑

i=ϭ

f
(
xi + xx+ϭ

Ϯ

)

∆x.

Let’s do another example.

Example ϭϮϮ ApproximaƟng definite integrals with sums
Approximate

∫ ϯ
−Ϯ(ϱx + Ϯ) dx using the Midpoint Rule and ϭϬ equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea ϴ, we have

∆x =
ϯ− (−Ϯ)

ϭϬ
= ϭ/Ϯ and xi = (−Ϯ) + (ϭ/Ϯ)(i− ϭ) = i/Ϯ− ϱ/Ϯ.

As we are using the Midpoint Rule, we will also need xi+ϭ and
xi + xi+ϭ

Ϯ
. Since

xi = i/Ϯ− ϱ/Ϯ, xi+ϭ = (i+ ϭ)/Ϯ− ϱ/Ϯ = i/Ϯ− Ϯ. This gives

xi + xi+ϭ

Ϯ
=

(i/Ϯ− ϱ/Ϯ) + (i/Ϯ− Ϯ)
Ϯ

=
i− ϵ/Ϯ

Ϯ
= i/Ϯ− ϵ/ϰ.

Notes:

Ϯϭϴ
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Figure ϱ.ϮϬ: ApproximaƟng
∫ ϯ
−Ϯ(ϱx +

Ϯ) dx using the Midpoint Rule and ϭϬ
evenly spaced subintervals in Example
ϭϮϮ.

ϱ.ϯ Riemann Sums

We now construct the Riemann sum and compute its value using summaƟon
formulas.

∫ ϯ

−Ϯ
(ϱx+ Ϯ) dx ≈

ϭϬ∑

i=ϭ

f
(
xi + xi+ϭ

Ϯ

)

∆x

=
ϭϬ∑

i=ϭ

f(i/Ϯ− ϵ/ϰ)∆x

=
ϭϬ∑

i=ϭ

(
ϱ(i/Ϯ− ϵ/ϰ) + Ϯ

)
∆x

= ∆x
ϭϬ∑

i=ϭ

[(
ϱ
Ϯ

)

i− ϯϳ
ϰ

]

= ∆x

(

ϱ
Ϯ

ϭϬ∑

i=ϭ

(i)−
ϭϬ∑

i=ϭ

(
ϯϳ
ϰ

))

=
ϭ
Ϯ

(
ϱ
Ϯ
· ϭϬ(ϭϭ)

Ϯ
− ϭϬ · ϯϳ

ϰ

)

=
ϰϱ
Ϯ

= ϮϮ.ϱ

Note the graph of f(x) = ϱx + Ϯ in Figure ϱ.ϮϬ. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summaƟon techniques. We find that the exact answer is indeed
ϮϮ.ϱ. One of the strengths of the Midpoint Rule is that oŌen each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our funcƟon is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve.

NoƟce in the previous example that while we used ϭϬ equally spaced inter-
vals, the number “ϭϬ” didn’t play a big role in the calculaƟons unƟl the very end.
MathemaƟcians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n unƟl the very end.

Example ϭϮϯ ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ ϰ
Ϭ (ϰx−xϮ)dx yet again. Approximate this definite integral using theRight

Notes:

Ϯϭϵ
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Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea ϴ, we know ∆x = ϰ−Ϭ
n = ϰ/n. We also find

xi = Ϭ + ∆x(i − ϭ) = ϰ(i − ϭ)/n. The Right Hand Rule uses xi+ϭ, which is
xi+ϭ = ϰi/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.
∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈

n∑

i=ϭ

f(xi+ϭ)∆x

=

n∑

i=ϭ

f
(
ϰi
n

)

∆x

=
n∑

i=ϭ

[

ϰ
ϰi
n
−
(
ϰi
n

)Ϯ
]

∆x

=

n∑

i=ϭ

(
ϭϲ∆x
n

)

i−
n∑

i=ϭ

(
ϭϲ∆x
nϮ

)

iϮ

=

(
ϭϲ∆x
n

) n∑

i=ϭ

i−
(
ϭϲ∆x
nϮ

) n∑

i=ϭ

iϮ

=

(
ϭϲ∆x
n

)

· n(n+ ϭ)
Ϯ

−
(
ϭϲ∆x
nϮ

)
n(n+ ϭ)(Ϯn+ ϭ)

ϲ
( recall
∆x = ϰ/n

)

=
ϯϮ(n+ ϭ)

n
− ϯϮ(n+ ϭ)(Ϯn+ ϭ)

ϯnϮ
(now simplify)

=
ϯϮ
ϯ

(

ϭ− ϭ
nϮ

)

The result is an amazing, easy to use formula. To approximate the definite
integral with ϭϬ equally spaced subintervals and the Right Hand Rule, set n = ϭϬ
and compute

∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈ ϯϮ

ϯ

(

ϭ− ϭ
ϭϬϮ

)

= ϭϬ.ϱϲ.

Recall how earlier we approximated the definite integral with ϰ subintervals;
with n = ϰ, the formula gives ϭϬ, our answer as before.

It is noweasy to approximate the integralwith ϭ,ϬϬϬ,ϬϬϬ subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of

Notes:
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ϱ.ϯ Riemann Sums

ϭϬ.ϲϲϲϲϲϲϲϳ. (The actual answer is ϭϬ.ϲϲϲϲϲϲϲϲϲϲϱϲ.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that

∫ ϰ

Ϭ
(ϰx− xϮ) dx ≈ ϯϮ

ϯ

(

ϭ− ϭ
nϮ

)

.

Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ ϰ
Ϭ (ϰx− xϮ) dx. That is,

∫ ϰ

Ϭ
(ϰx− xϮ) dx = lim

n→∞
ϯϮ
ϯ

(

ϭ− ϭ
nϮ

)

=
ϯϮ
ϯ

(ϭ− Ϭ)

=
ϯϮ
ϯ

= ϭϬ.ϲ

This is a fantasƟc result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximaƟon of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

Example ϭϮϰ ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ ϱ
−ϭ x

ϯ dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea ϴ, we have ∆x = ϱ−(−ϭ)
n = ϲ/n. We

have xi = (−ϭ) + (i − ϭ)∆x; as the Right Hand Rule uses xi+ϭ, we have xi+ϭ =
(−ϭ) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:
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Figure ϱ.Ϯϭ: ApproximaƟng
∫ ϱ
−ϭ x

ϯ dx us-
ing the Right Hand Rule and ϭϬ evenly
spaced subintervals.

Chapter ϱ IntegraƟon

plificaƟons):
∫ ϱ

−ϭ
xϯ dx ≈

n∑

i=ϭ

f(xi+ϭ)∆x

=

n∑

i=ϭ

f(−ϭ+ i∆x)∆x

=
n∑

i=ϭ

(−ϭ+ i∆x)ϯ∆x

=
n∑

i=ϭ

(
(i∆x)ϯ − ϯ(i∆x)Ϯ + ϯi∆x− ϭ

)
∆x (now distribute∆x)

=

n∑

i=ϭ

(
iϯ∆xϰ − ϯiϮ∆xϯ + ϯi∆xϮ −∆x

)
(now split up summaƟon)

= ∆xϰ
n∑

i=ϭ

iϯ − ϯ∆xϯ
n∑

i=ϭ

iϮ + ϯ∆xϮ
n∑

i=ϭ

i−
n∑

i=ϭ

∆x

= ∆xϰ
(
n(n+ ϭ)

Ϯ

)Ϯ

− ϯ∆xϯ
n(n+ ϭ)(Ϯn+ ϭ)

ϲ
+ ϯ∆xϮ

n(n+ ϭ)
Ϯ

− n∆x

(use∆x = ϲ/n)

=
ϭϮϵϲ
nϰ

· n
Ϯ(n+ ϭ)Ϯ

ϰ
− ϯ

Ϯϭϲ
nϯ

· n(n+ ϭ)(Ϯn+ ϭ)
ϲ

+ ϯ
ϯϲ
nϮ

n(n+ ϭ)
Ϯ

− ϲ

(now do a sizable amount of algebra to simplify)

= ϭϱϲ+
ϯϳϴ
n

+
Ϯϭϲ
nϮ

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using ϭϬ
subintervals, we have an approximaƟon of ϭϵϱ.ϵϲ (these rectangles are shown
in Figure ϱ.Ϯϭ). Using n = ϭϬϬ gives an approximaƟon of ϭϱϵ.ϴϬϮ.

Now find the exact answer using a limit:
∫ ϱ

−ϭ
xϯ dx = lim

n→∞

(

ϭϱϲ+
ϯϳϴ
n

+
Ϯϭϲ
nϮ

)

= ϭϱϲ.

Limits of Riemann Sums

We have used limits to evaluate exactly given definite limits. Will this al-
ways work? We will show, given not–very–restricƟve condiƟons, that yes, it will
always work.

Notes:
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ϱ.ϯ Riemann Sums

The previous two examples demonstrated how an expression such as

n∑

i=ϭ

f(xi+ϭ)∆x

can be rewriƩen as an expression explicitly involving n, such as ϯϮ/ϯ(ϭ− ϭ/nϮ).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=ϭ

f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,

• SR(n) =
n∑

i=ϭ

f(xi+ϭ)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =
n∑

i=ϭ

f
(
xi + xi+ϭ

Ϯ

)

∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > Ϭ,
there exists N > Ϭ such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums where defined in DefiniƟon Ϯϭ.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notaƟon of DefiniƟon Ϯϭ, let ∆xi denote the length of
the i th subinterval in a parƟƟon of [a, b]. Now let ||∆x|| represent the length
of the largest subinterval in the parƟƟon: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be parƟƟoned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the parƟƟon is growing to

Notes:
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Chapter ϱ IntegraƟon

infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→Ϭ

n∑

i=ϭ

f(ci)∆xi

as “the limit of the sum of rectangles, where the width of each rectangle can be
different but geƫng small, and the height of each rectangle is not necessarily
determined by a parƟcular rule.” The theorem states that this Riemann Sum
also gives the value of the definite integral of f over [a, b].

Theorem ϯϴ Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

ϭ. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑

i=ϭ

f(ci)∆x,

Ϯ. lim
n→∞

n∑

i=ϭ

f(ci)∆x =
∫ b

a
f(x) dx, and

ϯ. lim
∥∆x∥→Ϭ

n∑

i=ϭ

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the LeŌHand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

Notes:
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ϱ.ϯ Riemann Sums

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.

Notes:

ϮϮϱ



Exercises ϱ.ϯ
Terms and Concepts

ϭ. A fundamental calculus technique is to use to re-
fine approximaƟons to get an exact answer.

Ϯ. What is the upper bound in the summaƟon
ϭϰ
∑

i=ϳ

(ϰϴi −

ϮϬϭ)?

ϯ. This secƟon approximates definite integrals using what ge-
ometric shape?

ϰ. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises ϱ – ϭϭ, write out each term of the summaƟon and
compute the sum.

ϱ.
ϰ
∑

i=Ϯ

iϮ

ϲ.
ϯ
∑

i=−ϭ

(ϰi− Ϯ)

ϳ.
Ϯ
∑

i=−Ϯ

sin(πi/Ϯ)

ϴ.
ϱ
∑

i=ϭ

ϭ
i

ϵ.
ϲ
∑

i=ϭ

(−ϭ)ii

ϭϬ.
ϰ
∑

i=ϭ

(

ϭ
i
− ϭ

i+ ϭ

)

ϭϭ.
ϱ
∑

i=Ϭ

(−ϭ)i cos(πi)

In Exercises ϭϮ – ϭϱ, write each sum in summaƟon notaƟon.

ϭϮ. ϯ+ ϲ+ ϵ+ ϭϮ+ ϭϱ

ϭϯ. −ϭ+ Ϭ+ ϯ+ ϴ+ ϭϱ+ Ϯϰ+ ϯϱ+ ϰϴ+ ϲϯ

ϭϰ.
ϭ
Ϯ
+

Ϯ
ϯ
+

ϯ
ϰ
+

ϰ
ϱ

ϭϱ. ϭ− e+ eϮ − eϯ + eϰ

In Exercises ϭϲ – ϮϮ, evaluate the summaƟon using Theorem
ϯϳ.

ϭϲ.
Ϯϱ
∑

i=ϭ

i

ϭϳ.
ϭϬ
∑

i=ϭ

(ϯiϮ − Ϯi)

ϭϴ.
ϭϱ
∑

i=ϭ

(Ϯiϯ − ϭϬ)

ϭϵ.
ϭϬ
∑

i=ϭ

(−ϰiϯ + ϭϬiϮ − ϳi+ ϭϭ)

ϮϬ.
ϭϬ
∑

i=ϭ

(iϯ − ϯiϮ + Ϯi+ ϳ)

Ϯϭ. ϭ+ Ϯ+ ϯ+ . . .+ ϵϵ+ ϭϬϬ

ϮϮ. ϭ+ ϰ+ ϵ+ . . .+ ϯϲϭ+ ϰϬϬ

Theorem ϯϳ states
n
∑

i=ϭ

ai =
k
∑

i=ϭ

ai +
n
∑

i=k+ϭ

ai , so

n
∑

i=k+ϭ

ai =
n
∑

i=ϭ

ai −
k
∑

i=ϭ

ai .

Use this fact, along with other parts of Theorem ϯϳ, to eval-
uate the summaƟons given in Exercises Ϯϯ – Ϯϲ.

Ϯϯ.
ϮϬ
∑

i=ϭϭ

i

Ϯϰ.
Ϯϱ
∑

i=ϭϲ

iϯ

Ϯϱ.
ϭϮ
∑

i=ϳ

ϰ

Ϯϲ.
ϭϬ
∑

i=ϱ

ϰiϯ

ϮϮϲ



In Exercises Ϯϳ – ϯϮ, a definite integral
∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

Ϯϳ.
∫ ϯ

−ϯ
xϮ dx, with ϲ rectangles using the LeŌ Hand Rule.

Ϯϴ.
∫ Ϯ

Ϭ
(ϱ− xϮ) dx, with ϰ rectangles using the Midpoint Rule.

Ϯϵ.
∫ π

Ϭ
sin x dx, with ϲ rectangles using the Right Hand Rule.

ϯϬ.
∫ ϯ

Ϭ
Ϯx dx, with ϱ rectangles using the LeŌ Hand Rule.

ϯϭ.
∫ Ϯ

ϭ
ln x dx, with ϯ rectangles using the Midpoint Rule.

ϯϮ.
∫ ϵ

ϭ

ϭ
x
dx, with ϰ rectangles using the Right Hand Rule.

In Exercises ϯϯ – ϯϴ, a definite integral
∫ b

a
f(x) dx is given. As demonstrated in Examples ϭϮϯ

and ϭϮϰ, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.

(b) Evaluate the formula using n = ϭϬ, ϭϬϬ and ϭ, ϬϬϬ.

(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

ϯϯ.
∫ ϭ

Ϭ
xϯ dx, using the Right Hand Rule.

ϯϰ.
∫ ϭ

−ϭ
ϯxϮ dx, using the LeŌ Hand Rule.

ϯϱ.
∫ ϯ

−ϭ
(ϯx− ϭ) dx, using the Midpoint Rule.

ϯϲ.
∫ ϰ

ϭ
(ϮxϮ − ϯ) dx, using the LeŌ Hand Rule.

ϯϳ.
∫ ϭϬ

−ϭϬ
(ϱ− x) dx, using the Right Hand Rule.

ϯϴ.
∫ ϭ

Ϭ
(xϯ − xϮ) dx, using the Right Hand Rule.

Review

In Exercises ϯϵ – ϰϰ, find an anƟderivaƟve of the given func-
Ɵon.

ϯϵ. f(x) = ϱ secϮ x

ϰϬ. f(x) =
ϳ
x

ϰϭ. g(t) = ϰtϱ − ϱtϯ + ϴ

ϰϮ. g(t) = ϱ · ϴt

ϰϯ. g(t) = cos t+ sin t

ϰϰ. f(x) =
ϭ√
x

ϮϮϳ
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Figure ϱ.ϮϮ: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.
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ϱ.ϰ The Fundamental Theorem of Calculus

Let f(t)be a conƟnuous funcƟondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this concept into a funcƟon by leƫng
the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure ϱ.ϮϮ. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = Ϭ since

∫ a
a f(t) dt = Ϭ.

We can also apply calculus ideas to F(x); in parƟcular, we can compute its
derivaƟve. While thismay seem like an innocuous thing to do, it has far–reaching
implicaƟons, as demonstrated by the fact that the result is given as an important
theorem.

Theorem ϯϵ The Fundamental Theorem of Calculus, Part ϭ

Let f be conƟnuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

IniƟally this seems simple, as demonstrated in the following example.

Example ϭϮϱ Using the Fundamental Theorem of Calculus, Part ϭ

Let F(x) =
∫ x

−ϱ
(tϮ + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
xϮ + sin x.

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of xϮ + sin x! Therefore, F(x) = ϭ

ϯx
ϯ − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−ϱ) = Ϭ, which allows us
to compute C. In this case, C = cos(−ϱ) + ϭϮϱ

ϯ .)

We have done more than found a complicated way of compuƟng an an-
ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:
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ϱ.ϰ The Fundamental Theorem of Calculus

the properƟes of the definite integral found in Theorem ϯϲ, we know
∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves! This is the second part of the
Fundamental Theorem of Calculus.

Theorem ϰϬ The Fundamental Theorem of Calculus, Part Ϯ

Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then
∫ b

a
f(x) dx = F(b)− F(a).

Example ϭϮϲ Using the Fundamental Theorem of Calculus, Part Ϯ
We spent a great deal of Ɵme in the previous secƟon studying

∫ ϰ
Ϭ (ϰx − xϮ) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = ϰx− xϮ. All anƟderiva-
Ɵves of f have the form F(x) = ϮxϮ − ϭ

ϯx
ϯ + C; for simplicity, choose C = Ϭ.

The Fundamental Theorem of Calculus states
∫ ϰ

Ϭ
(ϰx− xϮ) dx = F(ϰ)− F(Ϭ) =

(
Ϯ(ϰ)Ϯ − ϭ

ϯ
ϰϯ
)
−
(
Ϭ− Ϭ

)
= ϯϮ− ϲϰ

ϯ
= ϯϮ/ϯ.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work.

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) − F(a), the notaƟon F(x)
∣
∣
∣

b

a
is used. Thus the soluƟon to Example ϭϮϲ

would be wriƩen as:
∫ ϰ

Ϭ
(ϰx− xϮ) dx =

(

ϮxϮ − ϭ
ϯ
xϯ
)∣
∣
∣
∣

ϰ

Ϭ
=
(
Ϯ(ϰ)Ϯ − ϭ

ϯ
ϰϯ
)
−
(
Ϭ− Ϭ

)
= ϯϮ/ϯ.

Notes:
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Chapter ϱ IntegraƟon

The Constant C: Any anƟderivaƟve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluaƟng F(b) − F(a), so it does not maƩer what value is picked. This being
the case, we might as well let C = Ϭ.

Example ϭϮϳ Using the Fundamental Theorem of Calculus, Part Ϯ
Evaluate the following definite integrals.

ϭ.
∫ Ϯ

−Ϯ
xϯ dx Ϯ.

∫ π

Ϭ
sin x dx ϯ.

∫ ϱ

Ϭ
et dt ϰ.

∫ ϵ

ϰ

√
u du ϱ.

∫ ϱ

ϭ
Ϯ dx

SÊ½çã®ÊÄ

ϭ.
∫ Ϯ

−Ϯ
xϯ dx =

ϭ
ϰ
xϰ
∣
∣
∣
∣

Ϯ

−Ϯ
=

(
ϭ
ϰ
Ϯϰ
)

−
(
ϭ
ϰ
(−Ϯ)ϰ

)

= Ϭ.

Ϯ.
∫ π

Ϭ
sin x dx = − cos x

∣
∣
∣

π

Ϭ
= − cos π −

(
− cos Ϭ

)
= ϭ+ ϭ = Ϯ.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is Ϯ.)

ϯ.
∫ ϱ

Ϭ
et dt = et

∣
∣
∣

ϱ

Ϭ
= eϱ − eϬ = eϱ − ϭ ≈ ϭϰϳ.ϰϭ.

ϰ.
∫ ϵ

ϰ

√
u du =

∫ ϵ

ϰ
u

ϭ
Ϯ du =

Ϯ
ϯ
u

ϯ
Ϯ

∣
∣
∣
∣

ϵ

ϰ
=

Ϯ
ϯ

(

ϵ
ϯ
Ϯ − ϰ

ϯ
Ϯ

)

=
Ϯ
ϯ
(
Ϯϳ− ϴ

)
=

ϯϴ
ϯ
.

ϱ.
∫ ϱ

ϭ
Ϯ dx = Ϯx

∣
∣
∣

ϱ

ϭ
= Ϯ(ϱ)− Ϯ = Ϯ(ϱ− ϭ) = ϴ.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (ϱ − ϭ) = ϰ and height Ϯ.
NoƟce how the evaluaƟon of the definite integral led to Ϯ(ϰ) = ϴ.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

Understanding MoƟon with the Fundamental Theorem of Calcu-
lus

We established, starƟng with Key Idea ϭ, that the derivaƟve of a posiƟon
funcƟon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an ac-
celeraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
∫ b

a
v(t) dtmean?

Notes:

ϮϯϬ



ϱ.ϰ The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that
∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

Example ϭϮϴ Finding displacement
A ball is thrown straight up with velocity given by v(t) = −ϯϮt + ϮϬŌ/s, where

t is measured in seconds. Find, and interpret,
∫ ϭ

Ϭ
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have
∫ ϭ

Ϭ
v(t) dt =

∫ ϭ

Ϭ
(−ϯϮt+ ϮϬ) dt

= −ϭϲtϮ + ϮϬt
∣
∣
∣

ϭ

Ϭ

= ϰ.

Thus if a ball is thrown straight up into the air with velocity v(t) = −ϯϮt + ϮϬ,
the height of the ball, ϭ second later, will be ϰ feet above the iniƟal height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = Ϭ and t = ϭ is ϰŌ.)

IntegraƟng a rate of change funcƟon gives total change. Velocity is the rate
of posiƟon change; integraƟng velocity gives the total change of posiƟon, i.e.,
displacement.

IntegraƟng a speed funcƟon gives a similar, though different, result. Speed
is also the rate of posiƟon change, but does not account for direcƟon. So inte-
graƟng a speed funcƟon gives total change of posiƟon, without the possibility
of “negaƟve posiƟon change.” Hence the integral of a speed funcƟon gives dis-
tance traveled.

As acceleraƟon is the rate of velocity change, integraƟng an acceleraƟon
funcƟon gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = ϱmiles/hϮ and t is measured in hours,
then ∫ ϯ

Ϭ
a(t) dt = ϭϱ

means the velocity has increased by ϭϱm/h from t = Ϭ to t = ϯ.

Notes:

Ϯϯϭ



Chapter ϱ IntegraƟon

The Fundamental Theorem of Calculus and the Chain Rule

Part ϭ of the Fundamental Theoremof Calculus (FTC) states that given F(x) =
∫ x

a
f(t) dt, F ′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. FuncƟons wriƩen as F(x) =

∫ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(

F
(
g(x)

))

= F ′
(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example ϭϮϵ The FTC, Part ϭ, and the Chain Rule

Find the derivaƟve of F(x) =
∫ xϮ

Ϯ
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

∫ x

Ϯ
ln t dt

composed with g(x) = xϮ; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x)
)
g ′(x)

= ln(g(x))g ′(x)

= ln(xϮ)Ϯx

= Ϯx ln xϮ

Normally, the steps defining G(x) and g(x) are skipped.

PracƟce this once more.

Example ϭϯϬ The FTC, Part ϭ, and the Chain Rule

Find the derivaƟve of F(x) =
∫ ϱ

cos x
tϯ dt.

Notes:
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Figure ϱ.Ϯϰ: Sketching the region en-
closed by y = xϮ + x− ϱ and y = ϯx− Ϯ
in Example ϭϯϭ.

ϱ.ϰ The Fundamental Theorem of Calculus

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

ϱ
tϯ dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F ′(x) = sin x cosϯ x.

Area Between Curves

Consider conƟnuous funcƟons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure ϱ.Ϯϯ. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathemaƟcal notaƟon, the area is

∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

ProperƟes of the definite integral allow us to simplify this expression to

∫ b

a

(
f(x)− g(x)

)
dx.

Theorem ϰϭ Area Between Curves

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b] where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is

∫ b

a

(
f(x)− g(x)

)
dx.

Example ϭϯϭ Finding area between curves
Find the area of the region enclosed by y = xϮ + x− ϱ and y = ϯx− Ϯ.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Figure
ϱ.Ϯϰ. The region whose area we seek is completely bounded by these two
funcƟons; they seem to intersect at x = −ϭ and x = ϯ. To check, set xϮ+x−ϱ =

Notes:

Ϯϯϯ
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∫ ϰ
ϭ f(x) dx; the last rectangle matches the
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Chapter ϱ IntegraƟon

ϯx− Ϯ and solve for x:

xϮ + x− ϱ = ϯx− Ϯ

(xϮ + x− ϱ)− (ϯx− Ϯ) = Ϭ

xϮ − Ϯx− ϯ = Ϭ
(x− ϯ)(x+ ϭ) = Ϭ

x = −ϭ, ϯ.

Following Theorem ϰϭ, the area is

∫ ϯ

−ϭ

(
ϯx− Ϯ− (xϮ + x− ϱ)

)
dx =

∫ ϯ

−ϭ
(−xϮ + Ϯx+ ϯ) dx

=

(

−ϭ
ϯ
xϯ + xϮ + ϯx

)∣
∣
∣
∣

ϯ

−ϭ

= −ϭ
ϯ
(Ϯϳ) + ϵ+ ϵ−

(
ϭ
ϯ
+ ϭ− ϯ

)

= ϭϬ
Ϯ
ϯ
= ϭϬ.ϲ

The Mean Value Theorem and Average Value

Consider the graph of a funcƟon f in Figure ϱ.Ϯϱ and the area defined by
∫ ϰ
ϭ f(x) dx. Three rectangles are drawn in Figure ϱ.Ϯϲ; in (a), the height of the
rectangle is greater than f on [ϭ, ϰ], hence the area of this rectangle is is greater
than

∫ ϰ
Ϭ f(x) dx.

In (b), the height of the rectangle is smaller than f on [ϭ, ϰ], hence the area
of this rectangle is less than

∫ ϰ
ϭ f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ ϰ
Ϭ f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too liƩle,” as in (b), give areas greater/lesser than
∫ ϰ
ϭ f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [ϭ, ϰ], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Notes:

Ϯϯϰ
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Theorem ϰϮ The Mean Value Theorem of IntegraƟon

Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that
∫ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method
of finding it. Theorem ϰϮ is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem Ϯϳ; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example ϭϯϮ Using the Mean Value Theorem
Consider

∫ π

Ϭ sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

Ϭ sin x dx. (This was previously
done in Example ϭϮϳ.)

∫ π

Ϭ
sin x dx = − cos x

∣
∣
∣

π

Ϭ
= Ϯ.

Thus we seek a value c in [Ϭ, π] such that π sin c = Ϯ.

π sin c = Ϯ ⇒ sin c = Ϯ/π ⇒ c = arcsin(Ϯ/π) ≈ Ϭ.ϲϵ.

In Figure ϱ.Ϯϳ sin x is sketched along with a rectangle with height sin(Ϭ.ϲϵ).
The area of the rectangle is the same as the area under sin x on [Ϭ, π].

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider

∫ b
a

(
f(x)− f(c)

)
dx:
∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= Ϭ.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
ϱ.Ϯϴ for an illustraƟon of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

Notes:

Ϯϯϱ
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The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
ϭ

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = xϭ < xϮ < . . . < xn+ϭ = b and choose any ci in
[xi, xi+ϭ]. The average of the numbers f(cϭ), f(cϮ), …, f(cn) is:

ϭ
n

(

f(cϭ) + f(cϮ) + . . .+ f(cn)
)

=
ϭ
n

n∑

i=ϭ

f(ci).

MulƟply this last expression by ϭ in the form of (b−a)
(b−a) :

ϭ
n

n∑

i=ϭ

f(ci) =
n∑

i=ϭ

f(ci)
ϭ
n

=
n∑

i=ϭ

f(ci)
ϭ
n
(b− a)
(b− a)

=
ϭ

b− a

n∑

i=ϭ

f(ci)
b− a
n

=
ϭ

b− a

n∑

i=ϭ

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

ϭ
b− a

n∑

i=ϭ

f(ci)∆x =
ϭ

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definiƟon.

DefiniƟon ϮϮ The Average Value of f on [a, b]

Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
ϭ

b− a

∫ b

a
f(x) dx.

Notes:
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An applicaƟon of this definiƟon is given in the following example.

Example ϭϯϯ Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − ϭ)Ϯ on [Ϭ, ϯ], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

ϭ
ϯ− Ϭ

∫ ϯ

Ϭ
(t− ϭ)Ϯ dt =

ϭ
ϯ

∫ ϯ

Ϭ

(
tϮ − Ϯt+ ϭ

)
dt =

ϭ
ϯ

(
ϭ
ϯ
tϯ − tϮ + t

)∣
∣
∣
∣

ϯ

Ϭ
= ϭ Ō/s.

We can understand the above example through a simpler situaƟon. Suppose
you drove ϭϬϬ miles in Ϯ hours. What was your average speed? The answer is
simple: displacement/Ɵme = ϭϬϬ miles/Ϯ hours = ϱϬ mph.

What was the displacement of the object in Example ϭϯϯ? We calculate this
by integraƟng its velocity funcƟon:

∫ ϯ
Ϭ (t− ϭ)Ϯ dt = ϯ Ō. Its final posiƟon was ϯ

feet from its iniƟal posiƟon aŌer ϯ seconds: its average velocity was ϭ Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. The next chapter is devoted to tech-
niques of finding anƟderivaƟves so that a wide variety of definite integrals can
be evaluated. Before that, the next secƟon explores techniques of approximat-
ing the value of definite integrals beyond using the LeŌ Hand, Right Hand and
Midpoint Rules.

Notes:

Ϯϯϳ



Exercises ϱ.ϰ
Terms and Concepts
ϭ. How are definite and indefinite integrals related?

Ϯ. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

ϯ. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

ϰ. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises ϱ – Ϯϴ, evaluate the definite integral.

ϱ.
∫ ϯ

ϭ
(ϯxϮ − Ϯx+ ϭ) dx

ϲ.
∫ ϰ

Ϭ
(x− ϭ)Ϯ dx

ϳ.
∫ ϭ

−ϭ
(xϯ − xϱ) dx

ϴ.
∫ π

π/Ϯ
cos x dx

ϵ.
∫ π/ϰ

Ϭ
secϮ x dx

ϭϬ.
∫ e

ϭ

ϭ
x
dx

ϭϭ.
∫ ϭ

−ϭ
ϱx dx

ϭϮ.
∫ −ϭ

−Ϯ
(ϰ− Ϯxϯ) dx

ϭϯ.
∫ π

Ϭ
(Ϯ cos x− Ϯ sin x) dx

ϭϰ.
∫ ϯ

ϭ
ex dx

ϭϱ.
∫ ϰ

Ϭ

√
t dt

ϭϲ.
∫ Ϯϱ

ϵ

ϭ√
t
dt

ϭϳ.
∫ ϴ

ϭ

ϯ
√
x dx

ϭϴ.
∫ Ϯ

ϭ

ϭ
x
dx

ϭϵ.
∫ Ϯ

ϭ

ϭ
xϮ

dx

ϮϬ.
∫ Ϯ

ϭ

ϭ
xϯ

dx

Ϯϭ.
∫ ϭ

Ϭ
x dx

ϮϮ.
∫ ϭ

Ϭ
xϮ dx

Ϯϯ.
∫ ϭ

Ϭ
xϯ dx

Ϯϰ.
∫ ϭ

Ϭ
xϭϬϬ dx

Ϯϱ.
∫ ϰ

−ϰ
dx

Ϯϲ.
∫ −ϱ

−ϭϬ
ϯ dx

Ϯϳ.
∫ Ϯ

−Ϯ
Ϭ dx

Ϯϴ.
∫ π/ϯ

π/ϲ
csc x cot x dx

Ϯϵ. Explain why:

(a)
∫ ϭ

−ϭ
xn dx = Ϭ, when n is a posiƟve, odd integer, and

(b)
∫ ϭ

−ϭ
xn dx = Ϯ

∫ ϭ

Ϭ
xn dx when n is a posiƟve, even

integer.

In Exercises ϯϬ – ϯϯ, find a value c guaranteed by the Mean
Value Theorem.

ϯϬ.
∫ Ϯ

Ϭ
xϮ dx

ϯϭ.
∫ Ϯ

−Ϯ
xϮ dx

ϯϮ.
∫ ϭ

Ϭ
ex dx

ϯϯ.
∫ ϭϲ

Ϭ

√
x dx

Ϯϯϴ



In Exercises ϯϰ – ϯϵ, find the average value of the funcƟon on
the given interval.

ϯϰ. f(x) = sin x on [Ϭ, π/Ϯ]

ϯϱ. y = sin x on [Ϭ, π]

ϯϲ. y = x on [Ϭ, ϰ]

ϯϳ. y = xϮ on [Ϭ, ϰ]

ϯϴ. y = xϯ on [Ϭ, ϰ]

ϯϵ. g(t) = ϭ/t on [ϭ, e]

In Exercises ϰϬ – ϰϰ, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given Ɵme interval.

ϰϬ. v(t) = −ϯϮt+ ϮϬŌ/s on [Ϭ, ϱ]

ϰϭ. v(t) = −ϯϮt+ ϮϬϬŌ/s on [Ϭ, ϭϬ]

ϰϮ. v(t) = Ϯtmph on [−ϭ, ϭ]

ϰϯ. v(t) = cos t Ō/s on [Ϭ, ϯπ/Ϯ]

ϰϰ. v(t) = ϰ
√
t Ō/s on [Ϭ, ϭϲ]

In Exercises ϰϱ – ϰϴ, an acceleraƟon funcƟon of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given Ɵme interval.

ϰϱ. a(t) = −ϯϮŌ/sϮ on [Ϭ, Ϯ]

ϰϲ. a(t) = ϭϬŌ/sϮ on [Ϭ, ϱ]

ϰϳ. a(t) = t Ō/sϮ on [Ϭ, Ϯ]

ϰϴ. a(t) = cos t Ō/sϮ on [Ϭ, π]

In Exercises ϰϵ – ϱϮ, sketch the given funcƟons and find the
area of the enclosed region.

ϰϵ. y = Ϯx, y = ϱx, and x = ϯ.

ϱϬ. y = −x+ ϭ, y = ϯx+ ϲ, x = Ϯ and x = −ϭ.

ϱϭ. y = xϮ − Ϯx+ ϱ, y = ϱx− ϱ.

ϱϮ. y = ϮxϮ + Ϯx− ϱ, y = xϮ + ϯx+ ϳ.

In Exercises ϱϯ – ϱϲ, find F ′(x).

ϱϯ. F(x) =
∫ xϯ+x

Ϯ

ϭ
t
dt

ϱϰ. F(x) =
∫ Ϭ

xϯ
tϯ dt

ϱϱ. F(x) =
∫ xϮ

x
(t+ Ϯ) dt

ϱϲ. F(x) =
∫ ex

ln x
sin t dt

Ϯϯϵ
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Figure ϱ.Ϯϵ: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.
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The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the integrand, but only its value when evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomi-
als, nth roots, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We
can compute the derivaƟve of any elementary funcƟon, but there are many ele-
mentary funcƟons of which we cannot compute an anƟderivaƟve. For example,
the following funcƟons do not have anƟderivaƟves that we can express with el-
ementary funcƟons:

e−xϮ , sin(xϯ) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−xϮ is to simply write
∫
e−xϮ dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals:

∫ ϭ

Ϭ
e−xϮ dx,

∫ π
Ϯ

− π
ϰ

sin(xϯ) dx, and
∫ ϰπ

Ϭ.ϱ

sin(x)
x

dx,

as pictured in Figure ϱ.Ϯϵ.

The LeŌ and Right Hand Rule Methods

In SecƟon ϱ.ϯ we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these

Notes:
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Figure ϱ.ϯϬ: ApproximaƟng
∫ ϭ
Ϭ e−xϮ dx in

Example ϭϯϰ.
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subintervals are labeled as

xϭ = a, xϮ = a+∆x, xϯ = a+ Ϯ∆x, . . . , xi = a+ (i− ϭ)∆x, . . . , xn+ϭ = b.

Key Idea ϴ states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=ϭ

f(xi)∆x and to use the Right Hand Rule we use
n∑

i=ϭ

f(xi+ϭ)∆x. We review

the use of these rules in the context of examples.

Example ϭϯϰ ApproximaƟng definite integrals with rectangles

Approximate
∫ ϭ

Ϭ
e−xϮ dx using the LeŌ and Right Hand Rules with ϱ equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [Ϭ, ϭ] into ϱ equally
spaced intervals. We have∆x = ϭ−Ϭ

ϱ = ϭ/ϱ = Ϭ.Ϯ, so

xϭ = Ϭ, xϮ = Ϭ.Ϯ, xϯ = Ϭ.ϰ, xϰ = Ϭ.ϲ, xϱ = Ϭ.ϴ, and xϲ = ϭ.

Using the LeŌ Hand Rule, we have:

n∑

i=ϭ

f(xi)∆x =
(
f(xϭ) + f(xϮ) + f(xϯ) + f(xϰ) + f(xϱ)

)
∆x

=
(
f(Ϭ) + f(Ϭ.Ϯ) + f(Ϭ.ϰ) + f(Ϭ.ϲ) + f(Ϭ.ϴ)

)
∆x

≈
(
ϭ+ Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ)(Ϭ.Ϯ)

≈ Ϭ.ϴϬϴ.

Using the Right Hand Rule, we have:

n∑

i=ϭ

f(xi+ϭ)∆x =
(
f(xϮ) + f(xϯ) + f(xϰ) + f(xϱ) + f(xϲ)

)
∆x

=
(
f(Ϭ.Ϯ) + f(Ϭ.ϰ) + f(Ϭ.ϲ) + f(Ϭ.ϴ) + f(ϭ)

)
∆x

≈
(
Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ+ Ϭ.ϯϲϴ)(Ϭ.Ϯ)

≈ Ϭ.ϲϴϭ.

Figure ϱ.ϯϬ shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in

Notes:

Ϯϰϭ



xi Exact Approx. sin(xϯi )
xϭ −π/ϰ −Ϭ.ϳϴϱ −Ϭ.ϰϲϲ
xϮ −ϳπ/ϰϬ −Ϭ.ϱϱϬ −Ϭ.ϭϲϱ
xϯ −π/ϭϬ −Ϭ.ϯϭϰ −Ϭ.Ϭϯϭ
xϰ −π/ϰϬ −Ϭ.Ϭϳϴϱ Ϭ
xϱ π/ϮϬ Ϭ.ϭϱϳ Ϭ.ϬϬϰ
xϲ π/ϴ Ϭ.ϯϵϯ Ϭ.Ϭϲϭ
xϳ π/ϱ Ϭ.ϲϮϴ Ϭ.Ϯϰϲ
xϴ ϭϭπ/ϰϬ Ϭ.ϴϲϰ Ϭ.ϲϬϭ
xϵ ϳπ/ϮϬ ϭ.ϭϬ Ϭ.ϵϳϭ
xϭϬ ϭϳπ/ϰϬ ϭ.ϯϰ Ϭ.ϲϵϬ
xϭϭ π/Ϯ ϭ.ϱϳ −Ϭ.ϲϳϬ

Figure ϱ.ϯϭ: Table of values used to ap-
proximate

∫
π
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− π
ϰ
sin(xϯ) dx in Example ϭϯϱ.
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Figure ϱ.ϯϮ: ApproximaƟng
∫

π
Ϯ

− π
ϰ
sin(xϯ) dx in Example ϭϯϱ.
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SecƟon ϱ.ϯ. We could also average the LeŌ and Right Hand Rule results together,
giving

Ϭ.ϴϬϴ+ Ϭ.ϲϴϭ
Ϯ

= Ϭ.ϳϰϰϱ.

The actual answer, accurate to ϰ places aŌer the decimal, is Ϭ.ϳϰϲϴ, showing
our average is a good approximaƟon.

Example ϭϯϱ ApproximaƟng definite integrals with rectangles

Approximate
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx using the LeŌ and Right Hand Rules with ϭϬ equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/Ϯ− (−π/ϰ)

ϭϬ
=

ϯπ
ϰϬ

≈ Ϭ.Ϯϯϲ.

It is useful to write out the endpoints of the subintervals in a table; in Figure
ϱ.ϯϭ, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(xϯ) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first ϭϬ values
of sin(xϯi ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last ϭϬ
values of sin(xϯi ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx ≈ (ϭ.ϵϭ)(Ϭ.Ϯϯϲ) = Ϭ.ϰϱϭ.

Right Hand Rule:
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx ≈ (ϭ.ϳϭ)(Ϭ.Ϯϯϲ) = Ϭ.ϰϬϰ.

Average of the LeŌ and Right Hand Rules: Ϭ.ϰϮϳϱ.
The actual answer, accurate to ϯ places aŌer the decimal, is Ϭ.ϰϲϬ. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure ϱ.ϯϮ. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon.

The Trapezoidal Rule

In Example ϭϯϰ we approximated the value of
∫ ϭ

Ϭ
e−xϮ dx with ϱ rectangles

of equal width. Figure ϱ.ϯϬ shows the rectangles used in the LeŌ and Right Hand

Notes:
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Figure ϱ.ϯϯ: ApproximaƟng
∫ ϭ
Ϭ e−xϮ dx us-

ing ϱ trapezoids of equal widths.
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Figure ϱ.ϯϰ: The area of a trapezoid.

xi e−xϮi

Ϭ ϭ
Ϭ.Ϯ Ϭ.ϵϲϭ
Ϭ.ϰ Ϭ.ϴϱϮ
Ϭ.ϲ Ϭ.ϲϵϴ
Ϭ.ϴ Ϭ.ϱϮϳ
ϭ Ϭ.ϯϲϴ

Figure ϱ.ϯϱ: A table of values of e−xϮ .
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Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximaƟons will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure ϱ.ϯϯ, we show the region under f(x) = e−xϮ on [Ϭ, ϭ] ap-
proximated with ϱ trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ ϭ
Ϭ e−xϮ dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure ϱ.ϯϰ. We approxi-

mate
∫ ϭ
Ϭ e−xϮ dx with these trapezoids in the following example.

Example ϭϯϲ ApproximaƟng definite integrals using trapezoids

Use ϱ trapezoids of equal width to approximate
∫ ϭ

Ϭ
e−xϮ dx.

SÊ½çã®ÊÄ To compute the areas of the ϱ trapezoids in Figure ϱ.ϯϯ, it
will again be useful to create a table of values as shown in Figure ϱ.ϯϱ.

The leŌmost trapezoid has legs of length ϭ and Ϭ.ϵϲϭ and a height of Ϭ.Ϯ.
Thus, by our formula, the area of the leŌmost trapezoid is:

ϭ+ Ϭ.ϵϲϭ
Ϯ

(Ϭ.Ϯ) = Ϭ.ϭϵϲϭ.

Moving right, the next trapezoid has legs of length Ϭ.ϵϲϭ and Ϭ.ϴϱϮ and a height
of Ϭ.Ϯ. Thus its area is:

Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ
Ϯ

(Ϭ.Ϯ) = Ϭ.ϭϴϭϯ.

The sum of the areas of all ϱ trapezoids is:

ϭ+ Ϭ.ϵϲϭ
Ϯ

(Ϭ.Ϯ) +
Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ

Ϯ
(Ϭ.Ϯ) +

Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ
Ϯ

(Ϭ.Ϯ)+

Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ
Ϯ

(Ϭ.Ϯ) +
Ϭ.ϱϮϳ+ Ϭ.ϯϲϴ

Ϯ
(Ϭ.Ϯ) = Ϭ.ϳϰϰϱ.

We approximate
∫ ϭ

Ϭ
e−xϮ dx ≈ Ϭ.ϳϰϰϱ.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both ϭ/Ϯ and by∆x = Ϭ.Ϯ. We can factor
these coefficients out, leaving a more concise summaƟon as:

ϭ
Ϯ
(Ϭ.Ϯ)

[

(ϭ+Ϭ.ϵϲϭ)+(Ϭ.ϵϲϭ+Ϭ.ϴϱϮ)+(Ϭ.ϴϱϮ+Ϭ.ϲϵϴ)+(Ϭ.ϲϵϴ+Ϭ.ϱϮϳ)+(Ϭ.ϱϮϳ+Ϭ.ϯϲϴ)
]

.

Notes:

Ϯϰϯ
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

Ϭ.Ϯ
Ϯ

[

ϭ+ Ϯ(Ϭ.ϵϲϭ+ Ϭ.ϴϱϮ+ Ϭ.ϲϵϴ+ Ϭ.ϱϮϳ) + Ϭ.ϯϲϴ
]

.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints xϭ,

xϮ, . . ., xn+ϭ, we again have∆x =
b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑

i=ϭ

f(xi) + f(xi+ϭ)

Ϯ
∆x

=
∆x
Ϯ

n∑

i=ϭ

(
f(xi) + f(xi+ϭ)

)

=
∆x
Ϯ

[

f(xϭ) + Ϯ
n∑

i=Ϯ

f(xi) + f(xn+ϭ)
]

.

Example ϭϯϳ Using the Trapezoidal Rule

Revisit Example ϭϯϱ and approximate
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx using the Trapezoidal Rule

and ϭϬ equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure ϱ.ϯϭ for the table of values of sin(xϯ).
Recall that∆x = ϯπ/ϰϬ ≈ Ϭ.Ϯϯϲ. Thus we have:
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx ≈ Ϭ.Ϯϯϲ
Ϯ

[

− Ϭ.ϰϲϲ+ Ϯ
(

− Ϭ.ϭϲϱ+ (−Ϭ.Ϭϯϭ) + . . .+ Ϭ.ϲϵ
)

+ (−Ϭ.ϲϳ)
]

= Ϭ.ϰϮϳϱ.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely

Notes:
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a parabola that approximates it well on
[ϭ, ϯ].
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renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (ϭϳϭϬ-ϭϳϲϭ), even though others had
used this rule as much as ϭϬϬ years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (xϭ, yϭ), (xϮ, yϮ) and (xϯ, yϯ)whose x–values are equally
spaced and xϭ < xϮ < xϯ. Let f be the quadraƟc funcƟon that goes through these
three points. It is not hard to show that

∫ xϯ

xϭ
f(x) dx =

xϯ − xϭ
ϲ

(
yϭ + ϰyϮ + yϯ

)
. (ϱ.ϰ)

Consider Figure ϱ.ϯϲ. A funcƟon f goes through the ϯ points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that

∫ ϯ

ϭ
g(x) dx =

ϯ− ϭ
ϲ
(
ϯ+ ϰ(ϭ) + Ϯ

)
= ϯ.

Since g is a good approximaƟon for f on [ϭ, ϯ], we can state that
∫ ϯ

ϭ
f(x) dx ≈ ϯ.

Notes:
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xi e−xϮi

Ϭ ϭ
Ϭ.Ϯϱ Ϭ.ϵϯϵ
Ϭ.ϱ Ϭ.ϳϳϵ
Ϭ.ϳϱ Ϭ.ϱϳϬ
ϭ Ϭ.ϯϲϴ

(a)

.....

y = e−xϮ

. Ϭ.Ϯ5. Ϭ.5. Ϭ.75. ϭ.

Ϭ.5
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(b)

Figure ϱ.ϯϳ: A table of values to approxi-
mate

∫ ϭ
Ϭ e−xϮ dx, alongwith a graph of the

funcƟon.

xi sin(xϯi )
−Ϭ.ϳϴϱ −Ϭ.ϰϲϲ
−Ϭ.ϱϱϬ −Ϭ.ϭϲϱ
−Ϭ.ϯϭϰ −Ϭ.Ϭϯϭ
−Ϭ.Ϭϳϴϱ Ϭ
Ϭ.ϭϱϳ Ϭ.ϬϬϰ
Ϭ.ϯϵϯ Ϭ.Ϭϲϭ
Ϭ.ϲϮϴ Ϭ.Ϯϰϲ
Ϭ.ϴϲϰ Ϭ.ϲϬϭ
ϭ.ϭϬ Ϭ.ϵϳϭ
ϭ.ϯϰ Ϭ.ϲϵϬ
ϭ.ϱϳ −Ϭ.ϲϳϬ

Figure ϱ.ϯϴ: Table of values used to ap-
proximate

∫
π
Ϯ

− π
ϰ
sin(xϯ) dx in Example ϭϯϵ.
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NoƟce how the interval [ϭ, ϯ]was split into two subintervals as we needed ϯ
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/Ϯ parabolic curves, using EquaƟon (ϱ.ϰ) to com-
pute the area under these parabolas. Adding up these areas gives the formula:

∫ b

a
f(x)dx ≈ ∆x

ϯ

[

f(xϭ)+ϰf(xϮ)+Ϯf(xϯ)+ϰf(xϰ)+. . .+Ϯf(xn−ϭ)+ϰf(xn)+f(xn+ϭ)
]

.

Note how the coefficients of the terms in the summaƟon have the paƩern ϭ, ϰ,
Ϯ, ϰ, Ϯ, ϰ, . . ., Ϯ, ϰ, ϭ.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example ϭϯϴ Using Simpson’s Rule

Approximate
∫ ϭ

Ϭ
e−xϮ dxusing Simpson’s Rule and ϰ equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure ϱ.ϯϳ(a). Simpson’s Rule states that

∫ ϭ

Ϭ
e−xϮ dx ≈ Ϭ.Ϯϱ

ϯ

[

ϭ+ ϰ(Ϭ.ϵϯϵ) + Ϯ(Ϭ.ϳϳϵ) + ϰ(Ϭ.ϱϳϬ) + Ϭ.ϯϲϴ
]

= Ϭ.ϳϰϲϴϯ.

Recall in Example ϭϯϰwe stated that the correct answer, accurate to ϰ places
aŌer the decimal, was Ϭ.ϳϰϲϴ. Our approximaƟon with Simpson’s Rule, with ϰ
subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule using
ϱ!

Figure ϱ.ϯϳ(b) shows f(x) = e−xϮ along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon.

Example ϭϯϵ Using Simpson’s Rule

Approximate
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx using Simpson’s Rule and ϭϬ equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure ϱ.ϯϴ shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/Ϯ +
π/ϰ)/ϭϬ ≈ Ϭ.Ϯϯϲ.

Notes:
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Figure ϱ.ϯϵ: ApproximaƟng
∫

π
Ϯ

− π
ϰ
sin(xϯ) dx in Example ϭϯϵ with

Simpson’s Rule and ϭϬ equally spaced
intervals.
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Simpson’s Rule states that
∫ π

Ϯ

− π
ϰ

sin(xϯ) dx ≈ Ϭ.Ϯϯϲ
ϯ

[

(−Ϭ.ϰϲϲ) + ϰ(−Ϭ.ϭϲϱ) + Ϯ(−Ϭ.Ϭϯϭ) + . . .

. . .+ Ϯ(Ϭ.ϵϳϭ) + ϰ(Ϭ.ϲϵ) + (−Ϭ.ϲϳ)
]

= Ϭ.ϰϳϬϭ

Recall that the actual value, accurate to ϯ decimal places, is Ϭ.ϰϲϬ. Our ap-
proximaƟon is within one ϭ/ϭϬϬth of the correct value. The graph in Figure ϱ.ϯϵ
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

Key Idea ϵ Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set xϭ = a, xϮ = a+∆x, . . ., xi = a+ (i− ϭ)∆x, xn+ϭ = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[

f(xϭ) + f(xϮ) + . . .+ f(xn)
]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[

f(xϮ) + f(xϯ) + . . .+ f(xn+ϭ)
]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

Ϯ

[

f(xϭ) + Ϯf(xϮ) + Ϯf(xϯ) + . . .+ Ϯf(xn) + f(xn+ϭ)
]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

ϯ

[

f(xϭ) + ϰf(xϮ) + Ϯf(xϯ) + . . .+ ϰf(xn) + f(xn+ϭ)
]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

ϭ. How was the “right” answer computed?

Ϯ. If the right answer can be found, what is the point of approximaƟng?

ϯ. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?

Notes:

Ϯϰϳ
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These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example ϭϯϰ, we
do not know the exact answer, but we know it starts with Ϭ.ϳϰϲϴ. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, ϭϬ, ϭϬϬ, and ϮϬϬ subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within Ϭ.ϭ of the correct answer. If the approximaƟon is ϭ.ϱϴ, then
one knows that the correct answer is between ϭ.ϰϴ and ϭ.ϲϴ. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
ϰϯ states what these bounds are.

Theorem ϰϯ Error Bounds in the Trapezoidal and Simpson’s Rules

ϭ. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trape-

zoidal Rule.

If f has a conƟnuous Ϯnd derivaƟve on [a, b] and M is any upper
bound of

∣
∣f ′′(x)

∣
∣ on [a, b], then

ET ≤
(b− a)ϯ

ϭϮnϮ
M.

Ϯ. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s

Rule.

If f has a conƟnuous ϰth derivaƟve on [a, b] and M is any upper
bound of

∣
∣f (ϰ)

∣
∣ on [a, b], then

ES ≤
(b− a)ϱ

ϭϴϬnϰ
M.

Notes:

Ϯϰϴ



.....

y = e−xϮ
(4xϮ − Ϯ)

.

Ϭ.5

.

ϭ

.−Ϯ.

−ϭ

.

x

.

y

Figure ϱ.ϰϬ: Graphing f ′′(x) in Example
ϭϰϬ to help establish error bounds.
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There are some key things to note about this theorem.

ϭ. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

Ϯ. The error shrinks as more subintervals are used (i.e., as n gets larger).

ϯ. The error in Simpson’s Rule has a term relaƟng to the ϰth derivaƟve of f.
Consider a cubic polynomial: it’s ϰth derivaƟve is Ϭ. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is Ϭ – Simpson’s Rule computes the exact answer!

We revisit Examples ϭϯϲ and ϭϯϴ and compute the error bounds using The-
orem ϰϯ in the following example.

Example ϭϰϬ CompuƟng error bounds

Find the error bounds when approximaƟng
∫ ϭ

Ϭ
e−xϮ dx using the Trapezoidal

Rule and ϱ subintervals, and using Simpson’s Rule with ϰ subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = ϱ:

We start by compuƟng the Ϯnd derivaƟve of f(x) = e−xϮ :

f ′′(x) = e−xϮ(ϰxϮ − Ϯ).

Figure ϱ.ϰϬ shows a graph of f ′′(x) on [Ϭ, ϭ]. It is clear that the largest value of
f ′′, in absolute value, is Ϯ. Thus we letM = Ϯ and apply the error formula from
Theorem ϰϯ.

ET =
(ϭ− Ϭ)ϯ

ϭϮ · ϱϮ · Ϯ = Ϭ.ϬϬϲ.

Our error esƟmaƟon formula states that our approximaƟon of Ϭ.ϳϰϰϱ found
in Example ϭϯϲ is within Ϭ.ϬϬϲϳ of the correct answer, hence we know that

Ϭ.ϳϰϰϱ− Ϭ.ϬϬϲϳ = .ϳϯϳϴ ≤
∫ ϭ

Ϭ
e−xϮ dx ≤ Ϭ.ϳϱϭϮ = Ϭ.ϳϰϰϱ+ Ϭ.ϬϬϲϳ.

We had earlier computed the exact answer, correct to ϰ decimal places, to be
Ϭ.ϳϰϲϴ, affirming the validity of Theorem ϰϯ.

Simpson’s Rule with n = ϰ:
We start by compuƟng the ϰth derivaƟve of f(x) = e−xϮ :

f (ϰ)(x) = e−xϮ(ϭϲxϰ − ϰϴxϮ + ϭϮ).

Notes:

Ϯϰϵ
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Figure ϱ.ϰϭ: Graphing f (ϰ)(x) in Example
ϭϰϬ to help establish error bounds.

Time Speed
(mph)

Ϭ Ϭ
ϭ Ϯϱ
Ϯ ϮϮ
ϯ ϭϵ
ϰ ϯϵ
ϱ Ϭ
ϲ ϰϯ
ϳ ϱϵ
ϴ ϱϰ
ϵ ϱϭ
ϭϬ ϰϯ
ϭϭ ϯϱ
ϭϮ ϰϬ
ϭϯ ϰϯ
ϭϰ ϯϬ
ϭϱ Ϭ
ϭϲ Ϭ
ϭϳ Ϯϴ
ϭϴ ϰϬ
ϭϵ ϰϮ
ϮϬ ϰϬ
Ϯϭ ϯϵ
ϮϮ ϰϬ
Ϯϯ Ϯϯ
Ϯϰ Ϭ

Figure ϱ.ϰϮ: Speed data collected at ϯϬ
second intervals for Example ϭϰϭ.
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Figure ϱ.ϰϭ shows a graph of f (ϰ)(x) on [Ϭ, ϭ]. It is clear that the largest value of
f (ϰ), in absolute value, is ϭϮ. Thus we let M = ϭϮ and apply the error formula
from Theorem ϰϯ.

Es =
(ϭ− Ϭ)ϱ

ϭϴϬ · ϰϰ · ϭϮ = Ϭ.ϬϬϬϮϲ.

Our error esƟmaƟon formula states that our approximaƟonof Ϭ.ϳϰϲϴϯ found
in Example ϭϯϴ is within Ϭ.ϬϬϬϮϲ of the correct answer, hence we know that

Ϭ.ϳϰϲϴϯ− Ϭ.ϬϬϬϮϲ = .ϳϰϲϱϳ ≤
∫ ϭ

Ϭ
e−xϮ dx ≤ Ϭ.ϳϰϳϬϵ = Ϭ.ϳϰϲϴϯ+ Ϭ.ϬϬϬϮϲ.

Once again we affirm the validity of Theorem ϰϯ.

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior andmake approximaƟons based off of this data.
We demonstrate this in an example.

Example ϭϰϭ ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every ϯϬ seconds. The data is given in Figure ϱ.ϰϮ. Approximate the
distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in ϯϬ second increments.

We need to compute∆x = (b − a)/n. Clearly, n = Ϯϰ. What are a and b?
Since we start at Ɵme t = Ϭ, we have that a = Ϭ. The final recorded Ɵme came
aŌer Ϯϰ periods of ϯϬ seconds, which is ϭϮ minutes or ϭ/ϱ of an hour. Thus we
have

∆x =
b− a
n

=
ϭ/ϱ− Ϭ

Ϯϰ
=

ϭ
ϭϮϬ

;
∆x
ϯ

=
ϭ

ϯϲϬ
.

Notes:

ϮϱϬ



ϱ.ϱ Numerical IntegraƟon

Thus the distance traveled is approximately:
∫ Ϭ.Ϯ

Ϭ
v(t) dt ≈ ϭ

ϯϲϬ

[

f(xϭ) + ϰf(xϮ) + Ϯf(xϯ) + · · ·+ ϰf(xn) + f(xn+ϭ)
]

=
ϭ

ϯϲϬ

[

Ϭ+ ϰ · Ϯϱ+ Ϯ · ϮϮ+ · · ·+ Ϯ · ϰϬ+ ϰ · Ϯϯ+ Ϭ
]

≈ ϲ.Ϯϭϲϳ miles.

We approximate the author drove ϲ.Ϯ miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about ϲ.Ϭϱ
miles.)

We started this chapter learning about anƟderivaƟves and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a funcƟon and the x-axis. We defined these areas as the definite integral of
the funcƟon, using a notaƟon very similar to the notaƟon of the indefinite inte-
gral. The Fundamental Theorem of Calculus Ɵed these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using anƟderivaƟves.

We ended the chapter by noƟng that anƟderivaƟves are someƟmes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximaƟons of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter ϳ we’ll see more applicaƟons of the definite integral. Before that, in
Chapter ϲ we’ll learn advanced techniques of integraƟon, analogous to learning
rules like the Product, QuoƟent and Chain Rules of differenƟaƟon.

Notes:

Ϯϱϭ



Exercises ϱ.ϱ
Terms and Concepts

ϭ. T/F: Simpson’s Rule is a method of approximaƟng an-
ƟderivaƟves.

Ϯ. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

ϯ. Why are the LeŌ and Right Hand Rules rarely used?

Problems
In Exercises ϰ – ϭϭ, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = ϰ.

(b) Approximate the definite integral with Simpson’s Rule
and n = ϰ.

(c) Find the exact value of the integral.

ϰ.
∫ ϭ

−ϭ
xϮ dx

ϱ.
∫ ϭϬ

Ϭ
ϱx dx

ϲ.
∫ π

Ϭ
sin x dx

ϳ.
∫ ϰ

Ϭ

√
x dx

ϴ.
∫ ϯ

Ϭ
(xϯ + ϮxϮ − ϱx+ ϳ) dx

ϵ.
∫ ϭ

Ϭ
xϰ dx

ϭϬ.
∫ Ϯπ

Ϭ
cos x dx

ϭϭ.
∫ ϯ

−ϯ

√
ϵ− xϮ dx

In Exercises ϭϮ – ϭϵ, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = ϲ.

ϭϮ.
∫ ϭ

Ϭ
cos
(

xϮ
)

dx

ϭϯ.
∫ ϭ

−ϭ
ex

Ϯ
dx

ϭϰ.
∫ ϱ

Ϭ

√
xϮ + ϭ dx

ϭϱ.
∫ π

Ϭ
x sin x dx

ϭϲ.
∫ π/Ϯ

Ϭ

√
cos x dx

ϭϳ.
∫ ϰ

ϭ
ln x dx

ϭϴ.
∫ ϭ

−ϭ

ϭ
sin x+ Ϯ

dx

ϭϵ.
∫ ϲ

Ϭ

ϭ
sin x+ Ϯ

dx

In Exercises ϮϬ – Ϯϯ, find n such that the error in approximat-
ing the given definite integral is less than Ϭ.ϬϬϬϭwhen using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

ϮϬ.
∫ π

Ϭ
sin x dx

Ϯϭ.
∫ ϰ

ϭ

ϭ√
x
dx

ϮϮ.
∫ π

Ϭ
cos
(

xϮ
)

dx

Ϯϯ.
∫ ϱ

Ϭ
xϰ dx

In Exercises Ϯϰ – Ϯϱ, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
ϭ cm increments, and

(b) where the measurements are in hundreds of yards,
taken in ϭϬϬ yd increments.

Ϯϰ. ..

ϰ.
ϳ

.

ϲ.
ϯ

. ϲ.
9

. ϲ.
ϲ.

ϱ.
1

ϮϱϮ
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The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of a wide variety of funcƟons.

ϲ.ϭ SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (xϮ + ϯx − ϱ)ϭϬ. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = ϭϬ(xϮ + ϯx− ϱ)ϵ · (Ϯx+ ϯ) = (ϮϬx+ ϯϬ)(xϮ + ϯx− ϱ)ϵ.

Now consider this: What is
∫
(ϮϬx+ ϯϬ)(xϮ + ϯx− ϱ)ϵ dx? We have the answer

in front of us;
∫

(ϮϬx+ ϯϬ)(xϮ + ϯx− ϱ)ϵ dx = (xϮ + ϯx− ϱ)ϭϬ + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form
∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,
∫
(ϮϬx + ϯϬ)(xϮ + ϯx − ϱ)ϵ dx. Arguably the most “complicated” part of the

integrand is (xϮ + ϯx − ϱ)ϵ. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = xϮ + ϯx− ϱ. Thus

(xϮ + ϯx− ϱ)ϵ = uϵ.

We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (Ϯx+ ϯ)dx.
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Keep inmind that (Ϯx+ϯ) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:

∫

(ϮϬx+ ϯϬ)(xϮ + ϯx− ϱ)ϵ dx =
∫

ϭϬ(Ϯx+ ϯ)(xϮ + ϯx− ϱ)ϵ dx

=

∫

ϭϬ(xϮ + ϯx− ϱ
︸ ︷︷ ︸

u

)ϵ (Ϯx+ ϯ) dx
︸ ︷︷ ︸

du

=

∫

ϭϬuϵ du

= uϭϬ + C (replace u with xϮ + ϯx − ϱ)

= (xϮ + ϯx− ϱ)ϭϬ + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(

F
(
g(x)

))

= F ′(g(x))g ′(x).

Thus
∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(

F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as

∫

F ′(g(x))g ′(x) dx =
∫

F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Notes:

Ϯϱϲ
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Theorem ϰϰ IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I contained in the domain of F. Then

∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and
∫

F ′(g(x))g ′(x) dx =
∫

F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example ϭϰϮ IntegraƟng by subsƟtuƟon

Evaluate
∫

x sin(xϮ + ϱ) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(xϮ+ϱ). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = xϮ + ϱ, hence du = Ϯx dx. The integrand has an x dx term, but
not a Ϯx dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by Ϯ:

du = Ϯx dx ⇒ ϭ
Ϯ
du = x dx.

We can now subsƟtute.

∫

x sin(xϮ + ϱ) dx =
∫

sin(xϮ + ϱ
︸ ︷︷ ︸

u

) x dx
︸︷︷︸
ϭ
Ϯ du

=

∫
ϭ
Ϯ
sin u du

Notes:

Ϯϱϳ
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= −ϭ
Ϯ
cos u+ C (now replace u with xϮ + ϱ)

= −ϭ
Ϯ
cos(xϮ + ϱ) + C.

Thus
∫
x sin(xϮ + ϱ) dx = − ϭ

Ϯ cos(x
Ϯ + ϱ) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side.

Example ϭϰϯ IntegraƟng by subsƟtuƟon

Evaluate
∫

cos(ϱx) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = ϱx, we
have du = ϱdx. Since our integrand does not have a ϱdx term, we can divide
the previous equaƟon by ϱ to obtain ϭ

ϱdu = dx. We can now subsƟtute.
∫

cos(ϱx) dx =
∫

cos( ϱx
︸︷︷︸

u

) dx
︸︷︷︸
ϭ
ϱ du

=

∫
ϭ
ϱ
cos u du

=
ϭ
ϱ
sin u+ C

=
ϭ
ϱ
sin(ϱx) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = ϱx). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

Key Idea ϭϬ SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= Ϭ and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result
∫

F ′(ax+ b) dx =
ϭ
a
F(ax+ b) + C.

Thus
∫
sin(ϳx− ϰ) dx = − ϭ

ϳ cos(ϳx− ϰ) + C. Our next example can use Key
Idea ϭϬ, but we will only employ it aŌer going through all of the steps.

Notes:
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Example ϭϰϰ IntegraƟng by subsƟtuƟng a linear funcƟon

Evaluate
∫

ϳ
−ϯx+ ϭ

dx.

SÊ½çã®ÊÄ View this a composiƟon of funcƟons f(g(x)), where f(x) =
ϳ/x and g(x) = −ϯx + ϭ. Employing our understanding of subsƟtuƟon, we let
u = −ϯx + ϭ, the inside funcƟon. Thus du = −ϯdx. The integrand lacks a −ϯ;
hence divide the previous equaƟon by −ϯ to obtain −du/ϯ = dx. We can now
evaluate the integral through subsƟtuƟon.

∫
ϳ

−ϯx+ ϭ
dx =

∫
ϳ
u
du
−ϯ

=
−ϳ
ϯ

∫
du
u

=
−ϳ
ϯ

ln |u|+ C

= −ϳ
ϯ
ln | − ϯx+ ϭ|+ C.

Using Key Idea ϭϬ is faster, recognizing that u is linear and a = −ϯ. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut.

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

Example ϭϰϱ IntegraƟng by subsƟtuƟon

Evaluate
∫

sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:

∫

sin x cos x dx =
∫

u du

=
ϭ
Ϯ
uϮ + C

=
ϭ
Ϯ
sinϮ x+ C.

Notes:
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

Example ϭϰϲ IntegraƟng by subsƟtuƟon

Evaluate
∫

x
√
x+ ϯ dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + ϯ.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ ϯ dx =

∫

x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+ϯ, we can also state that u−ϯ = x. Thus we can replace
x in the integrand with u− ϯ. It will also be helpful to rewrite

√
u as u ϭ

Ϯ .
∫

x
√
x+ ϯ dx =

∫

(u− ϯ)u
ϭ
Ϯ du

=

∫
(
u

ϯ
Ϯ − ϯu

ϭ
Ϯ
)
du

=
Ϯ
ϱ
u

ϱ
Ϯ − Ϯu

ϯ
Ϯ + C

=
Ϯ
ϱ
(x+ ϯ)

ϱ
Ϯ − Ϯ(x+ ϯ)

ϯ
Ϯ + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example ϭϰϳ IntegraƟng by subsƟtuƟon

Evaluate
∫

ϭ
x ln x

dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example ϭϰϲ
is useful here: choose something for u and consider what this implies du must

Notes:
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = ϭ/xmakes du = −ϭ/xϮ dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = ϭ/x dx, which is part of the integrand. Thus:

∫
ϭ

x ln x
dx =

∫
ϭ
ln x
︸︷︷︸

ϭ/u

ϭ
x
dx

︸︷︷︸

du

=

∫
ϭ
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct.

Integrals Involving Trigonometric FuncƟons

SecƟon ϲ.ϯ delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

Example ϭϰϴ IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x

Evaluate
∫

tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the ϭ/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have

Notes:
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫

tan x dx =
∫

sin x
cos x

dx

=

∫
ϭ

cos x
︸︷︷︸

u

sin x dx
︸ ︷︷ ︸

−du

=

∫ −ϭ
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−ϭ inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−ϭ|+ C

= ln
∣
∣
∣
∣

ϭ
cos x

∣
∣
∣
∣
+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example ϭϰϵ IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x

Evaluate
∫

sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “ϭ” so that we see how to integrate more clearly. In this case, we write
“ϭ” as

ϭ =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫

sec x dx =
∫

sec x · sec x+ tan x
sec x+ tan x

dx

=

∫
secϮ x+ sec x tan x

sec x+ tan x
dx.

Notes:
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Now let u = sec x + tan x; this means du = (sec x tan x + secϮ x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples ϭϰϴ and ϭϰϵ to find
anƟderivaƟves of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

Theorem ϰϱ AnƟderivaƟves of Trigonometric FuncƟons

ϭ.
∫

sin x dx = − cos x+ C

Ϯ.
∫

cos x dx = sin x+ C

ϯ.
∫

tan x dx = − ln | cos x|+C

ϰ.
∫

csc x dx = − ln | csc x+ cot x|+ C

ϱ.
∫

sec x dx = ln | sec x+ tan x|+ C

ϲ.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example ϭϱϬ IntegraƟon by subsƟtuƟon: powers of cos x and sin x

Evaluate
∫

cosϮ x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons as cosϮ x =
(
cos x

)Ϯ.
However, seƫng u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cosϮ x (per-
haps consult the back of this text for this formula), which states

cosϮ x =
ϭ+ cos(Ϯx)

Ϯ
.

The right hand side of this equaƟon is not difficult to integrate. We have:
∫

cosϮ x dx =
∫

ϭ+ cos(Ϯx)
Ϯ

dx

=

∫ (
ϭ
Ϯ
+

ϭ
Ϯ
cos(Ϯx)

)

dx.

Notes:
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Now use Key Idea ϭϬ:

=
ϭ
Ϯ
x+

ϭ
Ϯ
sin(Ϯx)

Ϯ
+ C

=
ϭ
Ϯ
x+

sin(Ϯx)
ϰ

+ C.

We’ll make significant use of this power–reducing technique in future secƟons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

Example ϭϱϭ IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

xϯ + ϰxϮ + ϴx+ ϱ
xϮ + Ϯx+ ϭ

dx.

SÊ½çã®ÊÄ One may try to start by seƫng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when xϮ + Ϯx+ ϭ is divided
into xϯ + ϰxϮ + ϴx+ ϱ, it goes in x+ Ϯ Ɵmes with a remainder of ϯx+ ϯ. Thus

xϯ + ϰxϮ + ϴx+ ϱ
xϮ + Ϯx+ ϭ

= x+ Ϯ+
ϯx+ ϯ

xϮ + Ϯx+ ϭ
.

IntegraƟng x + Ϯ is simple. The fracƟon can be integrated by seƫng u = xϮ +
Ϯx+ ϭ, giving du = (Ϯx+ Ϯ) dx. This is very similar to the numerator. Note that

Notes:
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du/Ϯ = (x+ ϭ) dx and then consider the following:
∫

xϯ + ϰxϮ + ϴx+ ϱ
xϮ + Ϯx+ ϭ

dx =
∫ (

x+ Ϯ+
ϯx+ ϯ

xϮ + Ϯx+ ϭ

)

dx

=

∫

(x+ Ϯ) dx+
∫

ϯ(x+ ϭ)
xϮ + Ϯx+ ϭ

dx

=
ϭ
Ϯ
xϮ + Ϯx+ Cϭ +

∫
ϯ
u
du
Ϯ

=
ϭ
Ϯ
xϮ + Ϯx+ Cϭ +

ϯ
Ϯ
ln |u|+ CϮ

=
ϭ
Ϯ
xϮ + Ϯx+

ϯ
Ϯ
ln |xϮ + Ϯx+ ϭ|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible.

Example ϭϱϮ IntegraƟon by alternate methods

Evaluate
∫

xϮ + Ϯx+ ϯ√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x ϭ

Ϯ and simplify the fracƟon:

xϮ + Ϯx+ ϯ
xϭ/Ϯ

= x
ϯ
Ϯ + Ϯx

ϭ
Ϯ + ϯx−

ϭ
Ϯ .

We can now integrate using the Power Rule:
∫

xϮ + Ϯx+ ϯ
xϭ/Ϯ

dx =
∫ (

x
ϯ
Ϯ + Ϯx

ϭ
Ϯ + ϯx−

ϭ
Ϯ

)

dx

=
Ϯ
ϱ
x

ϱ
Ϯ +

ϰ
ϯ
x

ϯ
Ϯ + ϲx

ϭ
Ϯ + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x ϭ

Ϯ ; therefore

du =
ϭ
Ϯ
x−

ϭ
Ϯ dx =

ϭ
Ϯ
√
x
dx ⇒ Ϯdu =

ϭ√
x
dx.

This gives us
∫

xϮ + Ϯx+ ϯ√
x

dx =
∫

(xϮ + Ϯx+ ϯ) · Ϯ du. What are we to do

with the other x terms? Since u = x ϭ
Ϯ , uϮ = x, etc. We can then replace xϮ and

Notes:
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x with appropriate powers of u. We thus have
∫

xϮ + Ϯx+ ϯ√
x

dx =
∫

(xϮ + Ϯx+ ϯ) · Ϯ du

=

∫

Ϯ(uϰ + ϮuϮ + ϯ) du

=
Ϯ
ϱ
uϱ +

ϰ
ϯ
uϯ + ϲu+ C

=
Ϯ
ϱ
x

ϱ
Ϯ +

ϰ
ϯ
x

ϯ
Ϯ + ϲx

ϭ
Ϯ + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is.

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−ϭ x

)
=

ϭ
ϭ+ xϮ

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−ϭ ϱx

)
=

ϱ
ϭ+ ϮϱxϮ

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule applied to Inverse Trigonometric funcƟons. We
begin with an example.

Example ϭϱϯ IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons

Evaluate
∫

ϭ
Ϯϱ+ xϮ

dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

ϭ
Ϯϱ+ xϮ

=
ϭ

Ϯϱ(ϭ+ xϮ
Ϯϱ )

=
ϭ

Ϯϱ(ϭ+
( x
ϱ

)Ϯ
)

=
ϭ
Ϯϱ

ϭ

ϭ+
( x
ϱ

)Ϯ .

Notes:
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Thus ∫
ϭ

Ϯϱ+ xϮ
dx =

ϭ
Ϯϱ

∫
ϭ

ϭ+
( x
ϱ

)Ϯ dx.

This can be integrated using SubsƟtuƟon. Set u = x/ϱ, hence du = dx/ϱ or
dx = ϱdu. Thus

∫
ϭ

Ϯϱ+ xϮ
dx =

ϭ
Ϯϱ

∫
ϭ

ϭ+
( x
ϱ

)Ϯ dx

=
ϭ
ϱ

∫
ϭ

ϭ+ uϮ
du

=
ϭ
ϱ
tan−ϭ u+ C

=
ϭ
ϱ
tan−ϭ

( x
ϱ

)

+ C

Example ϭϱϯ demonstrates a general technique that can be applied to other
integrands that result in inverse trigonometric funcƟons. The results are sum-
marized here.

Theorem ϰϲ Integrals Involving Inverse Trigonomentric FuncƟons

Let a > Ϭ.

ϭ.
∫

ϭ
aϮ + xϮ

dx =
ϭ
a
tan−ϭ

( x
a

)

+ C

Ϯ.
∫

ϭ√
aϮ − xϮ

dx = sin−ϭ
( x
a

)

+ C

ϯ.
∫

ϭ
x
√
xϮ − aϮ

dx =
ϭ
a
sec−ϭ

( |x|
a

)

+ C

Let’s pracƟce using Theorem ϰϲ.

Example ϭϱϰ IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.

∫
ϭ

ϵ+ xϮ
dx,

∫
ϭ

x
√

xϮ − ϭ
ϭϬϬ

dx and
∫

ϭ√
ϱ− xϮ

dx.

Notes:
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SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem ϰϲ.
∫

ϭ
ϵ+ xϮ

dx =
ϭ
ϯ
tan−ϭ x

ϯ
+ C, as a = ϯ.

∫
ϭ

x
√

xϮ − ϭ
ϭϬϬ

dx = ϭϬ sec−ϭ ϭϬx+ C, as a = ϭ
ϭϬ .

∫
ϭ√

ϱ− xϮ
= sin−ϭ x√

ϱ
+ C, as a =

√
ϱ.

Most applicaƟons of Theorem ϰϲ are not as straighƞorward. The next exam-
ples show some common integrals that can sƟll be approached with this theo-
rem.

Example ϭϱϱ IntegraƟng by subsƟtuƟon: compleƟng the square

Evaluate
∫

ϭ
xϮ − ϰx+ ϭϯ

dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem ϰϲ. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square in the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of ϭ. It will have the form of
xϮ+bx+c. Take ϭ/Ϯ of b, square it, and add/subtract it back into the expression.
I.e.,

xϮ + bx+ c = xϮ + bx+
bϮ

ϰ
︸ ︷︷ ︸

(x+b/Ϯ)Ϯ

−bϮ

ϰ
+ c

=

(

x+
b
Ϯ

)Ϯ

+ c− bϮ

ϰ

In our example, we take half of −ϰ and square it, geƫng ϰ. We add/subtract it
into the denominator as follows:

ϭ
xϮ − ϰx+ ϭϯ

=
ϭ

xϮ − ϰx+ ϰ
︸ ︷︷ ︸

(x−Ϯ)Ϯ

−ϰ+ ϭϯ

=
ϭ

(x− Ϯ)Ϯ + ϵ

Notes:
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We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− Ϯ, but we can employ Key Idea ϭϬ instead. Thus we
have

∫
ϭ

xϮ − ϰx+ ϭϯ
dx =

∫
ϭ

(x− Ϯ)Ϯ + ϵ
dx =

ϭ
ϯ
tan−ϭ x− Ϯ

ϯ
+ C.

Example ϭϱϲ Integrals requiring mulƟple methods

Evaluate
∫

ϰ− x√
ϭϲ− xϮ

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:

∫
ϰ− x√
ϭϲ− xϮ

dx =
∫

ϰ√
ϭϲ− xϮ

dx−
∫

x√
ϭϲ− xϮ

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem ϰϲ;
the second integral is handled by subsƟtuƟon, with u = ϭϲ − xϮ. We handle
each separately.∫

ϰ√
ϭϲ− xϮ

dx = ϰ sin−ϭ x
ϰ
+ C.

∫
x√

ϭϲ− xϮ
dx: Set u = ϭϲ − xϮ, so du = −Ϯxdx and xdx = −du/Ϯ. We

have
∫

x√
ϭϲ− xϮ

dx =
∫ −du/Ϯ√

u

= −ϭ
Ϯ

∫
ϭ√
u
du

= −
√
u+ C

= −
√

ϭϲ− xϮ + C.

Combining these together, we have
∫

ϰ− x√
ϭϲ− xϮ

dx = ϰ sin−ϭ x
ϰ
+
√

ϭϲ− xϮ + C.

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:

Notes:
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ϭ. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

Ϯ. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

ϯ. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣
∣
∣

b

a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem ϰϰ) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem ϰϳ SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then

∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem ϰϳ states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example ϭϱϳ Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ Ϯ

Ϭ
cos(ϯx− ϭ) dx using Theorem ϰϳ.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = ϯx − ϭ,
hence du = ϯdx. As ϯdx does not appear in the integrand, divide the laƩer
equaƟon by ϯ to get du/ϯ = dx.

By seƫng u = ϯx− ϭ, we are implicitly staƟng that g(x) = ϯx− ϭ. Theorem
ϰϳ states that the new lower bound is g(Ϭ) = −ϭ; the new upper bound is

Notes:

ϮϳϬ
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Figure ϲ.ϭ: Graphing the areas defined by
the definite integrals of Example ϭϱϳ.
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y = sin x cos x

.
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Figure ϲ.Ϯ: Graphing the areas defined by
the definite integrals of Example ϭϱϴ.

ϲ.ϭ SubsƟtuƟon

g(Ϯ) = ϱ. We now evaluate the definite integral:
∫ Ϯ

ϭ
cos(ϯx− ϭ) dx =

∫ ϱ

−ϭ
cos u

du
ϯ

=
ϭ
ϯ
sin u

∣
∣
∣

ϱ

−ϭ

=
ϭ
ϯ
(
sin ϱ− sin(−ϭ)

)
≈ −Ϭ.Ϭϯϵ.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure ϲ.ϭ tell more of the story. In (a) the area defined by the
original integrand is shaded, whereas in (b) the area defined by the new inte-
grand is shaded. In this parƟcular situaƟon, the areas look very similar; the new
region is “shorter” but “wider,” giving the same area.

Example ϭϱϴ Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/Ϯ

Ϭ
sin x cos x dx using Theorem ϰϳ.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example ϭϰϱ.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/Ϯ) = Ϭ; the new lower bound is g(Ϭ) = ϭ. Note how
the lower bound is actually larger than the upper bound now. We have

∫ π/Ϯ

Ϭ
sin x cos x dx =

∫ Ϭ

ϭ
−u du (switch bounds & change sign)

=

∫ ϭ

Ϭ
u du

=
ϭ
Ϯ
uϮ
∣
∣
∣

ϭ

Ϭ
= ϭ/Ϯ.

In Figure ϲ.Ϯ we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem ϰϳ guarantees that they have the same area.

IntegraƟon by subsƟtuƟon is a powerful and useful integraƟon technique.
The next secƟon introduces another technique, called IntegraƟon by Parts. As
subsƟtuƟon “undoes” the Chain Rule, integraƟon by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundaƟononwhichmost
other integraƟon techniques are based.

Notes:

Ϯϳϭ



Exercises ϲ.ϭ
Terms and Concepts

ϭ. SubsƟtuƟon “undoes” what derivaƟve rule?

Ϯ. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises ϯ – ϭϰ, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

ϯ.
∫

ϯxϮ
(

xϯ − ϱ
)ϳ dx

ϰ.
∫

(Ϯx− ϱ)
(

xϮ − ϱx+ ϳ
)ϯ dx

ϱ.
∫

x
(

xϮ + ϭ
)ϴ dx

ϲ.
∫

(ϭϮx+ ϭϰ)
(

ϯxϮ + ϳx− ϭ
)ϱ dx

ϳ.
∫

ϭ
Ϯx+ ϳ

dx

ϴ.
∫

ϭ√
Ϯx+ ϯ

dx

ϵ.
∫

x√
x+ ϯ

dx

ϭϬ.
∫

xϯ − x√
x

dx

ϭϭ.
∫

e
√

x
√
x
dx

ϭϮ.
∫

xϰ√
xϱ + ϭ

dx

ϭϯ.
∫ ϭ

x + ϭ
xϮ

dx

ϭϰ.
∫

ln(x)
x

dx

In Exercises ϭϱ – Ϯϯ, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

ϭϱ.
∫

sinϮ(x) cos(x)dx

ϭϲ.
∫

cos(ϯ− ϲx)dx

ϭϳ.
∫

secϮ(ϰ− x)dx

ϭϴ.
∫

sec(Ϯx)dx

ϭϵ.
∫

tanϮ(x) secϮ(x)dx

ϮϬ.
∫

x cos
(

xϮ
)

dx

Ϯϭ.
∫

tanϮ(x)dx

ϮϮ.
∫

cot x dx. Do not just refer to Theorem ϰϱ for the answer;

jusƟfy it through SubsƟtuƟon.

Ϯϯ.
∫

csc x dx. Do not just refer to Theorem ϰϱ for the answer;

jusƟfy it through SubsƟtuƟon.

In Exercises Ϯϰ – ϯϬ, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

Ϯϰ.
∫

eϯx−ϭdx

Ϯϱ.
∫

ex
ϯ
xϮdx

Ϯϲ.
∫

ex
Ϯ−Ϯx+ϭ(x− ϭ)dx

Ϯϳ.
∫

ex + ϭ
ex

dx

Ϯϴ.
∫

ex − e−x

eϮx
dx

Ϯϵ.
∫

ϯϯxdx

ϯϬ.
∫

ϰϮxdx

In Exercises ϯϭ – ϯϰ, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

ϯϭ.
∫

ln x
x

dx

ϯϮ.
∫

(

ln x
)Ϯ

x
dx

ϯϯ.
∫ ln

(

xϯ
)

x
dx

ϮϳϮ



ϯϰ.
∫

ϭ
x ln (xϮ)

dx

In Exercises ϯϱ – ϰϬ, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

ϯϱ.
∫

xϮ + ϯx+ ϭ
x

dx

ϯϲ.
∫

xϯ + xϮ + x+ ϭ
x

dx

ϯϳ.
∫

xϯ − ϭ
x+ ϭ

dx

ϯϴ.
∫

xϮ + Ϯx− ϱ
x− ϯ

dx

ϯϵ.
∫

ϯxϮ − ϱx+ ϳ
x+ ϭ

dx

ϰϬ.
∫

xϮ + Ϯx+ ϭ
xϯ + ϯxϮ + ϯx

dx

In Exercises ϰϭ – ϱϬ, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

ϰϭ.
∫

ϳ
xϮ + ϳ

dx

ϰϮ.
∫

ϯ√
ϵ− xϮ

dx

ϰϯ.
∫

ϭϰ√
ϱ− xϮ

dx

ϰϰ.
∫

Ϯ
x
√
xϮ − ϵ

dx

ϰϱ.
∫

ϱ√
xϰ − ϭϲxϮ

dx

ϰϲ.
∫

x√
ϭ− xϰ

dx

ϰϳ.
∫

ϭ
xϮ − Ϯx+ ϴ

dx

ϰϴ.
∫

Ϯ√
−xϮ + ϲx+ ϳ

dx

ϰϵ.
∫

ϯ√
−xϮ + ϴx+ ϵ

dx

ϱϬ.
∫

ϱ
xϮ + ϲx+ ϯϰ

dx

In Exercises ϱϭ – ϳϱ, evaluate the indefinite integral.

ϱϭ.
∫

xϮ

(xϯ + ϯ)Ϯ
dx

ϱϮ.
∫

(

ϯxϮ + Ϯx
) (

ϱxϯ + ϱxϮ + Ϯ
)ϴ dx

ϱϯ.
∫

x√
ϭ− xϮ

dx

ϱϰ.
∫

xϮ cscϮ
(

xϯ + ϭ
)

dx

ϱϱ.
∫

sin(x)
√

cos(x)dx

ϱϲ.
∫

ϭ
x− ϱ

dx

ϱϳ.
∫

ϳ
ϯx+ Ϯ

dx

ϱϴ.
∫

ϯxϯ + ϰxϮ + Ϯx− ϮϮ
xϮ + ϯx+ ϱ

dx

ϱϵ.
∫

Ϯx+ ϳ
xϮ + ϳx+ ϯ

dx

ϲϬ.
∫

ϵ(Ϯx+ ϯ)
ϯxϮ + ϵx+ ϳ

dx

ϲϭ.
∫ −xϯ + ϭϰxϮ − ϰϲx− ϳ

xϮ − ϳx+ ϭ
dx

ϲϮ.
∫

x
xϰ + ϴϭ

dx

ϲϯ.
∫

Ϯ
ϰxϮ + ϭ

dx

ϲϰ.
∫

ϭ
x
√
ϰxϮ − ϭ

dx

ϲϱ.
∫

ϭ√
ϭϲ− ϵxϮ

dx

ϲϲ.
∫

ϯx− Ϯ
xϮ − Ϯx+ ϭϬ

dx

ϲϳ.
∫

ϳ− Ϯx
xϮ + ϭϮx+ ϲϭ

dx

ϲϴ.
∫

xϮ + ϱx− Ϯ
xϮ − ϭϬx+ ϯϮ

dx

ϲϵ.
∫

xϯ

xϮ + ϵ
dx

ϳϬ.
∫

xϯ − x
xϮ + ϰx+ ϵ

dx

ϳϭ.
∫

sin(x)
cosϮ(x) + ϭ

dx

Ϯϳϯ



ϳϮ.
∫

cos(x)
sinϮ(x) + ϭ

dx

ϳϯ.
∫

cos(x)
ϭ− sinϮ(x)

dx

ϳϰ.
∫

ϯx− ϯ√
xϮ − Ϯx− ϲ

dx

ϳϱ.
∫

x− ϯ√
xϮ − ϲx+ ϴ

dx

In Exercises ϳϲ – ϴϯ, evaluate the definite integral.

ϳϲ.
∫ ϯ

ϭ

ϭ
x− ϱ

dx

ϳϳ.
∫ ϲ

Ϯ
x
√
x− Ϯdx

ϳϴ.
∫ π/Ϯ

−π/Ϯ
sinϮ x cos x dx

ϳϵ.
∫ ϭ

Ϭ
Ϯx(ϭ− xϮ)ϰ dx

ϴϬ.
∫ −ϭ

−Ϯ
(x+ ϭ)ex

Ϯ+Ϯx+ϭ dx

ϴϭ.
∫ ϭ

−ϭ

ϭ
ϭ+ xϮ

dx

ϴϮ.
∫ ϰ

Ϯ

ϭ
xϮ − ϲx+ ϭϬ

dx

ϴϯ.
∫

√
ϯ

ϭ

ϭ√
ϰ− xϮ

dx

Ϯϳϰ



ϲ.Ϯ IntegraƟon by Parts

ϲ.Ϯ IntegraƟon by Parts
Here’s a simple integral that we can’t yet evaluate:

∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that ifu and v are funcƟons of x, then (uv)′ = u ′v+uv ′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives

∫

(uv)′ dx =
∫

(u ′v+ uv ′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u ′v dx+
∫

uv ′ dx.

Solving for the second integral we have
∫

uv ′ dx = uv−
∫

u ′v dx.

Using differenƟal notaƟon, we can write du = u ′(x)dx and dv = v ′(x)dx and
the expression above can be wriƩen as follows:

∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

Theorem ϰϴ IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and
∫ x=b

x=a
u dv = uv

∣
∣
∣

b

a
−
∫ x=b

x=a
v du.

Notes:

Ϯϳϱ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

Let’s try an example to understand our new technique.

Example ϭϱϵ IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right nowwe only know u and dv as shown on the leŌ of Figure ϲ.ϯ; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure ϲ.ϯ: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving
∫

x cos x dx = x sin x−
∫

sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is
∫

x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary.

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we knew how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.

Notes:

Ϯϳϲ



ϲ.Ϯ IntegraƟon by Parts

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

Example ϭϲϬ IntegraƟng using IntegraƟon by Parts

Evaluate
∫

xex dx.

SÊ½çã®ÊÄ The integrand contains anAlgebraic term (x) and an ExponenƟal
term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we choose
u = x and dv = ex dx. Then du = dx and v = ex as indicated by the tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure ϲ.ϰ: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives

∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is
∫

xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term.

Example ϭϲϭ IntegraƟng using IntegraƟon by Parts

Evaluate
∫

xϮ cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = xϮ insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = Ϯx dx and v = sin x as shown
below.

u = xϮ v = ?
du = ? dv = cos x dx

⇒ u = xϮ v = sin x
du = Ϯx dx dv = cos x dx

Figure ϲ.ϱ: Seƫng up IntegraƟon by Parts.

Notes:

Ϯϳϳ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

The IntegraƟon by Parts formula gives
∫

xϮ cos x dx = xϮ sin x−
∫

Ϯx sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = Ϯx and dv = sin x and fill in the rest below.

u = Ϯx v = ?
du = ? dv = sin x dx

⇒ u = Ϯx v = − cos x
du = Ϯ dx dv = sin x dx

Figure ϲ.ϲ: Seƫng up IntegraƟon by Parts (again).

∫

xϮ cos x dx = xϮ sin x−
(

−Ϯx cos x−
∫

−Ϯ cos x dx
)

.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −Ϯ sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is

∫

xϮ cos x dx = xϮ sin x+ Ϯx cos x− Ϯ sin x+ C.

Example ϭϲϮ IntegraƟng using IntegraƟon by Parts

Evaluate
∫

ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure ϲ.ϳ: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields

∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Notes:
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ϲ.Ϯ IntegraƟon by Parts

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s keep working and apply IntegraƟon
by Parts to the new integral, using u = ex and dv = sin x dx. This leads us to the
following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure ϲ.ϴ: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:
∫

ex cos x dx = ex sin x−
(

−ex cos x−
∫

−ex cos x dx
)

= ex sin x+ ex cos x−
∫

ex cos x dx.

It seems we are back right where we started, as the right hand side contains
∫
ex cos x dx. But this is actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

Ϯ
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by Ϯ:

∫

ex cos x dx =
ϭ
Ϯ
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus
∫

ex cos x dx =
ϭ
Ϯ
ex (sin x+ cos x) + C.

Example ϭϲϯ IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x

Evaluate
∫

ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for
integraƟng ln x. That is because ln x can’t easily be integrated with any of the
rules we have learned up to this point. But we can find its anƟderivaƟve by a

Notes:

Ϯϳϵ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

clever applicaƟon of IntegraƟon by Parts. Set u = ln x and dv = dx. This is a
good, sneaky trick to learn as it can help in other situaƟons. This determines
du = (ϭ/x) dx and v = x as shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = ϭ/x dx dv = dx

Figure ϲ.ϵ: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
ϭ
x
dx.

The new integral simplifies to
∫
ϭ dx, which is about as simple as things get. Its

integral is x+ C and our answer is
∫

ln x dx = x ln x− x+ C.

Example ϭϲϰ IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x

Evaluate
∫

arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = ϭ/(ϭ + xϮ) dx and v = x. The IntegraƟon by
Parts formula gives

∫

arctan x dx = x arctan x−
∫

x
ϭ+ xϮ

dx.

The integral on the right can be solved by subsƟtuƟon. Taking u = ϭ + xϮ, we
get du = Ϯx dx. The integral then becomes

∫

arctan x dx = x arctan x− ϭ
Ϯ

∫
ϭ
u
du.

The integral on the right evaluates to ln |u|+ C, which becomes ln(ϭ+ xϮ) + C.
Therefore, the answer is

∫

arctan x dx = x arctan x− ln(ϭ+ xϮ) + C.

Notes:
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ϲ.Ϯ IntegraƟon by Parts

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

Example ϭϲϱ IntegraƟon by Parts aŌer subsƟtuƟon

Evaluate
∫

cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
ϭ/x dx. This seems problemaƟc, as we do not have a ϭ/x in the integrand. But
consider:

du =
ϭ
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example ϭϲϮ. Using the result there, we have:
∫

cos(ln x) dx =
∫

eu cos u du

=
ϭ
Ϯ
eu
(
sin u+ cos u

)
+ C

=
ϭ
Ϯ
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
ϭ
Ϯ
x
(
sin(ln x) + cos(ln x)

)
+ C.

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem

Notes:
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ϰϴ states. We do so in the next example.

Example ϭϲϲ Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ Ϯ

ϭ
xϮ ln x dx.

SÊ½çã®ÊÄ Our mnemonic suggests leƫng u = ln x, hence dv = xϮ dx.
We then get du = (ϭ/x) dx and v = xϯ/ϯ as shown below.

u = ln x v = ?

du = ? dv = xϮ dx
⇒ u = ln x v = xϯ/ϯ

du = ϭ/x dx dv = xϮ dx

Figure ϲ.ϭϬ: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives
∫ Ϯ

ϭ
xϮ ln x dx =

xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
−
∫ Ϯ

ϭ

xϯ

ϯ
ϭ
x
dx

=
xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
−
∫ Ϯ

ϭ

xϮ

ϯ
dx

=
xϯ

ϯ
ln x
∣
∣
∣
∣

Ϯ

ϭ
− xϯ

ϵ

∣
∣
∣
∣

Ϯ

ϭ

=

(
xϯ

ϯ
ln x− xϯ

ϵ

) ∣
∣
∣
∣

Ϯ

ϭ

=

(
ϴ
ϯ
ln Ϯ− ϴ

ϵ

)

−
(
ϭ
ϯ
ln ϭ− ϭ

ϵ

)

=
ϴ
ϯ
ln Ϯ− ϳ

ϵ
≈ ϭ.Ϭϳ.

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
xϯ sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals

∫

xex dx,
∫

xex
Ϯ
dx and

∫

xex
ϯ
dx.

Notes:
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ϲ.Ϯ IntegraƟon by Parts

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

IntegraƟon by Parts is a very useful method, second only to subsƟtuƟon. In
the following secƟons of this chapter, we conƟnue to learn other integraƟon
techniques. The next secƟon focuses on handling integrals containing trigono-
metric funcƟons.

Notes:
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Exercises ϲ.Ϯ
Terms and Concepts
ϭ. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands

that contain products of funcƟons.

Ϯ. T/F: IntegraƟon by Parts can be thought of as the “opposite
of the Chain Rule.”

ϯ. For what is “LIATE” useful?

Problems
In Exercises ϰ – ϯϯ, evaluate the given indefinite integral.

ϰ.
∫

x sin x dx

ϱ.
∫

xe−x dx

ϲ.
∫

xϮ sin x dx

ϳ.
∫

xϯ sin x dx

ϴ.
∫

xex
Ϯ
dx

ϵ.
∫

xϯex dx

ϭϬ.
∫

xe−Ϯx dx

ϭϭ.
∫

ex sin x dx

ϭϮ.
∫

eϮx cos x dx

ϭϯ.
∫

eϮx sin(ϯx) dx

ϭϰ.
∫

eϱx cos(ϱx) dx

ϭϱ.
∫

sin x cos x dx

ϭϲ.
∫

sin−ϭ x dx

ϭϳ.
∫

tan−ϭ(Ϯx) dx

ϭϴ.
∫

x tan−ϭ x dx

ϭϵ.
∫

sin−ϭ x dx

ϮϬ.
∫

x ln x dx

Ϯϭ.
∫

(x− Ϯ) ln x dx

ϮϮ.
∫

x ln(x− ϭ) dx

Ϯϯ.
∫

x ln(xϮ) dx

Ϯϰ.
∫

xϮ ln x dx

Ϯϱ.
∫

(ln x)Ϯ dx

Ϯϲ.
∫

(ln(x+ ϭ))Ϯ dx

Ϯϳ.
∫

x secϮ x dx

Ϯϴ.
∫

x cscϮ x dx

Ϯϵ.
∫

x
√
x− Ϯ dx

ϯϬ.
∫

x
√
xϮ − Ϯ dx

ϯϭ.
∫

sec x tan x dx

ϯϮ.
∫

x sec x tan x dx

ϯϯ.
∫

x csc x cot x dx

In Exercises ϯϰ – ϯϴ, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

ϯϰ.
∫

sin(ln x) dx

ϯϱ.
∫

sin(
√
x) dx

ϯϲ.
∫

ln(
√
x) dx

ϯϳ.
∫

e
√

x dx

Ϯϴϰ



ϯϴ.
∫

eln x dx

In Exercises ϯϵ – ϰϳ, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises ϰ – ϭϮ.

ϯϵ.
∫ π

Ϭ
x sin x dx

ϰϬ.
∫ ϭ

−ϭ
xe−x dx

ϰϭ.
∫ π/ϰ

−π/ϰ
xϮ sin x dx

ϰϮ.
∫ π/Ϯ

−π/Ϯ
xϯ sin x dx

ϰϯ.
∫

√
ln Ϯ

Ϭ
xex

Ϯ
dx

ϰϰ.
∫ ϭ

Ϭ
xϯex dx

ϰϱ.
∫ Ϯ

ϭ
xe−Ϯx dx

ϰϲ.
∫ π

Ϭ
ex sin x dx

ϰϳ.
∫ π/Ϯ

−π/Ϯ
eϮx cos x dx

Ϯϴϱ
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ϲ.ϯ Trigonometric Integrals

FuncƟons involving trigonometric funcƟons are useful as they are good at de-
scribing periodic behavior. This secƟon describes several techniques for finding
anƟderivaƟves of certain combinaƟons of trigonometric funcƟons.

Integrals of the form
∫

sinm x cosn x dx

In learning the technique of SubsƟtuƟon, we saw the integral
∫
sin x cos x dx

in Example ϭϰϱ. The integraƟon was not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is ϭ.

Wegeneralize this integral and consider integrals of the form
∫
sinm x cosn x dx,

where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cosϮ x + sinϮ x = ϭ to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

Key Idea ϭϭ Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnegaƟve integers.

ϭ. Ifm is odd, thenm = Ϯk+ ϭ for some integer k. Rewrite

sinm x = sinϮk+ϭ x = sinϮk x sin x = (sinϮ x)k sin x = (ϭ− cosϮ x)k sin x.

Then
∫

sinm x cosn x dx =
∫

(ϭ− cosϮ x)k sin x cosn x dx = −
∫

(ϭ− uϮ)kun du,

where u = cos x and du = − sin x dx.

Ϯ. If n is odd, then using subsƟtuƟons similar to that outlined above we have
∫

sinm x cosn x dx =
∫

um(ϭ− uϮ)k du,

where u = sin x and du = cos x dx.

ϯ. If bothm and n are even, use the power–reducing idenƟƟes

cosϮ x =
ϭ+ cos(Ϯx)

Ϯ
and sinϮ x =

ϭ− cos(Ϯx)
Ϯ

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.

Notes:
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ϲ.ϯ Trigonometric Integrals

We pracƟce applying Key Idea ϭϭ in the next examples.

Example ϭϲϳ IntegraƟng powers of sine and cosine

Evaluate
∫

sinϱ x cosϴ x dx.

SÊ½çã®ÊÄ The power of the sine term is odd, so we rewrite sinϱ x as

sinϱ x = sinϰ x sin x = (sinϮ x)Ϯ sin x = (ϭ− cosϮ x)Ϯ sin x.

Our integral is now
∫

(ϭ− cosϮ x)Ϯ cosϴ x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subsƟtuƟon and expanding the integrand gives
∫

(ϭ−cosϮ)Ϯ cosϴ x sin x dx = −
∫

(ϭ−uϮ)Ϯuϴ du = −
∫
(
ϭ−ϮuϮ+uϰ

)
uϴ du = −

∫
(
uϴ−ϮuϭϬ+uϭϮ

)
du.

This final integral is not difficult to evaluate, giving

−
∫
(
uϴ − ϮuϭϬ + uϭϮ

)
du = −ϭ

ϵ
uϵ +

Ϯ
ϭϭ

uϭϭ − ϭ
ϭϯ

uϭϯ + C

= −ϭ
ϵ
cosϵ x+

Ϯ
ϭϭ

cosϭϭ x− ϭ
ϭϯ

cosϭϯ x+ C.

Example ϭϲϴ IntegraƟng powers of sine and cosine

Evaluate
∫

sinϱ x cosϵ x dx.

SÊ½çã®ÊÄ Thepowers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea ϭϭ to either power. We choose to
work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cosϵ x as

cosϵ x = cosϴ x cos x

= (cosϮ x)ϰ cos x

= (ϭ− sinϮ x)ϰ cos x

= (ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x) cos x.

We rewrite the integral as
∫

sinϱ x cosϵ x dx =
∫

sinϱ x
(
ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x

)
cos x dx.

Notes:
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Figure ϲ.ϭϭ: A plot of f(x) and g(x) from
Example ϭϲϴ and the Technology Note.
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Now subsƟtute and integrate, using u = sin x and du = cos x dx.
∫

sinϱ x
(

ϭ− ϰ sinϮ x+ ϲ sinϰ x− ϰ sinϲ x+ sinϴ x
)

cos x dx =
∫

uϱ(ϭ− ϰuϮ + ϲuϰ − ϰuϲ + uϴ) du =

∫

(

uϱ − ϰuϳ + ϲuϵ − ϰuϭϭ + uϭϯ
)

du

=
ϭ
ϲ
uϲ − ϭ

Ϯ
uϴ +

ϯ
ϱ
uϭϬ − ϭ

ϯ
uϭϮ +

ϭ
ϭϰ

uϭϰ + C

=
ϭ
ϲ
sinϲ x− ϭ

Ϯ
sinϴ x+

ϯ
ϱ
sinϭϬ x+ . . .

− ϭ
ϯ
sinϭϮ x+

ϭ
ϭϰ

sinϭϰ x+ C.

Technology Note: The work we are doing here can be a bit tedious, but the
skills developed (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

∫
sinϱ x cosϵ x dx as

f(x) = −ϰϱ cos(Ϯx)
ϭϲϯϴϰ

−ϱ cos(ϰx)
ϴϭϵϮ

+
ϭϵ cos(ϲx)
ϰϵϭϱϮ

+
cos(ϴx)
ϰϬϵϲ

− cos(ϭϬx)
ϴϭϵϮϬ

− cos(ϭϮx)
Ϯϰϱϳϲ

− cos(ϭϰx)
ϭϭϰϲϴϴ

,

which clearly has a different form than our answer in Example ϭϲϴ, which is

g(x) =
ϭ
ϲ
sinϲ x− ϭ

Ϯ
sinϴ x+

ϯ
ϱ
sinϭϬ x− ϭ

ϯ
sinϭϮ x+

ϭ
ϭϰ

sinϭϰ x.

Figure ϲ.ϭϭ shows a graph of f and g; they are clearly not equal, but they differ
only by a constant. That is g(x) = f(x) + C for some constant C. So we have
two different anƟderivaƟves of the same funcƟon, meaning both answers are
correct.

Example ϭϲϵ IntegraƟng powers of sine and cosine

Evaluate
∫

cosϰ x sinϮ x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.

∫

cosϰ x sinϮ x dx =
∫ (

ϭ+ cos(Ϯx)
Ϯ

)Ϯ(ϭ− cos(Ϯx)
Ϯ

)

dx

=

∫
ϭ+ Ϯ cos(Ϯx) + cosϮ(Ϯx)

ϰ
· ϭ− cos(Ϯx)

Ϯ
dx

=

∫
ϭ
ϴ
(
ϭ+ cos(Ϯx)− cosϮ(Ϯx)− cosϯ(Ϯx)

)
dx

The cos(Ϯx) term is easy to integrate, especially with Key Idea ϭϬ. The cosϮ(Ϯx)
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cosϯ(Ϯx) term is a cosine funcƟon with an odd
power, requiring a subsƟtuƟon as done before. We integrate each in turn below.

Notes:
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∫

cos(Ϯx) dx =
ϭ
Ϯ
sin(Ϯx) + C.

∫

cosϮ(Ϯx) dx =
∫

ϭ+ cos(ϰx)
Ϯ

dx =
ϭ
Ϯ
(
x+

ϭ
ϰ
sin(ϰx)

)
+ C.

Finally, we rewrite cosϯ(Ϯx) as

cosϯ(Ϯx) = cosϮ(Ϯx) cos(Ϯx) =
(
ϭ− sinϮ(Ϯx)

)
cos(Ϯx).

Leƫng u = sin(Ϯx), we have du = Ϯ cos(Ϯx) dx, hence
∫

cosϯ(Ϯx) dx =
∫
(
ϭ− sinϮ(Ϯx)

)
cos(Ϯx) dx

=

∫
ϭ
Ϯ
(ϭ− uϮ) du

=
ϭ
Ϯ

(

u− ϭ
ϯ
uϯ
)

+ C

=
ϭ
Ϯ

(

sin(Ϯx)− ϭ
ϯ
sinϯ(Ϯx)

)

+ C

Puƫng all the pieces together, we have
∫

cosϰ x sinϮ x dx =
∫

ϭ
ϴ
(
ϭ+ cos(Ϯx)− cosϮ(Ϯx)− cosϯ(Ϯx)

)
dx

=
ϭ
ϴ

[

x+
ϭ
Ϯ
sin(Ϯx)− ϭ

Ϯ
(
x+

ϭ
ϰ
sin(ϰx)

)
− ϭ

Ϯ

(

sin(Ϯx)− ϭ
ϯ
sinϯ(Ϯx)

)]

+ C

=
ϭ
ϴ

[ϭ
Ϯ
x− ϭ

ϴ
sin(ϰx) +

ϭ
ϲ
sinϯ(Ϯx)

]

+ C

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are
important in many applicaƟons including the analysis of sound waves. Integrals
of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx

Notes:
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
ϭ
Ϯ

[

cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]

cos(mx) cos(nx) =
ϭ
Ϯ

[

cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]

sin(mx) cos(nx) =
ϭ
Ϯ

[

sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]

Example ϭϳϬ IntegraƟng products of sin(mx) and cos(nx)

Evaluate
∫

sin(ϱx) cos(Ϯx) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:

∫

sin(ϱx) cos(Ϯx) dx =
∫

ϭ
Ϯ

[

sin(ϯx) + sin(ϳx)
]

dx

= −ϭ
ϲ
cos(ϯx)− ϭ

ϭϰ
cos(ϳx) + C

Integrals of the form
∫

tanm x secn x dx.

When evaluaƟng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a funcƟon using pow-
ers of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = secϮ x,

• d
dx (sec x) = sec x tan x , and

• ϭ+ tanϮ x = secϮ x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a secϮ x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.

Notes:
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Key Idea ϭϮ Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnegaƟve integers.

ϭ. If n is even, then n = Ϯk for some integer k. Rewrite secn x as

secn x = secϮk x = secϮk−Ϯ x secϮ x = (ϭ+ tanϮ x)k−ϭ secϮ x.

Then
∫

tanm x secn x dx =
∫

tanm x(ϭ+ tanϮ x)k−ϭ secϮ x dx =
∫

um(ϭ+ uϮ)k−ϭ du,

where u = tan x and du = secϮ x dx.

Ϯ. Ifm is odd, thenm = Ϯk+ ϭ for some integer k. Rewrite tanm x secn x as

tanm x secn x = tanϮk+ϭ x secn x = tanϮk x secn−ϭ x sec x tan x = (secϮ x− ϭ)k secn−ϭ x sec x tan x.

Then
∫

tanm x secn x dx =
∫

(secϮ x− ϭ)k secn−ϭ x sec x tan x dx =
∫

(uϮ − ϭ)kun−ϭ du,

where u = sec x and du = sec x tan x dx.

ϯ. If n is odd andm is even, thenm = Ϯk for some integer k. Convert tanm x to (secϮ x− ϭ)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = secϮ x dx.

ϰ. Ifm is even and n = Ϭ, rewrite tanm x as

tanm x = tanm−Ϯ x tanϮ x = tanm−Ϯ x(secϮ x− ϭ) = tanm−Ϯ secϮ x− tanm−Ϯ x.

So ∫

tanm x dx =
∫

tanm−Ϯ secϮ x dx
︸ ︷︷ ︸

apply rule #ϭ

−
∫

tanm−Ϯ x dx
︸ ︷︷ ︸

apply rule #ϰ again

.

The techniques described in itemsϭ andϮof Key Idea ϭϮ are relaƟvely straight-
forward, but the techniques in items ϯ and ϰ can be rather tedious. A few exam-
ples will help with these methods.

Notes:
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Example ϭϳϭ IntegraƟng powers of tangent and secant

Evaluate
∫

tanϮ x secϲ x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #ϭ from Key
Idea ϭϮ and pull out a secϮ x in the integrand. We convert the remaining powers
of secant into powers of tangent.

∫

tanϮ x secϲ x dx =
∫

tanϮ x secϰ x secϮ x dx

=

∫

tanϮ x
(
ϭ+ tanϮ x

)Ϯ secϮ x dx

Now subsƟtute, with u = tan x, with du = secϮ x dx.

=

∫

uϮ
(
ϭ+ uϮ

)Ϯ du

We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
ϭ
ϯ
tanϯ x+

Ϯ
ϱ
tanϱ x+

ϭ
ϳ
tanϳ x+ C.

Example ϭϳϮ IntegraƟng powers of tangent and secant

Evaluate
∫

secϯ x dx.

SÊ½çã®ÊÄ We apply rule #ϯ from Key Idea ϭϮ as the power of secant is
odd and the power of tangent is even (Ϭ is an even number). We use IntegraƟon
by Parts; the rule suggests leƫng dv = secϮ x dx, meaning that u = sec x.

u = sec x v = ?

du = ? dv = secϮ x dx
⇒ u = sec x v = tan x

du = sec x tan x dx dv = secϮ x dx

Figure ϲ.ϭϮ: Seƫng up IntegraƟon by Parts.

Employing IntegraƟon by Parts, we have
∫

secϯ x dx =
∫

sec x
︸︷︷︸

u

· secϮ x dx
︸ ︷︷ ︸

dv

= sec x tan x−
∫

sec x tanϮ x dx.

Notes:
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This new integral also requires applying rule #ϯ of Key Idea ϭϮ:

= sec x tan x−
∫

sec x
(
secϮ x− ϭ

)
dx

= sec x tan x−
∫

secϯ x dx+
∫

sec x dx

= sec x tan x−
∫

secϯ x dx+ ln | sec x+ tan x|

In previous applicaƟons of IntegraƟon by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
secϯ x dx to

both sides, giving:

Ϯ
∫

secϯ x dx = sec x tan x+ ln | sec x+ tan x|
∫

secϯ x dx =
ϭ
Ϯ

(

sec x tan x+ ln | sec x+ tan x|
)

+ C

We give one more example.

Example ϭϳϯ IntegraƟng powers of tangent and secant

Evaluate
∫

tanϲ x dx.

SÊ½çã®ÊÄ We employ rule #ϰ of Key Idea ϭϮ.
∫

tanϲ x dx =
∫

tanϰ x tanϮ x dx

=

∫

tanϰ x
(
secϮ x− ϭ

)
dx

=

∫

tanϰ x secϮ x dx−
∫

tanϰ x dx

Integrate the first integral with subsƟtuƟon, u = tan x; integrate the second by
employing rule #ϰ again.

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x tanϮ x dx

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x
(
secϮ x− ϭ

)
dx

=
ϭ
ϱ
tanϱ x−

∫

tanϮ x secϮ x dx+
∫

tanϮ x dx

Notes:

Ϯϵϯ
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Again, use subsƟtuƟon for the first integral and rule #ϰ for the second.

=
ϭ
ϱ
tanϱ x− ϭ

ϯ
tanϯ x+

∫
(
secϮ x− ϭ

)
dx

=
ϭ
ϱ
tanϱ x− ϭ

ϯ
tanϯ x+ tan x− x+ C.

These laƩer examples were admiƩedly long, with repeated applicaƟons of
the same rule. Try to not be overwhelmed by the length of the problem, but
rather admire how robust this soluƟon method is. A trigonometric funcƟon of
a high power can be systemaƟcally reduced to trigonometric funcƟons of lower
powers unƟl all anƟderivaƟves can be computed.

The next secƟon introduces an integraƟon technique known as Trigonomet-
ric SubsƟtuƟon, a clever combinaƟon of SubsƟtuƟon and the Pythagorean The-
orem.

Notes:

Ϯϵϰ



Exercises ϲ.ϯ
Terms and Concepts

ϭ. T/F:
∫

sinϮ x cosϮ x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are even.

Ϯ. T/F:
∫

sinϯ x cosϯ x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are odd.

ϯ. T/F: This secƟon addresses how to evaluate indefinite inte-

grals such as
∫

sinϱ x tanϯ x dx.

Problems
In Exercises ϰ – Ϯϲ, evaluate the indefinite integral.

ϰ.
∫

sin x cosϰ x dx

ϱ.
∫

sinϯ x cos x dx

ϲ.
∫

sinϯ x cosϮ x dx

ϳ.
∫

sinϯ x cosϯ x dx

ϴ.
∫

sinϲ x cosϱ x dx

ϵ.
∫

sinϮ x cosϳ x dx

ϭϬ.
∫

sinϮ x cosϮ x dx

ϭϭ.
∫

sin(ϱx) cos(ϯx) dx

ϭϮ.
∫

sin(x) cos(Ϯx) dx

ϭϯ.
∫

sin(ϯx) sin(ϳx) dx

ϭϰ.
∫

sin(πx) sin(Ϯπx) dx

ϭϱ.
∫

cos(x) cos(Ϯx) dx

ϭϲ.
∫

cos
(π

Ϯ
x
)

cos(πx) dx

ϭϳ.
∫

tanϰ x secϮ x dx

ϭϴ.
∫

tanϮ x secϰ x dx

ϭϵ.
∫

tanϯ x secϰ x dx

ϮϬ.
∫

tanϯ x secϮ x dx

Ϯϭ.
∫

tanϯ x secϯ x dx

ϮϮ.
∫

tanϱ x secϱ x dx

Ϯϯ.
∫

tanϰ x dx

Ϯϰ.
∫

secϱ x dx

Ϯϱ.
∫

tanϮ x sec x dx

Ϯϲ.
∫

tanϮ x secϯ x dx

In Exercises Ϯϳ – ϯϯ, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

Ϯϳ.
∫ π

Ϭ
sin x cosϰ x dx

Ϯϴ.
∫ π

−π

sinϯ x cos x dx

Ϯϵ.
∫ π/Ϯ

−π/Ϯ
sinϮ x cosϳ x dx

ϯϬ.
∫ π/Ϯ

Ϭ
sin(ϱx) cos(ϯx) dx

ϯϭ.
∫ π/Ϯ

−π/Ϯ
cos(x) cos(Ϯx) dx

ϯϮ.
∫ π/ϰ

Ϭ
tanϰ x secϮ x dx

ϯϯ.
∫ π/ϰ

−π/ϰ
tanϮ x secϰ x dx

Ϯϵϱ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

ϲ.ϰ Trigonometric SubsƟtuƟon
In SecƟon ϱ.Ϯ we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we evaluated special definite integrals which described nice, geo-
metric shapes. For instance, we were able to evaluate

∫ ϯ

−ϯ

√

ϵ− xϮ dx =
ϵπ
Ϯ

(ϲ.ϭ)

as we recognized that f(x) =
√
ϵ− xϮ described the upper half of a circle with

radius ϯ.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces
Trigonometric SubsƟtuƟon, amethod of integraƟon that fills this gap in our inte-
graƟon skill. This techniqueworks on the sameprinciple as SubsƟtuƟon as found
in SecƟon ϲ.ϭ, though it can feel “backward.” In SecƟon ϲ.ϭ, we set u = f(x), for
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ),
where f is a trigonometric funcƟon, then replace x with f(θ).

We start by demonstraƟng this method in evaluaƟng the integral in (ϲ.ϭ).
AŌer the example, we will generalize the method and give more examples.

Example ϭϳϰ Using Trigonometric SubsƟtuƟon

Evaluate
∫ ϯ

−ϯ

√

ϵ− xϮ dx.

SÊ½çã®ÊÄ We begin by noƟng that ϵ sinϮ θ + ϵ cosϮ θ = ϵ, and hence
ϵ cosϮ θ = ϵ−ϵ sinϮ θ. If we let x = ϯ sin θ, then ϵ−xϮ = ϵ−ϵ sinϮ θ = ϵ cosϮ θ.

Seƫng x = ϯ sin θ gives dx = ϯ cos θ dθ. We are almost ready to subsƟtute.
We also wish to change our bounds of integraƟon. The bound x = −ϯ corre-
sponds to θ = −π/Ϯ (for when θ = −π/Ϯ, x = ϯ sin θ = −ϯ). Likewise, the
bound of x = ϯ is replaced by the bound θ = π/Ϯ. Thus

∫ ϯ

−ϯ

√

ϵ− xϮ dx =
∫ π/Ϯ

−π/Ϯ

√

ϵ− ϵ sinϮ θ(ϯ cos θ) dθ

=

∫ π/Ϯ

−π/Ϯ
ϯ
√
ϵ cosϮ θ cos θ dθ

=

∫ π/Ϯ

−π/Ϯ
ϯ|ϯ cos θ| cos θ dθ.

On [−π/Ϯ, π/Ϯ], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a power–reducing formula:

Notes:

Ϯϵϲ
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=

∫ π/Ϯ

−π/Ϯ
ϵ cosϮ θ dθ

=

∫ π/Ϯ

−π/Ϯ

ϵ
Ϯ
(
ϭ+ cos(Ϯθ)

)
dθ

=
ϵ
Ϯ
(
θ +

ϭ
Ϯ
sin(Ϯθ)

)

∣
∣
∣
∣
∣

π/Ϯ

−π/Ϯ

=
ϵ
Ϯ
π.

This matches our answer from before.

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
aϮ − xϮ,

√
xϮ − aϮ and

√
xϮ + aϮ.

The following Key Idea outlines the procedure for each case, followed by more
examples. Each right triangle acts as a reference to help us understand the re-
laƟonships between x and θ.

Key Idea ϭϯ Trigonometric SubsƟtuƟon

(a) For integrands containing
√
aϮ − xϮ:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−ϭ(x/a), for−π/Ϯ ≤ θ ≤ π/Ϯ.

On this interval, cos θ ≥ Ϭ, so
√
aϮ − xϮ = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
xϮ + aϮ:

Let x = a tan θ, dx = a secϮ θ dθ

Thus θ = tan−ϭ(x/a), for−π/Ϯ < θ < π/Ϯ.

On this interval, sec θ > Ϭ, so
√
xϮ + aϮ = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
xϮ − aϮ:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−ϭ(x/a). If x/a ≥ ϭ, then Ϭ ≤ θ < π/Ϯ;
if x/a ≤ −ϭ, then π/Ϯ < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ ϭ, and
Ϭ ≤ θ < π/Ϯ. On this interval, tan θ ≥ Ϭ, so
√
xϮ − aϮ = a tan θ

..
a

.

√
x2 − a2

.

x

. θ

Notes:

Ϯϵϳ
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Example ϭϳϱ Using Trigonometric SubsƟtuƟon

Evaluate
∫

ϭ√
ϱ+ xϮ

dx.

SÊ½çã®ÊÄ Using Key Idea ϭϯ(b), we recognize a =
√
ϱ and set x =√

ϱ tan θ. This makes dx =
√
ϱ secϮ θ dθ. We will use the fact that

√
ϱ+ xϮ =√

ϱ+ ϱ tanϮ θ =
√
ϱ secϮ θ =

√
ϱ sec θ. SubsƟtuƟng, we have:

∫
ϭ√

ϱ+ xϮ
dx =

∫
ϭ√

ϱ+ ϱ tanϮ θ

√
ϱ secϮ θ dθ

=

∫ √
ϱ secϮ θ√
ϱ sec θ

dθ

=

∫

sec θ dθ

= ln
∣
∣ sec θ + tan θ

∣
∣+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea ϭϯ(b) helps. With x =
√
ϱ tan θ, we

have

tan θ =
x√
ϱ

and sec θ =

√
xϮ + ϱ√

ϱ
.

This gives
∫

ϭ√
ϱ+ xϮ

dx = ln
∣
∣ sec θ + tan θ

∣
∣+ C

= ln

∣
∣
∣
∣
∣

√
xϮ + ϱ√

ϱ
+

x√
ϱ

∣
∣
∣
∣
∣
+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣
∣
∣
∣
∣

√
xϮ + ϱ√

ϱ
+

x√
ϱ

∣
∣
∣
∣
∣
+ C = ln

∣
∣
∣
∣

ϭ√
ϱ

(√

xϮ + ϱ+ x
)
∣
∣
∣
∣
+ C

= ln
∣
∣
∣
∣

ϭ√
ϱ

∣
∣
∣
∣
+ ln

∣
∣
√

xϮ + ϱ+ x
∣
∣+ C

= ln
∣
∣
√

xϮ + ϱ+ x
∣
∣+ C,

where the ln
(
ϭ/

√
ϱ
)
term is absorbed into the constant C. (In SecƟon ϲ.ϲ we

will learn another way of approaching this problem.)

Notes:

Ϯϵϴ
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Example ϭϳϲ Using Trigonometric SubsƟtuƟon

Evaluate
∫
√

ϰxϮ − ϭ dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
xϮ − aϮ

for some value of a:

√

ϰxϮ − ϭ =

√

ϰ
(

xϮ − ϭ
ϰ

)

= Ϯ

√

xϮ −
(
ϭ
Ϯ

)Ϯ

.

Sowe have a = ϭ/Ϯ, and following Key Idea ϭϯ(c), we set x = ϭ
Ϯ sec θ, and hence

dx = ϭ
Ϯ sec θ tan θ dθ. We now rewrite the integral with these subsƟtuƟons:

∫
√

ϰxϮ − ϭ dx =
∫

Ϯ

√

xϮ −
(
ϭ
Ϯ

)Ϯ

dx

=

∫

Ϯ
√

ϭ
ϰ
secϮ θ − ϭ

ϰ

(
ϭ
Ϯ
sec θ tan θ

)

dθ

=

∫ √

ϭ
ϰ
(secϮ θ − ϭ)

(

sec θ tan θ
)

dθ

=

∫ √

ϭ
ϰ
tanϮ θ

(

sec θ tan θ
)

dθ

=

∫
ϭ
Ϯ
tanϮ θ sec θ dθ

=
ϭ
Ϯ

∫ (

secϮ θ − ϭ
)

sec θ dθ

=
ϭ
Ϯ

∫
(
secϯ θ − sec θ

)
dθ.

We integrated secϯ θ in Example ϭϳϮ, finding its anƟderivaƟves to be
∫

secϯ θ dθ =
ϭ
Ϯ

(

sec θ tan θ + ln | sec θ + tan θ|
)

+ C.

Thus
∫
√

ϰxϮ − ϭ dx =
ϭ
Ϯ

∫
(
secϯ θ − sec θ

)
dθ

=
ϭ
Ϯ

(
ϭ
Ϯ

(

sec θ tan θ + ln | sec θ + tan θ|
)

− ln | sec θ + tan θ|
)

+ C

=
ϭ
ϰ
(sec θ tan θ − ln | sec θ + tan θ|) + C.

Notes:

Ϯϵϵ
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We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = ϭ/Ϯ, and x = ϭ

Ϯ sec θ, the reference triangle in Key Idea ϭϯ(c)
shows that

tan θ =
√

xϮ − ϭ/ϰ
/

(ϭ/Ϯ) = Ϯ
√

xϮ − ϭ/ϰ and sec θ = Ϯx.

Thus
ϭ
ϰ

(

sec θ tan θ − ln
∣

∣ sec θ + tan θ
∣

∣

)

+ C =
ϭ
ϰ

(

Ϯx · Ϯ
√

xϮ − ϭ/ϰ− ln
∣

∣Ϯx+ Ϯ
√

xϮ − ϭ/ϰ
∣

∣

)

+ C

=
ϭ
ϰ

(

ϰx
√

xϮ − ϭ/ϰ− ln
∣

∣Ϯx+ Ϯ
√

xϮ − ϭ/ϰ
∣

∣

)

+ C.

The final answer is given in the last line above, repeated here:
∫
√

ϰxϮ − ϭ dx =
ϭ
ϰ

(

ϰx
√

xϮ − ϭ/ϰ− ln
∣
∣Ϯx+ Ϯ

√

xϮ − ϭ/ϰ
∣
∣

)

+ C.

Example ϭϳϳ Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

ϰ− xϮ

xϮ
dx.

SÊ½çã®ÊÄ We use Key Idea ϭϯ(a) with a = Ϯ, x = Ϯ sin θ, dx = Ϯ cos θ
and hence

√
ϰ− xϮ = Ϯ cos θ. This gives

∫ √
ϰ− xϮ

xϮ
dx =

∫
Ϯ cos θ
ϰ sinϮ θ

(Ϯ cos θ) dθ

=

∫

cotϮ θ dθ

=

∫

(cscϮ θ − ϭ) dθ

= − cot θ − θ + C.

We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea ϭϯ(a), we have cot θ =

√
ϰ− xϮ/x and θ = sin−ϭ(x/Ϯ). Thus

∫ √
ϰ− xϮ

xϮ
dx = −

√
ϰ− xϮ

x
− sin−ϭ

( x
Ϯ

)

+ C.

Trigonometric SubsƟtuƟon can be applied inmany situaƟons, even those not
of the form

√
aϮ − xϮ,

√
xϮ − aϮ or

√
xϮ + aϮ. In the following example, we ap-

ply it to an integral we already know how to handle.

Notes:

ϯϬϬ
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Example ϭϳϴ Using Trigonometric SubsƟtuƟon

Evaluate
∫

ϭ
xϮ + ϭ

dx.

SÊ½çã®ÊÄ Weknow the answer already as tan−ϭ x+C. Weapply Trigono-
metric SubsƟtuƟon here to show that we get the same answer without inher-
ently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea ϭϯ(b), let x = tan θ, dx = secϮ θ dθ and note that xϮ + ϭ =
tanϮ θ + ϭ = secϮ θ. Thus

∫
ϭ

xϮ + ϭ
dx =

∫
ϭ

secϮ θ
secϮ θ dθ

=

∫

ϭ dθ

= θ + C.

Since x = tan θ, θ = tan−ϭ x, and we conclude that
∫

ϭ
xϮ + ϭ

dx = tan−ϭ x+C.

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

Example ϭϳϵ Using Trigonometric SubsƟtuƟon

Evaluate
∫

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ ϯ, followed by the trigonometric subsƟtuƟon of u = tan θ:
∫

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx =
∫

ϭ
(
(x+ ϯ)Ϯ + ϭ

)Ϯ dx =
∫

ϭ
(uϮ + ϭ)Ϯ

du.

Now make the subsƟtuƟon u = tan θ, du = secϮ θ dθ:

=

∫
ϭ

(tanϮ θ + ϭ)Ϯ
secϮ θ dθ

=

∫
ϭ

(secϮ θ)Ϯ
secϮ θ dθ

=

∫

cosϮ θ dθ.

Notes:

ϯϬϭ
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Applying a power reducing formula, we have

=

∫ (
ϭ
Ϯ
+

ϭ
Ϯ
cos(Ϯθ)

)

dθ

=
ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ) + C. (ϲ.Ϯ)

We need to return to the variable x. As u = tan θ, θ = tan−ϭ u. Using the
idenƟty sin(Ϯθ) = Ϯ sin θ cos θ and using the reference triangle found in Key
Idea ϭϯ(b), we have

ϭ
ϰ
sin(Ϯθ) =

ϭ
Ϯ

u√
uϮ + ϭ

· ϭ√
uϮ + ϭ

=
ϭ
Ϯ

u
uϮ + ϭ

.

Finally, we return to xwith the subsƟtuƟon u = x+ϯ. We start with the expres-
sion in EquaƟon (ϲ.Ϯ):

ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ) + C =

ϭ
Ϯ
tan−ϭ u+

ϭ
Ϯ

u
uϮ + ϭ

+ C

=
ϭ
Ϯ
tan−ϭ(x+ ϯ) +

x+ ϯ
Ϯ(xϮ + ϲx+ ϭϬ)

+ C.

StaƟng our final result in one line,
∫

ϭ
(xϮ + ϲx+ ϭϬ)Ϯ

dx =
ϭ
Ϯ
tan−ϭ(x+ ϯ) +

x+ ϯ
Ϯ(xϮ + ϲx+ ϭϬ)

+ C.

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.

Example ϭϴϬ Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
∫ ϱ

Ϭ

xϮ√
xϮ + Ϯϱ

dx.

SÊ½çã®ÊÄ Using Key Idea ϭϯ(b), we set x = ϱ tan θ, dx = ϱ secϮ θ dθ,
and note that

√
xϮ + Ϯϱ = ϱ sec θ. As we subsƟtute, we can also change the

bounds of integraƟon.
The lower bound of the original integral is x = Ϭ. As x = ϱ tan θ, we solve for

θ and find θ = tan−ϭ(x/ϱ). Thus the new lower bound is θ = tan−ϭ(Ϭ) = Ϭ. The

Notes:

ϯϬϮ
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original upper bound is x = ϱ, thus the new upper bound is θ = tan−ϭ(ϱ/ϱ) =
π/ϰ.

Thus we have
∫ ϱ

Ϭ

xϮ√
xϮ + Ϯϱ

dx =
∫ π/ϰ

Ϭ

Ϯϱ tanϮ θ
ϱ sec θ

ϱ secϮ θ dθ

= Ϯϱ
∫ π/ϰ

Ϭ
tanϮ θ sec θ dθ.

We encountered this indefinite integral in Example ϭϳϲ where we found
∫

tanϮ θ sec θ dθ =
ϭ
Ϯ
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

Ϯϱ
∫ π/ϰ

Ϭ
tanϮ θ sec θ dθ =

Ϯϱ
Ϯ
(
sec θ tan θ − ln | sec θ + tan θ|

)

∣
∣
∣
∣
∣

π/ϰ

Ϭ

=
Ϯϱ
Ϯ
(√

Ϯ− ln(
√
Ϯ+ ϭ)

)

≈ ϲ.ϲϲϭ.

The following equaliƟes are very usefulwhenevaluaƟng integrals using Trigono-
metric SubsƟtuƟon.

Key Idea ϭϰ Useful EqualiƟes with Trigonometric SubsƟtuƟon

ϭ. sin(Ϯθ) = Ϯ sin θ cos θ

Ϯ. cos(Ϯθ) = cosϮ θ − sinϮ θ = Ϯ cosϮ θ − ϭ = ϭ− Ϯ sinϮ θ

ϯ.
∫

secϯ θ dθ =
ϭ
Ϯ

(

sec θ tan θ + ln
∣
∣ sec θ + tan θ

∣
∣

)

+ C

ϰ.
∫

cosϮ θ dθ =

∫
ϭ
Ϯ
(
ϭ+ cos(Ϯθ)

)
dθ =

ϭ
Ϯ
(
θ + sin θ cos θ

)
+ C.

The next secƟon introduces ParƟal FracƟonDecomposiƟon, which is an alge-
braic technique that turns “complicated” fracƟons into sums of “simpler” frac-
Ɵons, making integraƟon easier.

Notes:
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Exercises ϲ.ϰ
Terms and Concepts
ϭ. Trigonometric SubsƟtuƟon works on the same principles as

IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

Ϯ. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
Ϯϱ− xϮ, then one should set x = .

ϯ. Consider the Pythagorean IdenƟty sinϮ θ + cosϮ θ = ϭ.

(a) What idenƟty is obtained when both sides are di-
vided by cosϮ θ?

(b) Use the new idenƟty to simplify ϵ tanϮ θ + ϵ.

ϰ. Why does Key Idea ϭϯ(a) state that
√
aϮ − xϮ = a cos θ,

and not |a cos θ|?

Problems
In Exercises ϱ – ϭϲ, apply Trigonometric SubsƟtuƟon to eval-
uate the indefinite integrals.

ϱ.
∫ √

xϮ + ϭ dx

ϲ.
∫ √

xϮ + ϰ dx

ϳ.
∫ √

ϭ− xϮ dx

ϴ.
∫ √

ϵ− xϮ dx

ϵ.
∫ √

xϮ − ϭ dx

ϭϬ.
∫ √

xϮ − ϭϲ dx

ϭϭ.
∫ √

ϰxϮ + ϭ dx

ϭϮ.
∫ √

ϭ− ϵxϮ dx

ϭϯ.
∫ √

ϭϲxϮ − ϭ dx

ϭϰ.
∫

ϴ√
xϮ + Ϯ

dx

ϭϱ.
∫

ϯ√
ϳ− xϮ

dx

ϭϲ.
∫

ϱ√
xϮ − ϴ

dx

In Exercises ϭϳ – Ϯϲ, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric SubsƟtuƟon.

ϭϳ.
∫

√
xϮ − ϭϭ
x

dx

ϭϴ.
∫

ϭ
(xϮ + ϭ)Ϯ

dx

ϭϵ.
∫

x√
xϮ − ϯ

dx

ϮϬ.
∫

xϮ
√
ϭ− xϮ dx

Ϯϭ.
∫

x
(xϮ + ϵ)ϯ/Ϯ

dx

ϮϮ.
∫

ϱxϮ√
xϮ − ϭϬ

dx

Ϯϯ.
∫

ϭ
(xϮ + ϰx+ ϭϯ)Ϯ

dx

Ϯϰ.
∫

xϮ(ϭ− xϮ)−ϯ/Ϯ dx

Ϯϱ.
∫

√
ϱ− xϮ

ϳxϮ
dx

Ϯϲ.
∫

xϮ√
xϮ + ϯ

dx

In Exercises Ϯϳ – ϯϮ, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

Ϯϳ.
∫ ϭ

−ϭ

√
ϭ− xϮ dx

Ϯϴ.
∫ ϴ

ϰ

√
xϮ − ϭϲ dx

Ϯϵ.
∫ Ϯ

Ϭ

√
xϮ + ϰ dx

ϯϬ.
∫ ϭ

−ϭ

ϭ
(xϮ + ϭ)Ϯ

dx

ϯϭ.
∫ ϭ

−ϭ

√
ϵ− xϮ dx

ϯϮ.
∫ ϭ

−ϭ
xϮ
√
ϭ− xϮ dx

ϯϬϰ



ϲ.ϱ ParƟal FracƟon DecomposiƟon

ϲ.ϱ ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= Ϭ. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this

secƟon. Consider the integral
∫

ϭ
xϮ − ϭ

dx. We do not have a simple formula

for this (if the denominator were xϮ + ϭ, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

ϭ
xϮ − ϭ

=
ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

Thus

∫
ϭ

xϮ − ϭ
dx =

∫
ϭ/Ϯ
x− ϭ

dx−
∫

ϭ/Ϯ
x+ ϭ

dx

=
ϭ
Ϯ
ln |x− ϭ| − ϭ

Ϯ
ln |x+ ϭ|+ C.

This secƟon teaches how to decompose

ϭ
xϮ − ϭ

into
ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.

Notes:
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Chapter ϲ Techniques of AnƟdifferenƟaƟon

Key Idea ϭϱ ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

ϭ. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

Aϭ

(x− a)
+

AϮ

(x− a)Ϯ
+ · · ·+ An

(x− a)n
.

Ϯ. QuadraƟc Terms: Let xϮ+bx+ c divide q(x), where (xϮ+bx+ c)n
is the highest power of xϮ + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

Bϭx+ Cϭ
xϮ + bx+ c

+
BϮx+ CϮ

(xϮ + bx+ c)Ϯ
+ · · ·+ Bnx+ Cn

(xϮ + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

ϭ. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

Ϯ. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. Example ϭϴϭ stresses the decomposiƟon aspect of the Key Idea.

Example ϭϴϭ Decomposing into parƟal fracƟons
Decompose f(x) =

ϭ
(x+ ϱ)(x− Ϯ)ϯ(xϮ + x+ Ϯ)(xϮ + x+ ϳ)Ϯ

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored, as both xϮ+ x+ Ϯ and
xϮ + x + ϳ cannot be factored further. We need to decompose f(x) properly.
Since (x+ ϱ) is a linear term that divides the denominator, there will be a

A
x+ ϱ

Notes:
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ϲ.ϱ ParƟal FracƟon DecomposiƟon

term in the decomposiƟon.
As (x− Ϯ)ϯ divides the denominator, we will have the following terms in the

decomposiƟon:
B

x− Ϯ
,

C
(x− Ϯ)Ϯ

and
D

(x− Ϯ)ϯ
.

The xϮ + x+ Ϯ term in the denominator results in a
Ex+ F

xϮ + x+ Ϯ
term.

Finally, the (xϮ + x+ ϳ)Ϯ term results in the terms

Gx+ H
xϮ + x+ ϳ

and
Ix+ J

(xϮ + x+ ϳ)Ϯ
.

All together, we have

ϭ
(x+ ϱ)(x− Ϯ)ϯ(xϮ + x+ Ϯ)(xϮ + x+ ϳ)Ϯ

=
A

x+ ϱ
+

B
x− Ϯ

+
C

(x− Ϯ)Ϯ
+

D
(x− Ϯ)ϯ

+

Ex+ F
xϮ + x+ Ϯ

+
Gx+ H

xϮ + x+ ϳ
+

Ix+ J
(xϮ + x+ ϳ)Ϯ

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.”

Example ϭϴϮ Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

ϭ
xϮ − ϭ

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: xϮ − ϭ =
(x− ϭ)(x+ ϭ). Thus

ϭ
xϮ − ϭ

=
A

x− ϭ
+

B
x+ ϭ

.

To solve for A and B, first mulƟply through by xϮ − ϭ = (x− ϭ)(x+ ϭ):

ϭ =
A(x− ϭ)(x+ ϭ)

x− ϭ
+

B(x− ϭ)(x+ ϭ)
x+ ϭ

= A(x+ ϭ) + B(x− ϭ)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

ϭ = (A+ B)x+ (A− B).

Notes:
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Note: EquaƟon ϲ.ϯ offers a direct route to
finding the values of A, B and C. Since the
equaƟon holds for all values of x, it holds
in parƟcular when x = ϭ. However, when
x = ϭ, the right hand side simplifies to
A(ϭ + Ϯ)Ϯ = ϵA. Since the leŌ hand side
is sƟll ϭ, we have ϭ = ϵA. HenceA = ϭ/ϵ.
Likewise, the equality holds when x =
−Ϯ; this leads to the equaƟon ϭ = −ϯC.
Thus C = −ϭ/ϯ.
Knowing A and C, we can find the value of
B by choosing yet another value of x, such
as x = Ϭ, and solving for B.

Chapter ϲ Techniques of AnƟdifferenƟaƟon

For clarity’s sake, rewrite the leŌ hand side as

Ϭx+ ϭ = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is Ϭ; on the right, it is (A + B). Since
both sides are equal, we must have that Ϭ = A+ B.

Likewise, on the leŌ, we have a constant term of ϭ; on the right, the constant
term is (A− B). Therefore we have ϭ = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = Ϭ
A− B = ϭ ⇒ A = ϭ/Ϯ

B = −ϭ/Ϯ .

Thus
ϭ

xϮ − ϭ
=

ϭ/Ϯ
x− ϭ

− ϭ/Ϯ
x+ ϭ

.

Example ϭϴϯ IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

ϭ
(x− ϭ)(x+ Ϯ)Ϯ

dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea ϭϱ:

ϭ
(x− ϭ)(x+ Ϯ)Ϯ

=
A

x− ϭ
+

B
x+ Ϯ

+
C

(x+ Ϯ)Ϯ
.

To solve for A, B and C, we mulƟply both sides by (x− ϭ)(x+ Ϯ)Ϯ and collect like
terms:

ϭ = A(x+ Ϯ)Ϯ + B(x− ϭ)(x+ Ϯ) + C(x− ϭ) (ϲ.ϯ)

= AxϮ + ϰAx+ ϰA+ BxϮ + Bx− ϮB+ Cx− C

= (A+ B)xϮ + (ϰA+ B+ C)x+ (ϰA− ϮB− C)

We have

ϬxϮ + Ϭx+ ϭ = (A+ B)xϮ + (ϰA+ B+ C)x+ (ϰA− ϮB− C)

leading to the equaƟons

A+ B = Ϭ, ϰA+ B+ C = Ϭ and ϰA− ϮB− C = ϭ.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = ϭ/ϵ, B = −ϭ/ϵ and C = −ϭ/ϯ.

Notes:
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example ϭϴϯ.

ϲ.ϱ ParƟal FracƟon DecomposiƟon

Thus
∫

ϭ
(x− ϭ)(x+ Ϯ)Ϯ

dx =
∫

ϭ/ϵ
x− ϭ

dx+
∫ −ϭ/ϵ

x+ Ϯ
dx+

∫ −ϭ/ϯ
(x+ Ϯ)Ϯ

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−ϭ or u = x+Ϯ
(or by directly applying Key Idea ϭϬ as the denominators are linear funcƟons).
The end result is

∫
ϭ

(x− ϭ)(x+ Ϯ)Ϯ
dx =

ϭ
ϵ
ln |x− ϭ| − ϭ

ϵ
ln |x+ Ϯ|+ ϭ

ϯ(x+ Ϯ)
+ C.

Example ϭϴϰ IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

xϯ

(x− ϱ)(x+ ϯ)
dx.

SÊ½çã®ÊÄ Key Idea ϭϱ presumes that the degree of the numerator is
less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

xϯ

(x− ϱ)(x+ ϯ)
= x+ Ϯ+

ϭϵx+ ϯϬ
(x− ϱ)(x+ ϯ)

.

Using Key Idea ϭϱ, we can rewrite the new raƟonal funcƟon as:

ϭϵx+ ϯϬ
(x− ϱ)(x+ ϯ)

=
A

x− ϱ
+

B
x+ ϯ

for appropriate values of A and B. Clearing denominators, we have

ϭϵx+ ϯϬ = A(x+ ϯ) + B(x− ϱ)
= (A+ B)x+ (ϯA− ϱB).

This implies that:

ϭϵ = A+ B
ϯϬ = ϯA− ϱB.

Solving this system of linear equaƟons gives

ϭϮϱ/ϴ = A
Ϯϳ/ϴ = B.

Notes:

ϯϬϵ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

We can now integrate.
∫

xϯ

(x− ϱ)(x+ ϯ)
dx =

∫ (

x+ Ϯ+
ϭϮϱ/ϴ
x− ϱ

+
Ϯϳ/ϴ
x+ ϯ

)

dx

=
xϮ

Ϯ
+ Ϯx+

ϭϮϱ
ϴ

ln |x− ϱ|+ Ϯϳ
ϴ

ln |x+ ϯ|+ C.

Example ϭϴϱ IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea ϭϱ. We have:

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

=
A

x+ ϭ
+

Bx+ C
xϮ + ϲx+ ϭϭ

.

Now clear the denominators.

ϳxϮ + ϯϭx+ ϱϰ = A(xϮ + ϲx+ ϭϭ) + (Bx+ C)(x+ ϭ)

= (A+ B)xϮ + (ϲA+ B+ C)x+ (ϭϭA+ C).

This implies that:

ϳ = A+ B
ϯϭ = ϲA+ B+ C
ϱϰ = ϭϭA+ C.

Solving this system of linear equaƟons gives the nice result of A = ϱ, B = Ϯ and
C = −ϭ. Thus

∫
ϳxϮ + ϯϭx+ ϱϰ

(x+ ϭ)(xϮ + ϲx+ ϭϭ)
dx =

∫ (
ϱ

x+ ϭ
+

Ϯx− ϭ
xϮ + ϲx+ ϭϭ

)

dx.

The first termof this new integrand is easy to evaluate; it leads to a ϱ ln |x+ϭ|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
Ϯx− ϭ

xϮ + ϲx+ ϭϭ
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = xϮ+ϲx+ϭϭ, so
du = (Ϯx+ ϲ) dx. The numerator is Ϯx− ϭ, not Ϯx+ ϲ, but we can get a Ϯx+ ϲ

Notes:
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ϲ.ϱ ParƟal FracƟon DecomposiƟon

term in the numerator by adding Ϭ in the form of “ϳ− ϳ.”

Ϯx− ϭ
xϮ + ϲx+ ϭϭ

=
Ϯx− ϭ+ ϳ− ϳ
xϮ + ϲx+ ϭϭ

=
Ϯx+ ϲ

xϮ + ϲx+ ϭϭ
− ϳ

xϮ + ϲx+ ϭϭ
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |xϮ+ϲx+ϭϭ|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

ϳ
xϮ + ϲx+ ϭϭ

=
ϳ

(x+ ϯ)Ϯ + Ϯ
.

An anƟderivaƟve of the laƩer term can be found using Theorem ϰϲ and subsƟ-
tuƟon: ∫

ϳ
xϮ + ϲx+ ϭϭ

dx =
ϳ√
Ϯ
tan−ϭ

(
x+ ϯ√

Ϯ

)

+ C.

Let’s start at the beginning and put all of the steps together.
∫

ϳxϮ + ϯϭx+ ϱϰ
(x+ ϭ)(xϮ + ϲx+ ϭϭ)

dx =
∫
(

ϱ
x+ ϭ

+
Ϯx− ϭ

xϮ + ϲx+ ϭϭ

)

dx

=

∫

ϱ
x+ ϭ

dx+
∫

Ϯx+ ϲ
xϮ + ϲx+ ϭϭ

dx−
∫

ϳ
xϮ + ϲx+ ϭϭ

dx

= ϱ ln |x+ ϭ|+ ln |xϮ + ϲx+ ϭϭ| − ϳ√
Ϯ
tan−ϭ

(

x+ ϯ√
Ϯ

)

+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems.

ParƟal FracƟon DecomposiƟon is an important tool when dealing with raƟo-
nal funcƟons. Note that at its heart, it is a technique of algebra, not calculus,
as we are rewriƟng a fracƟon in a new form. Regardless, it is very useful in the
realm of calculus as it lets us evaluate a certain set of “complicated” integrals.

The next secƟon introduces new funcƟons, called the Hyperbolic FuncƟons.
They will allow us to make subsƟtuƟons similar to those found when studying
Trigonometric SubsƟtuƟon, allowing us to approach evenmore integraƟonprob-
lems.

Notes:
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Exercises ϲ.ϱ
Terms and Concepts
ϭ. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

Ϯ. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

ϯ. Decompose
ϭ

xϮ − ϯx
without solving for the coefficients, as

done in Example ϭϴϭ.

ϰ. Decompose
ϳ− x
xϮ − ϵ

without solving for the coefficients, as
done in Example ϭϴϭ.

ϱ. Decompose
x− ϯ
xϮ − ϳ

without solving for the coefficients, as
done in Example ϭϴϭ.

ϲ. Decompose
Ϯx+ ϱ
xϯ + ϳx

without solving for the coefficients, as
done in Example ϭϴϭ.

Problems
In Exercises ϳ – Ϯϱ, evaluate the indefinite integral.

ϳ.
∫

ϳx+ ϳ
xϮ + ϯx− ϭϬ

dx

ϴ.
∫

ϳx− Ϯ
xϮ + x

dx

ϵ.
∫ −ϰ

ϯxϮ − ϭϮ
dx

ϭϬ.
∫

x+ ϳ
(x+ ϱ)Ϯ

dx

ϭϭ.
∫ −ϯx− ϮϬ

(x+ ϴ)Ϯ
dx

ϭϮ.
∫

ϵxϮ + ϭϭx+ ϳ
x(x+ ϭ)Ϯ

dx

ϭϯ.
∫ −ϭϮxϮ − x+ ϯϯ

(x− ϭ)(x+ ϯ)(ϯ− Ϯx)
dx

ϭϰ.
∫

ϵϰxϮ − ϭϬx
(ϳx+ ϯ)(ϱx− ϭ)(ϯx− ϭ)

dx

ϭϱ.
∫

xϮ + x+ ϭ
xϮ + x− Ϯ

dx

ϭϲ.
∫

xϯ

xϮ − x− ϮϬ
dx

ϭϳ.
∫

ϮxϮ − ϰx+ ϲ
xϮ − Ϯx+ ϯ

dx

ϭϴ.
∫

ϭ
xϯ + ϮxϮ + ϯx

dx

ϭϵ.
∫

xϮ + x+ ϱ
xϮ + ϰx+ ϭϬ

dx

ϮϬ.
∫

ϭϮxϮ + Ϯϭx+ ϯ
(x+ ϭ)(ϯxϮ + ϱx− ϭ)

dx

Ϯϭ.
∫

ϲxϮ + ϴx− ϰ
(x− ϯ)(xϮ + ϲx+ ϭϬ)

dx

ϮϮ.
∫

ϮxϮ + x+ ϭ
(x+ ϭ)(xϮ + ϵ)

dx

Ϯϯ.
∫

xϮ − ϮϬx− ϲϵ
(x− ϳ)(xϮ + Ϯx+ ϭϳ)

dx

Ϯϰ.
∫

ϵxϮ − ϲϬx+ ϯϯ
(x− ϵ)(xϮ − Ϯx+ ϭϭ)

dx

Ϯϱ.
∫

ϲxϮ + ϰϱx+ ϭϮϭ
(x+ Ϯ)(xϮ + ϭϬx+ Ϯϳ)

dx

In Exercises Ϯϲ – Ϯϵ, evaluate the definite integral.

Ϯϲ.
∫ Ϯ

ϭ

ϴx+ Ϯϭ
(x+ Ϯ)(x+ ϯ)

dx

Ϯϳ.
∫ ϱ

Ϭ

ϭϰx+ ϲ
(ϯx+ Ϯ)(x+ ϰ)

dx

Ϯϴ.
∫ ϭ

−ϭ

xϮ + ϱx− ϱ
(x− ϭϬ)(xϮ + ϰx+ ϱ)

dx

Ϯϵ.
∫ ϭ

Ϭ

x
(x+ ϭ)(xϮ + Ϯx+ ϭ)

dx

ϯϭϮ
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Figure ϲ.ϭϯ: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

ϲ.ϲ Hyperbolic FuncƟons

ϲ.ϲ Hyperbolic FuncƟons
The hyperbolic funcƟons are a set of funcƟons that have many applicaƟons to
mathemaƟcs, physics, and engineering. Among many other applicaƟons, they
are used to describe the formaƟon of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applicaƟon to the theory
of special relaƟvity. This secƟon defines the hyperbolic funcƟons and describes
many of their properƟes, especially their usefulness to calculus.

These funcƟons are someƟmes referred to as the “hyperbolic trigonometric
funcƟons” as there are many, many connecƟons between them and the stan-
dard trigonometric funcƟons. Figure ϲ.ϭϯ demonstrates one such connecƟon.
Just as cosine and sine are used to define points on the circle defined by xϮ+yϮ =
ϭ, the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola xϮ − yϮ = ϭ.

We begin with their definiƟon.

DefiniƟon Ϯϯ Hyperbolic FuncƟons

ϭ. cosh x =
ex + e−x

Ϯ

Ϯ. sinh x =
ex − e−x

Ϯ

ϯ. tanh x =
sinh x
cosh x

ϰ. sech x =
ϭ

cosh x

ϱ. csch x =
ϭ

sinh x

ϲ. coth x =
cosh x
sinh x

These hyperbolic funcƟons are graphed in Figure ϲ.ϭϰ. In the graphs of cosh x
and sinh x, graphs of ex/Ϯ and e−x/Ϯ are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like ex/Ϯ; when x is a large negaƟve number,
cosh x acts like e−x/Ϯ whereas sinh x acts like−e−x/Ϯ.

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = Ϭ. Also note the ranges of these
funcƟons, especially tanh x: as x → ∞, both sinh x and cosh x approach e−x/Ϯ,
hence tanh x approaches ϭ.

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

Notes:

ϯϭϯ
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Figure ϲ.ϭϰ: Graphs of the hyperbolic funcƟons.

Example ϭϴϲ Exploring properƟes of hyperbolic funcƟons

Use DefiniƟon Ϯϯ to rewrite the following expressions.

ϭ. coshϮ x− sinhϮ x

Ϯ. tanhϮ x+ sechϮ x

ϯ. Ϯ cosh x sinh x

ϰ. d
dx

(
cosh x

)

ϱ. d
dx

(
sinh x

)

ϲ. d
dx

(
tanh x

)

SÊ½çã®ÊÄ

Notes:

ϯϭϰ
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ϭ. coshϮ x− sinhϮ x =
(
ex + e−x

Ϯ

)Ϯ

−
(
ex − e−x

Ϯ

)Ϯ

=
eϮx + Ϯexe−x + e−Ϯx

ϰ
− eϮx − Ϯexe−x + e−Ϯx

ϰ

=
ϰ
ϰ
= ϭ.

So coshϮ x− sinhϮ x = ϭ.

Ϯ. tanhϮ x+ sechϮ x =
sinhϮ x
coshϮ x

+
ϭ

coshϮ x

=
sinhϮ x+ ϭ
coshϮ x

Now use idenƟty from #ϭ.

=
coshϮ x
coshϮ x

= ϭ.

So tanhϮ x+ sechϮ x = ϭ.

ϯ. Ϯ cosh x sinh x = Ϯ
(
ex + e−x

Ϯ

)(
ex − e−x

Ϯ

)

= Ϯ · e
Ϯx − e−Ϯx

ϰ

=
eϮx − e−Ϯx

Ϯ
= sinh(Ϯx).

Thus Ϯ cosh x sinh x = sinh(Ϯx).

ϰ.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

Ϯ

)

=
ex − e−x

Ϯ
= sinh x.

So d
dx

(
cosh x

)
= sinh x.

ϱ.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

Ϯ

)

=
ex + e−x

Ϯ
= cosh x.

So d
dx

(
sinh x

)
= cosh x.

Notes:

ϯϭϱ
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ϲ.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)

=
cosh x cosh x− sinh x sinh x

coshϮ x

=
ϭ

coshϮ x
= sechϮ x.

So d
dx

(
tanh x

)
= sechϮ x.

The following Key Idea summarizes many of the important idenƟƟes relaƟng
to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon Ϯϯ.

Key Idea ϭϲ Useful Hyperbolic FuncƟon ProperƟes

Basic IdenƟƟes

ϭ. coshϮ x− sinhϮ x = ϭ

Ϯ. tanhϮ x+ sechϮ x = ϭ

ϯ. cothϮ x− cschϮ x = ϭ

ϰ. cosh Ϯx = coshϮ x+ sinhϮ x

ϱ. sinh Ϯx = Ϯ sinh x cosh x

ϲ. coshϮ x =
cosh Ϯx+ ϭ

Ϯ

ϳ. sinhϮ x =
cosh Ϯx− ϭ

Ϯ

DerivaƟves

ϭ. d
dx

(
cosh x

)
= sinh x

Ϯ. d
dx

(
sinh x

)
= cosh x

ϯ. d
dx

(
tanh x

)
= sechϮ x

ϰ. d
dx

(
sech x

)
= − sech x tanh x

ϱ. d
dx

(
csch x

)
= − csch x coth x

ϲ. d
dx

(
coth x

)
= − cschϮ x

Integrals

ϭ.
∫

cosh x dx = sinh x+ C

Ϯ.
∫

sinh x dx = cosh x+ C

ϯ.
∫

tanh x dx = ln(cosh x) + C

ϰ.
∫

coth x dx = ln | sinh x |+ C

We pracƟce using Key Idea ϭϲ.

Example ϭϴϳ DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

ϭ.
d
dx
(
cosh Ϯx

)

Ϯ.
∫

sechϮ(ϳt− ϯ) dt

ϯ.
∫ ln Ϯ

Ϭ
cosh x dx

Notes:

ϯϭϲ
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SÊ½çã®ÊÄ

ϭ. Using the Chain Rule directly, we have d
dx

(
cosh Ϯx

)
= Ϯ sinh Ϯx.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea ϭϲ: cosh Ϯx = coshϮ x+ sinhϮ x.

d
dx
(
cosh Ϯx

)
=

d
dx
(
coshϮ x+ sinhϮ x

)
= Ϯ cosh x sinh x+ Ϯ sinh x cosh x

= ϰ cosh x sinh x.

Using another Basic IdenƟty, we can see that ϰ cosh x sinh x = Ϯ sinh Ϯx.
We get the same answer either way.

Ϯ. We employ subsƟtuƟon, with u = ϳt − ϯ and du = ϳdt. Applying Key
Ideas ϭϬ and ϭϲ we have:

∫

sechϮ(ϳt− ϯ) dt =
ϭ
ϳ
tanh(ϳt− ϯ) + C.

ϯ.
∫ ln Ϯ

Ϭ
cosh x dx = sinh x

∣
∣
∣

ln Ϯ

Ϭ
= sinh(ln Ϯ)− sinh Ϭ = sinh(ln Ϯ).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln Ϯ) =
eln Ϯ − e− ln Ϯ

Ϯ
=

Ϯ− ϭ/Ϯ
Ϯ

=
ϯ
ϰ
.

Inverse Hyperbolic FuncƟons

Just as the inverse trigonometric funcƟons are useful in certain integraƟons,
the inverse hyperbolic funcƟons are useful with others. Figure ϲ.ϭϱ shows the
restricƟons on the domains to make each funcƟon one-to-one and the resulƟng
domains and ranges of their inverse funcƟons. Their graphs are shown in Figure
ϲ.ϭϲ.

Because the hyperbolic funcƟons are defined in terms of exponenƟal func-
Ɵons, their inverses can be expressed in terms of logarithms as shown in Key Idea
ϭϳ. It is oŌen more convenient to refer to sinh−ϭ x than to ln

(
x+

√
xϮ + ϭ

)
, es-

pecially when one is working on theory and does not need to compute actual
values. On the other hand, when computaƟons are needed, technology is oŌen
helpful but many hand-held calculators lack a convenient sinh−ϭ x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situaƟon, the logarithmic representaƟon is useful. The reader is not encouraged
tomemorize these, but rather know they exist and know how to use themwhen
needed.

Notes:

ϯϭϳ
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FuncƟon Domain Range
cosh x [Ϭ,∞) [ϭ,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−ϭ, ϭ)
sech x [Ϭ,∞) (Ϭ, ϭ]
csch x (−∞, Ϭ) ∪ (Ϭ,∞) (−∞, Ϭ) ∪ (Ϭ,∞)
coth x (−∞, Ϭ) ∪ (Ϭ,∞) (−∞,−ϭ) ∪ (ϭ,∞)

FuncƟon Domain Range
cosh−ϭ x [ϭ,∞) [Ϭ,∞)
sinh−ϭ x (−∞,∞) (−∞,∞)
tanh−ϭ x (−ϭ, ϭ) (−∞,∞)
sech−ϭ x (Ϭ, ϭ] [Ϭ,∞)
csch−ϭ x (−∞, Ϭ) ∪ (Ϭ,∞) (−∞, Ϭ) ∪ (Ϭ,∞)
coth−ϭ x (−∞,−ϭ) ∪ (ϭ,∞) (−∞, Ϭ) ∪ (Ϭ,∞)

Figure ϲ.ϭϱ: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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Figure ϲ.ϭϲ: Graphs of the hyperbolic funcƟons and their inverses.

Key Idea ϭϳ Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

ϭ. cosh−ϭ x = ln
(
x+

√

xϮ − ϭ
)
; x ≥ ϭ

Ϯ. tanh−ϭ x =
ϭ
Ϯ
ln
(
ϭ+ x
ϭ− x

)

; |x| < ϭ

ϯ. sech−ϭ x = ln

(

ϭ+
√
ϭ− xϮ

x

)

; Ϭ < x ≤ ϭ

ϰ. sinh−ϭ x = ln
(
x+

√

xϮ + ϭ
)

ϱ. coth−ϭ x =
ϭ
Ϯ
ln
(
x+ ϭ
x− ϭ

)

; |x| > ϭ

ϲ. csch−ϭ x = ln

(

ϭ
x
+

√
ϭ+ xϮ

|x|

)

; x ̸= Ϭ

Notes:

ϯϭϴ
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The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea ϭϵ, both the inverse hyperbolic and log-
arithmic funcƟon representaƟons of the anƟderivaƟve are given, based on Key
Idea ϭϳ. Again, these laƩer funcƟons are oŌen more useful than the former.
Note how inverse hyperbolic funcƟons can be used to solve integrals we used
Trigonometric SubsƟtuƟon to solve in SecƟon ϲ.ϰ.

Key Idea ϭϴ DerivaƟves Involving Inverse Hyperbolic FuncƟons

ϭ.
d
dx
(
cosh−ϭ x

)
=

ϭ√
xϮ − ϭ

; x > ϭ

Ϯ.
d
dx
(
sinh−ϭ x

)
=

ϭ√
xϮ + ϭ

ϯ.
d
dx
(
tanh−ϭ x

)
=

ϭ
ϭ− xϮ

; |x| < ϭ

ϰ.
d
dx
(
sech−ϭ x

)
=

−ϭ
x
√
ϭ− xϮ

; Ϭ < x < ϭ

ϱ.
d
dx
(
csch−ϭ x

)
=

−ϭ
|x|
√
ϭ+ xϮ

; x ̸= Ϭ

ϲ.
d
dx
(
coth−ϭ x

)
=

ϭ
ϭ− xϮ

; |x| > ϭ

Key Idea ϭϵ Integrals Involving Inverse Hyperbolic FuncƟons

ϭ.
∫

ϭ√
xϮ − aϮ

dx = cosh−ϭ
( x
a

)

+ C; Ϭ < a < x = ln
∣
∣
∣x+

√

xϮ − aϮ
∣
∣
∣+ C

Ϯ.
∫

ϭ√
xϮ + aϮ

dx = sinh−ϭ
( x
a

)

+ C; a > Ϭ = ln
∣
∣
∣x+

√

xϮ + aϮ
∣
∣
∣+ C

ϯ.
∫

ϭ
aϮ − xϮ

dx =







ϭ
a tanh

−ϭ ( x
a

)
+ C xϮ < aϮ

ϭ
a coth

−ϭ ( x
a

)
+ C aϮ < xϮ

=
ϭ
Ϯ
ln
∣
∣
∣
∣

a+ x
a− x

∣
∣
∣
∣
+ C

ϰ.
∫

ϭ
x
√
aϮ − xϮ

dx = −ϭ
a
sech−ϭ

( x
a

)

+ C; Ϭ < x < a =
ϭ
a
ln
(

x
a+

√
aϮ − xϮ

)

+ C

ϱ.
∫

ϭ
x
√
xϮ + aϮ

dx = −ϭ
a
csch−ϭ

∣
∣
∣
x
a

∣
∣
∣+ C; x ̸= Ϭ, a > Ϭ =

ϭ
a
ln
∣
∣
∣
∣

x
a+

√
aϮ + xϮ

∣
∣
∣
∣
+ C

We pracƟce using the derivaƟve and integral formulas in the following ex-
ample.

Notes:

ϯϭϵ
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Example ϭϴϴ DerivaƟves and integrals involving inverse hyperbolic func-
Ɵons
Evaluate the following.

ϭ.
d
dx

[

cosh−ϭ
(
ϯx− Ϯ

ϱ

)]

Ϯ.
∫

ϭ
xϮ − ϭ

dx

ϯ.
∫

ϭ√
ϵxϮ + ϭϬ

dx

SÊ½çã®ÊÄ

ϭ. Applying Key Idea ϭϴ with the Chain Rule gives:

d
dx

[

cosh−ϭ
(
ϯx− Ϯ

ϱ

)]

=
ϭ

√
( ϯx−Ϯ

ϱ

)Ϯ − ϭ
· ϯ
ϱ
.

Ϯ. MulƟplying the numerator anddenominator by (−ϭ) gives:
∫

ϭ
xϮ − ϭ

dx =
∫ −ϭ

ϭ− xϮ
dx. The second integral can be solved with a direct applicaƟon

of item #ϯ from Key Idea ϭϵ, with a = ϭ. Thus
∫

ϭ
xϮ − ϭ

dx = −
∫

ϭ
ϭ− xϮ

dx

=







− tanh−ϭ (x) + C xϮ < ϭ

− coth−ϭ (x) + C ϭ < xϮ

= −ϭ
Ϯ
ln
∣
∣
∣
∣

x+ ϭ
x− ϭ

∣
∣
∣
∣
+ C

=
ϭ
Ϯ
ln
∣
∣
∣
∣

x− ϭ
x+ ϭ

∣
∣
∣
∣
+ C. (ϲ.ϰ)

We should note that this exact problem was solved at the beginning of
SecƟon ϲ.ϱ. In that example the answer was given as ϭ

Ϯ ln |x−ϭ|− ϭ
Ϯ ln |x+

ϭ|+ C. Note that this is equivalent to the answer given in EquaƟon ϲ.ϰ, as
ln(a/b) = ln a− ln b.

ϯ. This requires a subsƟtuƟon, then item #Ϯ of Key Idea ϭϵ can be applied.
Let u = ϯx, hence du = ϯdx. We have

∫
ϭ√

ϵxϮ + ϭϬ
dx =

ϭ
ϯ

∫
ϭ√

uϮ + ϭϬ
du.

Notes:

ϯϮϬ
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Note aϮ = ϭϬ, hence a =
√
ϭϬ. Now apply the integral rule.

=
ϭ
ϯ
sinh−ϭ

(
ϯx√
ϭϬ

)

+ C

=
ϭ
ϯ
ln
∣
∣
∣ϯx+

√

ϵxϮ + ϭϬ
∣
∣
∣+ C.

This secƟon covers a lot of ground. New funcƟons were introduced, along
with some of their fundamental idenƟƟes, their derivaƟves and anƟderivaƟves,
their inverses, and the derivaƟves and anƟderivaƟves of these inverses. Four
Key Ideas were presented, each including quite a bit of informaƟon.

Do not view this secƟon as containing a source of informaƟon to be memo-
rized, but rather as a reference for future problem solving. Key Idea ϭϵ contains
perhaps themost useful informaƟon. Know the integraƟon forms it helps evalu-
ate and understand how to use the inverse hyperbolic answer and the logarith-
mic answer.

The next secƟon takes a brief break from demonstraƟng new integraƟon
techniques. It instead demonstrates a technique of evaluaƟng limits that re-
turn indeterminate forms. This technique will be useful in SecƟon ϲ.ϴ, where
limits will arise in the evaluaƟon of certain definite integrals.

Notes:

ϯϮϭ



Exercises ϲ.ϲ
Terms and Concepts

ϭ. In Key Idea ϭϲ, the equaƟon
∫

tanh x dx = ln(cosh x)+C is

given. Why is “ln | cosh x|” not used – i.e., why are absolute
values not necessary?

Ϯ. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola xϮ − yϮ = ϭ, as shown
in Figure ϲ.ϭϯ. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises ϯ – ϭϬ, verify the given idenƟty using DefiniƟon
Ϯϯ, as done in Example ϭϴϲ.

ϯ. cothϮ x− cschϮ x = ϭ

ϰ. cosh Ϯx = coshϮ x+ sinhϮ x

ϱ. coshϮ x =
cosh Ϯx+ ϭ

Ϯ

ϲ. sinhϮ x =
cosh Ϯx− ϭ

Ϯ

ϳ.
d
dx

[sech x] = − sech x tanh x

ϴ.
d
dx

[coth x] = − cschϮ x

ϵ.
∫

tanh x dx = ln(cosh x) + C

ϭϬ.
∫

coth x dx = ln | sinh x|+ C

In Exercises ϭϭ – Ϯϭ, find the derivaƟve of the given funcƟon.

ϭϭ. f(x) = cosh Ϯx

ϭϮ. f(x) = tanh(xϮ)

ϭϯ. f(x) = ln(sinh x)

ϭϰ. f(x) = sinh x cosh x

ϭϱ. f(x) = x sinh x− cosh x

ϭϲ. f(x) = sech−ϭ(xϮ)

ϭϳ. f(x) = sinh−ϭ(ϯx)

ϭϴ. f(x) = cosh−ϭ(ϮxϮ)

ϭϵ. f(x) = tanh−ϭ(x+ ϱ)

ϮϬ. f(x) = tanh−ϭ(cos x)

Ϯϭ. f(x) = cosh−ϭ(sec x)

In Exercises ϮϮ – Ϯϲ, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

ϮϮ. f(x) = sinh x at x = Ϭ

Ϯϯ. f(x) = cosh x at x = ln Ϯ

Ϯϰ. f(x) = sechϮ x at x = ln ϯ

Ϯϱ. f(x) = sinh−ϭ x at x = Ϭ

Ϯϲ. f(x) = cosh−ϭ x at x =
√
Ϯ

In Exercises Ϯϳ – ϰϬ, evaluate the given indefinite integral.

Ϯϳ.
∫

tanh(Ϯx) dx

Ϯϴ.
∫

cosh(ϯx− ϳ) dx

Ϯϵ.
∫

sinh x cosh x dx

ϯϬ.
∫

x cosh x dx

ϯϭ.
∫

x sinh x dx

ϯϮ.
∫

ϭ
ϵ− xϮ

dx

ϯϯ.
∫

Ϯx√
xϰ − ϰ

dx

ϯϰ.
∫ √

x√
ϭ+ xϯ

dx

ϯϱ.
∫

ϭ
xϰ − ϭϲ

dx

ϯϲ.
∫

ϭ
xϮ + x

dx

ϯϳ.
∫

ex

eϮx + ϭ
dx

ϯϴ.
∫

sinh−ϭ x dx

ϯϵ.
∫

tanh−ϭ x dx

ϯϮϮ



ϰϬ.
∫

sech x dx (Hint: muƟply by cosh x
cosh x ; set u = sinh x.)

In Exercises ϰϭ – ϰϯ, evaluate the given definite integral.

ϰϭ.
∫ ϭ

−ϭ
sinh x dx

ϰϮ.
∫ ln Ϯ

− ln Ϯ
cosh x dx

ϰϯ.
∫ ϭ

Ϭ
tanh−ϭ x dx

ϯϮϯ
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ϲ.ϳ L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integraƟon, this secƟon
is not about integraƟon. Rather, it is concerned with a technique of evaluaƟng
certain limits that will be useful in the following secƟon, where integraƟon is
once more discussed.

Our treatment of limits exposedus to “Ϭ/Ϭ”, an indeterminate form. If lim
x→c

f(x) =
Ϭ and lim

x→c
g(x) = Ϭ, we do not conclude that lim

x→c
f(x)/g(x) is Ϭ/Ϭ; rather, we use

Ϭ/Ϭ as notaƟon to describe the fact that both the numerator and denominator
approach Ϭ. The expression Ϭ/Ϭ has no numeric value; other workmust be done
to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, Ϭ ·∞,∞−∞, ϬϬ, ϭ∞ and
∞Ϭ. Just as “Ϭ/Ϭ” does not mean “divide Ϭ by Ϭ,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “Ϭ ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms Ϭ/Ϭ and ∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two forms so that our new rule can be applied.

Theorem ϰϵ L’Hôpital’s Rule, Part ϭ

Let lim
x→c

f(x) = Ϭ and lim
x→c

g(x) = Ϭ, where f and g are differenƟable func-
Ɵons on an open interval I containing c, and g ′(x) ̸= Ϭ on I except possi-
bly at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “l’Hôpital’s Rule.”

Notes:

ϯϮϰ
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Example ϭϴϵ Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

ϭ. lim
x→Ϭ

sin x
x

Ϯ. lim
x→ϭ

√
x+ ϯ− Ϯ
ϭ− x

ϯ. lim
x→Ϭ

xϮ

ϭ− cos x

ϰ. lim
x→Ϯ

xϮ + x− ϲ
xϮ − ϯx+ Ϯ

SÊ½çã®ÊÄ

ϭ. We proved this limit is ϭ in Example ϭϯ using the Squeeze Theorem. Here
we use l’Hôpital’s Rule to show its power.

lim
x→Ϭ

sin x
x

by LHR
= lim

x→Ϭ

cos x
ϭ

= ϭ.

Ϯ. lim
x→ϭ

√
x+ ϯ− Ϯ
ϭ− x

by LHR
= lim

x→ϭ

ϭ
Ϯ (x+ ϯ)−ϭ/Ϯ

−ϭ
= −ϭ

ϰ
.

ϯ. lim
x→Ϭ

xϮ

ϭ− cos x

by LHR
= lim

x→Ϭ

Ϯx
sin x

.

This laƩer limit also evaluates to the Ϭ/Ϭ indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→Ϭ

Ϯx
sin x

by LHR
=

Ϯ
cos x

= Ϯ.

Thus lim
x→Ϭ

xϮ

ϭ− cos x
= Ϯ.

ϰ. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→Ϯ

xϮ + x− ϲ
xϮ − ϯx+ Ϯ

= lim
x→Ϯ

(x− Ϯ)(x+ ϯ)
(x− Ϯ)(x− ϭ)

= lim
x→Ϯ

x+ ϯ
x− ϭ

= ϱ.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→Ϯ

xϮ + x− ϲ
xϮ − ϯx+ Ϯ

by LHR
= lim

x→Ϯ

Ϯx+ ϭ
Ϯx− ϯ

= ϱ.

Note that at each stepwhere l’Hôpital’s Rule was applied, it was needed: the
iniƟal limit returned the indeterminate form of “Ϭ/Ϭ.” If the iniƟal limit returns,
for example, ϭ/Ϯ, then l’Hôpital’s Rule does not apply.

Notes:
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The following theorem extends our iniƟal version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Theorem ϱϬ L’Hôpital’s Rule, Part Ϯ

ϭ. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
enƟable on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g ′(x)

.

Ϯ. Let f and g be differenƟable funcƟons on the open interval (a,∞)
for some value a, where g ′(x) ̸= Ϭ on (a,∞) and lim

x→∞
f(x)/g(x)

returns either Ϭ/Ϭ or∞/∞. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g ′(x)

.

A similar statement can be made for limits where x approaches
−∞.

Example ϭϵϬ Using l’Hôpital’s Rule with limits involving∞
Evaluate the following limits.

ϭ. lim
x→∞

ϯxϮ − ϭϬϬx+ Ϯ
ϰxϮ + ϱx− ϭϬϬϬ

Ϯ. lim
x→∞

ex

xϯ
.

SÊ½çã®ÊÄ

ϭ. We can evaluate this limit already using Theorem ϭϭ; the answer is ϯ/ϰ.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

ϯxϮ − ϭϬϬx+ Ϯ
ϰxϮ + ϱx− ϭϬϬϬ

by LHR
= lim

x→∞
ϲx− ϭϬϬ
ϴx+ ϱ

by LHR
= lim

x→∞
ϲ
ϴ
=

ϯ
ϰ
.

Ϯ. lim
x→∞

ex

xϯ
by LHR
= lim

x→∞
ex

ϯxϮ
by LHR
= lim

x→∞
ex

ϲx

by LHR
= lim

x→∞
ex

ϲ
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/xϯ grows without bound. We can infer from this that
ex grows “faster” than xϯ; as x gets large, ex is far larger than xϯ. (This

Notes:
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has important implicaƟons in compuƟng when considering efficiency of
algorithms.)

Indeterminate Forms Ϭ · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with
an indeterminate form such as Ϭ ·∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

Example ϭϵϭ Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

ϭ. lim
x→Ϭ+

x · eϭ/x

Ϯ. lim
x→Ϭ−

x · eϭ/x

ϯ. lim
x→∞

ln(x+ ϭ)− ln x

ϰ. lim
x→∞

xϮ − ex

SÊ½çã®ÊÄ

ϭ. As x → Ϭ+, x → Ϭ and eϭ/x → ∞. Thus we have the indeterminate form

Ϭ · ∞. We rewrite the expression x · eϭ/x as e
ϭ/x

ϭ/x
; now, as x → Ϭ+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→Ϭ+

x · eϭ/x = lim
x→Ϭ+

eϭ/x

ϭ/x

by LHR
= lim

x→Ϭ+

(−ϭ/xϮ)eϭ/x

−ϭ/xϮ
= lim

x→Ϭ+
eϭ/x = ∞.

InterpretaƟon: eϭ/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

Ϯ. As x → Ϭ−, x → Ϭ and eϭ/x → e−∞ → Ϭ. The the limit evaluates to Ϭ · Ϭ
which is not an indeterminate form. We conclude then that

lim
x→Ϭ−

x · eϭ/x = Ϭ.

ϯ. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ ϭ)− ln x = lim
x→∞

ln
(
x+ ϭ
x

)

.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ ϭ
x

by LHR
=

ϭ
ϭ
= ϭ.

Notes:
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Since x → ∞ implies
x+ ϭ
x

→ ϭ, it follows that

x → ∞ implies ln
(
x+ ϭ
x

)

→ ln ϭ = Ϭ.

Thus
lim
x→∞

ln(x+ ϭ)− ln x = lim
x→∞

ln
(
x+ ϭ
x

)

= Ϭ.

InterpretaƟon: since this limit evaluates to Ϭ, it means that for large x,
there is essenƟally no difference between ln(x + ϭ) and ln x; their differ-
ence is essenƟally Ϭ.

ϰ. The limit lim
x→∞

xϮ−ex iniƟally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out xϮ; xϮ − ex = xϮ
(

ϭ− ex

xϮ

)

.

We need to evaluate how ex/xϮ behaves as x → ∞:

lim
x→∞

ex

xϮ
by LHR
= lim

x→∞
ex

Ϯx

by LHR
= lim

x→∞
ex

Ϯ
= ∞.

Thus limx→∞ xϮ(ϭ− ex/xϮ) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

xϮ − ex = −∞.

InterpretaƟon: as x gets large, the difference between xϮ and ex grows
very large.

Indeterminate Forms ϬϬ, ϭ∞ and∞Ϭ

When faced with an indeterminate form that involves a power, it oŌen helps
to employ the natural logarithmic funcƟon. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

Key Idea ϮϬ EvaluaƟng Limits Involving Indeterminate Forms
ϬϬ, ϭ∞ and∞Ϭ

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Notes:
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Example ϭϵϮ Using l’Hôpital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.

ϭ. lim
x→∞

(

ϭ+
ϭ
x

)x

Ϯ. lim
x→Ϭ+

xx.

SÊ½çã®ÊÄ

ϭ. This equivalent to a special limit given in Theorem ϯ; these limits have
important applicaƟons within mathemaƟcs and finance. Note that the
exponent approaches ∞ while the base approaches ϭ, leading to the in-
determinate form ϭ∞. Let f(x) = (ϭ+ϭ/x)x; the problem asks to evaluate
lim
x→∞

f(x). Let’s first evaluate lim
x→∞

ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(

ϭ+
ϭ
x

)x

= lim
x→∞

x ln
(

ϭ+
ϭ
x

)

= lim
x→∞

ln
(
ϭ+ ϭ

x

)

ϭ/x

This produces the indeterminate form Ϭ/Ϭ, so we apply l’Hôpital’s Rule.

= lim
x→∞

ϭ
ϭ+ϭ/x · (−ϭ/xϮ)

(−ϭ/xϮ)

= lim
x→∞

ϭ
ϭ+ ϭ/x

= ϭ.

Thus lim
x→∞

ln
(
f(x)
)
= ϭ.We return to the original limit and apply Key Idea

ϮϬ.

lim
x→∞

(

ϭ+
ϭ
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = eϭ = e.

Ϯ. This limit leads to the indeterminate form ϬϬ. Let f(x) = xx and consider

Notes:
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Figure ϲ.ϭϳ: A graph of f(x) = xx support-
ing the fact that as x → Ϭ+, f(x) → ϭ.
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first lim
x→Ϭ+

ln
(
f(x)
)
.

lim
x→Ϭ+

ln
(
f(x)
)
= lim

x→Ϭ+
ln (xx)

= lim
x→Ϭ+

x ln x

= lim
x→Ϭ+

ln x
ϭ/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→Ϭ+

ϭ/x
−ϭ/xϮ

= lim
x→Ϭ+

−x

= Ϭ.

Thus lim
x→Ϭ+

ln
(
f(x)
)
= Ϭ. We return to the original limit and apply Key Idea

ϮϬ.
lim

x→Ϭ+
xx = lim

x→Ϭ+
f(x) = lim

x→Ϭ+
eln(f(x)) = eϬ = ϭ.

This result is supported by the graph of f(x) = xx given in Figure ϲ.ϭϳ.

Our brief revisit of limits will be rewarded in the next secƟon where we con-
sider improper integraƟon. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ ϭ

Ϭ
f(x) dx. Improper integraƟon

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applicaƟons, in addiƟon to generaƟng ideas that are
enlightening.

Notes:
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Exercises ϲ.ϳ
Terms and Concepts
ϭ. List the different indeterminate forms described in this sec-

Ɵon.

Ϯ. T/F: l’Hôpital’s Rule provides a faster method of compuƟng
derivaƟves.

ϯ. T/F: l’Hôpital’s Rule states that
d
dx

[

f(x)
g(x)

]

=
f ′(x)
g′(x)

.

ϰ. Explain what the indeterminate form “ϭ∞” means.

ϱ. Fill in the blanks: TheQuoƟent Rule is applied to
f(x)
g(x)

when

taking ; l’Hôpital’s Rule is applied when taking
certain .

ϲ. Create (but do not evaluate!) a limit that returns “∞Ϭ”.

ϳ. Create a funcƟon f(x) such that lim
x→ϭ

f(x) returns “ϬϬ”.

Problems
In Exercises ϴ – ϱϮ, evaluate the given limit.

ϴ. lim
x→ϭ

xϮ + x− Ϯ
x− ϭ

ϵ. lim
x→Ϯ

xϮ + x− ϲ
xϮ − ϳx+ ϭϬ

ϭϬ. lim
x→π

sin x
x− π

ϭϭ. lim
x→π/ϰ

sin x− cos x
cos(Ϯx)

ϭϮ. lim
x→Ϭ

sin(ϱx)
x

ϭϯ. lim
x→Ϭ

sin(Ϯx)
x+ Ϯ

ϭϰ. lim
x→Ϭ

sin(Ϯx)
sin(ϯx)

ϭϱ. lim
x→Ϭ

sin(ax)
sin(bx)

ϭϲ. lim
x→Ϭ+

ex − ϭ
xϮ

ϭϳ. lim
x→Ϭ+

ex − x− ϭ
xϮ

ϭϴ. lim
x→Ϭ+

x− sin x
xϯ − xϮ

ϭϵ. lim
x→∞

xϰ

ex

ϮϬ. lim
x→∞

√
x

ex

Ϯϭ. lim
x→∞

ex√
x

ϮϮ. lim
x→∞

ex

Ϯx

Ϯϯ. lim
x→∞

ex

ϯx

Ϯϰ. lim
x→ϯ

xϯ − ϱxϮ + ϯx+ ϵ
xϯ − ϳxϮ + ϭϱx− ϵ

Ϯϱ. lim
x→−Ϯ

xϯ + ϰxϮ + ϰx
xϯ + ϳxϮ + ϭϲx+ ϭϮ

Ϯϲ. lim
x→∞

ln x
x

Ϯϳ. lim
x→∞

ln(xϮ)
x

Ϯϴ. lim
x→∞

(

ln x
)Ϯ

x

Ϯϵ. lim
x→Ϭ+

x · ln x

ϯϬ. lim
x→Ϭ+

√
x · ln x

ϯϭ. lim
x→Ϭ+

xeϭ/x

ϯϮ. lim
x→∞

xϯ − xϮ

ϯϯ. lim
x→∞

√
x− ln x

ϯϰ. lim
x→−∞

xex

ϯϱ. lim
x→Ϭ+

ϭ
xϮ
e−ϭ/x

ϯϲ. lim
x→Ϭ+

(ϭ+ x)ϭ/x

ϯϳ. lim
x→Ϭ+

(Ϯx)x

ϯϴ. lim
x→Ϭ+

(Ϯ/x)x

ϯϵ. lim
x→Ϭ+

(sin x)x Hint: use the Squeeze Theorem.

ϯϯϭ



ϰϬ. lim
x→ϭ+

(ϭ− x)ϭ−x

ϰϭ. lim
x→∞

(x)ϭ/x

ϰϮ. lim
x→∞

(ϭ/x)x

ϰϯ. lim
x→ϭ+

(ln x)ϭ−x

ϰϰ. lim
x→∞

(ϭ+ x)ϭ/x

ϰϱ. lim
x→∞

(ϭ+ xϮ)ϭ/x

ϰϲ. lim
x→π/Ϯ

tan x cos x

ϰϳ. lim
x→π/Ϯ

tan x sin(Ϯx)

ϰϴ. lim
x→ϭ+

ϭ
ln x

− ϭ
x− ϭ

ϰϵ. lim
x→ϯ+

ϱ
xϮ − ϵ

− x
x− ϯ

ϱϬ. lim
x→∞

x tan(ϭ/x)

ϱϭ. lim
x→∞

(ln x)ϯ

x

ϱϮ. lim
x→ϭ

xϮ + x− Ϯ
ln x

ϯϯϮ
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ϲ.ϴ Improper IntegraƟon

ϲ.ϴ Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ ϭϬϬ

Ϭ

ϭ
ϭ+ xϮ

dx ≈ ϭ.ϱϲϬϴ,

•
∫ ϭϬϬϬ

Ϭ

ϭ
ϭ+ xϮ

dx ≈ ϭ.ϱϲϵϴ,

•
∫ ϭϬ,ϬϬϬ

Ϭ

ϭ
ϭ+ xϮ

dx ≈ ϭ.ϱϳϬϳ.

NoƟce how the integrand is ϭ/(ϭ+ xϮ) in each integral (which is sketched in
Figure ϲ.ϭϴ). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:

∫ b

Ϭ

ϭ
ϭ+ xϮ

dx = tan−ϭ x
∣
∣
∣

b

Ϭ
= tan−ϭ b− tan−ϭ Ϭ = tan−ϭ b.

As b → ∞, tan−ϭ b → π/Ϯ. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

Ϭ

ϭ
ϭ+ xϮ

dx approaches π/Ϯ ≈ ϭ.ϱϳϬϴ. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

ϭ. The interval over which we integrated, [a, b], was a finite interval, and

Ϯ. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.

Notes:
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Figure ϲ.ϭϵ: A graph of f(x) = ϭ
xϮ in Ex-

ample ϭϵϯ.
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Improper Integrals with Infinite Bounds

DefiniƟon Ϯϰ Improper Integrals with Infinite Bounds; Converge,
Diverge

ϭ. Let f be a conƟnuous funcƟon on [a,∞). Define
∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

Ϯ. Let f be a conƟnuous funcƟon on (−∞, b]. Define
∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

ϯ. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real num-
ber; define
∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists;
otherwise, it diverges. The improper integral in part ϯ converges if and
only if both of its limits exist.

Example ϭϵϯ EvaluaƟng improper integrals
Evaluate the following improper integrals.

ϭ.
∫ ∞

ϭ

ϭ
xϮ

dx

Ϯ.
∫ ∞

ϭ

ϭ
x
dx

ϯ.
∫ Ϭ

−∞
ex dx

ϰ.
∫ ∞

−∞

ϭ
ϭ+ xϮ

dx

SÊ½çã®ÊÄ

ϭ.
∫ ∞

ϭ

ϭ
xϮ

dx = lim
b→∞

∫ b

ϭ

ϭ
xϮ

dx = lim
b→∞

−ϭ
x

∣
∣
∣

b

ϭ

= lim
b→∞

−ϭ
b

+ ϭ

= ϭ.

A graph of the area defined by this integral is given in Figure ϲ.ϭϵ.

Notes:

ϯϯϰ
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Figure ϲ.ϮϬ: A graph of f(x) = ϭ
x in Exam-

ple ϭϵϯ.
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Figure ϲ.Ϯϭ: A graph of f(x) = ex in Exam-
ple ϭϵϯ.
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Figure ϲ.ϮϮ: A graph of f(x) = ϭ
ϭ+xϮ in Ex-

ample ϭϵϯ.

ϲ.ϴ Improper IntegraƟon

Ϯ.
∫ ∞

ϭ

ϭ
x
dx = lim

b→∞

∫ b

ϭ

ϭ
x
dx

= lim
b→∞

ln |x|
∣
∣
∣

b

ϭ

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

ϭ

ϭ
x
dx diverges.

Compare the graphs in Figures ϲ.ϭϵ and ϲ.ϮϬ; noƟce how the graph of
f(x) = ϭ/x is noƟceably larger. This difference is enough to cause the
improper integral to diverge.

ϯ.
∫ Ϭ

−∞
ex dx = lim

a→−∞

∫ Ϭ

a
ex dx

= lim
a→−∞

ex
∣
∣
∣

Ϭ

a

= lim
a→−∞

eϬ − ea

= ϭ.
A graph of the area defined by this integral is given in Figure ϲ.Ϯϭ.

ϰ. We will need to break this into two improper integrals and choose a value
of c as in part ϯ of DefiniƟon Ϯϰ. Any value of c is fine; we choose c = Ϭ.

∫ ∞

−∞

ϭ
ϭ+ xϮ

dx = lim
a→−∞

∫ Ϭ

a

ϭ
ϭ+ xϮ

dx+ lim
b→∞

∫ b

Ϭ

ϭ
ϭ+ xϮ

dx

= lim
a→−∞

tan−ϭ x
∣
∣
∣

Ϭ

a
+ lim

b→∞
tan−ϭ x

∣
∣
∣

b

Ϭ

= lim
a→−∞

(
tan−ϭ Ϭ− tan−ϭ a

)
+ lim

b→∞

(
tan−ϭ b− tan−ϭ Ϭ

)

=

(

Ϭ− −π

Ϯ

)

+
(π

Ϯ
− Ϭ
)

.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure ϲ.ϮϮ.

Notes:

ϯϯϱ
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Figure ϲ.Ϯϯ: A graph of f(x) = ln x
xϮ in Ex-

ample ϭϵϰ.

Chapter ϲ Techniques of AnƟdifferenƟaƟon

The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

Example ϭϵϰ Improper integraƟon and l’Hôpital’s Rule

Evaluate the improper integral
∫ ∞

ϭ

ln x
xϮ

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = ϭ/xϮ dx. Then

∫ ∞

ϭ

ln x
xϮ

dx = lim
b→∞

∫ b

ϭ

ln x
xϮ

dx

= lim
b→∞

(

− ln x
x

∣
∣
∣

b

ϭ
+

∫ b

ϭ

ϭ
xϮ

dx

)

= lim
b→∞

(

− ln x
x

− ϭ
x

)∣
∣
∣
∣

b

ϭ

= lim
b→∞

(

− ln b
b

− ϭ
b
− (− ln ϭ− ϭ)

)

.

The ϭ/b and ln ϭ terms go to Ϭ, leaving lim
b→∞

− ln b
b

+ ϭ. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

ϭ/b
ϭ

= Ϭ.

Thus the improper integral evaluates as:

∫ ∞

ϭ

ln x
xϮ

dx = ϭ.

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Notes:

ϯϯϲ



Note: In DefiniƟon Ϯϱ, c can be one of the
endpoints (a or b). In that case, there is
only one limit to consider as part of the
definiƟon.
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Figure ϲ.Ϯϰ: A graph of f(x) = ϭ√
x in Ex-

ample ϭϵϱ.
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Figure ϲ.Ϯϱ: A graph of f(x) = ϭ
xϮ in Ex-

ample ϭϵϱ.

ϲ.ϴ Improper IntegraƟon

DefiniƟon Ϯϱ Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define

∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

Example ϭϵϱ Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

ϭ.
∫ ϭ

Ϭ

ϭ√
x
dx Ϯ.

∫ ϭ

−ϭ

ϭ
xϮ

dx.

SÊ½çã®ÊÄ

ϭ. A graph of f(x) = ϭ/
√
x is given in Figure ϲ.Ϯϰ. NoƟce that f has a verƟcal

asymptote at x = Ϭ; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?

∫ ϭ

Ϭ

ϭ√
x
dx = lim

a→Ϭ+

∫ ϭ

a

ϭ√
x
dx

= lim
a→Ϭ+

Ϯ
√
x
∣
∣
∣

ϭ

a

= lim
a→Ϭ+

Ϯ
(√

ϭ−
√
a
)

= Ϯ.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

Ϯ. The funcƟon f(x) = ϭ/xϮ has a verƟcal asymptote at x = Ϭ, as shown
in Figure ϲ.Ϯϱ, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:

∫ ϭ

−ϭ

ϭ
xϮ

dx = −ϭ
x

∣
∣
∣

ϭ

−ϭ

= −ϭ− (ϭ)
= −Ϯ!

Notes:

ϯϯϳ
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Figure ϲ.Ϯϲ: Ploƫng funcƟons of the form
ϭ/x p in Example ϭϵϲ.

Chapter ϲ Techniques of AnƟdifferenƟaƟon

Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve! Why does our answer not match our intuiƟon? To answer this,
evaluate the integral using DefiniƟon Ϯϱ.

∫ ϭ

−ϭ

ϭ
xϮ

dx = lim
t→Ϭ−

∫ t

−ϭ

ϭ
xϮ

dx+ lim
t→Ϭ+

∫ ϭ

t

ϭ
xϮ

dx

= lim
t→Ϭ−

−ϭ
x

∣
∣
∣

t

−ϭ
+ lim

t→Ϭ+
−ϭ
x

∣
∣
∣

ϭ

t

= lim
t→Ϭ−

−ϭ
t
− ϭ+ lim

t→Ϭ+
−ϭ+

ϭ
t

⇒
(

∞− ϭ
)

+
(

− ϭ+∞
)

.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical.

Understanding Convergence and Divergence

OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
ϭ
xp

.

Example ϭϵϲ Improper integraƟon of ϭ/xp

Determine the values of p for which
∫ ∞

ϭ

ϭ
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.
∫ ∞

ϭ

ϭ
xp

dx = lim
b→∞

∫ b

ϭ

ϭ
xp

dx

= lim
b→∞

∫ b

ϭ
x−p dx (assume p ̸= ϭ)

= lim
b→∞

ϭ
−p+ ϭ

x−p+ϭ
∣
∣
∣

b

ϭ

= lim
b→∞

ϭ
ϭ− p

(
bϭ−p − ϭϭ−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than Ϭ: when ϭ− p < Ϭ ⇒ ϭ < p.

Notes:

ϯϯϴ



Note: We used the upper and lower
bound of “ϭ” in Key Idea Ϯϭ for conve-
nience. It can be replaced by any awhere
a > Ϭ.

ϲ.ϴ Improper IntegraƟon

Our analysis shows that if p > ϭ, then
∫ ∞

ϭ

ϭ
xp

dx converges. When p < ϭ

the improper integral diverges; we showed in Example ϭϵϯ that when p = ϭ the
integral also diverges.

Figure ϲ.Ϯϲ graphs y = ϭ/xwith a dashed line, alongwith graphs of y = ϭ/xp,
p < ϭ, and y = ϭ/xq, q > ϭ. Somehow the dashed line forms a dividing line
between convergence and divergence.

The result of Example ϭϵϲ provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ ϭ

Ϭ

ϭ
xp

dx. These results are summarized in the

following Key Idea.

Key Idea Ϯϭ Convergence of Improper Integrals
∫ ∞

ϭ

ϭ
xp

dx and
∫ ϭ

Ϭ

ϭ
xp

dx.

ϭ. The improper integral
∫ ∞

ϭ

ϭ
xp

dx converges when p > ϭ and diverges when p ≤ ϭ.

Ϯ. The improper integral
∫ ϭ

Ϭ

ϭ
xp

dx converges when p < ϭ and diverges when p ≥ ϭ.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form ϭ/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

Theorem ϱϭ Direct Comparison Test for Improper Integrals

Let f and g be conƟnuous on [a,∞) where Ϭ ≤ f(x) ≤ g(x) for all x in
[a,∞).

ϭ. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

Ϯ. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:

ϯϯϵ
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Figure ϲ.Ϯϳ: Graphs of f(x) = e−xϮ and
f(x) = ϭ/xϮ in Example ϭϵϳ.
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Figure ϲ.Ϯϴ: Graphs of f(x) = ϭ/
√
xϮ − x

and f(x) = ϭ/x in Example ϭϵϳ.

Chapter ϲ Techniques of AnƟdifferenƟaƟon

Example ϭϵϳ Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

ϭ.
∫ ∞

ϭ
e−xϮ dx Ϯ.

∫ ∞

ϯ

ϭ√
xϮ − x

dx

SÊ½çã®ÊÄ

ϭ. The funcƟon f(x) = e−xϮ does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = ϭ/xϮ, and as demonstrated in Figure ϲ.Ϯϳ, e−xϮ < ϭ/xϮ

on [ϭ,∞). We know from Key Idea Ϯϭ that
∫ ∞

ϭ

ϭ
xϮ

dx converges, hence
∫ ∞

ϭ
e−xϮ dx also converges.

Ϯ. Note that for large values of x,
ϭ√

xϮ − x
≈ ϭ√

xϮ
=

ϭ
x
. We know from Key

Idea Ϯϭ and the subsequent note that
∫ ∞

ϯ

ϭ
x
dx diverges, so we seek to

compare the original integrand to ϭ/x.

It is easy to see that when x > Ϭ, we have x =
√
xϮ >

√
xϮ − x. Taking

reciprocals reverses the inequality, giving

ϭ
x
<

ϭ√
xϮ − x

.

Using Theoremϱϭ,we conclude that since
∫ ∞

ϯ

ϭ
x
dxdiverges,

∫ ∞

ϯ

ϭ√
xϮ − x

dx

diverges as well. Figure ϲ.Ϯϴ illustrates this.

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle

“too nice.” For instance, it was convenient that
ϭ
x
<

ϭ√
xϮ − x

, but what if the

“−x” were replaced with a “+Ϯx+ ϱ”? That is, what can we say about the con-

vergence of
∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx? We have
ϭ
x
>

ϭ√
xϮ + Ϯx+ ϱ

, so we cannot

use Theorem ϱϭ.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:

ϯϰϬ
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Figure ϲ.Ϯϵ: Graphing f(x) = ϭ√
xϮ+Ϯx+ϱ

and f(x) = ϭ
x in Example ϭϵϴ.

ϲ.ϴ Improper IntegraƟon

Theorem ϱϮ Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞)where f(x) > Ϭ and g(x) >
Ϭ for all x. If

lim
x→∞

f(x)
g(x)

= L, Ϭ < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

Example ϭϵϴ Determining convergence of improper integrals

Determine the convergence of
∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx.

SÊ½çã®ÊÄ As x gets large, the quadraƟc inside the square root funcƟon
will begin to behave much like y = x. So we compare ϭ√

xϮ + Ϯx+ ϱ
to ϭ

x
with

the Limit Comparison Test:

lim
x→∞

ϭ/
√
xϮ + Ϯx+ ϱ
ϭ/x

= lim
x→∞

x√
xϮ + Ϯx+ ϱ

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)Ϯ = LϮ. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

xϮ

xϮ + Ϯx+ ϱ
.

This converges to ϭ, meaning the original limit also converged to ϭ. As x gets
very large, the funcƟon ϭ√

xϮ + Ϯx+ ϱ
looks verymuch like ϭ

x
. Sincewe know that

∫ ∞

ϯ

ϭ
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

ϯ

ϭ√
xϮ + Ϯx+ ϱ

dx

also diverges. Figure ϲ.Ϯϵ graphs f(x) = ϭ/
√
xϮ + Ϯx+ ϱ and f(x) = ϭ/x, illus-

traƟng that as x gets large, the funcƟons become indisƟnguishable.

Notes:

ϯϰϭ



Chapter ϲ Techniques of AnƟdifferenƟaƟon

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

This chapter has explored many integraƟon techniques. We learned SubsƟ-
tuƟon, which “undoes” the Chain Rule of differenƟaƟon, as well as IntegraƟon
by Parts, which “undoes” the Product Rule. We learned specialized techniques
for handling trigonometric funcƟons and introduced the hyperbolic funcƟons,
which are closely related to the trigonometric funcƟons. All techniques effec-
Ɵvely have this goal in common: rewrite the integrand in a new way so that the
integraƟon step is easier to see and implement.

As stated before, integraƟon is, in general, hard. It is easy to write a funcƟon
whose anƟderivaƟve is impossible to write in terms of elementary funcƟons,
and evenwhen a funcƟon does have an anƟderivaƟve expressible by elementary
funcƟons, it may be really hard to discover what it is. The powerful computer
algebra systemMathemaƟca® has approximately ϭ,ϬϬϬ pages of code dedicated
to integraƟon.

Do not let this difficulty discourage you. There is great value in learning in-
tegraƟon techniques, as they allow one to manipulate an integral in ways that
can illuminate a concept for greater understanding. There is also great value
in understanding the need for good numerical techniques: the Trapezoidal and
Simpson’s Rules are just the beginning of powerful techniques for approximat-
ing the value of integraƟon.

The next chapter stresses the uses of integraƟon. We generally do not find
anƟderivaƟves for anƟderivaƟve’s sake, but rather because they provide the so-
luƟon to some typeof problem. The following chapter introduces us to a number
of different problems whose soluƟon is provided by integraƟon.

Notes:

ϯϰϮ



Exercises ϲ.ϴ
Terms and Concepts

ϭ. The definite integral was defined with what two sƟpula-
Ɵons?

Ϯ. If lim
b→∞

∫ b

Ϭ
f(x) dx exists, then the integral

∫ ∞

Ϭ
f(x) dx is

said to .

ϯ. If
∫ ∞

ϭ
f(x) dx = ϭϬ, and Ϭ ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

ϭ
g(x) dx .

ϰ. For what values of p will
∫ ∞

ϭ

ϭ
xp

dx converge?

ϱ. For what values of p will
∫ ∞

ϭϬ

ϭ
xp

dx converge?

ϲ. For what values of p will
∫ ϭ

Ϭ

ϭ
xp

dx converge?

Problems
In Exercises ϳ – ϯϯ, evaluate the given improper integral.

ϳ.
∫ ∞

Ϭ
eϱ−Ϯx dx

ϴ.
∫ ∞

ϭ

ϭ
xϯ

dx

ϵ.
∫ ∞

ϭ
x−ϰ dx

ϭϬ.
∫ ∞

−∞

ϭ
xϮ + ϵ

dx

ϭϭ.
∫ Ϭ

−∞
Ϯx dx

ϭϮ.
∫ Ϭ

−∞

(

ϭ
Ϯ

)x

dx

ϭϯ.
∫ ∞

−∞

x
xϮ + ϭ

dx

ϭϰ.
∫ ∞

−∞

x
xϮ + ϰ

dx

ϭϱ.
∫ ∞

Ϯ

ϭ
(x− ϭ)Ϯ

dx

ϭϲ.
∫ Ϯ

ϭ

ϭ
(x− ϭ)Ϯ

dx

ϭϳ.
∫ ∞

Ϯ

ϭ
x− ϭ

dx

ϭϴ.
∫ Ϯ

ϭ

ϭ
x− ϭ

dx

ϭϵ.
∫ ϭ

−ϭ

ϭ
x
dx

ϮϬ.
∫ ϯ

ϭ

ϭ
x− Ϯ

dx

Ϯϭ.
∫ π

Ϭ
secϮ x dx

ϮϮ.
∫ ϭ

−Ϯ

ϭ
√

|x|
dx

Ϯϯ.
∫ ∞

Ϭ
xe−x dx

Ϯϰ.
∫ ∞

Ϭ
xe−xϮ dx

Ϯϱ.
∫ ∞

−∞
xe−xϮ dx

Ϯϲ.
∫ ∞

−∞

ϭ
ex + e−x dx

Ϯϳ.
∫ ϭ

Ϭ
x ln x dx

Ϯϴ.
∫ ∞

ϭ

ln x
x

dx

Ϯϵ.
∫ ϭ

Ϭ
ln x dx

ϯϬ.
∫ ∞

ϭ

ln x
xϮ

dx

ϯϭ.
∫ ∞

ϭ

ln x√
x
dx

ϯϮ.
∫ ∞

Ϭ
e−x sin x dx

ϯϯ.
∫ ∞

Ϭ
e−x cos x dx

ϯϰϯ



In Exercises ϯϰ – ϰϯ, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

ϯϰ.
∫ ∞

ϭϬ

ϯ√
ϯxϮ + Ϯx− ϱ

dx

ϯϱ.
∫ ∞

Ϯ

ϰ√
ϳxϯ − x

dx

ϯϲ.
∫ ∞

Ϭ

√
x+ ϯ√

xϯ − xϮ + x+ ϭ
dx

ϯϳ.
∫ ∞

ϭ
e−x ln x dx

ϯϴ.
∫ ∞

ϱ
e−xϮ+ϯx+ϭ dx

ϯϵ.
∫ ∞

Ϭ

√
x

ex
dx

ϰϬ.
∫ ∞

Ϯ

ϭ
xϮ + sin x

dx

ϰϭ.
∫ ∞

Ϭ

x
xϮ + cos x

dx

ϰϮ.
∫ ∞

Ϭ

ϭ
x+ ex

dx

ϰϯ.
∫ ∞

Ϭ

ϭ
ex − x

dx

ϯϰϰ
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We begin this chapter with a reminder of a few key concepts from Chapter ϱ.
Let f be a conƟnuous funcƟon on [a, b]which is parƟƟoned into n equally spaced
subintervals as

a < xϭ < xϮ < · · · < xn < xn+ϭ = b.

Let ∆x = (b − a)/n denote the length of the subintervals, and let ci be any
x-value in the i th subinterval. DefiniƟon Ϯϭ states that the sum

n∑

i=ϭ

f(ci)∆x

is a Riemann Sum. Riemann Sums are oŌen used to approximate some quan-
Ɵty (area, volume, work, pressure, etc.). The approximaƟon becomes exact by
taking the limit

lim
n→∞

n∑

i=ϭ

f(ci)∆x.

Theorem ϯϴ connects limits of Riemann Sums to definite integrals:

lim
n→∞

n∑

i=ϭ

f(ci)∆x =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can
be evaluated using anƟderivaƟves.

This chapter employs the following technique to a variety of applicaƟons.
Suppose the value Q of a quanƟty is to be calculated. We first approximate the
value ofQ using a Riemann Sum, then find the exact value via a definite integral.
We spell out this technique in the following Key Idea.

Key Idea ϮϮ ApplicaƟon of Definite Integrals Strategy

Let a quanƟty be given whose value Q is to be computed.

ϭ. Divide the quanƟty into n smaller “subquanƟƟes” of value Qi.

Ϯ. IdenƟfy a variable x and funcƟon f(x) such that each subquanƟty
can be approximated with the product f(ci)∆x, where ∆x repre-
sents a small change in x. Thus Qi ≈ f(ci)∆x. A sample approxi-
maƟon f(ci)∆x of Qi is called a differenƟal element.

ϯ. Recognize that Q =

n∑

i=ϭ

Qi ≈
n∑

i=ϭ

f(ci)∆x, which is a Riemann

Sum.

ϰ. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense aŌer we have had a chance to use it
several Ɵmes. We begin with Area Between Curves, which we addressed briefly
in SecƟon ϱ.ϱ.ϰ.
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Figure ϳ.ϭ: Subdividing a region into ver-
Ɵcal slices and approximaƟng the areas
with rectangles.

Chapter ϳ ApplicaƟons of IntegraƟon

ϳ.ϭ Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily
that we addressed this already in SecƟon ϱ.ϱ.ϰ and approach it instead using
the technique described in Key Idea ϮϮ.

LetQ be the area of a region bounded by conƟnuous funcƟons f and g. If we
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systemaƟcally break a region into sub-

regions. A graph will help. Consider Figure ϳ.ϭ (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
parƟcularly efficient way is to “slice” it verƟcally, as shown in Figure ϳ.ϭ (b), into
n equally spaced slices.

We now approximate the area of a slice. Again, we have many opƟons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆x. Figure ϳ.ϭ (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differenƟal element.) Each slice has an area approximately equal to
(
f(ci)− g(ci)

)
∆x; hence, the total area is approximately the Riemann Sum

Q =

n∑

i=ϭ

(
f(ci)− g(ci)

)
∆x.

Taking the limit as n → ∞ gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

Theorem ϱϯ Area Between Curves (restatement of Theorem ϰϭ)

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b] where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is

∫ b

a

(
f(x)− g(x)

)
dx.

Example ϭϵϵ Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ Ϯ, g(x) = ϭ

Ϯ cos(Ϯx) − ϭ,
x = Ϭ and x = ϰπ, as shown in Figure ϳ.Ϯ.

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is

Notes:

ϯϰϲ
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Figure ϳ.ϯ: Graphing a region enclosed by
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Figure ϳ.ϰ: Graphing a region for Example
ϮϬϭ.

ϳ.ϭ Area Between Curves

given by f and the lower bound is given by g. Therefore the area of the region is
the value of the integral

∫ ϰπ

Ϭ

(
f(x)− g(x)

)
dx =

∫ ϰπ

Ϭ

(

sin x+ Ϯ−
(ϭ
Ϯ
cos(Ϯx)− ϭ

))

dx

= − cos x− ϭ
ϰ
sin(Ϯx) + ϯx

∣
∣
∣

ϰπ

Ϭ

= ϭϮπ ≈ ϯϳ.ϳ unitsϮ.

Example ϮϬϬ Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −Ϯx+ ϱ and
g(x) = xϯ − ϳxϮ + ϭϮx− ϯ as shown in Figure ϳ.ϯ.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = ϭ, Ϯ and ϰ. One

can proceed thoughtlessly by compuƟng
∫ ϰ

ϭ

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [ϭ, Ϯ], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−ϵ/ϰ, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [ϭ, ϰ] into two subintervals, [ϭ, Ϯ] and [Ϯ, ϰ] and using the
proper integrand in each.

Total Area =

∫ Ϯ

ϭ

(
g(x)− f(x)

)
dx+

∫ ϰ

Ϯ

(
f(x)− g(x)

)
dx

=

∫ Ϯ

ϭ

(
xϯ − ϳxϮ + ϭϰx− ϴ

)
dx+

∫ ϰ

Ϯ

(
− xϯ + ϳxϮ − ϭϰx+ ϴ

)
dx

= ϱ/ϭϮ+ ϴ/ϯ

= ϯϳ/ϭϮ = ϯ.Ϭϴϯ unitsϮ.

The previous example makes note that we are expecƟng area to be posiƟve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given
region into subregions before applying Theorem ϱϯ. The following example
shows another situaƟon where this is applicable, along with an alternate view
of applying the Theorem.

Example ϮϬϭ Finding area: integraƟng with respect to y
Find the area of the region enclosed by the funcƟons y =

√
x + Ϯ, y = −(x −

ϭ)Ϯ + ϯ and y = Ϯ, as shown in Figure ϳ.ϰ.

Notes:

ϯϰϳ
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Figure ϳ.ϱ: The region used in Example
ϮϬϭ with boundaries relabeled as func-
Ɵons of y.

Chapter ϳ ApplicaƟons of IntegraƟon

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we noƟce that the region’s “top” is defined by two different curves.
On [Ϭ, ϭ], the top funcƟon is y =

√
x + Ϯ; on [ϭ, Ϯ], the top funcƟon is y =

−(x− ϭ)Ϯ + ϯ. Thus we compute the area as the sum of two integrals:

Total Area =

∫ ϭ

Ϭ

((√
x+ Ϯ

)
− Ϯ
)

dx+
∫ Ϯ

ϭ

((
− (x− ϭ)Ϯ + ϯ

)
− Ϯ
)

dx

= Ϯ/ϯ+ Ϯ/ϯ
= ϰ/ϯ.

The second approach is clever and very useful in certain situaƟons. We are
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and
an x-value is returned. We can rewrite the equaƟons describing the boundary
by solving for x:

y =
√
x+ Ϯ ⇒ x = (y− Ϯ)Ϯ

y = −(x− ϭ)Ϯ + ϯ ⇒ x =
√

ϯ− y+ ϭ.

Figure ϳ.ϱ shows the region with the boundaries relabeled. A differenƟal
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “boƩom” x-value
is the smaller, i.e., the leŌmost. Therefore the height of the rectangle is

(√

ϯ− y+ ϭ
)
− (y− Ϯ)Ϯ.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = Ϯ, and bounded above by y = ϯ.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [Ϯ, ϯ]. Thus

Total Area =

∫ ϯ

Ϯ

(√

ϯ− y+ ϭ− (y− Ϯ)Ϯ
)
dy

=
(

− Ϯ
ϯ
(ϯ− y)ϯ/Ϯ + y− ϭ

ϯ
(y− Ϯ)ϯ

)∣
∣
∣

ϯ

Ϯ

= ϰ/ϯ.

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example ϮϬϮ computes the area of a trian-
gle. While the formula “ ϭϮ × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.

Notes:

ϯϰϴ
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Figure ϳ.ϳ: (a) A sketch of a lake, and (b)
the lake with length measurements.

ϳ.ϭ Area Between Curves

Example ϮϬϮ Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ ϭ, y = −Ϯx+ ϳ and y = − ϭ

Ϯx+
ϱ
Ϯ , as shown in Figure ϳ.ϲ.

SÊ½çã®ÊÄ Recognize that there are two “top” funcƟons to this region,
causing us to use two definite integrals.

Total Area =

∫ Ϯ

ϭ

(
(x+ ϭ)− (−ϭ

Ϯ
x+

ϱ
Ϯ
)
)
dx+

∫ ϯ

Ϯ

(
(−Ϯx+ ϳ)− (−ϭ

Ϯ
x+

ϱ
Ϯ
)
)
dx

= ϯ/ϰ+ ϯ/ϰ
= ϯ/Ϯ.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires Ϯ integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

The “top” funcƟon is always x = ϳ−y
Ϯ while there are two “boƩom” func-

Ɵons. Being mindful of the proper integraƟon bounds, we have

Total Area =

∫ Ϯ

ϭ

(ϳ− y
Ϯ

− (ϱ− Ϯy)
)
dy+

∫ ϯ

Ϯ

(ϳ− y
Ϯ

− (y− ϭ)
)
dy

= ϯ/ϰ+ ϯ/ϰ
= ϯ/Ϯ.

Of course, the final answer is the same. (It is interesƟng to note that the area of
all ϰ subregions used is ϯ/ϰ. This is coincidental.)

Whilewehave focused on producing exact answers, we are also able tomake
approximaƟons using the principle of Theorem ϱϯ. The integrand in the theo-
rem is a distance (“top minus boƩom”); integraƟng this distance funcƟon gives
an area. By taking discrete measurements of distance, we can approximate an
area using numerical integraƟon techniques developed in SecƟon ϱ.ϱ. The fol-
lowing example demonstrates this.

Example ϮϬϯ Numerically approximaƟng area
To approximate the area of a lake, shown in Figure ϳ.ϳ (a), the “length” of the
lake is measured at ϮϬϬ-foot increments as shown in Figure ϳ.ϳ (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

SÊ½çã®ÊÄ The measurements of length can be viewed as measuring
“top minus boƩom” of two funcƟons. The exact answer is found by integraƟng
∫ ϭϮ

Ϭ

(
f(x) − g(x)

)
dx, but of course we don’t know the funcƟons f and g. Our

discrete measurements instead allow us to approximate.

Notes:

ϯϰϵ



Chapter ϳ ApplicaƟons of IntegraƟon

We have the following data points:

(Ϭ, Ϭ), (Ϯ, Ϯ.Ϯϱ), (ϰ, ϱ.Ϭϴ), (ϲ, ϲ.ϯϱ), (ϴ, ϱ.Ϯϭ), (ϭϬ, Ϯ.ϳϲ), (ϭϮ, Ϭ).

We also have that∆x = b−a
n = Ϯ, so Simpson’s Rule gives

Area ≈ Ϯ
ϯ

(

ϭ · Ϭ+ ϰ · Ϯ.Ϯϱ+ Ϯ · ϱ.Ϭϴ+ ϰ · ϲ.ϯϱ+ Ϯ · ϱ.Ϯϭ+ ϰ · Ϯ.ϳϲ+ ϭ · Ϭ
)

= ϰϰ.Ϭϭϯ unitsϮ.

Since the measurements are in hundreds of feet, unitsϮ = (ϭϬϬ Ō)Ϯ =
ϭϬ, ϬϬϬ ŌϮ, giving a total area of ϰϰϬ, ϭϯϯ ŌϮ. (Since we are approximaƟng, we’d
likely say the area was about ϰϰϬ, ϬϬϬ ŌϮ, which is a liƩle more than ϭϬ acres.)

In the next secƟon we apply our applicaƟons–of–integraƟon techniques to
finding the volumes of certain solids.

Notes:

ϯϱϬ



Exercises ϳ.ϭ
Terms and Concepts

ϭ. T/F: The area between curves is always posiƟve.

Ϯ. T/F: Calculus can be used to find the area of basic geometric
shapes.

ϯ. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

Problems

In Exercises ϰ – ϭϬ, find the area of the shaded region in the
given graph.

ϰ.

.....

y =
ϭ
Ϯ cos x + ϭ

.

y =
ϭ
Ϯ x + ϯ

.

Ϯ

.

ϰ

.

6

.
π

.
Ϯπ

. x.

y

ϱ.

.....
y = xϮ + x − ϭ

.

y = −ϯxϯ + ϯx + Ϯ

.

−ϭ

.

ϭ

.
−ϭ

.

ϭ

.

Ϯ

.

ϯ

.

x

.

y

ϲ.

.....

y = 1

.

y = 2

.

1

.

2

.
π

.
π/2

.

x

.

y

ϳ.

...

..

y = sin x

.

y = sin x + 1

.

1

.

2

.

π

.

π/2
.

x

.

y

ϴ.

...

..

y = sin(4x)

.

y = sec2 x

.

1

.

2

.
π/4

.
π/8.

x
.

y

ϵ.

.....

y = sin x

.

y = cos x

.−ϭ .

−Ϭ.ϱ

.

Ϭ.ϱ

.

ϭ

.

π/ϰ

.

π/Ϯ

.

ϯπ/ϰ

.

π

.

ϱπ/ϰ

.

x

.

y

ϭϬ.

.....

y = Ϯx

.

y = ϰx

.
Ϭ.ϱ

.
ϭ

.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. x.

y

In Exercises ϭϭ – ϭϲ, find the total area enclosed by the func-
Ɵons f and g.

ϭϭ. f(x) = ϮxϮ + ϱx− ϯ, g(x) = xϮ + ϰx− ϭ

ϭϮ. f(x) = xϮ − ϯx+ Ϯ, g(x) = −ϯx+ ϯ

ϭϯ. f(x) = sin x, g(x) = Ϯx/π

ϭϰ. f(x) = xϯ − ϰxϮ + x− ϭ, g(x) = −xϮ + Ϯx− ϰ

ϯϱϭ



ϭϱ. f(x) = x, g(x) =
√
x

ϭϲ. f(x) = −xϯ + ϱxϮ + Ϯx+ ϭ, g(x) = ϯxϮ + x+ ϯ

ϭϳ. The funcƟons f(x) = cos(Ϯx) and g(x) = sin x intersect
infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises ϭϴ – ϮϮ, find the area of the enclosed region in
two ways:

ϭ. by treaƟng the boundaries as funcƟons of x, and
Ϯ. by treaƟng the boundaries as funcƟons of y.

ϭϴ.

.....
ϭ

.
Ϯ

.
ϯ

.

ϭ

.

Ϯ

.

y = xϮ + ϭ

.

y =
ϭ
ϰ (x − ϯ)Ϯ + ϭ

.

y = ϭ

. x.

y

ϭϵ.

.....

y =

√

x

.

y = −Ϯx + ϯ

.

y = −

ϭ
Ϯ x

.

ϭ

.

Ϯ

. −ϭ.

−Ϭ.5

.

Ϭ.5

.

ϭ

.

x

.

y

ϮϬ.

.....

y = x2

.

y = x + 2

.
−1

.
1

.
2

.

2

.

4

. x.

y

Ϯϭ.

x =
1
2 y

2

x = −

1
2 y + 1

1 2

−2

−1

1

x

y

ϮϮ.

.....

y = xϭ/ϯ

.

y =
√

x − ϭ/Ϯ

. Ϭ.5. ϭ.

Ϭ.5

.

ϭ

.
x

.

y

In Exercises Ϯϯ – Ϯϲ, find the area triangle formed by the given
three points.

Ϯϯ. (ϭ, ϭ), (Ϯ, ϯ), and (ϯ, ϯ)

Ϯϰ. (−ϭ, ϭ), (ϭ, ϯ), and (Ϯ,−ϭ)

Ϯϱ. (ϭ, ϭ), (ϯ, ϯ), and (ϯ, ϯ)

Ϯϲ. (Ϭ, Ϭ), (Ϯ, ϱ), and (ϱ, Ϯ)

Ϯϳ. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in ϭϬϬ-foot increments.

..

ϰ.
9

.

ϱ.
Ϯ. 7.
ϯ. ϰ.
ϱ

Ϯϴ. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
ϮϬϬ-foot increments.

..

ϰ.
2ϱ

.

ϲ.
ϲ

. ϳ.
ϳ

.

ϲ.
ϰϱ

.

ϰ.
9

ϯϱϮ



Figure ϳ.ϴ: The volume of a general right
cylinder

Figure ϳ.ϵ: OrienƟng a pyramid along the
x-axis in Example ϮϬϰ.

ϳ.Ϯ Volume by Cross-SecƟonal Area; Disk and Washer Methods

ϳ.Ϯ VolumebyCross-SecƟonal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure ϳ.ϴ, is
Area of the base× height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area× thickness. (These slices are the differenƟal elements.)

By orienƟng a solid along the x-axis, we can let A(xi) represent the cross-
secƟonal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=ϭ

[

Area × thickness
]

=
n∑

i=ϭ

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to Ϭ) we can find the volume exactly.

Theorem ϱϰ Volume By Cross-SecƟonal Area

The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

Example ϮϬϰ Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length ϭϬ in and a height
of ϱ in.

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure ϳ.ϵ gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross secƟon of the pyramid is a square; this is a sample differenƟal
element. To determine its area A(x), we need to determine the side lengths of

Notes:
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Figure ϳ.ϭϬ: Cuƫng a slice in they pyra-
mid in Example ϮϬϰ at x = ϯ.
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the square.
When x = ϱ, the square has side length ϭϬ; when x = Ϭ, the square has side

length Ϭ. Since the edges of the pyramid are lines, it is easy to figure that each
cross-secƟonal square has side length Ϯx, giving A(x) = (Ϯx)Ϯ = ϰxϮ.

If one were to cut a slice out of the pyramid at x = ϯ, as shown in Figure
ϳ.ϭϬ, one would have a shape with square boƩom and top with sloped sides. If
the slice were thin, both the boƩom and top squares would have sides lengths
of about ϲ, and thus the cross–secƟonal area of the boƩom and top would be
about ϯϲinϮ. Leƫng∆xi represent the thickness of the slice, the volume of this
slice would then be about ϯϲ∆xiinϯ.

Cuƫng the pyramid into n slices divides the total volume into n equally–
spaced smaller pieces, each with volume (Ϯxi)Ϯ∆x, where xi is the approximate
locaƟon of the slice along the x-axis and ∆x represents the thickness of each
slice. One can approximate total volume of the pyramid by summing up the
volumes of these slices:

Approximate volume =
n∑

i=ϭ

(Ϯxi)Ϯ∆x.

Taking the limit as n → ∞ gives the actual volume of the pyramid; recoginizing
this sum as a Riemann Sum allows us to find the exact answer using a definite
integral, matching the definite integral given by Theorem ϱϰ.

We have

V = lim
n→∞

n∑

i=ϭ

(Ϯxi)Ϯ∆x

=

∫ ϱ

Ϭ
ϰxϮ dx

=
ϰ
ϯ
xϯ
∣
∣
∣

ϱ

Ϭ

=
ϱϬϬ
ϯ

inϯ ≈ ϭϲϲ.ϲϳ inϯ.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

ϭ
ϯ × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus–based method can be applied to much more than just cones.

An important special case of Theorem ϱϰ is when the solid is a solid of rev-
oluƟon, that is, when the solid is formed by rotaƟng a shape around an axis.

Start with a funcƟon y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross secƟons

Notes:
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(a)

(b)

Figure ϳ.ϭϭ: Sketching a solid in Example
ϮϬϱ.

ϳ.Ϯ Volume by Cross-SecƟonal Area; Disk and Washer Methods

are disks (thin circles). Let R(x) represent the radius of the cross-secƟonal disk
at x; the area of this disk is πR(x)Ϯ. Applying Theorem ϱϰ gives the Disk Method.

Key Idea Ϯϯ The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-secƟonal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)Ϯ dx.

Example ϮϬϱ Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = ϭ/x, from x = ϭ
to x = Ϯ, around the x-axis.

SÊ½çã®ÊÄ A sketch can help us understand this problem. In Figure
ϳ.ϭϭ(a) the curve y = ϭ/x is sketched along with the differenƟal element – a
disk – at x with radius R(x) = ϭ/x. In Figure ϳ.ϭϭ (b) the whole solid is pictured,
along with the differenƟal element.

The volume of the differenƟal element shown in part (a) of the figure is ap-
proximately πR(xi)Ϯ∆x, where R(xi) is the radius of the disk shown and ∆x is
the thickness of that slice. The radius R(xi) is the distance from the x-axis to the
curve, hence R(xi) = ϭ/xi.

Slicing the solid into n equally–spaced slices, we can approximate the total
volume by adding up the approximate volume of each slice:

Approximate volume =
n∑

i=ϭ

π

(
ϭ
xi

)Ϯ

∆x.

Taking the limit of the above sum as n → ∞ gives the actual volume; recog-
nizing this sum as a Riemann sum allows us to evaluate the limit with a definite
integral, which matches the formula given in Key Idea Ϯϯ:

V = lim
n→∞

n∑

i=ϭ

π

(
ϭ
xi

)Ϯ

∆x

= π

∫ Ϯ

ϭ

(
ϭ
x

)Ϯ

dx

= π

∫ Ϯ

ϭ

ϭ
xϮ

dx

Notes:
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(a)

(b)

Figure ϳ.ϭϮ: Sketching a solid in Example
ϮϬϲ.

(a)

(b)

Figure ϳ.ϭϯ: Establishing the Washer
Method; see also Figure ϳ.ϭϰ.
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= π

[

−ϭ
x

] ∣
∣
∣

Ϯ

ϭ

= π

[

−ϭ
Ϯ
− (−ϭ)

]

=
π

Ϯ
unitsϯ.

While Key Idea Ϯϯ is given in terms of funcƟons of x, the principle involved
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

Example ϮϬϲ Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = ϭ/x, from x = ϭ
to x = Ϯ, about the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, we need to convert the
funcƟon into a funcƟon of y and convert the x-bounds to y-bounds. Since y =
ϭ/x defines the curve, we rewrite it as x = ϭ/y. The bound x = ϭ corresponds to
the y-bound y = ϭ, and the bound x = Ϯ corresponds to the y-bound y = ϭ/Ϯ.

Thus we are rotaƟng the curve x = ϭ/y, from y = ϭ/Ϯ to y = ϭ about the
y-axis to form a solid. The curve and sample differenƟal element are sketched
in Figure ϳ.ϭϮ (a), with a full sketch of the solid in Figure ϳ.ϭϮ (b). We integrate
to find the volume:

V = π

∫ ϭ

ϭ/Ϯ

ϭ
yϮ

dy

= −π

y

∣
∣
∣

ϭ

ϭ/Ϯ

= π unitsϯ.

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)Ϯ dx− π

∫ b

a
r(x)Ϯ dx = π

∫ b

a

(
R(x)Ϯ − r(x)Ϯ

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving
a region about an axis. Consider Figure ϳ.ϭϯ(a), where a region is sketched along

Notes:
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Figure ϳ.ϭϰ: Establishing the Washer
Method; see also Figure ϳ.ϭϯ.

(a)

(b)

(c)

Figure ϳ.ϭϱ: Sketching the differenƟal el-
ement and solid in Example ϮϬϳ.

ϳ.Ϯ Volume by Cross-SecƟonal Area; Disk and Washer Methods

with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis,
a solid is formed as sketched in Figure ϳ.ϭϯ(b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross secƟon of this solid will be a
washer (a disk with a hole in the center) as sketched in Figure ϳ.ϭϰ(c). This leads
us to the Washer Method.

Key Idea Ϯϰ The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(

R(x)Ϯ − r(x)Ϯ
)

dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = Ϭ.

Example ϮϬϳ Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
xϮ − Ϯx+ Ϯ and y = Ϯx− ϭ about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure ϳ.ϭϱ(a).
RotaƟng about the x-axis will produce cross secƟons in the shape of washers,
as shown in Figure ϳ.ϭϱ(b); the complete solid is shown in part (c). The outside
radius of this washer is R(x) = Ϯx+ ϭ; the inside radius is r(x) = xϮ− Ϯx+ Ϯ. As
the region is bounded from x = ϭ to x = ϯ, we integrate as follows to compute
the volume.

V = π

∫ ϯ

ϭ

(

(Ϯx− ϭ)Ϯ − (xϮ − Ϯx+ Ϯ)Ϯ
)

dx

= π

∫ ϯ

ϭ

(
− xϰ + ϰxϯ − ϰxϮ + ϰx− ϯ

)
dx

= π
[

− ϭ
ϱ
xϱ + xϰ − ϰ

ϯ
xϯ + ϮxϮ − ϯx

]∣
∣
∣

ϯ

ϭ

=
ϭϬϰ
ϭϱ

π ≈ Ϯϭ.ϳϴ unitsϯ.

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

Notes:
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(a)

(b)
(c)

Figure ϳ.ϭϲ: Sketching the solid in Exam-
ple ϮϬϴ.
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Example ϮϬϴ Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (ϭ, ϭ), (Ϯ, ϭ) and (Ϯ, ϯ) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure ϳ.ϭϲ(a); the dif-
ferenƟal element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotaƟon is verƟcal, each
radius is a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (Ϯ, ϭ) and (Ϯ, ϯ); it
is a constant funcƟon, as regardless of the y-value the distance from the line to
the axis of rotaƟon is Ϯ. Thus R(y) = Ϯ.

The inside radius is formedby the line connecƟng (ϭ, ϭ) and (Ϯ, ϯ). The equa-
Ɵon of this line is y = Ϯx−ϭ, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = ϭ

Ϯ (y+ ϭ).
We integrate over the y-bounds of y = ϭ to y = ϯ. Thus the volume is

V = π

∫ ϯ

ϭ

(

ϮϮ −
(ϭ
Ϯ
(y+ ϭ)

)Ϯ
)

dy

= π

∫ ϯ

ϭ

(

− ϭ
ϰ
yϮ − ϭ

Ϯ
y+

ϭϱ
ϰ

)

dy

= π
[

− ϭ
ϭϮ

yϯ − ϭ
ϰ
yϮ +

ϭϱ
ϰ
y
]∣
∣
∣

ϯ

ϭ

=
ϭϬ
ϯ
π ≈ ϭϬ.ϰϳ unitsϯ.

This secƟon introduced a new applicaƟon of the definite integral. Our de-
fault view of the definite integral is that it gives “the area under the curve.” How-
ever, we can establish definite integrals that represent other quanƟƟes; in this
secƟon, we computed volume.

The ulƟmate goal of this secƟon is not to compute volumes of solids. That
can be useful, but what ismore useful is the understanding of this basic principle
of integral calculus, outlined in Key Idea ϮϮ: to find the exact value of some
quanƟty,

• we start with an approximaƟon (in this secƟon, slice the solid and approx-
imate the volume of each slice),

• then make the approximaƟon beƩer by refining our original approxima-
Ɵon (i.e., use more slices),

• then use limits to establish a definite integral which gives the exact value.

We pracƟce this principle in the next secƟon where we find volumes by slic-
ing solids in a different way.

Notes:
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Exercises ϳ.Ϯ
Terms and Concepts

ϭ. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

Ϯ. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

ϯ. Explain the how the units of volume are found in the in-
tegral of Theorem ϱϰ: if A(x) has units of inϮ, how does
∫

A(x) dx have units of inϯ?

Problems
In Exercises ϰ – ϳ, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the x-
axis.

ϰ.

.....

y = ϯ − xϮ

.
−Ϯ
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−ϭ
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In Exercises ϴ – ϭϭ, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-
axis.

ϴ.

.....

y = ϯ − xϮ

.
−Ϯ
.

−ϭ
.

ϭ
.

Ϯ
.

ϭ

.

Ϯ

.

ϯ

. x.

y
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.
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.
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y
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y = cos x
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1

.
x

.

y

(Hint: IntegraƟon By Parts will be necessary, twice. First let
u = arccosϮ x, then let u = arccos x.)

ϯϱϵ



ϭϭ.
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y

In Exercises ϭϮ – ϭϳ, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revoluƟon formed by rotaƟng the region about
each of the given axes.

ϭϮ. Region bounded by: y =
√
x, y = Ϭ and x = ϭ.

Rotate about:

(a) the x-axis

(b) y = ϭ

(c) the y-axis

(d) x = ϭ

ϭϯ. Region bounded by: y = ϰ− xϮ and y = Ϭ.
Rotate about:

(a) the x-axis

(b) y = ϰ

(c) y = −ϭ

(d) x = Ϯ

ϭϰ. The triangle with verƟces (ϭ, ϭ), (ϭ, Ϯ) and (Ϯ, ϭ).
Rotate about:

(a) the x-axis

(b) y = Ϯ

(c) the y-axis

(d) x = ϭ

ϭϱ. Region bounded by y = xϮ − Ϯx+ Ϯ and y = Ϯx− ϭ.
Rotate about:

(a) the x-axis

(b) y = ϭ

(c) y = ϱ

ϭϲ. Region bounded by y = ϭ/
√
xϮ + ϭ, x = −ϭ, x = ϭ and

the x-axis.
Rotate about:

(a) the x-axis

(b) y = ϭ

(c) y = −ϭ

ϭϳ. Region bounded by y = Ϯx, y = x and x = Ϯ.
Rotate about:

(a) the x-axis

(b) y = ϰ

(c) the y-axis

(d) x = Ϯ

In Exercises ϭϴ – Ϯϭ, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem ϱϰ to find the volume of
the solid.

ϭϴ. A right circular cone with height of ϭϬ and base radius of ϱ.

ϱ

ϭϬ

ϭϵ. A skew right circular cone with height of ϭϬ and base radius
of ϱ. (Hint: all cross-secƟons are circles.)

ϱ

ϭϬ

ϮϬ. A right triangular cone with height of ϭϬ and whose base is
a right, isosceles triangle with side length ϰ.

ϰ ϰ

ϭϬ

Ϯϭ. A solid with length ϭϬ with a rectangular base and triangu-
lar top, wherein one end is a square with side length ϱ and
the other end is a triangle with base and height of ϱ.

ϭϬ

ϱ
ϱ

ϱ

ϯϲϬ



(a)

(b)

(c)

Figure ϳ.ϭϳ: Introducing the Shell
Method.

ϳ.ϯ The Shell Method

ϳ.ϯ The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method
may be chosen out of convenience, personal preference, or perhaps necessity.
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross–secƟonal area
of the solid. This secƟon develops another method of compuƟng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng
“shells.”

Consider Figure ϳ.ϭϳ, where the region shown in (a) is rotated around the
y-axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous secƟon
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length Ϯπr. Thus the area is A = Ϯπrh; see Figure ϳ.ϭϴ (a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length Ϯπr, height h and depth ∆x. Thus the volume is V ≈ Ϯπrh∆x; see
Figure ϳ.ϭϴ (b). (We say “approximately” since our radius was an approxima-
Ɵon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V =
n∑

i=ϭ

Ϯπrihi∆xi,

where ri, hi and∆xi are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches Ϭ leads to a definite integral.

Notes:
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Figure ϳ.ϭϵ: Graphing a region in Example
ϮϬϵ.
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Figure ϳ.ϭϴ: Determining the volume of a thin cylindrical shell.

Key Idea Ϯϱ The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a verƟcal axis. Let r(x) represent the distance from the axis
of rotaƟon to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = Ϯπ
∫ b

a
r(x)h(x) dx.

Special Cases:

ϭ. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

Ϯ. When the axis of rotaƟon is the y-axis (i.e., x = Ϭ) then r(x) = x.

Let’s pracƟce using the Shell Method.

Example ϮϬϵ Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y = Ϭ,
y = ϭ/(ϭ+ xϮ), x = Ϭ and x = ϭ about the y-axis.

SÊ½çã®ÊÄ This is the region used to introduce the Shell Method in Fig-
ure ϳ.ϭϳ, but is sketched again in Figure ϳ.ϭϵ for closer reference. A line is drawn
in the region parallel to the axis of rotaƟon represenƟng a shell that will be

Notes:
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Figure ϳ.ϮϬ: Graphing a region in Example
ϮϭϬ.

ϳ.ϯ The Shell Method

carved out as the region is rotated about the y-axis. (This is the differenƟal ele-
ment.)

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = ϭ/(ϭ + xϮ), whereas the boƩom
of the line is at y = Ϭ. Thus h(x) = ϭ/(ϭ+ xϮ)− Ϭ = ϭ/(ϭ+ xϮ). The region is
bounded from x = Ϭ to x = ϭ, so the volume is

V = Ϯπ
∫ ϭ

Ϭ

x
ϭ+ xϮ

dx.

This requires subsƟtuƟon. Let u = ϭ + xϮ, so du = Ϯx dx. We also change the
bounds: u(Ϭ) = ϭ and u(ϭ) = Ϯ. Thus we have:

= π

∫ Ϯ

ϭ

ϭ
u
du

= π ln u
∣
∣
∣

Ϯ

ϭ

= π ln Ϯ ≈ Ϯ.ϭϳϴ unitsϯ.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = ϭ/Ϯ.

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

Example ϮϭϬ Finding volume using the Shell Method
Find the volumeof the solid formed by rotaƟng the triangular region determined
by the points (Ϭ, ϭ), (ϭ, ϭ) and (ϭ, ϯ) about the line x = ϯ.

SÊ½çã®ÊÄ The region is sketched in Figure ϳ.ϮϬ(a) along with the dif-
ferenƟal element, a line within the region parallel to the axis of rotaƟon. In part
(b) of the figure, we see the shell traced out by the differenƟal element, and in
part (c) the whole solid is shown.

The height of the differenƟal element is the distance from y = ϭ to y = Ϯx+
ϭ, the line that connects the points (Ϭ, ϭ) and (ϭ, ϯ). Thus h(x) = Ϯx+ϭ−ϭ = Ϯx.
The radius of the shell formed by the differenƟal element is the distance from
x to x = ϯ; that is, it is r(x) = ϯ − x. The x-bounds of the region are x = Ϭ to

Notes:

ϯϲϯ
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Figure ϳ.Ϯϭ: Graphing a region in Example
Ϯϭϭ.
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x = ϭ, giving

V = Ϯπ
∫ ϭ

Ϭ
(ϯ− x)(Ϯx) dx

= Ϯπ
∫ ϭ

Ϭ

(
ϲx− ϮxϮ) dx

= Ϯπ
(

ϯxϮ − Ϯ
ϯ
xϯ
) ∣
∣
∣

ϭ

Ϭ

=
ϭϰ
ϯ
π ≈ ϭϰ.ϲϲ unitsϯ.

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

Example Ϯϭϭ Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example ϮϭϬ
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure ϳ.Ϯϭ(a) with a sample dif-
ferenƟal element. In part (b) of the figure the shell formed by the differenƟal
element is drawn, and the solid is sketched in (c). (Note that the triangular re-
gion looks “short and wide” here, whereas in the previous example the same
region looked “tall and narrow.” This is because the bounds on the graphs are
different.)

The height of the differenƟal element is an x-distance, between x = ϭ
Ϯy− ϭ

Ϯ
and x = ϭ. Thus h(y) = ϭ−( ϭϮy− ϭ

Ϯ ) = − ϭ
Ϯy+

ϯ
Ϯ . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = ϭ and y = ϯ,
leading to the integral

V = Ϯπ
∫ ϯ

ϭ

[

y
(

−ϭ
Ϯ
y+

ϯ
Ϯ

)]

dy

= Ϯπ
∫ ϯ

ϭ

[

−ϭ
Ϯ
yϮ +

ϯ
Ϯ
y
]

dy

= Ϯπ
[

−ϭ
ϲ
yϯ +

ϯ
ϰ
yϮ
] ∣
∣
∣

ϯ

ϭ

= Ϯπ
[
ϵ
ϰ
− ϳ

ϭϮ

]

=
ϭϬ
ϯ
π ≈ ϭϬ.ϰϳϮ unitsϯ.

Notes:
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Figure ϳ.ϮϮ: Graphing a region in Example
ϮϭϮ.

ϳ.ϯ The Shell Method

At the beginning of this secƟon it was stated that “it is good to have opƟons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

Example ϮϭϮ Finding volume using the Shell Method
Find the volumeof the solid formedby revolving the region bounded by y = sin x
and the x-axis from x = Ϭ to x = π about the y-axis.

SÊ½çã®ÊÄ The region and a differenƟal element, the shell formed by
this differenƟal element, and the resulƟng solid are given in Figure ϳ.ϮϮ. The
radius of a sample shell is r(x) = x; the height of a sample shell is h(x) = sin x,
each from x = Ϭ to x = π. Thus the volume of the solid is

V = Ϯπ
∫ π

Ϭ
x sin x dx.

This requires IntegraƟon By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= Ϯπ
[

− x cos x
∣
∣
∣

π

Ϭ
+

∫ π

Ϭ
cos x dx

]

= Ϯπ
[

π + sin x
∣
∣
∣

π

Ϭ

]

= Ϯπ
[

π + Ϭ
]

= ϮπϮ ≈ ϭϵ.ϳϰ unitsϯ.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine funcƟon. We leave it to the reader
to verify that the outside radius funcƟon is R(y) = π − arcsin y and the inside
radius funcƟon is r(y) = arcsin y. Thus the volume can be computed as

π

∫ ϭ

Ϭ

[

(π − arcsin y)Ϯ − (arcsin y)Ϯ
]

dy.

This integral isn’t terrible given that the arcsinϮ y terms cancel, but it is more
onerous than the integral created by the Shell Method.

We end this secƟon with a table summarizing the usage of the Washer and
Shell Methods.

Notes:

ϯϲϱ
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Key Idea Ϯϲ Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)Ϯ − r(x)Ϯ

)
dx Ϯπ

∫ d

c
r(y)h(y) dy

VerƟcal
Axis

π

∫ d

c

(
R(y)Ϯ − r(y)Ϯ

)
dy Ϯπ

∫ b

a
r(x)h(x) dx

As in the previous secƟon, the real goal of this secƟon is not to be able to
compute volumes of certain solids. Rather, it is to be able to solve a problem
by first approximaƟng, then using limits to refine the approximaƟon to give the
exact value. In this secƟon, we approximate the volume of a solid by cuƫng it
into thin cylindrical shells. By summing up the volumes of each shell, we get an
approximaƟon of the volume. By taking a limit as the number of equally spaced
shells goes to infinity, our summaƟon can be evaluated as a definite integral,
giving the exact value.

We use this same principle again in the next secƟon, where we find the
length of curves in the plane.

Notes:

ϯϲϲ



Exercises ϳ.ϯ
Terms and Concepts

ϭ. T/F: A solid of revoluƟon is formed by revolving a shape
around an axis.

Ϯ. T/F: The Shell Method can only be used when the Washer
Method fails.

ϯ. T/F: The Shell Method works by integraƟng cross–secƟonal
areas of a solid.

ϰ. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems

In Exercises ϱ – ϴ, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the y-axis.
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ϲ.

.....

y = 5x

.
Ϭ.5

.
ϭ

.
ϭ.5

.
Ϯ

.

5

.

ϭϬ

. x.

y

ϳ.

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y

ϴ.

.....

y =

√

x

.

y = x

. 0.5. 1.

0.5

.

1

.
x

.

y

In Exercises ϵ – ϭϮ, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.
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In Exercises ϭϯ – ϭϴ, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.

ϭϯ. Region bounded by: y =
√
x, y = Ϭ and x = ϭ.

Rotate about:

(a) the y-axis

(b) x = ϭ

(c) the x-axis

(d) y = ϭ

ϭϰ. Region bounded by: y = ϰ− xϮ and y = Ϭ.

Rotate about:

(a) x = Ϯ

(b) x = −Ϯ

(c) the x-axis

(d) y = ϰ

ϭϱ. The triangle with verƟces (ϭ, ϭ), (ϭ, Ϯ) and (Ϯ, ϭ).

Rotate about:

(a) the y-axis

(b) x = ϭ

(c) the x-axis

(d) y = Ϯ

ϭϲ. Region bounded by y = xϮ − Ϯx+ Ϯ and y = Ϯx− ϭ.

Rotate about:

(a) the y-axis

(b) x = ϭ

(c) x = −ϭ

ϭϳ. Region bounded by y = ϭ/
√
xϮ + ϭ, x = ϭ and the x and

y-axes.

Rotate about:

(a) the y-axis (b) x = ϭ

ϭϴ. Region bounded by y = Ϯx, y = x and x = Ϯ.

Rotate about:

(a) the y-axis

(b) x = Ϯ

(c) the x-axis

(d) y = ϰ

ϯϲϴ
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Figure ϳ.Ϯϯ: Graphing y = sin x on [Ϭ, π]
and approximaƟng the curve with line
segments.
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Figure ϳ.Ϯϰ: Zooming in on the i th subin-
terval [xi, xi+ϭ] of a parƟƟon of [a, b].

ϳ.ϰ Arc Length and Surface Area

ϳ.ϰ Arc Length and Surface Area

In previous secƟonswe have used integraƟon to answer the following quesƟons:

ϭ. Given a region, what is its area?

Ϯ. Given a solid, what is its volume?

In this secƟon, we address a related quesƟon: Given a curve, what is its
length? This is oŌen referred to as arc length.

Consider the graph of y = sin x on [Ϭ, π] given in Figure ϳ.Ϯϯ (a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximaƟng; later, we will refine
our answer using limits to get an exact soluƟon.

The length of straight–line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximaƟng
the curve with straight lines and measuring their lengths.

In Figure ϳ.Ϯϯ (b), the curve y = sin x has been approximated with ϰ line
segments (the interval [Ϭ, π] has been divided into ϰ equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is ϯ.ϳϵ, so we approximate the arc
length of y = sin x on [Ϭ, π] to be ϯ.ϳϵ.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = xϭ < xϮ < . . . < xn < xn+ϭ = b be a parƟƟon
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi, xi+ϭ].

Figure ϳ.Ϯϰ zooms in on the i th subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as they hypotenuse of a right triangle whose sides have length ∆xi
and ∆yi. Using the Pythagorean Theorem, the length of this line segment is
√

∆xϮi +∆yϮi . Summing over all subintervals gives an arc length approximaƟon

L ≈
n∑

i=ϭ

√

∆xϮi +∆yϮi .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a liƩle algebra.

Notes:

ϯϲϵ
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In the above expression factor out a∆xϮi term:

n∑

i=ϭ

√

∆xϮi +∆yϮi =
n∑

i=ϭ

√

∆xϮi

(

ϭ+
∆yϮi
∆xϮi

)

.

Now pull the∆xϮi term out of the square root:

=
n∑

i=ϭ

√

ϭ+
∆yϮi
∆xϮi

∆xi.

This is nearly a Riemann Sum. Consider the ∆yϮi /∆xϮi term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of DifferenƟaƟon (Theorem
Ϯϳ) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑

i=ϭ

√

ϭ+ f ′(ci)Ϯ ∆xi.

This is a Riemann Sum. As long as f ′ is conƟnuous, we can invoke Theorem ϯϴ
and conclude

=

∫ b

a

√

ϭ+ f ′(x)Ϯ dx.

Key Idea Ϯϳ Arc Length

Let f be differenƟable on an open interval containing [a, b], where f ′ is
also conƟnuous on [a, b]. Then the arc length of f from x = a to x = b is

L =
∫ b

a

√

ϭ+ f ′(x)Ϯ dx.

As the integrand contains a square root, it is oŌen difficult to use the for-
mula in Key Idea Ϯϳ to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximaƟng definite in-
tegrals. The following examples will demonstrate this.

Notes:

ϯϳϬ



.....
2

.
4

.

2

.

4

.

6

.

8

. x.

y

Figure ϳ.Ϯϱ: A graph of f(x) = xϯ/Ϯ from
Example Ϯϭϯ.

ϳ.ϰ Arc Length and Surface Area

Example Ϯϭϯ Finding arc length
Find the arc length of f(x) = xϯ/Ϯ from x = Ϭ to x = ϰ.

SÊ½çã®ÊÄ We begin by finding f ′(x) = ϯ
Ϯx

ϭ/Ϯ. Using the formula, we
find the arc length L as

L =
∫ ϰ

Ϭ

√

ϭ+
(
ϯ
Ϯ
xϭ/Ϯ

)Ϯ

dx

=

∫ ϰ

Ϭ

√

ϭ+
ϵ
ϰ
x dx

=

∫ ϰ

Ϭ

(

ϭ+
ϵ
ϰ
x
)ϭ/Ϯ

dx

=
Ϯ
ϯ
ϰ
ϵ

(

ϭ+
ϵ
ϰ
x
)ϯ/Ϯ ∣

∣
∣

ϰ

Ϭ

=
ϴ
Ϯϳ

(

ϭϬϯ/Ϯ − ϭ
)

≈ ϵ.Ϭϳunits.

A graph of f is given in Figure ϳ.Ϯϱ.

Example Ϯϭϰ Finding arc length
Find the arc length of f(x) =

ϭ
ϴ
xϮ − ln x from x = ϭ to x = Ϯ.

SÊ½çã®ÊÄ This funcƟon was chosen specifically because the resulƟng
integral can be evaluated exactly. We begin by finding f ′(x) = x/ϰ − ϭ/x. The
arc length is

L =
∫ Ϯ

ϭ

√

ϭ+
(
x
ϰ
− ϭ

x

)Ϯ

dx

=

∫ Ϯ

ϭ

√

ϭ+
xϮ

ϭϲ
− ϭ

Ϯ
+

ϭ
xϮ

dx

=

∫ Ϯ

ϭ

√

xϮ

ϭϲ
+

ϭ
Ϯ
+

ϭ
xϮ

dx

=

∫ Ϯ

ϭ

√
(
x
ϰ
+

ϭ
x

)Ϯ

dx

Notes:

ϯϳϭ
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Figure ϳ.Ϯϲ: A graph of f(x) = ϭ
ϴ x

Ϯ − ln x
from Example Ϯϭϰ.

x
√
ϭ+ cosϮ x

Ϭ
√
Ϯ

π/ϰ
√

ϯ/Ϯ
π/Ϯ ϭ
ϯπ/ϰ

√

ϯ/Ϯ
π

√
Ϯ

Figure ϳ.Ϯϳ: A table of values of y =√
ϭ+ cosϮ x to evaluate a definite inte-

gral in Example Ϯϭϱ.
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=

∫ Ϯ

ϭ

(
x
ϰ
+

ϭ
x

)

dx

=

(
xϮ

ϴ
+ ln x

)
∣
∣
∣
∣
∣

Ϯ

ϭ

=
ϯ
ϴ
+ ln Ϯ ≈ ϭ.Ϭϳ units.

A graph of f is given in Figure ϳ.Ϯϲ; the porƟon of the curve measured in this
problem is in bold.

The previous examples found the arc length exactly through careful choice
of the funcƟons. In general, exact answers are much more difficult to come by
and numerical approximaƟons are necessary.

Example Ϯϭϱ ApproximaƟng arc length numerically
Find the length of the sine curve from x = Ϭ to x = π.

SÊ½çã®ÊÄ This is somewhat of a mathemaƟcal curiosity; in Example
ϭϮϳ we found the area under one “hump” of the sine curve is Ϯ square units;
now we are measuring its arc length.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

Ϭ

√

ϭ+ cosϮ x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = ϰ. Figure ϳ.Ϯϳ gives

√
ϭ+ cosϮ x

evaluated at ϱ evenly spaced points in [Ϭ, π]. Simpson’s Rule then states that
∫ π

Ϭ

√

ϭ+ cosϮ x dx ≈ π − Ϭ
ϰ · ϯ

(√
Ϯ+ ϰ

√

ϯ/Ϯ+ Ϯ(ϭ) + ϰ
√

ϯ/Ϯ+
√
Ϯ
)

= ϯ.ϴϮϵϭϴ.

Using a computer with n = ϭϬϬ the approximaƟon is L ≈ ϯ.ϴϮϬϮ; our approxi-
maƟon with n = ϰ is quite good.

Notes:

ϯϳϮ
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Figure ϳ.Ϯϴ: Establishing the formula for
surface area.

ϳ.ϰ Arc Length and Surface Area

Surface Area of Solids of RevoluƟon

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compuƟng its volume, we now consider its
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+ϭ]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(xi)
and f(xi+ϭ) as shown in Figure ϳ.Ϯϴ(a). Revolving this line segment about the x-
axis creates part of a cone (called a frustum of a cone) as shown in Figure ϳ.Ϯϴ(b).
The surface area of a frustum of a cone is

Ϯπ · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to
state that

L ≈
√

ϭ+ f ′(ci)∆xi

for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval. That is,

R = f(xi+ϭ) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

Ϯπ
f(xi) + f(xi+ϭ)

Ϯ

√

ϭ+ f ′(ci)Ϯ∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi, xi+ϭ] such that f(di) =
f(xi) + f(xi+ϭ)

Ϯ
; we can use this to rewrite

the above equaƟon as

Ϯπf(di)
√

ϭ+ f ′(ci)Ϯ∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=ϭ

Ϯπf(di)
√

ϭ+ f ′(ci)Ϯ∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following Key Idea.

Notes:

ϯϳϯ



Figure ϳ.Ϯϵ: Revolving y = sin x on [Ϭ, π]
about the x-axis.
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Key Idea Ϯϴ Surface Area of a Solid of RevoluƟon

Let f be differenƟable on an open interval containing [a, b] where f ′ is
also conƟnuous on [a, b].

ϭ. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ Ϭ, about the x-axis is

Surface Area = Ϯπ
∫ b

a
f(x)
√

ϭ+ f ′(x)Ϯ dx.

Ϯ. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ Ϭ, is

Surface Area = Ϯπ
∫ b

a
x
√

ϭ+ f ′(x)Ϯ dx.

(When revolving y = f(x) about the y-axis, the radii of the resulƟng frustum
are xi and xi+ϭ; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Key Idea Ϯϴ.)

Example Ϯϭϲ Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [Ϭ, π] around
the x-axis, as shown in Figure ϳ.Ϯϵ.

SÊ½çã®ÊÄ The setup is relaƟvely straighƞorward. Using Key Idea Ϯϴ,
we have the surface area SA is:

SA = Ϯπ
∫ π

Ϭ
sin x

√

ϭ+ cosϮ x dx

= −Ϯπ
ϭ
Ϯ

(

sinh−ϭ(cos x) + cos x
√

ϭ+ cosϮ x
)∣
∣
∣

π

Ϭ

= Ϯπ
(√

Ϯ+ sinh−ϭ ϭ
)

≈ ϭϰ.ϰϮ unitsϮ.

The integraƟon step above is nontrivial, uƟlizing an integraƟon method called
Trigonometric SubsƟtuƟon.

It is interesƟng to see that the surface area of a solid, whose shape is defined
by a trigonometric funcƟon, involves both a square root and an inverse hyper-
bolic trigonometric funcƟon.

Notes:

ϯϳϰ



(a)

(b)

Figure ϳ.ϯϬ: The solids used in Example
Ϯϭϳ.

ϳ.ϰ Arc Length and Surface Area

Example Ϯϭϳ Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = xϮ on [Ϭ, ϭ]
about:

ϭ. the x-axis

Ϯ. the y-axis.

SÊ½çã®ÊÄ

ϭ. The integral is straighƞorward to setup:

SA = Ϯπ
∫ ϭ

Ϭ
xϮ
√

ϭ+ (Ϯx)Ϯ dx.

Like the integral in Example Ϯϭϲ, this requires Trigonometric SubsƟtuƟon.

=
π

ϯϮ

(

Ϯ(ϴxϯ + x)
√

ϭ+ ϰxϮ − sinh−ϭ(Ϯx)
)∣
∣
∣

ϭ

Ϭ

=
π

ϯϮ

(

ϭϴ
√
ϱ− sinh−ϭ Ϯ

)

≈ ϯ.ϴϭ unitsϮ.

The solid formed by revolving y = xϮ around the x-axis is graphed in Figure
ϳ.ϯϬ (a).

Ϯ. Since we are revolving around the y-axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

SA = Ϯπ
∫ ϭ

Ϭ
x
√

ϭ+ (Ϯx)Ϯ dx.

This integral can be solved using subsƟtuƟon. Set u = ϭ + ϰxϮ; the new
bounds are u = ϭ to u = ϱ. We then have

=
π

ϰ

∫ ϱ

ϭ

√
u du

=
π

ϰ
Ϯ
ϯ
uϯ/Ϯ

∣
∣
∣
∣

ϱ

ϭ

=
π

ϲ

(

ϱ
√
ϱ− ϭ

)

≈ ϱ.ϯϯ unitsϮ.

The solid formed by revolving y = xϮ about the y-axis is graphed in Figure
ϳ.ϯϬ (b).

Our final example is a famous mathemaƟcal “paradox.”

Notes:

ϯϳϱ



Figure ϳ.ϯϭ: A graph of Gabriel’s Horn.

Chapter ϳ ApplicaƟons of IntegraƟon

Example Ϯϭϴ The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = ϭ/x about the x-axis on [ϭ,∞). Find
the volume and surface area of this solid. (This shape, as graphed in Figure ϳ.ϯϭ,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

ϭ

ϭ
xϮ

dx

= lim
b→∞

π

∫ b

ϭ

ϭ
xϮ

dx

= lim
b→∞

π

(−ϭ
x

)∣
∣
∣
∣

b

ϭ

= lim
b→∞

π

(

ϭ− ϭ
b

)

= π unitsϯ.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that regions with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straighƞorward to setup:

SA = Ϯπ
∫ ∞

ϭ

ϭ
x
√

ϭ+ ϭ/xϰ dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since ϭ <

√

ϭ+ ϭ/xϰ on [ϭ,∞), we can state that

Ϯπ
∫ ∞

ϭ

ϭ
x
dx < Ϯπ

∫ ∞

ϭ

ϭ
x
√

ϭ+ ϭ/xϰ dx.

By Key Idea Ϯϭ, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = ϭ/xϮ on [ϭ,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite.

A standard equaƟon from physics is “Work = force × distance”, when the
force applied is constant. In the next secƟon we learn how to compute work
when the force applied is variable.

Notes:

ϯϳϲ



Exercises ϳ.ϰ
Terms and Concepts

ϭ. T/F: The integral formula for compuƟng Arc Length was
found by first approximaƟng arc length with straight line
segments.

Ϯ. T/F: The integral formula for compuƟng Arc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises ϯ – ϭϮ, find the arc length of the funcƟon on the
given interval.

ϯ. f(x) = x on [Ϭ, ϭ].

ϰ. f(x) =
√
ϴx on [−ϭ, ϭ].

ϱ. f(x) =
ϭ
ϯ
xϯ/Ϯ − xϭ/Ϯ on [Ϭ, ϭ].

ϲ. f(x) =
ϭ
ϭϮ

xϯ +
ϭ
x
on [ϭ, ϰ].

ϳ. f(x) = Ϯxϯ/Ϯ − ϭ
ϲ
√
x on [Ϭ, ϵ].

ϴ. f(x) = cosh x on [− ln Ϯ, ln Ϯ].

ϵ. f(x) =
ϭ
Ϯ
(

ex + e−x) on [Ϭ, ln ϱ].

ϭϬ. f(x) =
ϭ
ϭϮ

xϱ +
ϭ
ϱxϯ

on [.ϭ, ϭ].

ϭϭ. f(x) = ln
(

sin x
)

on [π/ϲ, π/Ϯ].

ϭϮ. f(x) = ln
(

cos x
)

on [Ϭ, π/ϰ].

In Exercises ϭϯ – ϮϬ, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

ϭϯ. f(x) = xϮ on [Ϭ, ϭ].

ϭϰ. f(x) = xϭϬ on [Ϭ, ϭ].

ϭϱ. f(x) =
√
x on [Ϭ, ϭ].

ϭϲ. f(x) = ln x on [ϭ, e].

ϭϳ. f(x) =
√
ϭ− xϮ on [−ϭ, ϭ]. (Note: this describes the top

half of a circle with radius ϭ.)

ϭϴ. f(x) =
√

ϭ− xϮ/ϵ on [−ϯ, ϯ]. (Note: this describes the top
half of an ellipse with a major axis of length ϲ and a minor
axis of length Ϯ.)

ϭϵ. f(x) =
ϭ
x
on [ϭ, Ϯ].

ϮϬ. f(x) = sec x on [−π/ϰ, π/ϰ].

In Exercises Ϯϭ – Ϯϴ, use Simpson’s Rule, with n = ϰ, to ap-
proximate the arc length of the funcƟon on the given interval.
Note: these are the same problems as in Exercises ϭϯ–ϮϬ.

Ϯϭ. f(x) = xϮ on [Ϭ, ϭ].

ϮϮ. f(x) = xϭϬ on [Ϭ, ϭ].

Ϯϯ. f(x) =
√
x on [Ϭ, ϭ]. (Note: f ′(x) is not defined at x = Ϭ.)

Ϯϰ. f(x) = ln x on [ϭ, e].

Ϯϱ. f(x) =
√
ϭ− xϮ on [−ϭ, ϭ]. (Note: f ′(x) is not defined at

the endpoints.)

Ϯϲ. f(x) =
√

ϭ− xϮ/ϵ on [−ϯ, ϯ]. (Note: f ′(x) is not defined
at the endpoints.)

Ϯϳ. f(x) =
ϭ
x
on [ϭ, Ϯ].

Ϯϴ. f(x) = sec x on [−π/ϰ, π/ϰ].

In Exercises Ϯϵ – ϯϯ, find the surface area of the described
solid of revoluƟon.

Ϯϵ. The solid formed by revolving y = Ϯx on [Ϭ, ϭ] about the
x-axis.

ϯϬ. The solid formed by revolving y = xϮ on [Ϭ, ϭ] about the
y-axis.

ϯϭ. The solid formed by revolving y = xϯ on [Ϭ, ϭ] about the
x-axis.

ϯϮ. The solid formed by revolving y =
√
x on [Ϭ, ϭ] about the

x-axis.

ϯϯ. The sphere formed by revolving y =
√
ϭ− xϮ on [−ϭ, ϭ]

about the x-axis.

ϯϳϳ



Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quanƟtaƟve measure
of that object’s resistance to acceleraƟon.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleraƟon of gravity g.
Since the two measurements are pro-

porƟonal, w = m · g, they are oŌen
used interchangeably in everyday conver-
saƟon. When compuƟng work, one must
be careful to note which is being referred
to. When mass is given, it must be mulƟ-
plied by the acceleraƟon of gravity to ref-
erence the related force.

Chapter ϳ ApplicaƟons of IntegraƟon

ϳ.ϱ Work
Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/sϮ), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a ϮϬϬ lb object ϱ Ō performs ϮϬϬ · ϱ = ϭϬϬϬ Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a ϮϬϬ Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subinter-
vals a = xϭ < xϮ < · · · < xn+ϭ = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+ϭ]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+ϭ − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =
n∑

i=ϭ

Wi ≈
n∑

i=ϭ

F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

Key Idea Ϯϵ Work

Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of force
being applied to an object in the direcƟon of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:

ϯϳϴ



ϳ.ϱ Work

Example Ϯϭϵ CompuƟng work performed: applying variable force
A ϲϬm climbing rope is hanging over the side of a tall cliff. How much work
is performed in pulling the rope up to the top, where the rope has a mass of
ϲϲg/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [Ϭ, ϲϬ].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first ϭϬ meters of rope involves x = Ϭ to x = ϭϬ instead of x = ϲϬ to x = ϱϬ.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is ϲϬ−x.
This length of rope has a mass of ϲϲ g/m, or Ϭ.Ϭϲϲ kg/m. The the mass of the
rope sƟll hanging is Ϭ.Ϭϲϲ(ϲϬ− x) kg; mulƟplying this mass by the acceleraƟon
of gravity, ϵ.ϴ m/sϮ, gives our variable force funcƟon

F(x) = (ϵ.ϴ)(Ϭ.Ϭϲϲ)(ϲϬ− x) = Ϭ.ϲϰϲϴ(ϲϬ− x).

Thus the total work performed in pulling up the rope is

W =

∫ ϲϬ

Ϭ
Ϭ.ϲϰϲϴ(ϲϬ− x) dx = ϭ, ϭϲϰ.Ϯϰ J.

By comparison, consider the work done in liŌing the enƟre rope ϲϬ meters.
The rope weights ϲϬ× Ϭ.Ϭϲϲ× ϵ.ϴ = ϯϴ.ϴϬϴ N, so the work applying this force
for ϲϬ meters is ϲϬ× ϯϴ.ϴϬϴ = Ϯ, ϯϮϴ.ϰϴ J. This is exactly twice the work calcu-
lated before (and we leave it to the reader to understand why.)

Example ϮϮϬ CompuƟng work performed: applying variable force
Consider again pulling a ϲϬ m rope up a cliff face, where the rope has a mass of
ϲϲ g/m. At what point is exactly half the work performed?

SÊ½çã®ÊÄ From Example Ϯϭϵ we know the total work performed is
ϭ, ϭϲϰ.Ϯϰ J. We want to find a height h such that the work in pulling the rope
from a height of x = Ϭ to a height of x = h is ϱϴϮ.ϭϮ, half the total work. Thus
we want to solve the equaƟon

∫ h

Ϭ
Ϭ.ϲϰϲϴ(ϲϬ− x) dx = ϱϴϮ.ϭϮ

for h.

Notes:

ϯϳϵ



Note: In Example ϮϮϬ, we find that half of
the work performed in pulling up a ϲϬ m
rope is done in the last ϰϮ.ϰϯ m. Why is it
not coincidental that ϲϬ/

√
Ϯ = ϰϮ.ϰϯ?

Chapter ϳ ApplicaƟons of IntegraƟon

∫ h

Ϭ
Ϭ.ϲϰϲϴ(ϲϬ− x) dx = ϱϴϮ.ϭϮ

(
ϯϴ.ϴϬϴx− Ϭ.ϯϮϯϰxϮ

)
∣
∣
∣

h

Ϭ
= ϱϴϮ.ϭϮ

ϯϴ.ϴϬϴh− Ϭ.ϯϮϯϰhϮ = ϱϴϮ.ϭϮ

−Ϭ.ϯϮϯϰhϮ + ϯϴ.ϴϬϴh− ϱϴϮ.ϭϮ = Ϭ.

Apply the QuadraƟc Formula.

h = ϭϳ.ϱϳ and ϭϬϮ.ϰϯ

As the rope is only ϲϬm long, the only sensible answer is h = ϭϳ.ϱϳ. Thus about
half the work is done pulling up the first ϭϳ.ϱm the other half of the work is done
pulling up the remaining ϰϮ.ϰϯm.

Example ϮϮϭ CompuƟng work performed: applying variable force
A box of ϭϬϬ lb of sand is being pulled up at a uniform rate a distance of ϱϬ Ō
over ϭ minute. The sand is leaking from the box at a rate of ϭ lb/s. The box itself
weighs ϱ lb and is pulled by a rope weighing .Ϯ lb/Ō.

ϭ. How much work is done liŌing just the rope?

Ϯ. How much work is done liŌing just the box and sand?

ϯ. What is the total amount of work performed?

SÊ½çã®ÊÄ

ϭ. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = Ϭ.Ϯ(ϱϬ − x) = ϭϬ − Ϭ.Ϯx. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

∫ ϱϬ

Ϭ
(ϭϬ− Ϭ.Ϯx) dx = ϮϱϬ Ō–lb.

Notes:

ϯϴϬ



ϳ.ϱ Work

Ϯ. The sand is leaving the box at a rate of ϭ lb/s. As the verƟcal trip is to take
oneminute, we know that ϲϬ lbwill have leŌwhen the box reaches its final
height of ϱϬ Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = Ϭ,
the sand weight is ϭϬϬ lb, producing the point (Ϭ, ϭϬϬ); when x = ϱϬ, the
sand in the box weighs ϰϬ lb, producing the point (ϱϬ, ϰϬ). The slope of
this line is ϭϬϬ−ϰϬ

Ϭ−ϱϬ = −ϭ.Ϯ, giving the equaƟon of the weight of the sand
at height x as w(x) = −ϭ.Ϯx+ ϭϬϬ. The box itself weighs a constant ϱ lb,
so the total force funcƟon is Fb(x) = −ϭ.Ϯx+ϭϬϱ. IntegraƟng from x = Ϭ
to x = ϱϬ gives the work performed in liŌing box and sand:

Wb =

∫ ϱϬ

Ϭ
(−ϭ.Ϯx+ ϭϬϱ) dx = ϯϳϱϬ Ō–lb.

ϯ. The total work is the sum of Wr and Wb: ϮϱϬ + ϯϳϱϬ = ϰϬϬϬ Ō–lb. We
can also arrive at this via integraƟon:

W =

∫ ϱϬ

Ϭ
(Fr(x) + Fb(x)) dx

=

∫ ϱϬ

Ϭ
(ϭϬ− Ϭ.Ϯx− ϭ.Ϯx+ ϭϬϱ) dx

=

∫ ϱϬ

Ϭ
(−ϭ.ϰx+ ϭϭϱ) dx

= ϰϬϬϬ Ō–lb.

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proporƟonal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of ϭ N stretches a given spring
Ϯ cm, then a force of ϱ N will stretch the spring ϭϬ cm. ConverƟng the dis-
tances to meters, we have that stretching this spring Ϭ.ϬϮ m requires a force
of F(Ϭ.ϬϮ) = k(Ϭ.ϬϮ) = ϭ N, hence k = ϭ/Ϭ.ϬϮ = ϱϬ N/m.

Example ϮϮϮ CompuƟng work performed: stretching a spring
A force of ϮϬ lb stretches a spring from a natural length of ϳ inches to a length
of ϭϮ inches. How much work was performed in stretching the spring to this
length?

SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care

Notes:

ϯϴϭ



Fluid lb/Ōϯ kg/mϯ

Concrete ϭϱϬ ϮϰϬϬ
Fuel Oil ϱϱ.ϰϲ ϴϵϬ.ϭϯ
Gasoline ϰϱ.ϵϯ ϳϯϳ.ϮϮ
Iodine ϯϬϳ ϰϵϮϳ

Methanol ϰϵ.ϯ ϳϵϭ.ϯ
Mercury ϴϰϰ ϭϯϱϰϲ
Milk ϲϯ.ϲ–ϲϱ.ϰ ϭϬϮϬ – ϭϬϱϬ
Water ϲϮ.ϰ ϭϬϬϬ

Figure ϳ.ϯϯ: Weight and Mass densiƟes

Chapter ϳ ApplicaƟons of IntegraƟon

that ϮϬ lb of force stretches the spring to a length of ϭϮ inches, but rather that
a force of ϮϬ lb stretches the spring by ϱ in. This is illustrated in Figure ϳ.ϯϮ;
we only measure the change in the spring’s length, not the overall length of the
spring.
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Figure ϳ.ϯϮ: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example ϮϮϮ.

ConverƟng the units of length to feet, we have

F(ϱ/ϭϮ) = ϱ/ϭϮk = ϮϬ lb.

Thus k = ϰϴ lb/Ō and F(x) = ϰϴx.
We compute the total work performed by integraƟng F(x) from x = Ϭ to

x = ϱ/ϭϮ:

W =

∫ ϱ/ϭϮ

Ϭ
ϰϴx dx

= ϮϰxϮ
∣
∣
∣

ϱ/ϭϮ

Ϭ

= Ϯϱ/ϲ ≈ ϰ.ϭϲϲϳ Ō–lb.

Pumping Fluids

Another useful example of the applicaƟon of integraƟon to compute work
comes in the pumping of fluids, oŌen illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situaƟon is different than
our previous examples for the forces involved are constant. AŌer all, the force
required to move one cubic foot of water (about ϲϮ.ϰ lb) is the same regardless
of its locaƟon in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the boƩom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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Figure ϳ.ϯϰ: IllustraƟng a water tank in
order to compute the work required to
empty it in Example ϮϮϯ.

ϳ.ϱ Work

Example ϮϮϯ CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of ϭϬ Ō and a height of ϯϬ Ō is filled with
water, which weighs approximately ϲϮ.ϰ lb/Ōϯ. Compute the amount of work
performed by pumping the water up to a point ϱ feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure ϳ.ϯϰwhich illustrates the salient
aspects of this problem.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = Ϭ. Hence the top of the water is at y = ϯϬ, meaning we are interested in
subdividing the y-interval [Ϭ, ϯϬ] into n subintervals as

Ϭ = yϭ < yϮ < · · · < yn+ϭ = ϯϬ.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure ϳ.ϯϰ. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = ϭϬϮπ∆yi; its density is ϲϮ.ϰ lb/Ōϯ. Thus the required force is
ϲϮϰϬπ∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point ϱ feet above the top
of the tank, that is, to the height of y = ϯϱ Ō. Thus the distance the water at
height yi travels is ϯϱ− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point ϱ feet above the tank is

Wi ≈ ϲϮϰϬπ∆yi(ϯϱ− yi).

To approximate the total work performed in pumping out all the water from the
tank, we sum all the workWi performed in pumping the water from each of the
n subintervals of [Ϭ, ϯϬ]:

W ≈
n∑

i=ϭ

Wi =

n∑

i=ϭ

ϲϮϰϬπ∆yi(ϯϱ− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to Ϭ gives

W =

∫ ϯϬ

Ϭ
ϲϮϰϬπ(ϯϱ− y) dy

= (ϲϮϰϬπ
(
ϯϱy− ϭ/ϮyϮ

)
∣
∣
∣

ϯϬ

Ϭ

= ϭϭ, ϳϲϮ, ϭϮϯ Ō–lb

≈ ϭ.ϭϳϲ× ϭϬϳ Ō–lb.

Notes:

ϯϴϯ
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We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure ϳ.ϯϱ shows the tank from
Example ϮϮϯ without the i th subinterval idenƟfied. Instead, we just draw one
differenƟal element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

Example ϮϮϰ CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base ϭϬ feet belowground.
The radius of the cone at ground level is Ϯ Ō. It is filled with water weighing ϲϮ.ϰ
lb/Ōϯ and is to be empƟed by pumping thewater to a spigot ϯ feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure ϳ.ϯϲ. We can orient
the tank in a variety of ways; we could let y = Ϭ represent the base of the tank
and y = ϭϬ represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = Ϭ represent ground level and
hence y = −ϭϬ represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

The figure also sketches a differenƟal element, a cross–secƟonal circle. The
radius of this circle is variable, depending on y. When y = −ϭϬ, the circle has
radius Ϭ; when y = Ϭ, the circle has radius Ϯ. These two points, (−ϭϬ, Ϭ) and
(Ϭ, Ϯ), allow us to find the equaƟon of the line that gives the radius of the cross–
secƟonal circle, which is r(y) = ϭ/ϱy + Ϯ. Hence the volume of water at this
height is V(y) = π(ϭ/ϱy + Ϯ)Ϯdy, where dy represents a very small height of
the differenƟal element. The force required to move the water at height y is
F(y) = ϲϮ.ϰ× V(y).

The distance the water at height y travels is given by h(y) = ϯ− y. Thus the
total work done in pumping the water from the tank is

W =

∫ Ϭ

−ϭϬ
ϲϮ.ϰπ(ϭ/ϱy+ Ϯ)Ϯ(ϯ− y) dy

= ϲϮ.ϰπ
∫ Ϭ

−ϭϬ

(

− ϭ
Ϯϱ

yϯ − ϭϳ
Ϯϱ

yϮ − ϴ
ϱ
y+ ϭϮ

)

dy

= ϲϮ.Ϯπ · ϮϮϬ
ϯ

≈ ϭϰ, ϯϳϲ Ō–lb.

Notes:

ϯϴϰ
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ϳ.ϱ Work

Example ϮϮϱ CompuƟng work performed: pumping fluids
A rectangular swimming pool is ϮϬ Ō wide and has a ϯ Ō “shallow end” and a ϲ Ō
“deep end.” It is to have its water pumped out to a point Ϯ Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure ϳ.ϯϳ; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = Ϭ
to represent the boƩom of the pool, meaning the top of the water is at y = ϲ.
Figure ϳ.ϯϴ shows the pool oriented with this y-axis, along with Ϯ differenƟal
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [ϯ, ϲ], where the length of the differen-
Ɵal element is Ϯϱ Ō as shown. As the pool is ϮϬ Ō wide, this differenƟal element
represents a this slice of water with volume V(y) = ϮϬ · Ϯϱ · dy. The water is
to be pumped to a height of y = ϴ, so the height funcƟon is h(y) = ϴ − y. The
work done in pumping this top region of water is

Wt = ϲϮ.ϰ
∫ ϲ

ϯ
ϱϬϬ(ϴ− y) dy = ϯϮϳ, ϲϬϬ Ō–lb.

The boƩom region lies in the y-interval of [Ϭ, ϯ]; we need to compute the
length of the differenƟal element in this interval.

One end of the differenƟal element is at x = Ϭ and the other is along the line
segment joining the points (ϭϬ, Ϭ) and (ϭϱ, ϯ). The equaƟon of this line is y =
ϯ/ϱ(x−ϭϬ); as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = ϱ/ϯy + ϭϬ. So the length of the differenƟal element is a difference of
x-values: x = Ϭ and x = ϱ/ϯy+ ϭϬ, giving a length of x = ϱ/ϯy+ ϭϬ.

Again, as the pool is ϮϬ Ō wide, this differenƟal element represents a thin
slice of water with volume V(y) = ϮϬ · (ϱ/ϯy + ϭϬ) · dy; the height funcƟon is
the same as before at h(y) = ϴ− y. The work performed in emptying this part
of the pool is

Wb = ϲϮ.ϰ
∫ ϯ

Ϭ
ϮϬ(ϱ/ϯy+ ϭϬ)(ϴ− y) dy = Ϯϵϵ, ϱϮϬ Ō–lb.

The total work in empyƟng the pool is

W = Wb +Wt = ϯϮϳ, ϲϬϬ+ Ϯϵϵ, ϱϮϬ = ϲϮϳ, ϭϮϬ Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work.

The next secƟon introduces one final applicaƟon of the definite integral, the
calculaƟon of fluid force on a plate.

Notes:

ϯϴϱ



Exercises ϳ.ϱ
Terms and Concepts

ϭ. What are the typical units of work?

Ϯ. If a man has a mass of ϴϬ kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

ϯ. If a woman weighs ϭϯϬ lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

Problems

ϰ. A ϭϬϬ Ō rope, weighing Ϭ.ϭ lb/Ō, hangs over the edge of a
tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

ϱ. A ϱϬ m rope, with a mass density of Ϭ.Ϯ kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first ϮϬ m?

ϲ. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

ϳ. A ϮϬ m rope with mass density of Ϭ.ϱ kg/m hangs over the
edge of a ϭϬ m building. How much work is done pulling
the rope to the top?

ϴ. A crane liŌs a Ϯ,ϬϬϬ lb load verƟcally ϯϬ Ō with a ϭ” cable
weighing ϭ.ϲϴ lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that the work done liŌing the ca-
ble is negligible compared to thework done liŌing the
load?

ϵ. A ϭϬϬ lb bag of sand is liŌed uniformly ϭϮϬ Ō in oneminute.
Sand leaks from the bag at a rate of ϭ/ϰ lb/s. What is the
total work done in liŌing the bag?

ϭϬ. A boxweighing Ϯ lb liŌs ϭϬ lb of sand verƟcally ϱϬ Ō. A crack
in the box allows the sand to leak out such that ϵ lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

ϭϭ. A force of ϭϬϬϬ lb compresses a spring ϯ in. Howmuchwork
is performed in compressing the spring?

ϭϮ. A force of Ϯ N stretches a spring ϱ cm. How much work is
performed in stretching the spring?

ϭϯ. A force of ϱϬ lb compresses a spring froma natural length of
ϭϴ in to ϭϮ in. Howmuchwork is performed in compressing
the spring?

ϭϰ. A force of ϮϬ lb stretches a spring from a natural length of
ϲ in to ϴ in. How much work is performed in stretching the
spring?

ϭϱ. A force of ϳ N stretches a spring from a natural length of ϭϭ
cm to Ϯϭ cm. How much work is performed in stretching
the spring from a length of ϭϲ cm to Ϯϭ cm?

ϭϲ. A force of f N stretches a spring dm from its natural length.
How much work is performed in stretching the spring?

ϭϳ. A ϮϬ lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
ϭ Ō to ϲ in.
How much work is done in liŌing the box ϭ.ϱ Ō (i.e, the
spring will be stretched ϭ Ō beyond its natural length)?

ϭϴ. A ϮϬ lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
ϭ Ō to ϲ in.
How much work is done in liŌing the box ϲ in (i.e, bringing
the spring back to its natural length)?

ϭϵ. A ϱ m tall cylindrical tank with radius of Ϯ m is filled with ϯ
m of gasoline, with a mass density of ϳϯϳ.ϮϮ kg/mϯ. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

ϮϬ. A ϲ Ō cylindrical tank with a radius of ϯ Ō is filled with wa-
ter, which has a weight density of ϲϮ.ϰ lb/Ōϯ. The water is
to be pumped to a point Ϯ Ō above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping ϯ Ō of wa-
ter from the tank?

(c) At what point is ϭ/Ϯ of the total work done?

Ϯϭ. A gasoline tanker is filled with gasoline with a weight den-
sity of ϰϱ.ϵϯ lb/Ōϯ. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via

ϯϴϲ



pumping the gas to a point ϭ Ō above the top of the tank.
Assume the tank is a perfect cylinder, ϮϬ Ō long with a di-
ameter of ϳ.ϱ Ō. How much work is performed in pumping
all the gasoline from the tank?

ϮϮ. A fuel oil storage tank is ϭϬ Ō deep with trapezoidal sides,
ϱ Ō at the top and Ϯ Ō at the boƩom, and is ϭϱ Ō wide (see
diagram below). Given that fuel oil weighs ϱϱ.ϰϲ lb/Ōϯ, find
the work performed in pumping all the oil from the tank to
a point ϯ Ō above the top of the tank.

ϭϬ

Ϯ

ϭϱ

ϱ

Ϯϯ. A conical water tank is ϱ m deep with a top radius of ϯ m.
(This is similar to Example ϮϮϰ.) The tank is filled with pure
water, with a mass density of ϭϬϬϬ kg/mϯ.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top Ϯ.ϱ m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

Ϯϰ. A water tank has the shape of a truncated cone, with di-

mensions given below, and is filledwithwaterwith aweight
density of ϲϮ.ϰ lb/Ōϯ. Find the work performed in pumping
all water to a point ϭ Ō above the top of the tank.

Ϯ Ō

ϱ Ō
ϭϬ Ō

Ϯϱ. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of ϭϬϬϬ kg/mϯ. Find the work performed in pump-
ing all water to a point ϱ m above the top of the tank.

Ϯ m

Ϯ m

ϳ m

Ϯϲ. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of ϭϬϬϬ kg/mϯ. Find the work per-
formed in pumping all water to a point ϭ m above the top
of the tank.

ϱ m

ϱ m

Ϯ m

Ϯ m

ϵ m

ϯϴϳ
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ϳ.ϲ Fluid Forces
In the unfortunate situaƟon of a car driving into a body of water, the conven-
Ɵonal wisdom is that the water pressure on the doors will quickly be so great
that they will be effecƟvely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiƟng unƟl
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #ϳϮ to watch Adam Savage test these
opƟons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this secƟon we will find the answer to this quesƟon by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equaƟons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definiƟon.

DefiniƟon Ϯϲ Fluid Pressure

Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definiƟon to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

Example ϮϮϲ CompuƟng fluid force

ϭ. A cylindrical storage tank has a radius of Ϯ Ō and holds ϭϬ Ō of a fluid with
a weight–density of ϱϬ lb/Ōϯ. (See Figure ϳ.ϯϵ.) What is the force exerted
on the base of the cylinder by the fluid?

Ϯ. A rectangular tank whose base is a ϱ Ō square has a circular hatch at the
boƩom with a radius of Ϯ Ō. The tank holds ϭϬ Ō of a fluid with a weight–
density of ϱϬ lb/Ōϯ. (See Figure ϳ.ϰϬ.) What is the force exerted on the
hatch by the fluid?

SÊ½çã®ÊÄ

ϭ. Using DefiniƟon Ϯϲ, we calculate that the pressure exerted on the cylin-
der’s base isw · d = ϱϬ lb/Ōϯ × ϭϬ Ō = ϱϬϬ lb/ŌϮ. The area of the base is

Notes:

ϯϴϴ
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Figure ϳ.ϰϭ: A thin, verƟcally oriented
plate submerged in a fluid with weight–
density w.

ϳ.ϲ Fluid Forces

π · ϮϮ = ϰπ ŌϮ. So the force exerted by the fluid is

F = ϱϬϬ× ϰπ = ϲϮϴϯ lb.

Note that we effecƟvely just computed theweight of the fluid in the tank.

Ϯ. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = ϲϮϴϯ lb.

A key concept to understand here is that we are effecƟvely measuring the
weight of a ϭϬ Ō column of water above the hatch. The size of the tank
holding the fluid does not maƩer.

The previous example demonstrates that compuƟng the force exerted on a
horizontally oriented plate is relaƟvely easy to compute. What about a verƟcally
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all direcƟons. Thus the pressure on any porƟon of a plate that is ϭ Ō
below the surface of water is the same no maƩer how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

So consider a verƟcally oriented plate as shown in Figure ϳ.ϰϭ submerged in
a fluid with weight–densityw. What is the total fluid force exerted on this plate?
We find this force by first approximaƟng the force on small horizontal strips.

Let the top of the plate be at depth b and let the boƩom be at depth a. (For
now we assume that surface of the fluid is at depth Ϭ, so if the boƩom of the
plate is ϯ Ō under the surface, we have a = −ϯ. Wewill come back to this later.)
We parƟƟon the interval [a, b] into n subintervals

a = yϭ < yϮ < · · · < yn+ϭ = b,

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+ϭ]; the depth is approximately−di. (Our conven-
Ɵon has di being a negaƟve number, so−di is posiƟve.) For convenience, we let
di be an endpoint of the subinterval; we let di = yi.

The area of the thin strip is approximately length×width. The width is∆yi.
The length is a funcƟon of some y-value ci in the i th subinterval. We state the

Notes:
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Figure ϳ.ϰϮ: A thin plate in the shape of
an isosceles triangle in Example ϮϮϳ.

Chapter ϳ ApplicaƟons of IntegraƟon

length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

To approximate the total force, we add up the approximate forces on each of
the n thin strips:

F =
n∑

i=ϭ

Fi ≈
n∑

i=ϭ

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to Ϭ; we evaluate this limit with a definite
integral.

Key Idea ϯϬ Fluid Force on a VerƟcally Oriented Plate

Let a verƟcally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the boƩom is at
y = a. Let ℓ(y) be the length of the plate at y.

ϭ. If y = Ϭ corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

Ϯ. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

Example ϮϮϳ Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure ϳ.ϰϮ
submerged in water with a weight–density of ϲϮ.ϰ lb/Ōϯ. If the boƩom of the
plate is ϭϬ Ō below the surface of the water, what is the total fluid force exerted
on this plate?

SÊ½çã®ÊÄ We approach this problem in two different ways to illustrate
the different ways Key Idea ϯϬ can be implemented. First we will let y = Ϭ rep-
resent the surface of the water, then we will consider an alternate convenƟon.

Notes:

ϯϵϬ
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Figure ϳ.ϰϰ: Sketching the triangular
plate in Example ϮϮϳ with the convenƟon
that the base of the triangle is at (Ϭ, Ϭ).

ϳ.ϲ Fluid Forces

ϭ. We let y = Ϭ represent the surface of the water; therefore the boƩom of
the plate is at y = −ϭϬ. We center the triangle on the y-axis as shown in
Figure ϳ.ϰϯ. The depth of the plate at y is−y as indicated by the Key Idea.
We now consider the length of the plate at y.
We need to find equaƟons of the leŌ and right edges of the plate. The
right hand side is a line that connects the points (Ϭ,−ϭϬ) and (Ϯ,−ϲ):
that line has equaƟon x = ϭ/Ϯ(y+ ϭϬ). (Find the equaƟon in the familiar
y = mx+b format and solve for x.) Likewise, the leŌhand side is described
by the line x = −ϭ/Ϯ(y + ϭϬ). The total length is the distance between
these two lines: ℓ(y) = ϭ/Ϯ(y+ ϭϬ)− (−ϭ/Ϯ(y+ ϭϬ)) = y+ ϭϬ.
The total fluid force is then:

F =
∫ −ϲ

−ϭϬ
ϲϮ.ϰ(−y)(y+ ϭϬ) dy

= ϲϮ.ϰ · ϭϳϲ
ϯ

≈ ϯϲϲϬ.ϴ lb.

Ϯ. SomeƟmes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convenƟon that the boƩom of the triangular plate
is at (Ϭ, Ϭ), as shown in Figure ϳ.ϰϰ. The equaƟons of the leŌ and right
hand sides are easy to find. They are y = Ϯx and y = −Ϯx, respecƟvely,
which we rewrite as x = ϭ/Ϯy and x = −ϭ/Ϯy. Thus the length funcƟon
is ℓ(y) = ϭ/Ϯy− (−ϭ/Ϯy) = y.
As the surface of the water is ϭϬ Ō above the base of the plate, we have
that the surface of the water is at y = ϭϬ. Thus the depth funcƟon is the
distance between y = ϭϬ and y; d(y) = ϭϬ − y. We compute the total
fluid force as:

F =
∫ ϰ

Ϭ
ϲϮ.ϰ(ϭϬ− y)(y) dy

≈ ϯϲϲϬ.ϴ lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent.

Example ϮϮϴ Finding fluid force
Find the total fluid force on a car door submerged up to the boƩomof its window
in water, where the car door is a rectangle ϰϬ” long and Ϯϳ” high (based on the
dimensions of a ϮϬϬϱ Fiat Grande Punto.)

SÊ½çã®ÊÄ The car door, as a rectangle, is drawn in Figure ϳ.ϰϱ. Its
length is ϭϬ/ϯ Ō and its height is Ϯ.Ϯϱ Ō. We adopt the convenƟon that the

Notes:

ϯϵϭ
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Chapter ϳ ApplicaƟons of IntegraƟon

top of the door is at the surface of the water, both of which are at y = Ϭ. Using
the weight–density of water of ϲϮ.ϰ lb/Ōϯ, we have the total force as

F =
∫ Ϭ

−Ϯ.Ϯϱ
ϲϮ.ϰ(−y)ϭϬ/ϯ dy

=

∫ Ϭ

−Ϯ.Ϯϱ
−ϮϬϴy dy

= −ϭϬϰyϮ
∣
∣
∣

Ϭ

−Ϯ.Ϯϱ

= ϱϮϲ.ϱ lb.

Most adults would find it very difficult to apply over ϱϬϬ lb of force to a car
door while seated inside, making the door effecƟvely impossible to open. This
is counter–intuiƟve as most assume that the door would be relaƟvely easy to
open. The truth is that it is not, hence the survival Ɵps menƟoned at the begin-
ning of this secƟon.

Example ϮϮϵ Finding fluid force
An underwater observaƟon tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each verƟcally oriented porthole is to
have a ϯ Ō diameter whose center is to be located ϱϬ Ō underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under ϱϬ Ō of water.

SÊ½çã®ÊÄ We place the center of the porthole at the origin, meaning
the surface of thewater is at y = ϱϬ and the depth funcƟonwill be d(y) = ϱϬ−y;
see Figure ϳ.ϰϲ

The equaƟon of a circle with a radius of ϭ.ϱ is xϮ + yϮ = Ϯ.Ϯϱ; solving for
x we have x = ±

√

Ϯ.Ϯϱ− yϮ, where the posiƟve square root corresponds to
the right side of the circle and the negaƟve square root corresponds to the leŌ
side of the circle. Thus the length funcƟon at depth y is ℓ(y) = Ϯ

√

Ϯ.Ϯϱ− yϮ.
IntegraƟng on [−ϭ.ϱ, ϭ.ϱ] we have:

F = ϲϮ.ϰ
∫ ϭ.ϱ

−ϭ.ϱ
Ϯ(ϱϬ− y)

√

Ϯ.Ϯϱ− yϮ dy

= ϲϮ.ϰ
∫ ϭ.ϱ

−ϭ.ϱ

(
ϭϬϬ
√

Ϯ.Ϯϱ− yϮ − Ϯy
√

Ϯ.Ϯϱ− yϮ
)
dy

= ϲϮϰϬ
∫ ϭ.ϱ

−ϭ.ϱ

(√

Ϯ.Ϯϱ− yϮ
)
dy− ϲϮ.ϰ

∫ ϭ.ϱ

−ϭ.ϱ

(
Ϯy
√

Ϯ.Ϯϱ− yϮ
)
dy.

Notes:
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ϳ.ϲ Fluid Forces

The second integral above can be evaluated using SubsƟtuƟon. Let u = Ϯ.Ϯϱ−yϮ
with du = −Ϯy dy. The new bounds are: u(−ϭ.ϱ) = Ϭ and u(ϭ.ϱ) = Ϭ; the new
integral will integrate from u = Ϭ to u = Ϭ, hence the integral is Ϭ.

The first integral above finds the area of half a circle of radius ϭ.ϱ, thus the
first integral evaluates to ϲϮϰϬ · π · ϭ.ϱϮ/Ϯ = ϮϮ, Ϭϱϰ. Thus the total fluid force
on a verƟcally oriented porthole is ϮϮ, Ϭϱϰ lb.

Finding the force on a horizontally oriented porthole ismore straighƞorward:

F = Pressure× Area = ϲϮ.ϰ · ϱϬ× π · ϭ.ϱϮ = ϮϮ, Ϭϱϰ lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a verƟcally oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d.

We end this chapter with a reminder of the true skills meant to be developed
here. We are not truly concerned with an ability to find fluid forces or the vol-
umes of solids of revoluƟon. Work done by a variable force is important, though
measuring the work done in pulling a rope up a cliff is probably not.

What we are actually concerned with is the ability to solve certain problems
by first approximaƟng the soluƟon, then refining the approximaƟon, then recog-
nizing if/when this refining process results in a definite integral through a limit.
Knowing the formulas found inside the special boxes within this chapter is ben-
eficial as it helps solve problems found in the exercises, and other mathemaƟcal
skills are strengthened by properly applying these formulas. However, more im-
portantly, understand how each of these formulas was constructed. Each is the
result of a summaƟon of approximaƟons; each summaƟon was a Riemann sum,
allowing us to take a limit and find the exact answer through a definite integral.

The next chapter addresses an enƟrely different topic: sequences and series.
In short, a sequence is a list of numbers, where a series is the summaƟon of a list
of numbers. These seemingly–simple ideas lead to very powerful mathemaƟcs.

Notes:

ϯϵϯ



Exercises ϳ.ϲ
Terms and Concepts

ϭ. State in your own words Pascal’s Principle.

Ϯ. State in your own words how pressure is different from
force.

Problems

In Exercises ϯ – ϭϮ, find the fluid force exerted on the given
plate, submerged in water with a weight density of ϲϮ.ϰ
lb/Ōϯ.

ϯ.

Ϯ Ō

Ϯ Ō

ϭ Ō

ϰ.

ϭ Ō

Ϯ Ō

ϭ Ō

ϱ.

ϰ Ō

ϱ Ō

ϲ Ō

ϲ.
ϰ Ō

ϱ Ō

ϲ Ō

ϳ.

Ϯ Ō

ϱ Ō

ϴ. ϰ Ō

ϱ Ō

ϵ.

ϰ Ō

Ϯ Ō

ϱ Ō

ϭϬ.

ϰ Ō

Ϯ Ō

ϱ Ō

ϭϭ.

Ϯ Ō

Ϯ Ō

ϭ Ō

ϯϵϰ



ϭϮ.

Ϯ Ō

Ϯ Ō

ϭ Ō

In Exercises ϭϯ – ϭϴ, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

ϭ. water, with a weight density of ϲϮ.ϰ lb/Ōϯ, and

Ϯ. concrete, with a weight density of ϭϱϬ lb/Ōϯ.

ϭϯ.

ϯ Ō

ϱ Ō

ϭϰ.

ϰ Ō

y = xϮ

ϰ Ō

ϭϱ.

ϰ Ō

y = ϰ − xϮ

ϰ Ō

ϭϲ.

Ϯ Ō

y = −
√
ϭ − xϮ

ϭϳ.

Ϯ Ō

y =
√
ϭ − xϮ

ϭϴ.

ϲ Ō

y = −
√
ϵ − xϮ

ϭϵ. How deep must the center of a verƟcally oriented circular
plate with a radius of ϭ Ō be submerged in water, with a
weight density of ϲϮ.ϰ lb/Ōϯ, for the fluid force on the plate
to reach ϭ,ϬϬϬ lb?

ϮϬ. How deep must the center of a verƟcally oriented square
plate with a side length of Ϯ Ō be submerged in water, with
a weight density of ϲϮ.ϰ lb/Ōϯ, for the fluid force on the
plate to reach ϭ,ϬϬϬ lb?

ϯϵϱ





NotaƟon: WeuseN to describe the set of
natural numbers, that is, the integers ϭ, Ϯ,
ϯ, …

Factorial: The expression ϯ! refers to the
number ϯ · Ϯ · ϭ = ϲ.

In general, n! = n·(n−ϭ)·(n−Ϯ) · · · Ϯ·ϭ,
where n is a natural number.

We define Ϭ! = ϭ. While this does not
immediately make sense, it makes many
mathemaƟcal formulas work properly.

ϴ: S�Øç�Ä��Ý �Ä� S�Ù®�Ý
This chapter introduces sequences and series, important mathemaƟcal con-
strucƟons that are useful when solving a large variety of mathemaƟcal prob-
lems. The content of this chapter is considerably different from the content of
the chapters before it. While the material we learn here definitely falls under
the scope of “calculus,” we will make very liƩle use of derivaƟves or integrals.
Limits are extremely important, though, especially limits that involve infinity.

One of the problems addressed by this chapter is this: suppose we know
informaƟon about a funcƟon and its derivaƟves at a point, such as f(ϭ) = ϯ,
f ′(ϭ) = ϭ, f ′′(ϭ) = −Ϯ, f ′′′(ϭ) = ϳ, and so on. What can I say about f(x) itself?
Is there any reasonable approximaƟon of the value of f(Ϯ)? The topic of Taylor
Series addresses this problem, and allows us to make excellent approximaƟons
of funcƟons when limited knowledge of the funcƟon is available.

ϴ.ϭ Sequences
We commonly refer to a set of events that occur one aŌer the other as a se-
quence of events. In mathemaƟcs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one aŌer the other.”

For instance, the numbers Ϯ, ϰ, ϲ, ϴ, …, form a sequence. The order is impor-
tant; the first number is Ϯ, the second is ϰ, etc. It seems natural to seek a formula
that describes a given sequence, and oŌen this can be done. For instance, the
sequence above could be described by the funcƟon a(n) = Ϯn, for the values of
n = ϭ, Ϯ, . . . To find the ϭϬth term in the sequence, we would compute a(ϭϬ).
This leads us to the following, formal definiƟon of a sequence.

DefiniƟon Ϯϳ Sequence

A sequence is a funcƟon a(n) whose domain is N. The range of a
sequence is the set of all disƟnct values of a(n).

The terms of a sequence are the values a(ϭ), a(Ϯ), …, which are usually
denoted with subscripts as aϭ, aϮ, ….

A sequence a(n) is oŌen denoted as {an}.
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Figure ϴ.ϭ: Ploƫng sequences in Example
ϮϯϬ.

Chapter ϴ Sequences and Series

Example ϮϯϬ LisƟng terms of a sequence
List the first four terms of the following sequences.

ϭ. {an} =

{
ϯn

n!

}

Ϯ. {an} = {ϰ+(−ϭ)n} ϯ. {an} =

{
(−ϭ)n(n+ϭ)/Ϯ

nϮ

}

SÊ½çã®ÊÄ

ϭ. aϭ =
ϯϭ

ϭ!
= ϯ; aϮ =

ϯϮ

Ϯ!
=

ϵ
Ϯ
; aϯ =

ϯϯ

ϯ!
=

ϵ
Ϯ
; aϰ =

ϯϰ

ϰ!
=

Ϯϳ
ϴ

We can plot the terms of a sequence with a scaƩer plot. The “x”-axis is
used for the values of n, and the values of the terms are ploƩed on the
y-axis. To visualize this sequence, see Figure ϴ.ϭ(a).

Ϯ. aϭ = ϰ+ (−ϭ)ϭ = ϯ; aϮ = ϰ+ (−ϭ)Ϯ = ϱ;

aϯ = ϰ+(−ϭ)ϯ = ϯ; aϰ = ϰ+(−ϭ)ϰ = ϱ. Note that the range of this
sequence is finite, consisƟng of only the values ϯ and ϱ. This sequence is
ploƩed in Figure ϴ.ϭ(b).

ϯ. aϭ =
(−ϭ)ϭ(Ϯ)/Ϯ

ϭϮ
= −ϭ; aϮ =

(−ϭ)Ϯ(ϯ)/Ϯ

ϮϮ
= −ϭ

ϰ

aϯ =
(−ϭ)ϯ(ϰ)/Ϯ

ϯϮ
=

ϭ
ϵ

aϰ =
(−ϭ)ϰ(ϱ)/Ϯ

ϰϮ
=

ϭ
ϭϲ

;

aϱ =
(−ϭ)ϱ(ϲ)/Ϯ

ϱϮ
= − ϭ

Ϯϱ
.

We gave one extra term to begin to show the paƩern of signs is “−,−,+,
+,−,−, . . ., due to the fact that the exponent of−ϭ is a special quadraƟc.
This sequence is ploƩed in Figure ϴ.ϭ(c).

Example Ϯϯϭ Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a funcƟon that describes
each of the given sequences.

ϭ. Ϯ, ϱ, ϴ, ϭϭ, ϭϰ, . . .

Ϯ. Ϯ,−ϱ, ϭϬ,−ϭϳ, Ϯϲ,−ϯϳ, . . .

ϯ. ϭ, ϭ, Ϯ, ϲ, Ϯϰ, ϭϮϬ, ϳϮϬ, . . .

ϰ.
ϱ
Ϯ
,
ϱ
Ϯ
,
ϭϱ
ϴ
,
ϱ
ϰ
,
Ϯϱ
ϯϮ

, . . .

Notes:

ϯϵϴ



ϴ.ϭ Sequences

SÊ½çã®ÊÄ Weshould first note that there is never exactly one funcƟon that
describes a finite set of numbers as a sequence. There are many sequences
that start with Ϯ, then ϱ, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

ϭ. Note how each term is ϯmore than the previous one. This implies a linear
funcƟon would be appropriate: a(n) = an = ϯn+b for some appropriate
value of b. As we want aϭ = Ϯ, we set b = −ϭ. Thus an = ϯn− ϭ.

Ϯ. First noƟce how the sign changes from term to term. This is most com-
monly accomplished bymulƟplying the terms by either (−ϭ)n or (−ϭ)n+ϭ.
Using (−ϭ)n mulƟplies the odd terms by (−ϭ); using (−ϭ)n+ϭ mulƟplies
the even terms by (−ϭ). As this sequence has negaƟve even terms, we
will mulƟply by (−ϭ)n+ϭ.

AŌer this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a paƩern of some sort: what do the numbers Ϯ, ϱ,
ϭϬ, ϭϳ, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, Ϯ = ϭϭ + ϭ, ϱ = ϮϮ + ϭ, ϭϬ = ϯϮ + ϭ, etc. Thus our formula is
an = (−ϭ)n+ϭ(nϮ + ϭ).

ϯ. One who is familiar with the factorial funcƟon will readily recognize these
numbers. They are Ϭ!, ϭ!, Ϯ!, ϯ!, etc. Since our sequences start with n = ϭ,
we cannot write an = n!, for this misses the Ϭ! term. Instead, we shiŌ by
ϭ, and write an = (n− ϭ)!.

ϰ. This one may appear difficult, especially as the first two terms are the
same, but a liƩle “sleuthing” will help. NoƟce how the terms in the nu-
merator are always mulƟples of ϱ, and the terms in the denominator are
always powers of Ϯ. Does something as simple as an = ϱn

Ϯn work?

When n = ϭ, we see that we indeed get ϱ/Ϯ as desired. When n = Ϯ,
we get ϭϬ/ϰ = ϱ/Ϯ. Further checking shows that this formula indeed
matches the other terms of the sequence.

A common mathemaƟcal endeavor is to create a new mathemaƟcal object
(for instance, a sequence) and then apply previously knownmathemaƟcs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will invesƟgate what it means to find the limit of a sequence.

Notes:

ϯϵϵ



Chapter ϴ Sequences and Series

DefiniƟon Ϯϴ Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > Ϭ, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definiƟon states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjecƟve
terms, but hopefully the intent is clear.

This definiƟon is reminiscent of the ε–δ proofs of Chapter ϭ. In that chapter
we developed other tools to evaluate limits apart from the formal definiƟon; we
do so here as well.

Theorem ϱϱ Limit of a Sequence

Let {an} be a sequence and let f(x) be a funcƟonwhose domain contains
the posiƟve real numbers where f(n) = an for all n in N.

If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

Theorem ϱϱ allows us, in certain cases, to apply the tools developed in Chap-
ter ϭ to limits of sequences. Note two things not stated by the theorem:

ϭ. If lim
x→∞

f(x) does not exist, we cannot conclude that lim
n→∞

an does not exist.
It may, or may not, exist. For instance, we can define a sequence {an} =
{cos(Ϯπn)}. Let f(x) = cos(Ϯπx). Since the cosine funcƟon oscillates
over the real numbers, the limit lim

x→∞
f(x) does not exist.

However, for every posiƟve integer n, cos(Ϯπn) = ϭ, so lim
n→∞

an = ϭ.

Ϯ. If we cannot find a funcƟon f(x) whose domain contains the posiƟve real
numbers where f(n) = an for all n inN, we cannot conclude lim

n→∞
an does

not exist. It may, or may not, exist.

Notes:

ϰϬϬ
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Figure ϴ.Ϯ: ScaƩer plots of the sequences
in Example ϮϯϮ.

ϴ.ϭ Sequences

Example ϮϯϮ Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

ϭ. {an} =

{
ϯnϮ − Ϯn+ ϭ
nϮ − ϭϬϬϬ

}

Ϯ. {an} = {cos n} ϯ. {an} =

{
(−ϭ)n

n

}

SÊ½çã®ÊÄ

ϭ. Using Theorem ϭϭ, we can state that lim
x→∞

ϯxϮ − Ϯx+ ϭ
xϮ − ϭϬϬϬ

= ϯ. (We could

have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is ϯ. A scaƩer plot of every ϱ values of an is given in
Figure ϴ.Ϯ (a). The values of an vary widely near n = ϯϬ, ranging from
about−ϳϯ to ϭϮϱ, but as n grows, the values approach ϯ.

Ϯ. The limit lim
x→∞

cos x does not exist, as cos x oscillates (and takes on every
value in [−ϭ, ϭ] infinitely many Ɵmes). Thus we cannot apply Theorem ϱϱ.

The fact that the cosine funcƟon oscillates strongly hints that cos n, when
n is restricted toN, will also oscillate. Figure ϴ.Ϯ (b), where the sequence is
ploƩed, shows that this is true. Because only discrete values of cosine are
ploƩed, it does not bear strong resemblance to the familiar cosine wave.

We conclude that lim
n→∞

an does not exist.

ϯ. We cannot actually apply Theoremϱϱhere, as the funcƟon f(x) = (−ϭ)x/x
is not well defined. (What does (−ϭ)

√
Ϯ mean? In actuality, there is an an-

swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure ϴ.Ϯ (c), we would like to
conclude that the sequence converges to Ϭ. That is true, but at this point
we are unable to decisively say so.

It seems that {(−ϭ)n/n} converges to Ϭ but we lack the formal tool to prove
it. The following theorem gives us that tool.

Theorem ϱϲ Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = Ϭ, then lim
n→∞

an = Ϭ

Example Ϯϯϯ Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

Notes:

ϰϬϭ
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Figure ϴ.ϯ: A plot of a sequence in Exam-
ple Ϯϯϯ, part Ϯ.
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ϭ. {an} =

{
(−ϭ)n

n

}

Ϯ. {an} =

{
(−ϭ)n(n+ ϭ)

n

}

SÊ½çã®ÊÄ

ϭ. This appeared in Example ϮϯϮ. Wewant to apply Theorem ϱϲ, so consider
the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣
∣
∣
∣

(−ϭ)n

n

∣
∣
∣
∣

= lim
n→∞

ϭ
n

= Ϭ.

Since this limit is Ϭ, we can apply Theorem ϱϲ and state that lim
n→∞

an = Ϭ.

Ϯ. Because of the alternaƟng nature of this sequence (i.e., every other term

ismulƟplied by−ϭ), we cannot simply look at the limit lim
x→∞

(−ϭ)x(x+ ϭ)
x

.
We can try to apply the techniques of Theorem ϱϲ:

lim
n→∞

|an| = lim
n→∞

∣
∣
∣
∣

(−ϭ)n(n+ ϭ)
n

∣
∣
∣
∣

= lim
n→∞

n+ ϭ
n

= ϭ.

Wehave concluded thatwhenwe ignore the alternaƟng sign, the sequence
approaches ϭ. This means we cannot apply Theorem ϱϲ; it states the the
limit must be Ϭ in order to conclude anything.

Since we know that the signs of the terms alternate and we know that
the limit of |an| is ϭ, we know that as n approaches infinity, the terms
will alternate between values close to ϭ and −ϭ, meaning the sequence
diverges. A plot of this sequence is given in Figure ϴ.ϯ.

We conƟnue our study of the limits of sequences by considering some of the
properƟes of these limits.

Notes:
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Theorem ϱϳ ProperƟes of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

ϭ. lim
n→∞

(an ± bn) = L± K

Ϯ. lim
n→∞

(an · bn) = L · K

ϯ. lim
n→∞

(an/bn) = L/K, K ̸= Ϭ

ϰ. lim
n→∞

c · an = c · L

Example Ϯϯϰ Applying properƟes of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ ϭ
nϮ

}

, and lim
n→∞

an = Ϭ;

• {bn} =

{(

ϭ+
ϭ
n

)n}

, and lim
n→∞

bn = e; and

• {cn} =
{
n · sin(ϱ/n)

}
, and lim

n→∞
cn = ϱ.

Evaluate the following limits.

ϭ. lim
n→∞

(an + bn) Ϯ. lim
n→∞

(bn · cn) ϯ. lim
n→∞

(ϭϬϬϬ · an)

SÊ½çã®ÊÄ We will use Theorem ϱϳ to answer each of these.

ϭ. Since lim
n→∞

an = Ϭ and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

Ϭ+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

Ϯ. Since lim
n→∞

bn = e and lim
n→∞

cn = ϱ, we conclude that lim
n→∞

(bn · cn) =

e · ϱ = ϱe.

ϯ. Since lim
n→∞

an = Ϭ, we have lim
n→∞

ϭϬϬϬan = ϭϬϬϬ · Ϭ = Ϭ. It does not
maƩer that wemulƟply each term by ϭϬϬϬ; the sequence sƟll approaches
Ϭ. (It just takes longer to get close to Ϭ.)

There is more to learn about sequences than just their limits. We will also
study their range and the relaƟonships terms have with the terms that follow.
We start with some definiƟons describing properƟes of the range.

Notes:
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Figure ϴ.ϰ: A plot of {an} = {ϭ/n} and
{an} = {Ϯn} from Example Ϯϯϱ.
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DefiniƟon Ϯϵ Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exists real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definiƟon that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

Example Ϯϯϱ Determining boundedness of sequences
Determine the boundedness of the following sequences.

ϭ. {an} =

{
ϭ
n

}

Ϯ. {an} = {Ϯn}

SÊ½çã®ÊÄ

ϭ. The terms of this sequence are always posiƟve but are decreasing, so we
have Ϭ < an < Ϯ for all n. Thus this sequence is bounded. Figure ϴ.ϰ(a)
illustrates this.

Ϯ. The terms of this sequence obviously grow without bound. However, it is
also true that these terms are all posiƟve, meaning Ϭ < an. Thus we can
say the sequence is unbounded, but also bounded below. Figure ϴ.ϰ(b)
illustrates this.

The previous example produces some interesƟng concepts. First, we can
recognize that the sequence {ϭ/n} converges to Ϭ. This says, informally, that
“most” of the terms of the sequence are “really close” to Ϭ. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
Ϭ, so we could find some sort of bound on these terms (using DefiniƟon Ϯϴ, the
bound is ε). That leaves a “few” terms that are not near Ϭ (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

Notes:
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Note: Keep in mind what Theorem ϱϴ
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

Note: It is someƟmes useful to call
a monotonically increasing sequence
strictly increasing if an < an+ϭ for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.

ϴ.ϭ Sequences

Theorem ϱϴ Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example Ϯϯϰ we saw the sequence {bn} =
{
(ϭ+ ϭ/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply restaƟng part of Theorem ϱ.)
Even though it may be difficult to intuiƟvely grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesƟng concept to come out of Example Ϯϯϱ again involves the
sequence {ϭ/n}. We stated, without proof, that the terms of the sequencewere
decreasing. That is, that an+ϭ < an for all n. (This is easy to show. Clearly
n < n + ϭ. Taking reciprocals flips the inequality: ϭ/n > ϭ/(n + ϭ). This is the
same as an > an+ϭ.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

DefiniƟon ϯϬ Monotonic Sequences

ϭ. A sequence {an} is monotonically increasing if an ≤ an+ϭ for all
n, i.e.,

aϭ ≤ aϮ ≤ aϯ ≤ · · · an ≤ an+ϭ · · ·

Ϯ. A sequence {an} is monotonically decreasing if an ≥ an+ϭ for all
n, i.e.,

aϭ ≥ aϮ ≥ aϯ ≥ · · · an ≥ an+ϭ · · ·

ϯ. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Example Ϯϯϲ Determining monotonicity
Determine the monotonicity of the following sequences.

ϭ. {an} =

{
n+ ϭ
n

}

Ϯ. {an} =

{
nϮ + ϭ
n+ ϭ

}

ϯ. {an} =

{
nϮ − ϵ

nϮ − ϭϬn+ Ϯϲ

}

ϰ. {an} =

{
nϮ

n!

}

SÊ½çã®ÊÄ In each of the following, wewill examine an+ϭ−an. If an+ϭ−
an > Ϭ, we conclude that an < an+ϭ and hence the sequence is increasing. If

Notes:
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Figure ϴ.ϱ: Plots of sequences in Example
Ϯϯϲ.
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an+ϭ − an < Ϭ, we conclude that an > an+ϭ and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scaƩer plot of each sequence. These are useful as they sug-
gest a paƩern of monotonicity, but analyƟc work should be done to confirm a
graphical trend.

ϭ. an+ϭ − an =
n+ Ϯ
n+ ϭ

− n+ ϭ
n

=
(n+ Ϯ)(n)− (n+ ϭ)Ϯ

(n+ ϭ)n

=
−ϭ

n(n+ ϭ)
< Ϭ for all n.

Since an+ϭ−an < Ϭ for all n, we conclude that the sequence is decreasing.

Ϯ. an+ϭ − an =
(n+ ϭ)Ϯ + ϭ

n+ Ϯ
− nϮ + ϭ

n+ ϭ

=

(
(n+ ϭ)Ϯ + ϭ

)
(n+ ϭ)− (nϮ + ϭ)(n+ Ϯ)

(n+ ϭ)(n+ Ϯ)

=
nϮ + ϰn+ ϭ

(n+ ϭ)(n+ Ϯ)
> Ϭ for all n.

Since an+ϭ − an > Ϭ for all n, we conclude the sequence is increasing.

ϯ. We can clearly see in Figure ϴ.ϱ (c), where the sequence is ploƩed, that
it is not monotonic. However, it does seem that aŌer the first ϰ terms
it is decreasing. To understand why, perform the same analysis as done
before:

an+ϭ − an =
(n+ ϭ)Ϯ − ϵ

(n+ ϭ)Ϯ − ϭϬ(n+ ϭ) + Ϯϲ
− nϮ − ϵ

nϮ − ϭϬn+ Ϯϲ

=
nϮ + Ϯn− ϴ
nϮ − ϴn+ ϭϳ

− nϮ − ϵ
nϮ − ϭϬn+ Ϯϲ

=
(nϮ + Ϯn− ϴ)(nϮ − ϭϬn+ Ϯϲ)− (nϮ − ϵ)(nϮ − ϴn+ ϭϳ)

(nϮ − ϴn+ ϭϳ)(nϮ − ϭϬn+ Ϯϲ)

=
−ϭϬnϮ + ϲϬn− ϱϱ

(nϮ − ϴn+ ϭϳ)(nϮ − ϭϬn+ Ϯϲ)
.

We want to know when this is greater than, or less than, Ϭ. The denomi-
nator is always posiƟve, therefore we are only concerned with the numer-
ator. Using the quadraƟc formula, we can determine that−ϭϬnϮ + ϲϬn−

Notes:
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Figure ϴ.ϲ: A plot of {an} = {nϮ/n!} in
Example Ϯϯϲ.
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ϱϱ = Ϭ when n ≈ ϭ.ϭϯ, ϰ.ϴϳ. So for n < ϭ.ϭϯ, the sequence is decreas-
ing. Since we are only dealing with the natural numbers, this means that
aϭ > aϮ.

Between ϭ.ϭϯ and ϰ.ϴϳ, i.e., for n = Ϯ, ϯ and ϰ, we have that an+ϭ >
an and the sequence is increasing. (That is, when n = Ϯ, ϯ and ϰ, the
numerator−ϭϬnϮ + ϲϬn+ ϱϱ from the fracƟon above is> Ϭ.)

When n > ϰ.ϴϳ, i.e, for n ≥ ϱ, we have that −ϭϬnϮ + ϲϬn + ϱϱ < Ϭ,
hence an+ϭ − an < Ϭ, so the sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ ϱ, the sequence is monotonically decreasing.

ϰ. Again, the plot in Figure ϴ.ϲ shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing aŌer the first term. We
perform the usual analysis to confirm this.

an+ϭ − an =
(n+ ϭ)Ϯ

(n+ ϭ)!
− nϮ

n!

=
(n+ ϭ)Ϯ − nϮ(n+ ϭ)

(n+ ϭ)!

=
−nϯ + Ϯn+ ϭ

(n+ ϭ)!
When n = ϭ, the above expression is > Ϭ; for n ≥ Ϯ, the above expres-
sion is < Ϭ. Thus this sequence is not monotonic, but it is monotonically
decreasing aŌer the first term.

Knowing that a sequence is monotonic can be useful. In parƟcular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges!
Consider, for example, a sequence that ismonotonically decreasing and is bounded
below. We know the sequence is always geƫng smaller, but that there is a
bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

Theorem ϱϵ Bounded Monotonic Sequences are Convergent

ϭ. Let {an} be a bounded, monotonic sequence. Then {an} con-
verges; i.e., lim

n→∞
an exists.

Ϯ. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

ϯ. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Notes:
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Consider once again the sequence {an} = {ϭ/n}. It is easy to show it is
monotonically decreasing and that it is always posiƟve (i.e., bounded below by
Ϭ). Therefore we can conclude by Theorem ϱϵ that the sequence converges. We
already knew this by other means, but in the following secƟon this theoremwill
become very useful.

Sequences are a great source of mathemaƟcal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wriƟng, there are Ϯϱϳ,ϱϯϳ sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

InteresƟng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in aϭ+aϮ+aϯ+ · · · . Of course, one might immediately counter with
“Doesn’t this just add up to ‘infinity’?” Many Ɵmes, yes, but there are many im-
portant cases where the answer is no. This is the topic of series, which we begin
to invesƟgate in the next secƟon.

Notes:
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Exercises ϴ.ϭ
Terms and Concepts
ϭ. Use your own words to define a sequence.

Ϯ. The domain of a sequence is the numbers.

ϯ. Use your own words to describe the range of a sequence.

ϰ. Describe what it means for a sequence to be bounded.

Problems
In Exercises ϱ – ϴ, give the first five terms of the given se-
quence.

ϱ. {an} =

{

ϰn

(n+ ϭ)!

}

ϲ. {bn} =

{(

−ϯ
Ϯ

)n}

ϳ. {cn} =

{

− nn+ϭ

n+ Ϯ

}

ϴ. {dn} =

{

ϭ√
ϱ

(

(

ϭ+
√
ϱ

Ϯ

)n

−
(

ϭ−
√
ϱ

Ϯ

)n
)}

In Exercises ϵ – ϭϮ, determine the nth term of the given se-
quence.

ϵ. ϰ, ϳ, ϭϬ, ϭϯ, ϭϲ, . . .

ϭϬ. ϯ, −ϯ
Ϯ
,
ϯ
ϰ
, −ϯ

ϴ
, . . .

ϭϭ. ϭϬ, ϮϬ, ϰϬ, ϴϬ, ϭϲϬ, . . .

ϭϮ. ϭ, ϭ,
ϭ
Ϯ
,
ϭ
ϲ
,

ϭ
Ϯϰ

,
ϭ

ϭϮϬ
, . . .

In Exercises ϭϯ – ϭϲ, use the following informaƟon to deter-
mine the limit of the given sequences.

• {an} =

{

Ϯn − ϮϬ
Ϯn

}

; lim
n→∞

an = ϭ

• {bn} =

{(

ϭ+
Ϯ
n

)n}

; lim
n→∞

bn = eϮ

• {cn} = {sin(ϯ/n)}; lim
n→∞

cn = Ϭ

ϭϯ. {an} =

{

Ϯn − ϮϬ
ϳ · Ϯn

}

ϭϰ. {an} = {ϯbn − an}

ϭϱ. {an} =

{

sin(ϯ/n)
(

ϭ+
Ϯ
n

)n}

ϭϲ. {an} =

{

(

ϭ+
Ϯ
n

)Ϯn
}

In Exercises ϭϳ – Ϯϴ, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

ϭϳ. {an} =

{

(−ϭ)n
n

n+ ϭ

}

ϭϴ. {an} =

{

ϰnϮ − n+ ϱ
ϯnϮ + ϭ

}

ϭϵ. {an} =

{

ϰn

ϱn

}

ϮϬ. {an} =

{

n− ϭ
n

− n
n− ϭ

}

, n ≥ Ϯ

Ϯϭ. {an} = {ln(n)}

ϮϮ. {an} =

{

ϯn√
nϮ + ϭ

}

Ϯϯ. {an} =

{(

ϭ+
ϭ
n

)n}

Ϯϰ. {an} =

{

ϱ− ϭ
n

}

Ϯϱ. {an} =

{

(−ϭ)n+ϭ

n

}

Ϯϲ. {an} =

{

ϭ.ϭn

n

}

Ϯϳ. {an} =

{

Ϯn
n+ ϭ

}

Ϯϴ. {an} =

{

(−ϭ)n
nϮ

Ϯn − ϭ

}

In Exercises Ϯϵ – ϯϰ, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

Ϯϵ. {an} = {sin n}

ϯϬ. {an} = {tan n}

ϯϭ. {an} =

{

(−ϭ)n
ϯn− ϭ

n

}

ϯϮ. {an} =

{

ϯnϮ − ϭ
n

}

ϯϯ. {an} = {n cos n}

ϰϬϵ



ϯϰ. {an} = {Ϯn − n!}

In Exercises ϯϱ – ϯϴ, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

ϯϱ. {an} =

{

n
n+ Ϯ

}

ϯϲ. {an} =

{

nϮ − ϲn+ ϵ
n

}

ϯϳ. {an} =

{

(−ϭ)n
ϭ
nϯ

}

ϯϴ. {an} =

{

nϮ

Ϯn

}

ϯϵ. Prove Theoremϱϲ; that is, use the definiƟonof the limit of a
sequence to show that if lim

n→∞
|an| = Ϭ, then lim

n→∞
an = Ϭ.

ϰϬ. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.

(b) Give an example where L = K.

ϰϭ. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L

ϰϭϬ



ϴ.Ϯ Infinite Series

ϴ.Ϯ Infinite Series
Given the sequence {an} = {ϭ/Ϯn} = ϭ/Ϯ, ϭ/ϰ, ϭ/ϴ, . . ., consider the follow-
ing sums:

aϭ = ϭ/Ϯ = ϭ/Ϯ
aϭ + aϮ = ϭ/Ϯ+ ϭ/ϰ = ϯ/ϰ

aϭ + aϮ + aϯ = ϭ/Ϯ+ ϭ/ϰ+ ϭ/ϴ = ϳ/ϴ
aϭ + aϮ + aϯ + aϰ = ϭ/Ϯ+ ϭ/ϰ+ ϭ/ϴ+ ϭ/ϭϲ = ϭϱ/ϭϲ

In general, we can show that

aϭ + aϮ + aϯ + · · ·+ an =
Ϯn − ϭ
Ϯn

= ϭ− ϭ
Ϯn

.

Let Sn be the sum of the first n terms of the sequence {ϭ/Ϯn}. From the above,
we see that Sϭ = ϭ/Ϯ, SϮ = ϯ/ϰ, etc. Our formula at the end shows that Sn =
ϭ− ϭ/Ϯn.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
ϭ−ϭ/Ϯn

)
= ϭ. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {ϭ/Ϯn} is ϭ.

This example illustrates some interesƟng concepts that we explore in this
secƟon. We begin this exploraƟon with some definiƟons.

DefiniƟon ϯϭ Infinite Series, nth ParƟal Sums, Convergence, Divergence

Let {an} be a sequence.

ϭ. The sum
∞∑

n=ϭ

an is an infinite series (or, simply series).

Ϯ. Let Sn =
n∑

i=ϭ

ai ; the sequence {Sn} is the sequence of nth parƟal sums of {an}.

ϯ. If the sequence {Sn} converges to L, we say the series
∞∑

n=ϭ

an converges to L,

and we write
∞∑

n=ϭ

an = L.

ϰ. If the sequence {Sn} diverges, the series
∞∑

n=ϭ

an diverges.

Notes:
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Using our new terminology, we can state that the series
∞∑

n=ϭ

ϭ/Ϯn converges,

and
∞∑

n=ϭ

ϭ/Ϯn = ϭ.

We will explore a variety of series in this secƟon. We start with two series
that diverge, showing how we might discern divergence.

Example Ϯϯϳ Showing series diverge

ϭ. Let {an} = {nϮ}. Show
∞∑

n=ϭ

an diverges.

Ϯ. Let {bn} = {(−ϭ)n+ϭ}. Show
∞∑

n=ϭ

bn diverges.

SÊ½çã®ÊÄ

ϭ. Consider Sn, the nth parƟal sum.

Sn = aϭ + aϮ + aϯ + · · ·+ an
= ϭϮ + ϮϮ + ϯϮ · · ·+ nϮ.

By Theorem ϯϳ, this is

=
n(n+ ϭ)(Ϯn+ ϭ)

ϲ
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑

n=ϭ

nϮ diverges. It is

instrucƟve to write
∞∑

n=ϭ

nϮ = ∞ for this tells us how the series diverges: it

grows without bound.

A scaƩer plot of the sequences {an} and {Sn} is given in Figure ϴ.ϳ(a).
The terms of {an} are growing, so the terms of the parƟal sums {Sn} are
growing even faster, illustraƟng that the series diverges.

Ϯ. The sequence {bn} starts with ϭ, −ϭ, ϭ, −ϭ, . . .. Consider some of the

Notes:
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parƟal sums Sn of {bn}:

Sϭ = ϭ
SϮ = Ϭ
Sϯ = ϭ
Sϰ = Ϭ

This paƩern repeats; we find that Sn =

{
ϭ n is odd
Ϭ n is even . As {Sn} oscil-

lates, repeaƟng ϭ, Ϭ, ϭ, Ϭ, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑

n=ϭ

(−ϭ)n+ϭ diverges.

A scaƩer plot of the sequence {bn} and the parƟal sums {Sn} is given in
Figure ϴ.ϳ(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this secƟon we will demonstrate
a few general techniques for determining convergence; later secƟons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

DefiniƟon ϯϮ Geometric Series

A geometric series is a series of the form

∞∑

n=Ϭ

rn = ϭ+ r+ rϮ + rϯ + · · ·+ rn + · · ·

Note that the index starts at n = Ϭ, not n = ϭ.

We started this secƟon with a geometric series, although we dropped the
first term of ϭ. One reason geometric series are important is that they have nice
convergence properƟes.

Notes:
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Theorem ϲϬ Convergence of Geometric Series

Consider the geometric series
∞∑

n=Ϭ

rn.

ϭ. The nth parƟal sum is: Sn =
ϭ− r n+ϭ

ϭ− r
.

Ϯ. The series converges if, and only if, |r| < ϭ. When |r| < ϭ,

∞∑

n=Ϭ

rn =
ϭ

ϭ− r
.

According to Theorem ϲϬ, the series
∞∑

n=Ϭ

ϭ
Ϯn

=
∞∑

n=Ϭ

(
ϭ
Ϯ

)Ϯ

= ϭ+
ϭ
Ϯ
+

ϭ
ϰ
+ · · ·

converges as r = ϭ/Ϯ, and
∞∑

n=Ϭ

ϭ
Ϯn

=
ϭ

ϭ− ϭ/Ϯ
= Ϯ. This concurs with our intro-

ductory example; while there we got a sum of ϭ, we skipped the first term of ϭ.

Example Ϯϯϴ Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

ϭ.
∞∑

n=Ϯ

(
ϯ
ϰ

)n

Ϯ.
∞∑

n=Ϭ

(−ϭ
Ϯ

)n

ϯ.
∞∑

n=Ϭ

ϯn

SÊ½çã®ÊÄ

ϭ. Since r = ϯ/ϰ < ϭ, this series converges. By Theorem ϲϬ, we have that
∞∑

n=Ϭ

(
ϯ
ϰ

)n

=
ϭ

ϭ− ϯ/ϰ
= ϰ.

However, note the subscript of the summaƟon in the given series: we are
to start with n = Ϯ. Therefore we subtract off the first two terms, giving:

∞∑

n=Ϯ

(
ϯ
ϰ

)n

= ϰ− ϭ− ϯ
ϰ
=

ϵ
ϰ
.

This is illustrated in Figure ϴ.ϴ.

Notes:
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Note: Theorem ϲϭ assumes that an+b ̸=
Ϭ for all n. If an+ b = Ϭ for some n, then
of course the series does not converge re-
gardless of p as not all of the terms of the
sequence are defined.

ϴ.Ϯ Infinite Series

Ϯ. Since |r| = ϭ/Ϯ < ϭ, this series converges, and by Theorem ϲϬ,
∞∑

n=Ϭ

(−ϭ
Ϯ

)n

=
ϭ

ϭ− (−ϭ/Ϯ)
=

Ϯ
ϯ
.

The parƟal sums of this series are ploƩed in Figure ϴ.ϵ(a). Note how the
parƟal sums are not purely increasing as some of the terms of the se-
quence {(−ϭ/Ϯ)n} are negaƟve.

ϯ. Since r > ϭ, the series diverges. (This makes “common sense”; we expect
the sum

ϭ+ ϯ+ ϵ+ Ϯϳ+ ϴϭ+ Ϯϰϯ+ · · ·
to diverge.) This is illustrated in Figure ϴ.ϵ(b).

p–Series

Another important type of series is the p-series.

DefiniƟon ϯϯ p–Series, General p–Series

ϭ. A p–series is a series of the form

∞∑

n=ϭ

ϭ
np

, where p > Ϭ.

Ϯ. A general p–series is a series of the form

∞∑

n=ϭ

ϭ
(an+ b)p

, where p > Ϭ and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properƟes.

Theorem ϲϭ Convergence of General p–Series

A general p–series
∞∑

n=ϭ

ϭ
(an+ b)p

will converge if, and only if, p > ϭ.

Notes:

ϰϭϱ
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Example Ϯϯϵ Determining convergence of series
Determine the convergence of the following series.

ϭ.
∞∑

n=ϭ

ϭ
n

Ϯ.
∞∑

n=ϭ

ϭ
nϮ

ϯ.
∞∑

n=ϭ

ϭ√
n

ϰ.
∞∑

n=ϭ

(−ϭ)n

n

ϱ.
∞∑

n=ϭϬ

ϭ
( ϭϮn− ϱ)ϯ

ϲ.
∞∑

n=ϭ

ϭ
Ϯn

SÊ½çã®ÊÄ

ϭ. This is a p–series with p = ϭ. By Theorem ϲϭ, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its relaƟonship to harmonics in the study of music and sound.

Ϯ. This is a p–series with p = Ϯ. By Theorem ϲϭ, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected
result is that this series converges to πϮ/ϲ.

ϯ. This is a p–series with p = ϭ/Ϯ; the theorem states that it diverges.

ϰ. This is not a p–series; the definiƟon does not allow for alternaƟng signs.
Therefore we cannot apply Theorem ϲϭ. (Another famous result states
that this series, the AlternaƟng Harmonic Series, converges to ln Ϯ.)

ϱ. This is a general p–series with p = ϯ, therefore it converges.

ϲ. This is not a p–series, but a geometric series with r = ϭ/Ϯ. It converges.

Later secƟons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

Example ϮϰϬ Telescoping series

Evaluate the sum
∞∑

n=ϭ

(
ϭ
n
− ϭ

n+ ϭ

)

.

Notes:
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SÊ½çã®ÊÄ It will help to write down some of the first few parƟal sums
of this series.

Sϭ =
ϭ
ϭ
− ϭ

Ϯ
= ϭ− ϭ

Ϯ

SϮ =
(
ϭ
ϭ
− ϭ

Ϯ

)

+

(
ϭ
Ϯ
− ϭ

ϯ

)

= ϭ− ϭ
ϯ

Sϯ =
(
ϭ
ϭ
− ϭ

Ϯ

)

+

(
ϭ
Ϯ
− ϭ

ϯ

)

+

(
ϭ
ϯ
− ϭ

ϰ

)

= ϭ− ϭ
ϰ

Sϰ =
(
ϭ
ϭ
− ϭ

Ϯ

)

+

(
ϭ
Ϯ
− ϭ

ϯ

)

+

(
ϭ
ϯ
− ϭ

ϰ

)

+

(
ϭ
ϰ
− ϭ

ϱ

)

= ϭ− ϭ
ϱ

Note how most of the terms in each parƟal sum are canceled out! In general,

we see that Sn = ϭ − ϭ
n+ ϭ

. The sequence {Sn} converges, as lim
n→∞

Sn =

lim
n→∞

(

ϭ− ϭ
n+ ϭ

)

= ϭ, and so we conclude that
∞∑

n=ϭ

(
ϭ
n
− ϭ

n+ ϭ

)

= ϭ. Par-

Ɵal sums of the series are ploƩed in Figure ϴ.ϭϬ.

The series in Example ϮϰϬ is an example of a telescoping series. Informally, a
telescoping series is one in which the parƟal sums reduce to just a finite number
of terms. The parƟal sum Sn did not contain n terms, but rather just two: ϭ and
ϭ/(n+ ϭ).

When possible, seek away towrite an explicit formula for the nth parƟal sum
Sn. This makes evaluaƟng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

Example Ϯϰϭ EvaluaƟng series
Evaluate each of the following infinite series.

ϭ.
∞∑

n=ϭ

Ϯ
nϮ + Ϯn

Ϯ.
∞∑

n=ϭ

ln
(
n+ ϭ
n

)

SÊ½çã®ÊÄ

ϭ. We can decompose the fracƟon Ϯ/(nϮ + Ϯn) as

Ϯ
nϮ + Ϯn

=
ϭ
n
− ϭ

n+ Ϯ
.

(See SecƟon ϲ.ϱ, ParƟal FracƟonDecomposiƟon, to recall how this is done,
if necessary.)

Notes:
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Figure ϴ.ϭϭ: ScaƩer plots relaƟng to the
series in Example Ϯϰϭ.
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Expressing the terms of {Sn} is now more instrucƟve:

Sϭ = ϭ− ϭ
ϯ

= ϭ− ϭ
ϯ

SϮ =

(

ϭ− ϭ
ϯ

)

+

(

ϭ
Ϯ
− ϭ

ϰ

)

= ϭ+
ϭ
Ϯ
− ϭ

ϯ
− ϭ

ϰ

Sϯ =

(

ϭ− ϭ
ϯ

)

+

(

ϭ
Ϯ
− ϭ

ϰ

)

+

(

ϭ
ϯ
− ϭ

ϱ

)

= ϭ+
ϭ
Ϯ
− ϭ

ϰ
− ϭ

ϱ

Sϰ =

(

ϭ− ϭ
ϯ

)

+

(

ϭ
Ϯ
− ϭ

ϰ

)

+

(

ϭ
ϯ
− ϭ

ϱ

)

+

(

ϭ
ϰ
− ϭ

ϲ

)

= ϭ+
ϭ
Ϯ
− ϭ

ϱ
− ϭ

ϲ

Sϱ =

(

ϭ− ϭ
ϯ

)

+

(

ϭ
Ϯ
− ϭ

ϰ

)

+

(

ϭ
ϯ
− ϭ

ϱ

)

+

(

ϭ
ϰ
− ϭ

ϲ

)

+

(

ϭ
ϱ
− ϭ

ϳ

)

= ϭ+
ϭ
Ϯ
− ϭ

ϲ
− ϭ

ϳ

We again have a telescoping series. In each parƟal sum, most of the terms

cancel and we obtain the formula Sn = ϭ +
ϭ
Ϯ
− ϭ

n+ ϭ
− ϭ

n+ Ϯ
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(

ϭ+
ϭ
Ϯ
− ϭ

n+ ϭ
− ϭ

n+ Ϯ

)

=
ϯ
Ϯ
, so

∞∑

n=ϭ

ϭ
nϮ + Ϯn

=
ϯ
Ϯ
.

This is illustrated in Figure ϴ.ϭϭ(a).

Ϯ. We begin by wriƟng the first few parƟal sums of the series:

Sϭ = ln (Ϯ)

SϮ = ln (Ϯ) + ln
(
ϯ
Ϯ

)

Sϯ = ln (Ϯ) + ln
(
ϯ
Ϯ

)

+ ln
(
ϰ
ϯ

)

Sϰ = ln (Ϯ) + ln
(
ϯ
Ϯ

)

+ ln
(
ϰ
ϯ

)

+ ln
(
ϱ
ϰ

)

At first, this does not seem helpful, but recall the logarithmic idenƟty:
ln x+ ln y = ln(xy). Applying this to Sϰ gives:

Sϰ = ln (Ϯ)+ ln
(
ϯ
Ϯ

)

+ ln
(
ϰ
ϯ

)

+ ln
(
ϱ
ϰ

)

= ln
(
Ϯ
ϭ
· ϯ
Ϯ
· ϰ
ϯ
· ϱ
ϰ

)

= ln (ϱ) .

We can conclude that {Sn} =
{
ln(n+ ϭ)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑

n=ϭ

ln
(
n+ ϭ
n

)

= ∞; the series di-

verges. Note in Figure ϴ.ϭϭ(b) how the sequence of parƟal sums grows

Notes:

ϰϭϴ
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slowly; aŌer ϭϬϬ terms, it is not yet over ϱ. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not.

We are learning about a new mathemaƟcal object, the series. As done be-
fore, we apply “old” mathemaƟcs to this new topic.

Theorem ϲϮ ProperƟes of Infinite Series

Let
∞∑

n=ϭ

an = L,
∞∑

n=ϭ

bn = K, and let c be a constant.

ϭ. Constant MulƟple Rule:
∞∑

n=ϭ

c · an = c ·
∞∑

n=ϭ

an = c · L.

Ϯ. Sum/Difference Rule:
∞∑

n=ϭ

(
an ± bn

)
=

∞∑

n=ϭ

an ±
∞∑

n=ϭ

bn = L± K.

Before using this theorem, we provide a few “famous” series.

Key Idea ϯϭ Important Series

ϭ.
∞∑

n=Ϭ

ϭ
n!

= e. (Note that the index starts with n = Ϭ.)

Ϯ.
∞∑

n=ϭ

ϭ
nϮ

=
πϮ

ϲ
.

ϯ.
∞∑

n=ϭ

(−ϭ)n+ϭ

nϮ
=

πϮ

ϭϮ
.

ϰ.
∞∑

n=Ϭ

(−ϭ)n

Ϯn+ ϭ
=

π

ϰ
.

ϱ.
∞∑

n=ϭ

ϭ
n

diverges. (This is called the Harmonic Series.)

ϲ.
∞∑

n=ϭ

(−ϭ)n+ϭ

n
= ln Ϯ. (This is called the AlternaƟng Harmonic Series.)

Notes:
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Figure ϴ.ϭϮ: ScaƩer plots relaƟng to the
series in Example ϮϰϮ.
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Example ϮϰϮ EvaluaƟng series
Evaluate the given series.

ϭ.
∞∑

n=ϭ

(−ϭ)n+ϭ
(
nϮ − n

)

nϯ
Ϯ.

∞∑

n=ϭ

ϭϬϬϬ
n!

ϯ.
ϭ
ϭϲ

+
ϭ
Ϯϱ

+
ϭ
ϯϲ

+
ϭ
ϰϵ

+ · · ·

SÊ½çã®ÊÄ

ϭ. We start by using algebra to break the series apart:

∞∑

n=ϭ

(−ϭ)n+ϭ
(
nϮ − n

)

nϯ
=

∞∑

n=ϭ

(
(−ϭ)n+ϭnϮ

nϯ
− (−ϭ)n+ϭn

nϯ

)

=
∞∑

n=ϭ

(−ϭ)n+ϭ

n
−

∞∑

n=ϭ

(−ϭ)n+ϭ

nϮ

= ln(Ϯ)− πϮ

ϭϮ
≈ −Ϭ.ϭϮϵϯ.

This is illustrated in Figure ϴ.ϭϮ(a).

Ϯ. This looks very similar to the series that involves e in Key Idea ϯϭ. Note,
however, that the series given in this example starts with n = ϭ and not
n = Ϭ. The first term of the series in the Key Idea is ϭ/Ϭ! = ϭ, so we will
subtract this from our result below:

∞∑

n=ϭ

ϭϬϬϬ
n!

= ϭϬϬϬ ·
∞∑

n=ϭ

ϭ
n!

= ϭϬϬϬ · (e− ϭ) ≈ ϭϳϭϴ.Ϯϴ.

This is illustrated in Figure ϴ.ϭϮ(b). The graph shows how this parƟcular
series converges very rapidly.

ϯ. The denominators in each term are perfect squares; we are adding
∞∑

n=ϰ

ϭ
nϮ

(note we start with n = ϰ, not n = ϭ). This series will converge. Using the

Notes:

ϰϮϬ
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formula from Key Idea ϯϭ, we have the following:

∞∑

n=ϭ

ϭ
nϮ

=
ϯ∑

n=ϭ

ϭ
nϮ

+
∞∑

n=ϰ

ϭ
nϮ

∞∑

n=ϭ

ϭ
nϮ

−
ϯ∑

n=ϭ

ϭ
nϮ

=
∞∑

n=ϰ

ϭ
nϮ

πϮ

ϲ
−
(
ϭ
ϭ
+

ϭ
ϰ
+

ϭ
ϵ

)

=
∞∑

n=ϰ

ϭ
nϮ

πϮ

ϲ
− ϰϵ

ϯϲ
=

∞∑

n=ϰ

ϭ
nϮ

Ϭ.Ϯϴϯϴ ≈
∞∑

n=ϰ

ϭ
nϮ

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
secƟon, yet it sƟll may “take some geƫng used to.”

As one contemplates the behavior of series, a few facts become clear.

ϭ. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” Ϭ.

Ϯ. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will sƟll diverge if the first term is removed.

(b) The series will sƟll diverge if the first ϭϬ terms are removed.

(c) The series will sƟll diverge if the first ϭ, ϬϬϬ, ϬϬϬ terms are removed.

(d) The series will sƟll diverge if any finite number of terms from any-
where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Notes:
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Theorem ϲϯ nth–Term Test for Convergence/Divergence

Consider the series
∞∑

n=ϭ

an.

ϭ. If
∞∑

n=ϭ

an converges, then lim
n→∞

an = Ϭ.

Ϯ. If lim
n→∞

an ̸= Ϭ, then
∞∑

n=ϭ

an diverges.

Note that the two statements in Theorem ϲϯ are really the same. In order
to converge, the limit of the terms of the sequence must approach Ϭ; if they do
not, the series will not converge.

Looking back, we can apply this theorem to the series in Example Ϯϯϳ. In
that example, the nth terms of both sequences do not converge to Ϭ, therefore
we can quickly conclude that each series diverges.

Important! This theorem does not state that if lim
n→∞

an = Ϭ then
∞∑

n=ϭ

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea ϯϭ. The Harmonic Sequence, {ϭ/n}, converges to Ϭ; the Harmonic Series,
∞∑

n=ϭ

ϭ/n, diverges.

Theorem ϲϰ Infinite Nature of Series

The convergence or divergence remains unchanged by the addiƟon or
subtracƟon of any finite number of terms. That is:

ϭ. A divergent series will remain divergent with the addiƟon or sub-
tracƟon of any finite number of terms.

Ϯ. A convergent series will remain convergent with the addiƟon or
subtracƟon of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑

n=ϭ

ϭ
n
which diverges; that is, the

Notes:

ϰϮϮ
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sequence of parƟal sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first ϭϬmillion terms of the Harmonic Series is about ϭϲ.ϳ. Removing the first ϭϬ
million terms from the Harmonic Series changes the nth parƟal sums, effecƟvely
subtracƟng ϭϲ.ϳ from the sum. However, a sequence that is growing without
bound will sƟll grow without bound when ϭϲ.ϳ is subtracted from it.

The equaƟons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first ϭϬ million terms plus the sum
of “everything else.” The next equaƟon shows us subtracƟng these first ϭϬ mil-
lion terms from both sides. The final equaƟon employs a bit of “psuedo–math”:
subtracƟng ϭϲ.ϳ from “infinity” sƟll leaves one with “infinity.”

∞∑

n=ϭ

ϭ
n =

ϭϬ,ϬϬϬ,ϬϬϬ
∑

n=ϭ

ϭ
n

+

∞∑

n=ϭϬ,ϬϬϬ,ϬϬϭ

ϭ
n

∞∑

n=ϭ

ϭ
n −

ϭϬ,ϬϬϬ,ϬϬϬ
∑

n=ϭ

ϭ
n

=

∞∑

n=ϭϬ,ϬϬϬ,ϬϬϭ

ϭ
n

∞ − ϭϲ.ϳ = ∞.

This secƟon introduced us to series and defined a few special types of series
whose convergence properƟes are well known: we know when a p-series or
a geometric series converges or diverges. Most series that we encounter are
not one of these types, but we are sƟll interested in knowing whether or not
they converge. The next three secƟons introduce tests that help us determine
whether or not a given series converges.

Notes:

ϰϮϯ



Exercises ϴ.Ϯ
Terms and Concepts

ϭ. Use your own words to describe how sequences and series
are related.

Ϯ. Use your own words to define a parƟal sum.

ϯ. Given a series
∞
∑

n=ϭ

an, describe the two sequences related

to the series that are important.

ϰ. Use your own words to explain what a geometric series is.

ϱ. T/F: If {an} is convergent, then
∞
∑

n=ϭ

an is also convergent.

Problems

In Exercises ϲ – ϭϯ, a series
∞
∑

n=ϭ

an is given.

(a) Give the first ϱ parƟal sums of the series.

(b) Give a graph of the first ϱ terms of an and Sn on the
same axes.

ϲ.
∞
∑

n=ϭ

(−ϭ)n

n

ϳ.
∞
∑

n=ϭ

ϭ
nϮ

ϴ.
∞
∑

n=ϭ

cos(πn)

ϵ.
∞
∑

n=ϭ

n

ϭϬ.
∞
∑

n=ϭ

ϭ
n!

ϭϭ.
∞
∑

n=ϭ

ϭ
ϯn

ϭϮ.
∞
∑

n=ϭ

(

− ϵ
ϭϬ

)n

ϭϯ.
∞
∑

n=ϭ

(

ϭ
ϭϬ

)n

In Exercises ϭϰ – ϭϵ, use Theorem ϲϯ to show the given series
diverges.

ϭϰ.
∞
∑

n=ϭ

ϯnϮ

n(n+ Ϯ)

ϭϱ.
∞
∑

n=ϭ

Ϯn

nϮ

ϭϲ.
∞
∑

n=ϭ

n!
ϭϬn

ϭϳ.
∞
∑

n=ϭ

ϱn − nϱ

ϱn + nϱ

ϭϴ.
∞
∑

n=ϭ

Ϯn + ϭ
Ϯn+ϭ

ϭϵ.
∞
∑

n=ϭ

(

ϭ+
ϭ
n

)n

In Exercises ϮϬ – Ϯϵ, state whether the given series converges
or diverges.

ϮϬ.
∞
∑

n=ϭ

ϭ
nϱ

Ϯϭ.
∞
∑

n=Ϭ

ϭ
ϱn

ϮϮ.
∞
∑

n=Ϭ

ϲn

ϱn

Ϯϯ.
∞
∑

n=ϭ

n−ϰ

Ϯϰ.
∞
∑

n=ϭ

√
n

Ϯϱ.
∞
∑

n=ϭ

ϭϬ
n!

Ϯϲ.
∞
∑

n=ϭ

(

ϭ
n!

+
ϭ
n

)

Ϯϳ.
∞
∑

n=ϭ

Ϯ
(Ϯn+ ϴ)Ϯ

Ϯϴ.
∞
∑

n=ϭ

ϭ
Ϯn

ϰϮϰ



Ϯϵ.
∞
∑

n=ϭ

ϭ
Ϯn− ϭ

In Exercises ϯϬ – ϰϰ, a series is given.

(a) Find a formula for Sn, the nth parƟal sum of the series.

(b) Determine whether the series converges or diverges.
If it converges, state what it converges to.

ϯϬ.
∞
∑

n=Ϭ

ϭ
ϰn

ϯϭ. ϭϯ + Ϯϯ + ϯϯ + ϰϯ + · · ·

ϯϮ.
∞
∑

n=ϭ

(−ϭ)nn

ϯϯ.
∞
∑

n=Ϭ

ϱ
Ϯn

ϯϰ.
∞
∑

n=ϭ

e−n

ϯϱ. ϭ− ϭ
ϯ
+

ϭ
ϵ
− ϭ

Ϯϳ
+

ϭ
ϴϭ

+ · · ·

ϯϲ.
∞
∑

n=ϭ

ϭ
n(n+ ϭ)

ϯϳ.
∞
∑

n=ϭ

ϯ
n(n+ Ϯ)

ϯϴ.
∞
∑

n=ϭ

ϭ
(Ϯn− ϭ)(Ϯn+ ϭ)

ϯϵ.
∞
∑

n=ϭ

ln
(

n
n+ ϭ

)

ϰϬ.
∞
∑

n=ϭ

Ϯn+ ϭ
nϮ(n+ ϭ)Ϯ

ϰϭ.
ϭ

ϭ · ϰ +
ϭ

Ϯ · ϱ +
ϭ

ϯ · ϲ +
ϭ

ϰ · ϳ + · · ·

ϰϮ. Ϯ+
(

ϭ
Ϯ
+

ϭ
ϯ

)

+

(

ϭ
ϰ
+

ϭ
ϵ

)

+

(

ϭ
ϴ
+

ϭ
Ϯϳ

)

+ · · ·

ϰϯ.
∞
∑

n=Ϯ

ϭ
nϮ − ϭ

ϰϰ.
∞
∑

n=Ϭ

(

sin ϭ
)n

ϰϱ. Break theHarmonic Series into the sumof the odd and even
terms:

∞
∑

n=ϭ

ϭ
n
=

∞
∑

n=ϭ

ϭ
Ϯn− ϭ

+
∞
∑

n=ϭ

ϭ
Ϯn

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞
∑

n=ϭ

ϭ
Ϯn− ϭ

>

∞
∑

n=ϭ

ϭ
Ϯn

.

(Compare each nth parƟal sum.)

(b) Show why
∞
∑

n=ϭ

ϭ
Ϯn− ϭ

< ϭ+
∞
∑

n=ϭ

ϭ
Ϯn

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

ϰϲ. Show the series
∞
∑

n=ϭ

n
(Ϯn− ϭ)(Ϯn+ ϭ)

diverges.

ϰϮϱ



Note: Theorem ϲϱ does not state that
the integral and the summaƟon have the
same value.

.....
ϭ

.
Ϯ

.
ϯ

.
ϰ

.
ϱ

.

ϭ

.

Ϯ

.

y = a(x)

. x.

y

(a)

.....
ϭ

.
Ϯ

.
ϯ

.
ϰ

.
ϱ

.

ϭ

.

Ϯ

.

y = a(x)

. x.

y

(b)

Figure ϴ.ϭϯ: IllustraƟng the truth of the
Integral Test.

Chapter ϴ Sequences and Series

ϴ.ϯ Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in SecƟon ϴ.ϲ. Theorems ϲϬ and ϲϭ give criteria for
when Geometric and p-series converge, and Theorem ϲϯ gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in SecƟon ϴ.ϭ that a sequence {an} is a funcƟon a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posiƟve and decreasing on [ϭ,∞), then the convergence of
∞∑

n=ϭ

an is the same as
∫ ∞

ϭ
a(x) dx.

Theorem ϲϱ Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is conƟnuous,

posiƟve and decreasing on [ϭ,∞). Then
∞∑

n=ϭ

an converges, if, and only if,
∫ ∞

ϭ
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure ϴ.ϭϯ(a), the height of each rectangle is a(n) = an for n = ϭ, Ϯ, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that

∫ ∞

ϭ
a(x) dx <

∞∑

n=ϭ

an. (ϴ.ϭ)

In Figure ϴ.ϭϯ(b), we draw rectangles under y = a(x) with the Right-Hand rule,
starƟng with n = Ϯ. This Ɵme, the area of the rectangles is less than the area

under y = a(x), so
∞∑

n=Ϯ

an <

∫ ∞

ϭ
a(x) dx. Note how this summaƟon starts

with n = Ϯ; adding aϭ to both sides lets us rewrite the summaƟon starƟng with

Notes:

ϰϮϲ
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Figure ϴ.ϭϰ: Ploƫng the sequence and
series in Example Ϯϰϯ.

ϴ.ϯ Integral and Comparison Tests

n = ϭ:
∞∑

n=ϭ

an < aϭ +
∫ ∞

ϭ
a(x) dx. (ϴ.Ϯ)

Combining EquaƟons (ϴ.ϭ) and (ϴ.Ϯ), we have

∞∑

n=ϭ

an < aϭ +
∫ ∞

ϭ
a(x) dx < aϭ +

∞∑

n=ϭ

an. (ϴ.ϯ)

From EquaƟon (ϴ.ϯ) we can make the following two statements:

ϭ. If
∞∑

n=ϭ

an diverges, so does
∫ ∞

ϭ
a(x)dx (because

∞∑

n=ϭ

an < aϭ+
∫ ∞

ϭ
a(x)dx)

Ϯ. If
∞∑

n=ϭ

an converges, so does
∫ ∞

ϭ
a(x)dx (because

∫ ∞

ϭ
a(x)dx <

∞∑

n=ϭ

an.)

Therefore the series and integral either both converge or both diverge. Theo-
rem ϲϰ allows us to extend this theorem to series where a(n) is posiƟve and
decreasing on [b,∞) for some b > ϭ.

Example Ϯϰϯ Using the Integral Test

Determine the convergence of
∞∑

n=ϭ

ln n
nϮ

. (The terms of the sequence {an} =

{ln n/nϮ} and the nth parƟal sums are given in Figure ϴ.ϭϰ.)

SÊ½çã®ÊÄ Figure ϴ.ϭϰ implies that a(n) = (ln n)/nϮ is posiƟve and de-
creasing on [Ϯ,∞). We can determine this analyƟcally, too. We know a(n) is
posiƟve as both ln n and nϮ are posiƟve on [Ϯ,∞). To determine that a(n) is
decreasing, consider a ′(n) = (ϭ− Ϯ ln n)/nϯ, which is negaƟve for n ≥ Ϯ. Since
a ′(n) is negaƟve, a(n) is decreasing.

Applying the Integral Test, we test the convergence of
∫ ∞

ϭ

ln x
xϮ

dx. Integrat-

ing this improper integral requires the use of IntegraƟon by Parts, with u = ln x
and dv = ϭ/xϮ dx.

∫ ∞

ϭ

ln x
xϮ

dx = lim
b→∞

∫ b

ϭ

ln x
xϮ

dx

= lim
b→∞

−ϭ
x
ln x
∣
∣
∣

b

ϭ
+

∫ b

ϭ

ϭ
xϮ

dx

Notes:

ϰϮϳ
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= lim
b→∞

−ϭ
x
ln x− ϭ

x

∣
∣
∣

b

ϭ

= lim
b→∞

ϭ− ϭ
b
− ln b

b
. Apply L’Hôpital’s Rule:

= ϭ.

Since
∫ ∞

ϭ

ln x
xϮ

dx converges, so does
∞∑

n=ϭ

ln n
nϮ

.

Theorem ϲϭ was given without jusƟficaƟon, staƟng that the general p-series
∞∑

n=ϭ

ϭ
(an+ b)p

converges if, and only if, p > ϭ. In the following example, we

prove this to be true by applying the Integral Test.

Example Ϯϰϰ Using the Integral Test to establish Theorem ϲϭ.

Use the Integral Test to prove that
∞∑

n=ϭ

ϭ
(an+ b)p

converges if, and only if, p > ϭ.

SÊ½çã®ÊÄ Consider the integral
∫ ∞

ϭ

ϭ
(ax+ b)p

dx; assuming p ̸= ϭ,

∫ ∞

ϭ

ϭ
(ax+ b)p

dx = lim
c→∞

∫ c

ϭ

ϭ
(ax+ b)p

dx

= lim
c→∞

ϭ
a(ϭ− p)

(ax+ b)ϭ−p
∣
∣
∣

c

ϭ

= lim
c→∞

ϭ
a(ϭ− p)

(
(ac+ b)ϭ−p − (a+ b)ϭ−p).

This limit converges if, and only if, p > ϭ. It is easy to show that the integral also
diverges in the case of p = ϭ. (This result is similar to the work preceding Key
Idea Ϯϭ.)

Therefore
∞∑

n=ϭ

ϭ
(an+ b)p

converges if, and only if, p > ϭ.

We consider two more convergence tests in this secƟon, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:

ϰϮϴ



Note: A sequence {an} is a posiƟve
sequence if an > Ϭ for all n.

Because of Theoremϲϰ, any theorem that
relies on a posiƟve sequence sƟll holds
true when an > Ϭ for all but a finite num-
ber of values of n.

ϴ.ϯ Integral and Comparison Tests

Direct Comparison Test

Theorem ϲϲ Direct Comparison Test

Let {an} and {bn} be posiƟve sequences where an ≤ bn for all n ≥ N,
for some N ≥ ϭ.

ϭ. If
∞∑

n=ϭ

bn converges, then
∞∑

n=ϭ

an converges.

Ϯ. If
∞∑

n=ϭ

an diverges, then
∞∑

n=ϭ

bn diverges.

Example Ϯϰϱ Applying the Direct Comparison Test

Determine the convergence of
∞∑

n=ϭ

ϭ
ϯn + nϮ

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since ϯn < ϯn + nϮ,
ϭ
ϯn

>
ϭ

ϯn + nϮ
for all n ≥ ϭ. The series

∞∑

n=ϭ

ϭ
ϯn

is a

convergent geometric series; by Theorem ϲϲ,
∞∑

n=ϭ

ϭ
ϯn + nϮ

converges.

Example Ϯϰϲ Applying the Direct Comparison Test

Determine the convergence of
∞∑

n=ϭ

ϭ
n− ln n

.

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑

n=ϭ

ϭ
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

Since n ≥ n− ln n for all n ≥ ϭ,
ϭ
n
≤ ϭ

n− ln n
for all n ≥ ϭ.

The Harmonic Series diverges, so we conclude that
∞∑

n=ϭ

ϭ
n− ln n

diverges as

well.

Notes:
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Chapter ϴ Sequences and Series

The concept of direct comparison is powerful and oŌen relaƟvely easy to
apply. PracƟce helps one develop the necessary intuiƟon to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑

n=ϭ

ϭ
n+ ln n

. It is very similar to the divergent series given in Ex-

ample Ϯϰϲ. We suspect that it also diverges, as
ϭ
n
≈ ϭ

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since

n ≤ n+ ln n for all n ≥ ϭ,
ϭ
n
≥ ϭ

n+ ln n
for all n ≥ ϭ. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem ϲϳ Limit Comparison Test

Let {an} and {bn} be posiƟve sequences.

ϭ. If lim
n→∞

an
bn

= L, where L is a posiƟve real number, then
∞∑

n=ϭ

an and

∞∑

n=ϭ

bn either both converge or both diverge.

Ϯ. If lim
n→∞

an
bn

= Ϭ, then if
∞∑

n=ϭ

bn converges, then so does
∞∑

n=ϭ

an.

ϯ. If lim
n→∞

an
bn

= ∞, then if
∞∑

n=ϭ

bn diverges, then so does
∞∑

n=ϭ

an.

Theorem ϲϳ is most useful when the convergence of the series from {bn} is
known and we are trying to determine the convergence of the series from {an}.

We use the Limit Comparison Test in the next example to examine the series
∞∑

n=ϭ

ϭ
n+ ln n

which moƟvated this new test.

Notes:
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ϴ.ϯ Integral and Comparison Tests

Example Ϯϰϳ Applying the Limit Comparison Test

Determine the convergence of
∞∑

n=ϭ

ϭ
n+ ln n

using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑

n=ϭ

ϭ
n+ ln n

to the terms of the

Harmonic Sequence
∞∑

n=ϭ

ϭ
n
:

lim
n→∞

ϭ/(n+ ln n)
ϭ/n

= lim
n→∞

n
n+ ln n

= ϭ (aŌer applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑

n=ϭ

ϭ
n+ ln n

diverges as

well.

Example Ϯϰϴ Applying the Limit Comparison Test

Determine the convergence of
∞∑

n=ϭ

ϭ
ϯn − nϮ

SÊ½çã®ÊÄ This series is similar to the one in Example Ϯϰϱ, but now we
are considering “ϯn − nϮ” instead of “ϯn + nϮ.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑

n=ϭ

ϭ
ϯn

:

lim
n→∞

ϭ/(ϯn − nϮ)
ϭ/ϯn

= lim
n→∞

ϯn

ϯn − nϮ

= ϭ (aŌer applying L’Hôpital’s Rule twice).

We know
∞∑

n=ϭ

ϭ
ϯn

is a convergent geometric series, hence
∞∑

n=ϭ

ϭ
ϯn − nϮ

converges

as well.

As menƟoned before, pracƟce helps one develop the intuiƟon to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponenƟals, which dominate algebraic func-
Ɵons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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Chapter ϴ Sequences and Series

the dominant term of
ϭ

ϯn − nϮ
was ϯn, so we compared the series to

∞∑

n=ϭ

ϭ
ϯn

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

Example Ϯϰϵ Applying the Limit Comparison Test

Determine the convergence of
∞∑

n=ϭ

√
x+ ϯ

xϮ − x+ ϭ
.

SÊ½çã®ÊÄ We naïvely aƩempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is ϭ/xϮ. Knowing

that
∞∑

n=ϭ

ϭ
nϮ

converges, we aƩempt to apply the Limit Comparison Test:

lim
n→∞

(
√
x+ ϯ)/(xϮ − x+ ϭ)

ϭ/xϮ
= lim

n→∞
xϮ(

√
x+ ϯ)

xϮ − x+ ϭ
= ∞ (Apply L’Hôpital’s Rule).

Theorem ϲϳ part (ϯ) only applies when
∞∑

n=ϭ

bn diverges; in our case, it con-

verges. UlƟmately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
funcƟons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is xϭ/Ϯ and the dominant term of the
denominator is xϮ. Thus we should compare the terms of the given series to
xϭ/Ϯ/xϮ = ϭ/xϯ/Ϯ:

lim
n→∞

(
√
x+ ϯ)/(xϮ − x+ ϭ)

ϭ/xϯ/Ϯ
= lim

n→∞
xϯ/Ϯ(

√
x+ ϯ)

xϮ − x+ ϭ
= ϭ (Apply L’Hôpital’s Rule).

Since the p-series
∞∑

n=ϭ

ϭ
xϯ/Ϯ

converges, we conclude that
∞∑

n=ϭ

√
x+ ϯ

xϮ − x+ ϭ
con-

verges as well.

We menƟoned earlier that the Integral Test did not work well with series
containing factorial terms. The next secƟon introduces the RaƟo Test, which
does handle such series well. We also introduce the Root Test, which is good for
series where each term is raised to a power.

Notes:
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Exercises ϴ.ϯ
Terms and Concepts

ϭ. In order to apply the Integral Test to a sequence {an}, the
funcƟon a(n) = an must be , and .

Ϯ. T/F: The Integral Test can be used to determine the sum of
a convergent series.

ϯ. What test(s) in this secƟon do not work well with factori-
als?

ϰ. Suppose
∞
∑

n=Ϭ

an is convergent, and there are sequences

{bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞
∑

n=Ϭ

bn and
∞
∑

n=Ϭ

cn?

Problems
In Exercises ϱ – ϭϮ, use the Integral Test to determine the con-
vergence of the given series.

ϱ.
∞
∑

n=ϭ

ϭ
Ϯn

ϲ.
∞
∑

n=ϭ

ϭ
nϰ

ϳ.
∞
∑

n=ϭ

n
nϮ + ϭ

ϴ.
∞
∑

n=Ϯ

ϭ
n ln n

ϵ.
∞
∑

n=ϭ

ϭ
nϮ + ϭ

ϭϬ.
∞
∑

n=Ϯ

ϭ
n(ln n)Ϯ

ϭϭ.
∞
∑

n=ϭ

n
Ϯn

ϭϮ.
∞
∑

n=ϭ

ln n
nϯ

In Exercises ϭϯ – ϮϮ, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

ϭϯ.
∞
∑

n=ϭ

ϭ
nϮ + ϯn− ϱ

ϭϰ.
∞
∑

n=ϭ

ϭ
ϰn + nϮ − n

ϭϱ.
∞
∑

n=ϭ

ln n
n

ϭϲ.
∞
∑

n=ϭ

ϭ
n! + n

ϭϳ.
∞
∑

n=Ϯ

ϭ√
nϮ − ϭ

ϭϴ.
∞
∑

n=ϱ

ϭ√
n− Ϯ

ϭϵ.
∞
∑

n=ϭ

nϮ + n+ ϭ
nϯ − ϱ

ϮϬ.
∞
∑

n=ϭ

Ϯn

ϱn + ϭϬ

Ϯϭ.
∞
∑

n=Ϯ

n
nϮ − ϭ

ϮϮ.
∞
∑

n=Ϯ

ϭ
nϮ ln n

In Exercises Ϯϯ – ϯϮ, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

Ϯϯ.
∞
∑

n=ϭ

ϭ
nϮ − ϯn+ ϱ

Ϯϰ.
∞
∑

n=ϭ

ϭ
ϰn − nϮ

Ϯϱ.
∞
∑

n=ϰ

ln n
n− ϯ

Ϯϲ.
∞
∑

n=ϭ

ϭ√
nϮ + n

Ϯϳ.
∞
∑

n=ϭ

ϭ
n+

√
n

Ϯϴ.
∞
∑

n=ϭ

n− ϭϬ
nϮ + ϭϬn+ ϭϬ

Ϯϵ.
∞
∑

n=ϭ

sin
(

ϭ/n
)

ϰϯϯ



ϯϬ.
∞
∑

n=ϭ

n+ ϱ
nϯ − ϱ

ϯϭ.
∞
∑

n=ϭ

√
n+ ϯ

nϮ + ϭϳ

ϯϮ.
∞
∑

n=ϭ

ϭ√
n+ ϭϬϬ

In Exercises ϯϯ – ϰϬ, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

ϯϯ.
∞
∑

n=ϭ

nϮ

Ϯn

ϯϰ.
∞
∑

n=ϭ

ϭ
(Ϯn+ ϱ)ϯ

ϯϱ.
∞
∑

n=ϭ

n!
ϭϬn

ϯϲ.
∞
∑

n=ϭ

ln n
n!

ϯϳ.
∞
∑

n=ϭ

ϭ
ϯn + n

ϯϴ.
∞
∑

n=ϭ

n− Ϯ
ϭϬn+ ϱ

ϯϵ.
∞
∑

n=ϭ

ϯn

nϯ

ϰϬ.
∞
∑

n=ϭ

cos(ϭ/n)√
n

ϰϭ. Given that
∞
∑

n=ϭ

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞
∑

n=ϭ

an
n

(b)
∞
∑

n=ϭ

anan+ϭ

(c)
∞
∑

n=ϭ

(an)Ϯ

(d)
∞
∑

n=ϭ

nan

(e)
∞
∑

n=ϭ

ϭ
an

ϰϯϰ



Note: Theorem ϲϰ allows us to apply the
RaƟo Test to series where {an} is posiƟve
for all but a finite number of terms.

ϴ.ϰ RaƟo and Root Tests

ϴ.ϰ RaƟo and Root Tests

The nth–Term Test of Theorem ϲϯ states that in order for a series
∞∑

n=ϭ

an to con-

verge, lim
n→∞

an = Ϭ. That is, the terms of {an}must get very small. Not onlymust
the terms approach Ϭ, theymust approach Ϭ “fast enough”: while lim

n→∞
ϭ/n = Ϭ,

the Harmonic Series
∞∑

n=ϭ

ϭ
n
diverges as the terms of {ϭ/n} do not approach Ϭ

“fast enough.”
The comparison tests of the previous secƟondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This secƟon introduces the RaƟo and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach Ϭ “fast enough.”

RaƟo Test

Theorem ϲϴ RaƟo Test

Let {an} be a posiƟve sequence where lim
n→∞

an+ϭ

an
= L.

ϭ. If L < ϭ, then
∞∑

n=ϭ

an converges.

Ϯ. If L > ϭ or L = ∞, then
∞∑

n=ϭ

an diverges.

ϯ. If L = ϭ, the RaƟo Test is inconclusive.

The principle of the RaƟo Test is this: if lim
n→∞

an+ϭ

an
= L < ϭ, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

Example ϮϱϬ Applying the RaƟo Test
Use the RaƟo Test to determine the convergence of the following series:

ϭ.
∞∑

n=ϭ

Ϯn

n!
Ϯ.

∞∑

n=ϭ

ϯn

nϯ
ϯ.

∞∑

n=ϭ

ϭ
nϮ + ϭ

.

Notes:

ϰϯϱ
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SÊ½çã®ÊÄ

ϭ.
∞∑

n=ϭ

Ϯn

n!
:

lim
n→∞

Ϯn+ϭ/(n+ ϭ)!
Ϯn/n!

= lim
n→∞

Ϯn+ϭn!
Ϯn(n+ ϭ)!

= lim
n→∞

Ϯ
n+ ϭ

= Ϭ.

Since the limit is Ϭ < ϭ, by the RaƟo Test
∞∑

n=ϭ

Ϯn

n!
converges.

Ϯ.
∞∑

n=ϭ

ϯn

nϯ
:

lim
n→∞

ϯn+ϭ/(n+ ϭ)ϯ

ϯn/nϯ
= lim

n→∞
ϯn+ϭnϯ

ϯn(n+ ϭ)ϯ

= lim
n→∞

ϯnϯ

(n+ ϭ)ϯ

= ϯ.

Since the limit is ϯ > ϭ, by the RaƟo Test
∞∑

n=ϭ

ϯn

nϯ
diverges.

ϯ.
∞∑

n=ϭ

ϭ
nϮ + ϭ

:

lim
n→∞

ϭ/
(
(n+ ϭ)Ϯ + ϭ

)

ϭ/(nϮ + ϭ)
= lim

n→∞
nϮ + ϭ

(n+ ϭ)Ϯ + ϭ
= ϭ.

Since the limit is ϭ, the RaƟo Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑

n=ϭ

ϭ
nϮ

.

Notes:

ϰϯϲ



ϴ.ϰ RaƟo and Root Tests

The RaƟo Test is not effecƟve when the terms of a series only contain al-
gebraic funcƟons (e.g., polynomials). It is most effecƟve when the terms con-
tain some factorials or exponenƟals. The previous example also reinforces our
developing intuiƟon: factorials dominate exponenƟals, which dominate alge-
braic funcƟons, which dominate logarithmic funcƟons. In Part ϭ of the example,
the factorial in the denominator dominated the exponenƟal in the numerator,
causing the series to converge. In Part Ϯ, the exponenƟal in the numerator dom-
inated the algebraic funcƟon in the denominator, causing the series to diverge.

While we have used factorials in previous secƟons, we have not explored
them closely and one is likely to not yet have a strong intuiƟve sense for how
they behave. The following example gives more pracƟce with factorials.

Example Ϯϱϭ Applying the RaƟo Test

Determine the convergence of
∞∑

n=ϭ

n!n!
(Ϯn)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(Ϯn)! and Ϯn!. When n = ϰ, the former is ϴ! = ϴ · ϳ · . . . · Ϯ · ϭ = ϰϬ, ϯϮϬ,
whereas the laƩer is Ϯ(ϰ · ϯ · Ϯ · ϭ) = ϰϴ.

Applying the RaƟo Test:

lim
n→∞

(n+ ϭ)!(n+ ϭ)!/
(
Ϯ(n+ ϭ)

)
!

n!n!/(Ϯn)!
= lim

n→∞
(n+ ϭ)!(n+ ϭ)!(Ϯn)!

n!n!(Ϯn+ Ϯ)!

NoƟng that (Ϯn+ Ϯ)! = (Ϯn+ Ϯ) · (Ϯn+ ϭ) · (Ϯn)!, we have

= lim
n→∞

(n+ ϭ)(n+ ϭ)
(Ϯn+ Ϯ)(Ϯn+ ϭ)

= ϭ/ϰ.

Since the limit is ϭ/ϰ < ϭ, by the RaƟo Test we conclude
∞∑

n=ϭ

n!n!
(Ϯn)!

converges.

Root Test

The final test we introduce is the Root Test, which works parƟcularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:

ϰϯϳ



Note: Theorem ϲϰ allows us to apply the
Root Test to series where {an} is posiƟve
for all but a finite number of terms.

Chapter ϴ Sequences and Series

Theorem ϲϵ Root Test

Let {an} be a posiƟve sequence, and let lim
n→∞

(an)ϭ/n = L.

ϭ. If L < ϭ, then
∞∑

n=ϭ

an converges.

Ϯ. If L > ϭ or L = ∞, then
∞∑

n=ϭ

an diverges.

ϯ. If L = ϭ, the Root Test is inconclusive.

Example ϮϱϮ Applying the Root Test
Determine the convergence of the following series using the Root Test:

ϭ.
∞∑

n=ϭ

(
ϯn+ ϭ
ϱn− Ϯ

)n

Ϯ.
∞∑

n=ϭ

nϰ

(ln n)n
ϯ.

∞∑

n=ϭ

Ϯn

nϮ
.

SÊ½çã®ÊÄ

ϭ. lim
n→∞

((
ϯn+ ϭ
ϱn− Ϯ

)n)ϭ/n

= lim
n→∞

ϯn+ ϭ
ϱn− Ϯ

=
ϯ
ϱ
.

Since the limit is less than ϭ, we conclude the series converges. Note: it is
difficult to apply the RaƟo Test to this series.

Ϯ. lim
n→∞

(
nϰ

(ln n)n

)ϭ/n

= lim
n→∞

(
nϭ/n

)ϰ

ln n
.

As n grows, the numerator approaches ϭ (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
nϭ/n

)ϰ

ln n
= Ϭ.

Since the limit is less than ϭ, we conclude the series converges.

ϯ. lim
n→∞

(
Ϯn

nϮ

)ϭ/n

= lim
n→∞

Ϯ
(
nϭ/n

)Ϯ = Ϯ.

Since this is greater than ϭ, we conclude the series diverges.

Each of the tests we have encountered so far has required that we analyze
series from posiƟve sequences. The next secƟon relaxes this restricƟon by con-
sidering alternaƟng series, where the underlying sequence has terms that alter-
nate between being posiƟve and negaƟve.

Notes:

ϰϯϴ



Exercises ϴ.ϰ
Terms and Concepts

ϭ. The RaƟo Test is not effecƟvewhen the terms of a sequence
only contain funcƟons.

Ϯ. The RaƟo Test is most effecƟve when the terms of a se-
quence contains and/or funcƟons.

ϯ. What three convergence tests do not work well with terms
containing factorials?

ϰ. The Root Test works parƟcularly well on series where each
term is to a .

Problems

In Exercises ϱ – ϭϰ, determine the convergence of the given
series using the RaƟo Test. If the RaƟo Test is inconclusive,
state so and determine convergence with another test.

ϱ.
∞
∑

n=Ϭ

Ϯn
n!

ϲ.
∞
∑

n=Ϭ

ϱn − ϯn
ϰn

ϳ.
∞
∑

n=Ϭ

n!ϭϬn

(Ϯn)!

ϴ.
∞
∑

n=ϭ

ϱn + nϰ

ϳn + nϮ

ϵ.
∞
∑

n=ϭ

ϭ
n

ϭϬ.
∞
∑

n=ϭ

ϭ
ϯnϯ + ϳ

ϭϭ.
∞
∑

n=ϭ

ϭϬ · ϱn
ϳn − ϯ

ϭϮ.
∞
∑

n=ϭ

n ·
(

ϯ
ϱ

)n

ϭϯ.
∞
∑

n=ϭ

Ϯ · ϰ · ϲ · ϴ · · · Ϯn
ϯ · ϲ · ϵ · ϭϮ · · · ϯn

ϭϰ.
∞
∑

n=ϭ

n!
ϱ · ϭϬ · ϭϱ · · · (ϱn)

In Exercises ϭϱ – Ϯϰ, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

ϭϱ.
∞
∑

n=ϭ

(

Ϯn+ ϱ
ϯn+ ϭϭ

)n

ϭϲ.
∞
∑

n=ϭ

(

.ϵnϮ − n− ϯ
nϮ + n+ ϯ

)n

ϭϳ.
∞
∑

n=ϭ

ϮnnϮ

ϯn

ϭϴ.
∞
∑

n=ϭ

ϭ
nn

ϭϵ.
∞
∑

n=ϭ

ϯn

nϮϮn+ϭ

ϮϬ.
∞
∑

n=ϭ

ϰn+ϳ

ϳn

Ϯϭ.
∞
∑

n=ϭ

(

nϮ − n
nϮ + n

)n

ϮϮ.
∞
∑

n=ϭ

(

ϭ
n
− ϭ

nϮ

)n

Ϯϯ.
∞
∑

n=ϭ

ϭ
(

ln n
)n

Ϯϰ.
∞
∑

n=ϭ

nϮ
(

ln n
)n

In Exercises Ϯϱ – ϯϰ, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

Ϯϱ.
∞
∑

n=ϭ

nϮ + ϰn− Ϯ
nϯ + ϰnϮ − ϯn+ ϳ

Ϯϲ.
∞
∑

n=ϭ

nϰϰn

n!

Ϯϳ.
∞
∑

n=ϭ

nϮ

ϯn + n

Ϯϴ.
∞
∑

n=ϭ

ϯn

nn

Ϯϵ.
∞
∑

n=ϭ

n√
nϮ + ϰn+ ϭ

ϰϯϵ



ϯϬ.
∞
∑

n=ϭ

n!n!n!
(ϯn)!

ϯϭ.
∞
∑

n=ϭ

ϭ
ln n

ϯϮ.
∞
∑

n=ϭ

(

n+ Ϯ
n+ ϭ

)n

ϯϯ.
∞
∑

n=ϭ

nϯ
(

ln n
)n

ϯϰ.
∞
∑

n=ϭ

(

ϭ
n
− ϭ

n+ Ϯ

)

ϰϰϬ



ϴ.ϱ AlternaƟng Series and Absolute Convergence

ϴ.ϱ AlternaƟng Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a posiƟve sequence. (We can relax this with Theorem ϲϰ and
state that there must be an N > Ϭ such that an > Ϭ for all n > N; that is, {an} is
posiƟve for all but a finite number of values of n.)

In this secƟon we explore series whose summaƟon includes negaƟve terms.
We start with a very specific form of series, where the terms of the summaƟon
alternate between being posiƟve and negaƟve.

DefiniƟon ϯϰ AlternaƟng Series

Let {an} be a posiƟve sequence. An alternaƟng series is a series of either
the form ∞∑

n=ϭ

(−ϭ)nan or
∞∑

n=ϭ

(−ϭ)n+ϭan.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{ϭ/n}. An important alternaƟng series is the AlternaƟng Harmonic Series:

∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
n
= ϭ− ϭ

Ϯ
+

ϭ
ϯ
− ϭ

ϰ
+

ϭ
ϱ
− ϭ

ϲ
+ · · ·

Geometric Series can also be alternaƟng series when r < Ϭ. For instance, if
r = −ϭ/Ϯ, the geometric series is

∞∑

n=Ϭ

(−ϭ
Ϯ

)n

= ϭ− ϭ
Ϯ
+

ϭ
ϰ
− ϭ

ϴ
+

ϭ
ϭϲ

− ϭ
ϯϮ

+ · · ·

Theorem ϲϬ states that geometric series converge when |r| < ϭ and gives

the sum:
∞∑

n=Ϭ

rn =
ϭ

ϭ− r
. When r = −ϭ/Ϯ as above, we find

∞∑

n=Ϭ

(−ϭ
Ϯ

)n

=
ϭ

ϭ− (−ϭ/Ϯ)
=

ϭ
ϯ/Ϯ

=
Ϯ
ϯ
.

Apowerful convergence theoremexists for other alternaƟng series thatmeet
a few condiƟons.

Notes:

ϰϰϭ
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Figure ϴ.ϭϱ: IllustraƟng convergence with
the AlternaƟng Series Test.

Chapter ϴ Sequences and Series

Theorem ϳϬ AlternaƟng Series Test

Let {an} be a posiƟve, decreasing sequence where lim
n→∞

an = Ϭ. Then

∞∑

n=ϭ

(−ϭ)nan and
∞∑

n=ϭ

(−ϭ)n+ϭan

converge.

The basic idea behind Theorem ϳϬ is illustrated in Figure ϴ.ϭϱ. A posiƟve,
decreasing sequence {an} is shown along with the parƟal sums

Sn =
n∑

i=ϭ

(−ϭ)i+ϭai = aϭ − aϮ + aϯ − aϰ + · · ·+ (−ϭ)n+ϭan.

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem ϱϵ) and the terms of {an} approach Ϭ,
one can show the odd and even terms of Sn converge to the same common limit
L, the sum of the series.

Example Ϯϱϯ Applying the AlternaƟng Series Test
Determine if the AlternaƟng Series Test applies to each of the following series.

ϭ.
∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
n

Ϯ.
∞∑

n=ϭ

(−ϭ)n
ln n
n

ϯ.
∞∑

n=ϭ

(−ϭ)n+ϭ | sin n|
nϮ

SÊ½çã®ÊÄ

ϭ. This is the AlternaƟng Harmonic Series as seen previously. The underlying
sequence is {an} = {ϭ/n}, which is posiƟve, decreasing, and approaches
Ϭ as n → ∞. Therefore we can apply the AlternaƟng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
n
= ln Ϯ.

Ϯ. The underlying sequence is {an} = {ln n/n}. This is posiƟve and ap-
proaches Ϭ as n → ∞ (use L’Hôpital’s Rule). However, the sequence is not
decreasing for all n. It is straighƞorward to compute aϭ = Ϭ, aϮ ≈ Ϭ.ϯϰϳ,

Notes:

ϰϰϮ



ϴ.ϱ AlternaƟng Series and Absolute Convergence

aϯ ≈ Ϭ.ϯϲϲ, and aϰ ≈ Ϭ.ϯϰϳ: the sequence is increasing for at least the
first ϯ terms.

We do not immediately conclude that we cannot apply the AlternaƟng
Series Test. Rather, consider the long–term behavior of {an}. TreaƟng
an = a(n) as a conƟnuous funcƟon of n defined on [ϭ,∞), we can take
its derivaƟve:

a ′(n) =
ϭ− ln n

nϮ
.

The derivaƟve is negaƟve for all n ≥ ϯ (actually, for all n > e), mean-
ing a(n) = an is decreasing on [ϯ,∞). We can apply the AlternaƟng
Series Test to the series when we start with n = ϯ and conclude that∞∑

n=ϯ

(−ϭ)n
ln n
n

converges; adding the terms with n = ϭ and n = Ϯ do not

change the convergence (i.e., we apply Theorem ϲϰ).

The important lesson here is that as before, if a series fails to meet the
criteria of the AlternaƟng Series Test on only a finite number of terms, we
can sƟll apply the test.

ϯ. The underlying sequence is {an} = | sin n|/n. This sequence is posiƟve
and approaches Ϭ as n → ∞. However, it is not a decreasing sequence;
the value of | sin n| oscillates between Ϭ and ϭ as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the AlternaƟng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem ϳϬ.

Key Idea ϯϭ gives the sum of some important series. Two of these are

∞∑

n=ϭ

ϭ
nϮ

=
πϮ

ϲ
≈ ϭ.ϲϰϰϵϯ and

∞∑

n=ϭ

(−ϭ)n+ϭ

nϮ
=

πϮ

ϭϮ
≈ Ϭ.ϴϮϮϰϳ.

These two series converge to their sums at different rates. To be accurate to
two places aŌer the decimal, we need ϮϬϮ terms of the first series though only
ϭϯ of the second. To get ϯ places of accuracy, we need ϭϬϲϵ terms of the first
series though only ϯϯ of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternaƟng structure of an alternaƟng series gives us a powerful tool when
approximaƟng the sum of a convergent series.

Notes:

ϰϰϯ
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Theorem ϳϭ The AlternaƟng Series ApproximaƟon Theorem

Let {an} be a sequence that saƟsfies the hypotheses of the AlternaƟng
Series Test, and let Sn and L be the nth parƟal sums and sum, respecƟvely,

of either
∞∑

n=ϭ

(−ϭ)nan or
∞∑

n=ϭ

(−ϭ)n+ϭan. Then

ϭ. |Sn − L| < an+ϭ, and

Ϯ. L is between Sn and Sn+ϭ.

Part ϭ of Theorem ϳϭ states that the nth parƟal sum of a convergent alter-
naƟng series will be within an+ϭ of its total sum. Consider the alternaƟng se-

ries we looked at before the statement of the theorem,
∞∑

n=ϭ

(−ϭ)n+ϭ

nϮ
. Since

aϭϰ = ϭ/ϭϰϮ ≈ Ϭ.ϬϬϱϭ, we know that Sϭϯ is within Ϭ.ϬϬϱϭ of the total sum.
Moreover, Part Ϯ of the theorem states that since Sϭϯ ≈ Ϭ.ϴϮϱϮ and Sϭϰ ≈

Ϭ.ϴϮϬϭ, we know the sum L lies between Ϭ.ϴϮϬϭ and Ϭ.ϴϮϱϮ. One use of this is
the knowledge that Sϭϰ is accurate to two places aŌer the decimal.

Some alternaƟng series converge slowly. In Example Ϯϱϯ we determined the

series
∞∑

n=ϭ

(−ϭ)n+ϭ ln n
n

converged. With n = ϭϬϬϭ, we find ln n/n ≈ Ϭ.ϬϬϲϵ,

meaning that SϭϬϬϬ ≈ Ϭ.ϭϲϯϯ is accurate to one, maybe two, places aŌer the
decimal. Since SϭϬϬϭ ≈ Ϭ.ϭϱϲϰ, we know the sum L is Ϭ.ϭϱϲϰ ≤ L ≤ Ϭ.ϭϲϯϯ.

Example Ϯϱϰ ApproximaƟng the sum of convergent alternaƟng series
Approximate the sum of the following series, accurate to within Ϭ.ϬϬϭ.

ϭ.
∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
nϯ

Ϯ.
∞∑

n=ϭ

(−ϭ)n+ϭ ln n
n

.

SÊ½çã®ÊÄ

ϭ. Using Theorem ϳϭ, we want to find n where ϭ/nϯ < Ϭ.ϬϬϭ:

ϭ
nϯ

≤ Ϭ.ϬϬϭ =
ϭ

ϭϬϬϬ
nϯ ≥ ϭϬϬϬ

n ≥ ϯ
√
ϭϬϬϬ

n ≥ ϭϬ.

Notes:
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ϴ.ϱ AlternaƟng Series and Absolute Convergence

Let L be the sum of this series. By Part ϭ of the theorem, |Sϵ − L| < aϭϬ =
ϭ/ϭϬϬϬ. We can compute Sϵ = Ϭ.ϵϬϮϭϭϲ, which our theorem states is
within Ϭ.ϬϬϭ of the total sum.

We can use Part Ϯ of the theorem to obtain an even more accurate result.
Aswe know the ϭϬth term of the series is−ϭ/ϭϬϬϬ, we can easily compute
SϭϬ = Ϭ.ϵϬϭϭϭϲ. Part Ϯ of the theorem states that L is between Sϵ and SϭϬ,
so Ϭ.ϵϬϭϭϭϲ < L < Ϭ.ϵϬϮϭϭϲ.

Ϯ. We want to find n where ln(n)/n < Ϭ.ϬϬϭ. We start by solving ln(n)/n =
Ϭ.ϬϬϭ for n. This cannot be solved algebraically, so we will use Newton’s
Method to approximate a soluƟon.

Let f(x) = ln(x)/x− Ϭ.ϬϬϭ; we want to know where f(x) = Ϭ. We make a
guess that xmust be “large,” so our iniƟal guess will be xϭ = ϭϬϬϬ. Recall
how Newton’s Method works: given an approximate soluƟon xn, our next
approximaƟon xn+ϭ is given by

xn+ϭ = xn −
f(xn)
f ′(xn)

.

We find f ′(x) =
(
ϭ− ln(x)

)
/xϮ. This gives

xϮ = ϭϬϬϬ− ln(ϭϬϬϬ)/ϭϬϬϬ− Ϭ.ϬϬϭ
(
ϭ− ln(ϭϬϬϬ)

)
/ϭϬϬϬϮ

= ϮϬϬϬ.

Using a computer, we find that Newton’s Method seems to converge to a
soluƟon x = ϵϭϭϴ.Ϭϭ aŌer ϴ iteraƟons. Taking the next integer higher, we
have n = ϵϭϭϵ, where ln(ϵϭϭϵ)/ϵϭϭϵ = Ϭ.ϬϬϬϵϵϵϵϬϯ < Ϭ.ϬϬϭ.

Again using a computer, we find Sϵϭϭϴ = −Ϭ.ϭϲϬϯϲϵ. Part ϭ of the theo-
rem states that this is within Ϭ.ϬϬϭ of the actual sum L. Already knowing
the ϵ,ϭϭϵth term,we can compute Sϵϭϭϵ = −Ϭ.ϭϱϵϯϲϵ,meaning−Ϭ.ϭϱϵϯϲϵ <
L < −Ϭ.ϭϲϬϯϲϵ.

NoƟce how the first series converged quite quickly, where we needed only ϭϬ
terms to reach the desired accuracy, whereas the second series took over ϵ,ϬϬϬ
terms.

One of the famous results of mathemaƟcs is that the Harmonic Series,
∞∑

n=ϭ

ϭ
n

diverges, yet the AlternaƟng Harmonic Series,
∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
n
, converges. The

Notes:

ϰϰϱ



Note: In DefiniƟon ϯϱ,
∞
∑

n=ϭ

an is not nec-

essarily an alternaƟng series; it just may
have some negaƟve terms.

Chapter ϴ Sequences and Series

noƟon that alternaƟng the signs of the terms in a series can make a series con-
verge leads us to the following definiƟons.

DefiniƟon ϯϱ Absolute and CondiƟonal Convergence

ϭ. A series
∞∑

n=ϭ

an converges absolutely if
∞∑

n=ϭ

|an| converges.

Ϯ. A series
∞∑

n=ϭ

an converges condiƟonally if
∞∑

n=ϭ

an converges but

∞∑

n=ϭ

|an| diverges.

Thus we say the AlternaƟng Harmonic Series converges condiƟonally.

Example Ϯϱϱ Determining absolute and condiƟonal convergence.
Determine if the following series converge absolutely, condiƟonally, or diverge.

ϭ.
∞∑

n=ϭ

(−ϭ)n
n+ ϯ

nϮ + Ϯn+ ϱ
Ϯ.

∞∑

n=ϭ

(−ϭ)n
nϮ + Ϯn+ ϱ

Ϯn
ϯ.

∞∑

n=ϯ

(−ϭ)n
ϯn− ϯ
ϱn− ϭϬ

SÊ½çã®ÊÄ

ϭ. We can show the series
∞∑

n=ϭ

∣
∣
∣
∣
(−ϭ)n

n+ ϯ
nϮ + Ϯn+ ϱ

∣
∣
∣
∣
=

∞∑

n=ϭ

n+ ϯ
nϮ + Ϯn+ ϱ

diverges using the Limit Comparison Test, comparing with ϭ/n.

The series
∞∑

n=ϭ

(−ϭ)n
n+ ϯ

nϮ + Ϯn+ ϱ
converges using the AlternaƟng Series

Test; we conclude it converges condiƟonally.

Ϯ. We can show the series
∞∑

n=ϭ

∣
∣
∣
∣
(−ϭ)n

nϮ + Ϯn+ ϱ
Ϯn

∣
∣
∣
∣
=

∞∑

n=ϭ

nϮ + Ϯn+ ϱ
Ϯn

converges using the RaƟo Test.

Notes:
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ϴ.ϱ AlternaƟng Series and Absolute Convergence

Therefore we conclude
∞∑

n=ϭ

(−ϭ)n
nϮ + Ϯn+ ϱ

Ϯn
converges absolutely.

ϯ. The series
∞∑

n=ϯ

∣
∣
∣
∣
(−ϭ)n

ϯn− ϯ
ϱn− ϭϬ

∣
∣
∣
∣
=

∞∑

n=ϯ

ϯn− ϯ
ϱn− ϭϬ

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑

n=ϯ

(−ϭ)n
ϯn− ϯ
ϱn− ϭϬ

fails the condiƟons of the AlternaƟng Series

Test as (ϯn− ϯ)/(ϱn− ϭϬ) does not approach Ϭ as n → ∞. We can state
further that this series diverges; as n → ∞, the series effecƟvely adds and
subtracts ϯ/ϱ over and over. This causes the sequence of parƟal sums to
oscillate and not converge.

Therefore the series
∞∑

n=ϭ

(−ϭ)n
ϯn− ϯ
ϱn− ϭϬ

diverges.

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞
∑

n=ϭ

an

converges, we cannot conclude that
∞
∑

n=ϭ

|an| will converge, but knowing a series

converges absolutely tells us that
∞
∑

n=ϭ

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posiƟve. By taking the absolute value of the
terms of a series where not all terms are posiƟve, we are oŌen able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So ϭ+Ϯ+ϯ = ϯ+ϭ+Ϯ.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecƟng
the sum.

Notes:
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Theorem ϳϮ Absolute Convergence Theorem

Let
∞∑

n=ϭ

an be a series that converges absolutely.

ϭ.
∞∑

n=ϭ

an converges.

Ϯ. Let {bn} be any rearrangement of the sequence {an}. Then
∞∑

n=ϭ

bn =
∞∑

n=ϭ

an.

In Example Ϯϱϱ, we determined the series in part Ϯ converges absolutely.
Theorem ϳϮ tells us the series converges (which we could also determine using
the AlternaƟng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condiƟon-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named aŌer Bernhard Riemann)
states that any condiƟonally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the AlternaƟng Harmonic Series once more. We
have stated that

∞∑

n=ϭ

(−ϭ)n+ϭ ϭ
n
= ϭ− ϭ

Ϯ
+

ϭ
ϯ
− ϭ

ϰ
+

ϭ
ϱ
− ϭ

ϲ
+

ϭ
ϳ
· · · = ln Ϯ,

(see Key Idea ϯϭ or Example Ϯϱϯ).
Consider the rearrangement where every posiƟve term is followed by two

negaƟve terms:

ϭ− ϭ
Ϯ
− ϭ

ϰ
+

ϭ
ϯ
− ϭ

ϲ
− ϭ

ϴ
+

ϭ
ϱ
− ϭ

ϭϬ
− ϭ

ϭϮ
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
AlternaƟng Harmonic Series, just in a different order.) Now group some terms

Notes:

ϰϰϴ



ϴ.ϱ AlternaƟng Series and Absolute Convergence

and simplify:
(

ϭ− ϭ
Ϯ

)

− ϭ
ϰ
+

(
ϭ
ϯ
− ϭ

ϲ

)

− ϭ
ϴ
+

(
ϭ
ϱ
− ϭ

ϭϬ

)

− ϭ
ϭϮ

+ · · · =

ϭ
Ϯ
− ϭ

ϰ
+

ϭ
ϲ
− ϭ

ϴ
+

ϭ
ϭϬ

− ϭ
ϭϮ

+ · · · =
ϭ
Ϯ

(

ϭ− ϭ
Ϯ
+

ϭ
ϯ
− ϭ

ϰ
+

ϭ
ϱ
− ϭ

ϲ
+ · · ·

)

=
ϭ
Ϯ
ln Ϯ.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the AlternaƟng Harmonic Series does not actually
converge to ln Ϯ, because rearranging the terms of the series shouldn’t change
the sum. However, the AlternaƟng Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/Ϯ, implying L = Ϭ. But the AlternaƟng Series ApproximaƟon Theorem
quickly shows that L > Ϭ. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The back cover
of this text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ulƟmate goal
within calculus is the study of Power Series, which we will consider in the next
secƟon. We will use power series to create funcƟons where the output is the
result of an infinite summaƟon.

Notes:
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Exercises ϴ.ϱ
Terms and Concepts

ϭ. Why is
∞
∑

n=ϭ

sin n not an alternaƟng series?

Ϯ. A series
∞
∑

n=ϭ

(−ϭ)nan converges when {an} is ,

and lim
n→∞

an = .

ϯ. Give an example of a series where
∞
∑

n=Ϭ

an converges but

∞
∑

n=Ϭ

|an| does not.

ϰ. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises ϱ – ϮϬ, an alternaƟng series
∞
∑

n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞
∑

n=Ϭ

|an| converges or diverges.

(c) If
∞
∑

n=Ϭ

an converges, determine if the convergence is

condiƟonal or absolute.

ϱ.
∞
∑

n=ϭ

(−ϭ)n+ϭ

nϮ

ϲ.
∞
∑

n=ϭ

(−ϭ)n+ϭ
√
n!

ϳ.
∞
∑

n=Ϭ

(−ϭ)n
n+ ϱ
ϯn− ϱ

ϴ.
∞
∑

n=ϭ

(−ϭ)n
Ϯn

nϮ

ϵ.
∞
∑

n=Ϭ

(−ϭ)n+ϭ ϯn+ ϱ
nϮ − ϯn+ ϭ

ϭϬ.
∞
∑

n=ϭ

(−ϭ)n

ln n+ ϭ

ϭϭ.
∞
∑

n=Ϯ

(−ϭ)n
n
ln n

ϭϮ.
∞
∑

n=ϭ

(−ϭ)n+ϭ

ϭ+ ϯ+ ϱ+ · · ·+ (Ϯn− ϭ)

ϭϯ.
∞
∑

n=ϭ

cos
(

πn
)

ϭϰ.
∞
∑

n=ϭ

sin
(

(n+ ϭ/Ϯ)π
)

n ln n

ϭϱ.
∞
∑

n=Ϭ

(

−Ϯ
ϯ

)n

ϭϲ.
∞
∑

n=Ϭ

(−e)−n

ϭϳ.
∞
∑

n=Ϭ

(−ϭ)nnϮ

n!

ϭϴ.
∞
∑

n=Ϭ

(−ϭ)nϮ−nϮ

ϭϵ.
∞
∑

n=ϭ

(−ϭ)n√
n

ϮϬ.
∞
∑

n=ϭ

(−ϭϬϬϬ)n

n!

Let Sn be the nth parƟal sum of a series. In Exercises Ϯϭ – Ϯϰ, a
convergent alternaƟng series is given and a value of n. Com-
pute Sn and Sn+ϭ and use these values to find bounds on the
sum of the series.

Ϯϭ.
∞
∑

n=ϭ

(−ϭ)n

ln(n+ ϭ)
, n = ϱ

ϮϮ.
∞
∑

n=ϭ

(−ϭ)n+ϭ

nϰ
, n = ϰ

Ϯϯ.
∞
∑

n=Ϭ

(−ϭ)n

n!
, n = ϲ

Ϯϰ.
∞
∑

n=Ϭ

(

−ϭ
Ϯ

)n

, n = ϵ

In Exercises Ϯϱ – Ϯϴ, a convergent alternaƟng series is given
along with its sum and a value of ε. Use Theorem ϳϭ to find
n such that the nth parƟal sum of the series is within ε of the
sum of the series.

Ϯϱ.
∞
∑

n=ϭ

(−ϭ)n+ϭ

nϰ
=

ϳπϰ

ϳϮϬ
, ε = Ϭ.ϬϬϭ

ϰϱϬ



Ϯϲ.
∞
∑

n=Ϭ

(−ϭ)n

n!
=

ϭ
e
, ε = Ϭ.ϬϬϬϭ

Ϯϳ.
∞
∑

n=Ϭ

(−ϭ)n

Ϯn+ ϭ
=

π

ϰ
, ε = Ϭ.ϬϬϭ

Ϯϴ.
∞
∑

n=Ϭ

(−ϭ)n

(Ϯn)!
= cos ϭ, ε = ϭϬ−ϴ

ϰϱϭ
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ϴ.ϲ Power Series

So far, our study of series has examined the quesƟon of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspecƟve: as a funcƟon. Given a value of x, we evaluate f(x)
by finding the sum of a parƟcular series that depends on x (assuming the series
converges). We start this new approach to series with a definiƟon.

DefiniƟon ϯϲ Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

ϭ. The power series in x is the series

∞∑

n=Ϭ

anxn = aϬ + aϭx+ aϮxϮ + aϯxϯ + . . .

Ϯ. The power series in x centered at c is the series

∞∑

n=Ϭ

an(x− c)n = aϬ + aϭ(x− c) + aϮ(x− c)Ϯ + aϯ(x− c)ϯ + . . .

Example Ϯϱϲ Examples of power series
Write out the first five terms of the following power series:

ϭ.
∞∑

n=Ϭ

xn Ϯ.
∞∑

n=ϭ

(−ϭ)n+ϭ (x+ ϭ)n

n
ϯ.

∞∑

n=Ϭ

(−ϭ)n+ϭ (x− π)Ϯn

(Ϯn)!
.

SÊ½çã®ÊÄ

ϭ. One of the convenƟons we adopt is that xϬ = ϭ regardless of the value of
x. Therefore

∞∑

n=Ϭ

xn = ϭ+ x+ xϮ + xϯ + xϰ + . . .

This is a geometric series in x.

Ϯ. This series is centered at c = −ϭ. Note how this series starts with n = ϭ.
We could rewrite this series starƟng at n = Ϭ with the understanding that

Notes:

ϰϱϮ



ϴ.ϲ Power Series

aϬ = Ϭ, and hence the first term is Ϭ.

∞∑

n=ϭ

(−ϭ)n+ϭ (x+ ϭ)n

n
= (x+ϭ)− (x+ ϭ)Ϯ

Ϯ
+
(x+ ϭ)ϯ

ϯ
− (x+ ϭ)ϰ

ϰ
+
(x+ ϭ)ϱ

ϱ
. . .

ϯ. This series is centered at c = π. Recall that Ϭ! = ϭ.

∞∑

n=Ϭ

(−ϭ)n+ϭ (x− π)Ϯn

(Ϯn)!
= −ϭ+

(x− π)Ϯ

Ϯ
− (x− π)ϰ

Ϯϰ
+
(x− π)ϲ

ϲ!
− (x− π)ϴ

ϴ!
. . .

We introduced power series as a type of funcƟon, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part ϭ of Example Ϯϱϲ, we recognized the series
∞∑

n=Ϭ

xn as a geometric

series in x. Theorem ϲϬ states that this series converges only when |x| < ϭ.

This raises the quesƟon: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definiƟon.

Theorem ϳϯ Convergence of Power Series

Let a power series
∞∑

n=Ϭ

an(x− c)n be given. Then one of the following is

true:

ϭ. The series converges only at x = c.

Ϯ. There is an R > Ϭ such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

ϯ. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definiƟon. Also, note that part Ϯ of Theorem ϳϯ
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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DefiniƟon ϯϳ Radius and Interval of Convergence

ϭ. The number R given in Theorem ϳϯ is the radius of convergence of
a given series. When a series converges for only x = c, we say the
radius of convergence is Ϭ, i.e., R = Ϭ. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = ∞.

Ϯ. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the RaƟo Test). However, the
tests all required that the terms of a series be posiƟve. The following theorem
gives us a work–around to this problem.

Theorem ϳϰ The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑

n=Ϭ

an(x − c)n and
∞∑

n=Ϭ

∣
∣an(x − c)n

∣
∣ have the same radius of

convergence R.

Theorem ϳϰ allows us to find the radius of convergence R of a series by ap-
plying the RaƟo Test (or any applicable test) to the absolute value of the terms
of the series. We pracƟce this in the following example.

Example Ϯϱϳ Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

ϭ.
∞∑

n=Ϭ

xn

n!
Ϯ.

∞∑

n=ϭ

(−ϭ)n+ϭ xn

n
ϯ.

∞∑

n=Ϭ

Ϯn(x− ϯ)n ϰ.
∞∑

n=Ϭ

n!xn

SÊ½çã®ÊÄ

Notes:
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ϭ. We apply the RaƟo Test to the series
∞∑

n=Ϭ

∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
:

lim
n→∞

∣
∣xn+ϭ/(n+ ϭ)!

∣
∣

∣
∣xn/n!

∣
∣

= lim
n→∞

∣
∣
∣
∣

xn+ϭ

xn
· n!
(n+ ϭ)!

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

x
n+ ϭ

∣
∣
∣
∣

= Ϭ for all x.

The RaƟo Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

Ϯ. We apply the RaƟo Test to the series
∞∑

n=ϭ

∣
∣
∣
∣
(−ϭ)n+ϭ xn

n

∣
∣
∣
∣
=

∞∑

n=ϭ

∣
∣
∣
∣

xn

n

∣
∣
∣
∣
:

lim
n→∞

∣
∣xn+ϭ/(n+ ϭ)

∣
∣

∣
∣xn/n

∣
∣

= lim
n→∞

∣
∣
∣
∣

xn+ϭ

xn
· n
n+ ϭ

∣
∣
∣
∣

= lim
n→∞

|x| n
n+ ϭ

= |x|.

The RaƟo Test states a series converges if the limit of |an+ϭ/an| = L < ϭ.
We found the limit above to be |x|; therefore, the power series converges
when |x| < ϭ, or when x is in (−ϭ, ϭ). Thus the radius of convergence is
R = ϭ.

To determine the interval of convergence, we need to check the endpoints
of (−ϭ, ϭ). When x = −ϭ, we have the opposite of the Harmonic Series:

∞∑

n=ϭ

(−ϭ)n+ϭ (−ϭ)n

n
=

∞∑

n=ϭ

−ϭ
n

= −∞.

The series diverges when x = −ϭ.

When x = ϭ, we have the series
∞∑

n=ϭ

(−ϭ)n+ϭ (ϭ)n

n
, which is the AlternaƟng

Harmonic Series, which converges. Therefore the interval of convergence
is (−ϭ, ϭ].

Notes:
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ϯ. We apply the RaƟo Test to the series
∞∑

n=Ϭ

∣
∣Ϯn(x− ϯ)n

∣
∣:

lim
n→∞

∣
∣Ϯn+ϭ(x− ϯ)n+ϭ

∣
∣

∣
∣Ϯn(x− ϯ)n

∣
∣

= lim
n→∞

∣
∣
∣
∣

Ϯn+ϭ

Ϯn
· (x− ϯ)n+ϭ

(x− ϯ)n

∣
∣
∣
∣

= lim
n→∞

∣
∣Ϯ(x− ϯ)

∣
∣.

According to the RaƟo Test, the series convergeswhen
∣
∣Ϯ(x−ϯ)

∣
∣ < ϭ =⇒

∣
∣x− ϯ

∣
∣ < ϭ/Ϯ. The series is centered at ϯ, and xmust be within ϭ/Ϯ of ϯ

in order for the series to converge. Therefore the radius of convergence
is R = ϭ/Ϯ, and we know that the series converges absolutely for all x in
(ϯ− ϭ/Ϯ, ϯ+ ϭ/Ϯ) = (Ϯ.ϱ, ϯ.ϱ).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = Ϯ.ϱ, we have:

∞∑

n=Ϭ

Ϯn(Ϯ.ϱ− ϯ)n =
∞∑

n=Ϭ

Ϯn(−ϭ/Ϯ)n

=
∞∑

n=Ϭ

(−ϭ)n,

which diverges. A similar process shows that the series also diverges at
x = ϯ.ϱ. Therefore the interval of convergence is (Ϯ.ϱ, ϯ.ϱ).

ϰ. We apply the RaƟo Test to
∞∑

n=Ϭ

∣
∣n!xn

∣
∣:

lim
n→∞

∣
∣(n+ ϭ)!xn+ϭ

∣
∣

∣
∣n!xn

∣
∣

= lim
n→∞

∣
∣(n+ ϭ)x

∣
∣

= ∞ for all x, except x = Ϭ.

The RaƟo Test shows that the series diverges for all x except x = Ϭ. There-
fore the radius of convergence is R = Ϭ.

We can use a power series to define a funcƟon:

f(x) =
∞∑

n=Ϭ

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such funcƟons; in parƟcular, we
can find derivaƟves and anƟderivaƟves.

Notes:
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Theorem ϳϱ DerivaƟves and Indefinite Integrals of Power Series
FuncƟons

Let f(x) =
∞∑

n=Ϭ

an(x − c)n be a funcƟon defined by a power series, with

radius of convergence R.

ϭ. f(x) is conƟnuous and differenƟable on (c− R, c+ R).

Ϯ. f ′(x) =
∞∑

n=ϭ

an · n · (x− c)n−ϭ, with radius of convergence R.

ϯ.
∫

f(x) dx = C+
∞∑

n=Ϭ

an
(x− c)n+ϭ

n+ ϭ
, with radius of convergence R.

A few notes about Theorem ϳϱ:

ϭ. The theorem states that differenƟaƟon and integraƟon do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

Ϯ. NoƟce how the summaƟon for f ′(x) starts with n = ϭ. This is because the
constant term aϬ of f(x) goes to Ϭ.

ϯ. DifferenƟaƟon and integraƟon are simply calculated term–by–term using
the Power Rules.

Example Ϯϱϴ DerivaƟves and indefinite integrals of power series

Let f(x) =
∞∑

n=Ϭ

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respecƟve

intervals of convergence.

SÊ½çã®ÊÄ We find the derivaƟve and indefinite integral of f(x), follow-
ing Theorem ϳϱ.

ϭ. f ′(x) =
∞∑

n=ϭ

nxn−ϭ = ϭ+ Ϯx+ ϯxϮ + ϰxϯ + · · · .

In Example Ϯϱϲ, we recognized that
∞∑

n=Ϭ

xn is a geometric series in x. We

know that such a geometric series converges when |x| < ϭ; that is, the
interval of convergence is (−ϭ, ϭ).

Notes:
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To determine the interval of convergence of f ′(x), we consider the end-
points of (−ϭ, ϭ):

f ′(−ϭ) = ϭ− Ϯ+ ϯ− ϰ+ · · · , which diverges.

f ′(ϭ) = ϭ+ Ϯ+ ϯ+ ϰ+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−ϭ, ϭ).

Ϯ. F(x) =
∫

f(x) dx = C+
∞∑

n=Ϭ

xn+ϭ

n+ ϭ
= C+ x+

xϮ

Ϯ
+

xϯ

ϯ
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−ϭ, ϭ):

F(−ϭ) = C− ϭ+ ϭ/Ϯ− ϭ/ϯ+ ϭ/ϰ+ · · ·

The value of C is irrelevant; noƟce that the rest of the series is an Alter-
naƟng Series that whose terms converge to Ϭ. By the AlternaƟng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series aŌer C are the opposite of the AlternaƟng Harmonic Series. We can
thus say that F(−ϭ) = C− ln Ϯ.)

F(ϭ) = C+ ϭ+ ϭ/Ϯ+ ϭ/ϯ+ ϭ/ϰ+ · · ·

NoƟce that this summaƟon is C + the Harmonic Series, which diverges.
Since F converges for x = −ϭ and diverges for x = ϭ, the interval of
convergence of F(x) is [−ϭ, ϭ).

The previous example showed how to take the derivaƟve and indefinite in-
tegral of a power series without moƟvaƟon for why we care about such opera-
Ɵons. Wemay care for the sheer mathemaƟcal enjoyment “that we can”, which
is moƟvaƟon enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivaƟves and indefinite integrals.

Recall that f(x) =
∞∑

n=Ϭ

xn in Example Ϯϱϴ is a geometric series. According to

Theorem ϲϬ, this series converges to ϭ/(ϭ− x) when |x| < ϭ. Thus we can say

f(x) =
∞∑

n=Ϭ

xn =
ϭ

ϭ− x
, on (−ϭ, ϭ).

IntegraƟng the power series, (as done in Example Ϯϱϴ,) we find

F(x) = Cϭ +
∞∑

n=Ϭ

xn+ϭ

n+ ϭ
, (ϴ.ϰ)

Notes:
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while integraƟng the funcƟon f(x) = ϭ/(ϭ− x) gives

F(x) = − ln |ϭ− x|+ CϮ. (ϴ.ϱ)

EquaƟng EquaƟons (ϴ.ϰ) and (ϴ.ϱ), we have

F(x) = Cϭ +
∞∑

n=Ϭ

xn+ϭ

n+ ϭ
= − ln |ϭ− x|+ CϮ.

Leƫng x = Ϭ, we have F(Ϭ) = Cϭ = CϮ. This implies that we can drop the
constants and conclude

∞∑

n=Ϭ

xn+ϭ

n+ ϭ
= − ln |ϭ− x|.

We established in Example Ϯϱϴ that the series on the leŌ converges at x = −ϭ;
subsƟtuƟng x = −ϭ on both sides of the above equality gives

−ϭ+
ϭ
Ϯ
− ϭ

ϯ
+

ϭ
ϰ
− ϭ

ϱ
+ · · · = − ln Ϯ.

On the leŌ we have the opposite of the AlternaƟng Harmonic Series; on the
right, we have− ln Ϯ. We conclude that

ϭ− ϭ
Ϯ
+

ϭ
ϯ
− ϭ

ϰ
+ · · · = ln Ϯ.

Important: We stated in Key Idea ϯϭ (in SecƟon ϴ.Ϯ) that the AlternaƟng Har-
monic Series converges to ln Ϯ, and referred to this fact again in Example Ϯϱϯ of
SecƟon ϴ.ϱ. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the AlternaƟng Harmonic
Series converges to ln Ϯ.

We use this type of analysis in the next example.

Example Ϯϱϵ Analyzing power series funcƟons

Let f(x) =
∞∑

n=Ϭ

xn

n!
. Find f ′(x) and

∫

f(x) dx, and use these to analyze the behav-

ior of f(x).

SÊ½çã®ÊÄ We start by making two notes: first, in Example Ϯϱϳ, we
found the interval of convergence of this power series is (−∞,∞). Second,
we will find it useful later to have a few terms of the series wriƩen out:

∞∑

n=Ϭ

xn

n!
= ϭ+ x+

xϮ

Ϯ
+

xϯ

ϲ
+

xϰ

Ϯϰ
+ · · · (ϴ.ϲ)

Notes:
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We now find the derivaƟve:

f ′(x) =
∞∑

n=ϭ

n
xn−ϭ

n!

=

∞∑

n=ϭ

xn−ϭ

(n− ϭ)!
= ϭ+ x+

xϮ

Ϯ!
+ · · · .

Since the series starts at n = ϭ and each term refers to (n− ϭ), we can re-index
the series starƟng with n = Ϭ:

=

∞∑

n=Ϭ

xn

n!

= f(x).

We found the derivaƟve of f(x) is f(x). The only funcƟons for which this is true
are of the form y = cex for some constant c. As f(Ϭ) = ϭ (see EquaƟon (ϴ.ϲ)), c
must be ϭ. Therefore we conclude that

f(x) =
∞∑

n=Ϭ

xn

n!
= ex

for all x.
We can also find

∫

f(x) dx:

∫

f(x) dx = C+
∞∑

n=Ϭ

xn+ϭ

n!(n+ ϭ)

= C+
∞∑

n=Ϭ

xn+ϭ

(n+ ϭ)!

We write out a few terms of this last series:

C+
∞∑

n=Ϭ

xn+ϭ

(n+ ϭ)!
= C+ x+

xϮ

Ϯ
+

xϯ

ϲ
+

xϰ

Ϯϰ
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicaƟng that
f(x) = ex.

Example Ϯϱϵ and the work following Example Ϯϱϴ established relaƟonships
between a power series funcƟon and “regular” funcƟons that we have dealt
with in the past. In general, given a power series funcƟon, it is difficult (if not

Notes:
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ϴ.ϲ Power Series

impossible) to express the funcƟon in terms of elementary funcƟons. We chose
examples where things worked out nicely.

In this secƟon’s last example, we show how to solve a simple differenƟal
equaƟon with a power series.

Example ϮϲϬ Solving a differenƟal equaƟon with a power series.
Give the first ϰ terms of the power series soluƟon to y ′ = Ϯy, where y(Ϭ) = ϭ.

SÊ½çã®ÊÄ The differenƟal equaƟon y ′ = Ϯy describes a funcƟon y =
f(x) where the derivaƟve of y is twice y and y(Ϭ) = ϭ. This is a rather simple
differenƟal equaƟon; with a bit of thought one should realize that if y = CeϮx,
then y ′ = ϮCeϮx, and hence y ′ = Ϯy. By leƫng C = ϭ we saƟsfy the iniƟal
condiƟon of y(Ϭ) = ϭ.

Let’s ignore the fact that we already know the soluƟon and find a power
series funcƟon that saƟsfies the equaƟon. The soluƟon we seek will have the
form

f(x) =
∞∑

n=Ϭ

anxn = aϬ + aϭx+ aϮxϮ + aϯxϯ + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem ϳϱ:

f ′(x) =
∞∑

n=ϭ

an · n · xn−ϭ = aϭ + ϮaϮx+ ϯaϯxϮ + ϰaϰxϯ · · · .

Since f ′(x) = Ϯf(x), we have

aϭ + ϮaϮx+ ϯaϯxϮ + ϰaϰxϯ · · · = Ϯ
(
aϬ + aϭx+ aϮxϮ + aϯxϯ + · · ·

)

= ϮaϬ + Ϯaϭx+ ϮaϮxϮ + Ϯaϯxϯ + · · ·

The coefficients of like powers of xmust be equal, so we find that

aϭ = ϮaϬ, ϮaϮ = Ϯaϭ, ϯaϯ = ϮaϮ, ϰaϰ = Ϯaϯ, etc.

The iniƟal condiƟon y(Ϭ) = f(Ϭ) = ϭ indicates that aϬ = ϭ; with this, we can
find the values of the other coefficients:

aϬ = ϭ and aϭ = ϮaϬ ⇒ aϭ = Ϯ;
aϭ = Ϯ and ϮaϮ = Ϯaϭ ⇒ aϮ = ϰ/Ϯ = Ϯ;
aϮ = Ϯ and ϯaϯ = ϮaϮ ⇒ aϯ = ϴ/(Ϯ · ϯ) = ϰ/ϯ;

aϯ = ϰ/ϯ and ϰaϰ = Ϯaϯ ⇒ aϰ = ϭϲ/(Ϯ · ϯ · ϰ) = Ϯ/ϯ.

Thus the first ϱ terms of the power series soluƟon to the differenƟal equaƟon
y ′ = Ϯy is

f(x) = ϭ+ Ϯx+ ϮxϮ +
ϰ
ϯ
xϯ +

Ϯ
ϯ
xϰ + · · ·

Notes:

ϰϲϭ
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In SecƟon ϴ.ϴ, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = eϮx.

Our last example illustrates that it can be difficult to recognize an elementary
funcƟon by its power series expansion. It is far easier to start with a known func-
Ɵon, expressed in terms of elementary funcƟons, and represent it as a power
series funcƟon. One may wonder why we would bother doing so, as the laƩer
funcƟon probably seems more complicated. In the next two secƟons, we show
both how to do this and why such a process can be beneficial.

Notes:

ϰϲϮ



Exercises ϴ.ϲ
Terms and Concepts

ϭ. We adopt the convencƟon that xϬ = , regardless of
the value of x.

Ϯ. What is the difference between the radius of convergence
and the interval of convergence?

ϯ. If the radius of convergence of
∞
∑

n=Ϭ

anxn is ϱ, what is the ra-

dius of convergence of
∞
∑

n=ϭ

n · anxn−ϭ?

ϰ. If the radius of convergence of
∞
∑

n=Ϭ

anxn is ϱ, what is the ra-

dius of convergence of
∞
∑

n=Ϭ

(−ϭ)nanxn?

Problems
In Exercises ϱ – ϴ, write out the sum of the first ϱ terms of the
given power series.

ϱ.
∞
∑

n=Ϭ

Ϯnxn

ϲ.
∞
∑

n=ϭ

ϭ
nϮ

xn

ϳ.
∞
∑

n=Ϭ

ϭ
n!
xn

ϴ.
∞
∑

n=Ϭ

(−ϭ)n

(Ϯn)!
xϮn

In Exercises ϵ – Ϯϰ, a power series is given.

(a) Find the radius of convergence.

(b) Find the interval of convergence.

ϵ.
∞
∑

n=Ϭ

(−ϭ)n+ϭ

n!
xn

ϭϬ.
∞
∑

n=Ϭ

nxn

ϭϭ.
∞
∑

n=ϭ

(−ϭ)n(x− ϯ)n

n

ϭϮ.
∞
∑

n=Ϭ

(x+ ϰ)n

n!

ϭϯ.
∞
∑

n=Ϭ

xn

Ϯn

ϭϰ.
∞
∑

n=Ϭ

(−ϭ)n(x− ϱ)n

ϭϬn

ϭϱ.
∞
∑

n=Ϭ

ϱn(x− ϭ)n

ϭϲ.
∞
∑

n=Ϭ

(−Ϯ)nxn

ϭϳ.
∞
∑

n=Ϭ

√
nxn

ϭϴ.
∞
∑

n=Ϭ

n
ϯn

xn

ϭϵ.
∞
∑

n=Ϭ

ϯn

n!
(x− ϱ)n

ϮϬ.
∞
∑

n=Ϭ

(−ϭ)nn!(x− ϭϬ)n

Ϯϭ.
∞
∑

n=ϭ

xn

nϮ

ϮϮ.
∞
∑

n=ϭ

(x+ Ϯ)n

nϯ

Ϯϯ.
∞
∑

n=Ϭ

n!
( x
ϭϬ

)n

Ϯϰ.
∞
∑

n=Ϭ

nϮ
(

x+ ϰ
ϰ

)n

In Exercises Ϯϱ – ϯϬ, a funcƟon f(x) =
∞
∑

n=Ϭ

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫

f(x) dx and its interval of con-
vergence.

Ϯϱ.
∞
∑

n=Ϭ

nxn

Ϯϲ.
∞
∑

n=ϭ

xn

n

Ϯϳ.
∞
∑

n=Ϭ

( x
Ϯ

)n

ϰϲϯ



Ϯϴ.
∞
∑

n=Ϭ

(−ϯx)n

Ϯϵ.
∞
∑

n=Ϭ

(−ϭ)nxϮn

(Ϯn)!

ϯϬ.
∞
∑

n=Ϭ

(−ϭ)nxn

n!

In Exercises ϯϭ – ϯϲ, give the first ϱ terms of the series that is
a soluƟon to the given differenƟal equaƟon.

ϯϭ. y ′ = ϯy, y(Ϭ) = ϭ

ϯϮ. y ′ = ϱy, y(Ϭ) = ϱ

ϯϯ. y ′ = yϮ, y(Ϭ) = ϭ

ϯϰ. y ′ = y+ ϭ, y(Ϭ) = ϭ

ϯϱ. y ′′ = −y, y(Ϭ) = Ϭ, y ′(Ϭ) = ϭ

ϯϲ. y ′′ = Ϯy, y(Ϭ) = ϭ, y ′(Ϭ) = ϭ

ϰϲϰ
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f(Ϭ) = Ϯ f ′′′(Ϭ) = −ϭ
f ′(Ϭ) = ϭ f (ϰ)(Ϭ) = −ϭϮ
f ′′(Ϭ) = Ϯ f (ϱ)(Ϭ) = −ϭϵ

Figure ϴ.ϭϲ: Ploƫng y = f(x) and a table
of derivaƟves of f evaluated at Ϭ.
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Figure ϴ.ϭϳ: Ploƫng f, pϮ and pϰ.
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y = pϭϯ(x)
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Figure ϴ.ϭϴ: Ploƫng f and pϭϯ.

ϴ.ϳ Taylor Polynomials

ϴ.ϳ Taylor Polynomials
Consider a funcƟon y = f(x) and a point

(
c, f(c)

)
. The derivaƟve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure ϴ.ϭϲ, we see a funcƟon y = f(x) graphed. The table below the

graph shows that f(Ϭ) = Ϯ and f ′(Ϭ) = ϭ; therefore, the tangent line to f at
x = Ϭ is pϭ(x) = ϭ(x−Ϭ)+Ϯ = x+Ϯ. The tangent line is also given in the figure.
Note that “near” x = Ϭ, pϭ(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximaƟon is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, pϮ(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure ϴ.ϭϲ gives the following informaƟon:

f(Ϭ) = Ϯ f ′(Ϭ) = ϭ f ′′(Ϭ) = Ϯ.

Therefore, we want our polynomial pϮ(x) to have these same properƟes. That
is, we need

pϮ(Ϭ) = Ϯ p′Ϯ(Ϭ) = ϭ p′′Ϯ (Ϭ) = Ϯ.

This is simply an iniƟal–value problem. We can solve this using the tech-
niques first described in SecƟon ϱ.ϭ. To keep pϮ(x) as simple as possible, we’ll
assume that not only p′′Ϯ (Ϭ) = Ϯ, but that p′′Ϯ (x) = Ϯ. That is, the second deriva-
Ɵve of pϮ is constant.

If p′′Ϯ (x) = Ϯ, then p′Ϯ(x) = Ϯx + C for some constant C. Since we have
determined that p′Ϯ(Ϭ) = ϭ, we find that C = ϭ and so p′Ϯ(x) = Ϯx + ϭ. Finally,
we can compute pϮ(x) = xϮ+x+C. Using our iniƟal values, we know pϮ(Ϭ) = Ϯ
so C = Ϯ.We conclude that pϮ(x) = xϮ + x+ Ϯ. This funcƟon is ploƩed with f in
Figure ϴ.ϭϳ.

We can repeat this approximaƟon process by creaƟng polynomials of higher
degree that matchmore of the derivaƟves of f at x = Ϭ. In general, a polynomial
of degree n can be created to match the first n derivaƟves of f. Figure ϴ.ϭϳ also
shows pϰ(x) = −xϰ/Ϯ−xϯ/ϲ+xϮ+x+Ϯ, whose first four derivaƟves at Ϭmatch
those of f. (Using the table in Figure ϴ.ϭϲ, start with p(ϰ)ϰ (x) = −ϭϮ and solve
the related iniƟal–value problem.)

As we use more and more derivaƟves, our polynomial approximaƟon to f
gets beƩer and beƩer. In this example, the interval on which the approximaƟon
is “good” gets bigger and bigger. Figure ϴ.ϭϴ shows pϭϯ(x); we can visually affirm
that this polynomial approximates f very well on [−Ϯ, ϯ]. (The polynomial pϭϯ(x)
is not parƟcularly “nice”. It is

ϭϲϵϬϭxϭϯ

ϲϮϮϳϬϮϬϴϬϬ
+

ϭϯxϭϮ

ϭϮϬϵϲϬϬ
− ϭϯϮϭxϭϭ

ϯϵϵϭϲϴϬϬ
− ϳϳϵxϭϬ

ϭϴϭϰϰϬϬ
− ϯϱϵxϵ

ϯϲϮϴϴϬ
+

xϴ

ϮϰϬ
+

ϭϯϵxϳ

ϱϬϰϬ
+

ϭϭxϲ

ϯϲϬ
− ϭϵxϱ

ϭϮϬ
− xϰ

Ϯ
− xϯ

ϲ
+xϮ+x+Ϯ.)

Notes:

ϰϲϱ



f(x) = ex ⇒ f(Ϭ) = ϭ
f ′(x) = ex ⇒ f ′(Ϭ) = ϭ
f ′′(x) = ex ⇒ f ′′(Ϭ) = ϭ
...

...
f (n)(x) = ex ⇒ f (n)(Ϭ) = ϭ

Figure ϴ.ϭϵ: The derivaƟves of f(x) = ex

evaluated at x = Ϭ.

Chapter ϴ Sequences and Series

Thepolynomialswehave created are examples of Taylor polynomials, named
aŌer the BriƟsh mathemaƟcian Brook Taylor who made important discoveries
about such funcƟons. While we created the above Taylor polynomials by solving
iniƟal–value problems, it can be shown that Taylor polynomials follow a general
paƩern that make their formaƟon much more direct. This is described in the
following definiƟon.

DefiniƟon ϯϴ Taylor Polynomial, Maclaurin Polynomial

Let f be a funcƟon whose first n derivaƟves exist at x = c.

ϭ. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
Ϯ!

(x−c)Ϯ+
f ′′′(c)
ϯ!

(x−c)ϯ+· · ·+ f (n)(c)
n!

(x−c)n.

Ϯ. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
Ϭ. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(Ϭ) + f ′(Ϭ)x+
f ′′(Ϭ)
Ϯ!

xϮ +
f ′′′(Ϭ)
ϯ!

xϯ + · · ·+ f (n)(Ϭ)
n!

xn.

We will pracƟce creaƟng Taylor and Maclaurin polynomials in the following
examples.

Example Ϯϲϭ Finding and using Maclaurin polynomials

ϭ. Find the nth Maclaurin polynomial for f(x) = ex.

Ϯ. Use pϱ(x) to approximate the value of e.

SÊ½çã®ÊÄ

ϭ. We start with creaƟng a table of the derivaƟves of ex evaluated at x = Ϭ.
In this parƟcular case, this is relaƟvely simple, as shown in Figure ϴ.ϭϵ. By
the definiƟon of the Maclaurin series, we have

Notes:

ϰϲϲ



.....y = p5(x).
−Ϯ

.
Ϯ

.

5

.

ϭϬ

.

x

.

y

Figure ϴ.ϮϬ: A plot of f(x) = ex and its ϱth

degree Maclaurin polynomial pϱ(x).

f(x) = ln x ⇒ f(ϭ) = Ϭ
f ′(x) = ϭ/x ⇒ f ′(ϭ) = ϭ
f ′′(x) = −ϭ/xϮ ⇒ f ′′(ϭ) = −ϭ
f ′′′(x) = Ϯ/xϯ ⇒ f ′′′(ϭ) = Ϯ
f (ϰ)(x) = −ϲ/xϰ ⇒ f (ϰ)(ϭ) = −ϲ
...

...
f (n)(x) = ⇒ f (n)(ϭ) =
(−ϭ)n+ϭ(n− ϭ)!

xn
(−ϭ)n+ϭ(n− ϭ)!

Figure ϴ.Ϯϭ: DerivaƟves of ln x evaluated
at x = ϭ.

ϴ.ϳ Taylor Polynomials

pn(x) = f(Ϭ) + f ′(Ϭ)x+
f ′′(Ϭ)
Ϯ!

xϮ +
f ′′′(Ϭ)
ϯ!

xϯ + · · ·+ f n(Ϭ)
n!

xn

= ϭ+ x+
ϭ
Ϯ
xϮ +

ϭ
ϲ
xϯ +

ϭ
Ϯϰ

xϰ + · · ·+ ϭ
n!
xn.

Ϯ. Using our answer from part ϭ, we have

pϱ = ϭ+ x+
ϭ
Ϯ
xϮ +

ϭ
ϲ
xϯ +

ϭ
Ϯϰ

xϰ +
ϭ

ϭϮϬ
xϱ.

To approximate the value of e, note that e = eϭ = f(ϭ) ≈ pϱ(ϭ). It is very
straighƞorward to evaluate pϱ(ϭ):

pϱ(ϭ) = ϭ+ ϭ+
ϭ
Ϯ
+

ϭ
ϲ
+

ϭ
Ϯϰ

+
ϭ

ϭϮϬ
=

ϭϲϯ
ϲϬ

≈ Ϯ.ϳϭϲϲϳ.

A plot of f(x) = ex and pϱ(x) is given in Figure ϴ.ϮϬ.

Example ϮϲϮ Finding and using Taylor polynomials

ϭ. Find the nth Taylor polynomial of y = ln x at x = ϭ.

Ϯ. Use pϲ(x) to approximate the value of ln ϭ.ϱ.

ϯ. Use pϲ(x) to approximate the value of ln Ϯ.

SÊ½çã®ÊÄ

ϭ. We begin by creaƟng a table of derivaƟves of ln x evaluated at x = ϭ.
While this is not as straighƞorward as it was in the previous example, a
paƩern does emerge, as shown in Figure ϴ.Ϯϭ.
Using DefiniƟon ϯϴ, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
Ϯ!

(x− c)Ϯ +
f ′′′(c)
ϯ!

(x− c)ϯ + · · ·+ f n(c)
n!

(x− c)n

= Ϭ+ (x− ϭ)− ϭ
Ϯ
(x− ϭ)Ϯ +

ϭ
ϯ
(x− ϭ)ϯ − ϭ

ϰ
(x− ϭ)ϰ + · · ·+ (−ϭ)n+ϭ

n
(x− ϭ)n.

Note how the coefficients of the (x− ϭ) terms turn out to be “nice.”

Ϯ. We can compute pϲ(x) using our work above:

pϲ(x) = (x−ϭ)− ϭ
Ϯ
(x−ϭ)Ϯ+

ϭ
ϯ
(x−ϭ)ϯ− ϭ

ϰ
(x−ϭ)ϰ+

ϭ
ϱ
(x−ϭ)ϱ− ϭ

ϲ
(x−ϭ)ϲ.

Notes:

ϰϲϳ



.....

y = ln x

.

y = p6(x)

.

ϭ

.

Ϯ

.

ϯ

.
−ϰ
.

−Ϯ

.

Ϯ

.

x

.

y

Figure ϴ.ϮϮ: A plot of y = ln x and its ϲth

degree Taylor polynomial at x = ϭ.

...

..

y = ln x

.

y = pϮϬ(x)

.

ϭ

.

Ϯ

.

ϯ

.

−ϰ

.

−Ϯ

.

Ϯ

.

x

.

y

Figure ϴ.Ϯϯ: A plot of y = ln x and its ϮϬth

degree Taylor polynomial at x = ϭ.
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Since pϲ(x) approximates ln x well near x = ϭ, we approximate ln ϭ.ϱ ≈
pϲ(ϭ.ϱ):

pϲ(ϭ.ϱ) = (ϭ.ϱ− ϭ)− ϭ
Ϯ
(ϭ.ϱ− ϭ)Ϯ +

ϭ
ϯ
(ϭ.ϱ− ϭ)ϯ − ϭ

ϰ
(ϭ.ϱ− ϭ)ϰ + · · ·

· · ·+ ϭ
ϱ
(ϭ.ϱ− ϭ)ϱ − ϭ

ϲ
(ϭ.ϱ− ϭ)ϲ

=
Ϯϱϵ
ϲϰϬ

≈ Ϭ.ϰϬϰϲϴϴ.

This is a good approximaƟon as a calculator shows that ln ϭ.ϱ ≈ Ϭ.ϰϬϱϱ.
Figure ϴ.ϮϮ plots y = ln x with y = pϲ(x). We can see that ln ϭ.ϱ ≈
pϲ(ϭ.ϱ).

ϯ. We approximate ln Ϯ with pϲ(Ϯ):

pϲ(Ϯ) = (Ϯ− ϭ)− ϭ
Ϯ
(Ϯ− ϭ)Ϯ +

ϭ
ϯ
(Ϯ− ϭ)ϯ − ϭ

ϰ
(Ϯ− ϭ)ϰ + · · ·

· · ·+ ϭ
ϱ
(Ϯ− ϭ)ϱ − ϭ

ϲ
(Ϯ− ϭ)ϲ

= ϭ− ϭ
Ϯ
+

ϭ
ϯ
− ϭ

ϰ
+

ϭ
ϱ
− ϭ

ϲ

=
ϯϳ
ϲϬ

≈ Ϭ.ϲϭϲϲϲϳ.

This approximaƟon is not terribly impressive: a handheld calculator shows
that ln Ϯ ≈ Ϭ.ϲϵϯϭϰϳ. The graph in Figure ϴ.ϮϮ shows that pϲ(x) provides
less accurate approximaƟons of ln x as x gets close to Ϭ or Ϯ.
Surprisingly enough, even the ϮϬth degree Taylor polynomial fails to ap-
proximate ln x for x > Ϯ, as shown in Figure ϴ.Ϯϯ. We’ll soon discuss why
this is.

Taylor polynomials are used to approximate funcƟons f(x) in mainly two sit-
uaƟons:

ϭ. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the raƟo of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compuƟng cos Ϯ. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compuƟng
such values using only operaƟons usually hard–wired into a computer (+,
−,× and÷).

Notes:

ϰϲϴ



Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric funcƟons, in pracƟce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

ϴ.ϳ Taylor Polynomials

Ϯ. When f(x) is not known, but informaƟon about its derivaƟves is known.
This occurs more oŌen than one might think, especially in the study of
differenƟal equaƟons.

In both situaƟons, a criƟcal piece of informaƟon to have is “How good is my
approximaƟon?” If we use a Taylor polynomial to compute cos Ϯ, how do we
know how accurate the approximaƟon is?

We had the same problem when studying Numerical IntegraƟon. Theorem
ϰϯprovided bounds on the errorwhen using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance,
using ϭϬ subintervals provided an approximaƟonwithin±.Ϭϭ of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

Theorem ϳϲ Taylor’s Theorem

ϭ. Let f be a funcƟon whose n+ ϭth derivaƟve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
Ϯ!

(x− c)Ϯ + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+ϭ)(zx)
(n+ ϭ)!

(x− c)(n+ϭ).

Ϯ.
∣
∣Rn(x)

∣
∣ ≤ max

∣
∣ f (n+ϭ)(z)

∣
∣

(n+ ϭ)!
∣
∣(x− c)(n+ϭ)∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximaƟon. The second part gives bounds on how big that error
can be. If the (n+ ϭ)th derivaƟve is large, the error may be large; if x is far from
c, the error may also be large. However, the (n + ϭ)! term in the denominator
tends to ensure that the error gets smaller as n increases.

The following example computes error esƟmates for the approximaƟons of
ln ϭ.ϱ and ln Ϯ made in Example ϮϲϮ.

Example Ϯϲϯ Finding error bounds of a Taylor polynomial
Use Theorem ϳϲ to find error bounds when approximaƟng ln ϭ.ϱ and ln Ϯ with
pϲ(x), the Taylor polynomial of degree ϲ of f(x) = ln x at x = ϭ, as calculated in
Example ϮϲϮ.

Notes:

ϰϲϵ
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ϭ. We start with the approximaƟon of ln ϭ.ϱ with pϲ(ϭ.ϱ). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the beƩer; it will give us a more accurate (and smaller!)
approximaƟon of the error. We let I = (Ϭ.ϵ, ϭ.ϲ), as this interval contains
both c = ϭ and x = ϭ.ϱ.
The theorem references max

∣
∣f (n+ϭ)(z)

∣
∣. In our situaƟon, this is asking

“How big can the ϳth derivaƟve of y = ln x be on the interval (Ϭ.ϵ, ϭ.ϲ)?”
The seventh derivaƟve is y = −ϲ!/xϳ. The largest value it aƩains on I is
about ϭϱϬϲ. Thus we can bound the error as:

∣
∣Rϲ(ϭ.ϱ)

∣
∣ ≤ max

∣
∣f (ϳ)(z)

∣
∣

ϳ!
∣
∣(ϭ.ϱ− ϭ)ϳ

∣
∣

≤ ϭϱϬϲ
ϱϬϰϬ

· ϭ
Ϯϳ

≈ Ϭ.ϬϬϮϯ.

We computed pϲ(ϭ.ϱ) = Ϭ.ϰϬϰϲϴϴ; using a calculator, we find ln ϭ.ϱ ≈
Ϭ.ϰϬϱϰϲϱ, so the actual error is about Ϭ.ϬϬϬϳϳϴ, which is less than our
bound of Ϭ.ϬϬϮϯ. This affirms Taylor’s Theorem; the theorem states that
our approximaƟon would be within about Ϯ thousandths of the actual
value, whereas the approximaƟon was actually closer.

Ϯ. We again find an interval I that contains both c = ϭ and x = Ϯ; we choose
I = (Ϭ.ϵ, Ϯ.ϭ). The maximum value of the seventh derivaƟve of f on this
interval is again about ϭϱϬϲ (as the largest values come near x = Ϭ.ϵ).
Thus

∣
∣Rϲ(Ϯ)

∣
∣ ≤ max

∣
∣f (ϳ)(z)

∣
∣

ϳ!
∣
∣(Ϯ− ϭ)ϳ

∣
∣

≤ ϭϱϬϲ
ϱϬϰϬ

· ϭϳ

≈ Ϭ.ϯϬ.

This bound is not as nearly as good as before. Using the degree ϲ Taylor
polynomial at x = ϭ will bring us within Ϭ.ϯ of the correct answer. As
pϲ(Ϯ) ≈ Ϭ.ϲϭϲϲϳ, our error esƟmate guarantees that the actual value of
ln Ϯ is somewhere between Ϭ.ϯϭϲϲϳ and Ϭ.ϵϭϲϲϳ. These bounds are not
parƟcularly useful.
In reality, our approximaƟon was only off by about Ϭ.Ϭϳ. However, we
are approximaƟng ostensibly because we do not know the real answer. In
order to be assured that we have a good approximaƟon, we would have
to resort to using a polynomial of higher degree.

Notes:

ϰϳϬ



f(x) = cos x ⇒ f(Ϭ) = ϭ
f ′(x) = − sin x ⇒ f ′(Ϭ) = Ϭ
f ′′(x) = − cos x ⇒ f ′′(Ϭ) = −ϭ
f ′′′(x) = sin x ⇒ f ′′′(Ϭ) = Ϭ
f (ϰ)(x) = cos x ⇒ f (ϰ)(Ϭ) = ϭ
f (ϱ)(x) = − sin x ⇒ f (ϱ)(Ϭ) = Ϭ
f (ϲ)(x) = − cos x ⇒ f (ϲ)(Ϭ) = −ϭ
f (ϳ)(x) = sin x ⇒ f (ϳ)(Ϭ) = Ϭ
f (ϴ)(x) = cos x ⇒ f (ϴ)(Ϭ) = ϭ
f (ϵ)(x) = − sin x ⇒ f (ϵ)(Ϭ) = Ϭ

Figure ϴ.Ϯϰ: A table of the derivaƟves of
f(x) = cos x evaluated at x = Ϭ.
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y = p8(x)
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−Ϯ
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ϯ
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ϰ
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ϭ
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.
.. f(x) = cos x

Figure ϴ.Ϯϱ: A graph of f(x) = cos x and
its degree ϴ Maclaurin polynomial.

ϴ.ϳ Taylor Polynomials

We pracƟce again. This Ɵme, we use Taylor’s theorem to find n that guaran-
tees our approximaƟon is within a certain amount.

Example Ϯϲϰ Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = Ϭ approximates
cos Ϯ to within Ϭ.ϬϬϭ of the actual answer. What is pn(Ϯ)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivaƟves of f(x) = cos x. In the case of this trigonometric funcƟon, this is
easy. All derivaƟves of cosine are± sin x or± cos x. In all cases, these funcƟons
are never greater than ϭ in absolute value. We want the error to be less than
Ϭ.ϬϬϭ. To find the appropriate n, consider the following inequaliƟes:

max
∣
∣f (n+ϭ)(z)

∣
∣

(n+ ϭ)!
∣
∣(Ϯ− Ϭ)(n+ϭ)∣∣ ≤ Ϭ.ϬϬϭ

ϭ
(n+ ϭ)!

· Ϯ(n+ϭ) ≤ Ϭ.ϬϬϭ

We find an n that saƟsfies this last inequality with trial–and–error. When n = ϴ,

we have
Ϯϴ+ϭ

(ϴ+ ϭ)!
≈ Ϭ.ϬϬϭϰ; when n = ϵ, we have

Ϯϵ+ϭ

(ϵ+ ϭ)!
≈ Ϭ.ϬϬϬϮϴϮ <

Ϭ.ϬϬϭ. Thus we want to approximate cos Ϯ with pϵ(Ϯ).

We now set out to compute pϵ(x). We again need a table of the derivaƟves
of f(x) = cos x evaluated at x = Ϭ. A table of these values is given in Figure ϴ.Ϯϰ.
NoƟce how the derivaƟves, evaluated at x = Ϭ, follow a certain paƩern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is Ϭ.
While our error bounds state that we need pϵ(x), our work shows that this will
be the same as pϴ(x).

Since we are forming our polynomial at x = Ϭ, we are creaƟng a Maclaurin
polynomial, and:

pϴ(x) = f(Ϭ) + f ′(Ϭ)x+
f ′′(Ϭ)
Ϯ!

xϮ +
f ′′′(Ϭ)
ϯ!

xϯ + · · ·+ f (ϴ)

ϴ!
xϴ

= ϭ− ϭ
Ϯ!
xϮ +

ϭ
ϰ!
xϰ − ϭ

ϲ!
xϲ +

ϭ
ϴ!
xϴ

We finally approximate cos Ϯ:

cos Ϯ ≈ pϴ(Ϯ) = −ϭϯϭ
ϯϭϱ

≈ −Ϭ.ϰϭϱϴϳ.

Our error bound guarantee that this approximaƟon is within Ϭ.ϬϬϭ of the correct
answer. Technology shows us that our approximaƟon is actually within about
Ϭ.ϬϬϬϯ of the correct answer.

Figure ϴ.Ϯϱ shows a graph of y = pϴ(x) and y = cos x. Note how well the
two funcƟons agree on about (−π, π).

Notes:

ϰϳϭ



f(x) =
√
x ⇒ f(ϰ) = Ϯ

f ′(x) =
ϭ

Ϯ
√
x

⇒ f ′(ϰ) =
ϭ
ϰ

f ′′(x) =
−ϭ
ϰxϯ/Ϯ

⇒ f ′′(ϰ) =
−ϭ
ϯϮ

f ′′′(x) =
ϯ

ϴxϱ/Ϯ
⇒ f ′′′(ϰ) =

ϯ
Ϯϱϲ

f (ϰ)(x) =
−ϭϱ
ϭϲxϳ/Ϯ

⇒ f (ϰ)(ϰ) =
−ϭϱ
ϮϬϰϴ

Figure ϴ.Ϯϲ: A table of the derivaƟves of
f(x) =

√
x evaluated at x = ϰ.
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.. y =

√

x.
y = pϰ(x)

.
ϱ

.
ϭϬ
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ϭ

.

Ϯ

.

ϯ

. x.

y

Figure ϴ.Ϯϳ: A graph of f(x) =
√
x and its

degree ϰ Taylor polynomial at x = ϰ.
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Example Ϯϲϱ Finding and using Taylor polynomials

ϭ. Find the degree ϰ Taylor polynomial, pϰ(x), for f(x) =
√
x at x = ϰ.

Ϯ. Use pϰ(x) to approximate
√
ϯ.

ϯ. Find bounds on the error when approximaƟng
√
ϯ with pϰ(ϯ).

SÊ½çã®ÊÄ

ϭ. We begin by evaluaƟng the derivaƟves of f at x = ϰ. This is done in Figure
ϴ.Ϯϲ. These values allow us to form the Taylor polynomial pϰ(x):

pϰ(x) = Ϯ+
ϭ
ϰ
(x−ϰ)+

−ϭ/ϯϮ
Ϯ!

(x−ϰ)Ϯ+
ϯ/Ϯϱϲ
ϯ!

(x−ϰ)ϯ+
−ϭϱ/ϮϬϰϴ

ϰ!
(x−ϰ)ϰ.

Ϯ. As pϰ(x) ≈
√
x near x = ϰ, we approximate

√
ϯ with pϰ(ϯ) = ϭ.ϳϯϮϭϮ.

ϯ. To find a bound on the error, we need an open interval that contains x = ϯ
and x = ϰ. We set I = (Ϯ.ϵ, ϰ.ϭ). The largest value the fiŌh derivaƟve of
f(x) =

√
x takes on this interval is near x = Ϯ.ϵ, at about Ϭ.ϬϮϳϯ. Thus

∣
∣Rϰ(ϯ)

∣
∣ ≤ Ϭ.ϬϮϳϯ

ϱ!
∣
∣(ϯ− ϰ)ϱ

∣
∣ ≈ Ϭ.ϬϬϬϮϯ.

This shows our approximaƟon is accurate to at least the first Ϯ places aŌer
the decimal. (It turns out that our approximaƟon is actually accurate to
ϰ places aŌer the decimal.) A graph of f(x) =

√
x and pϰ(x) is given in

Figure ϴ.Ϯϳ. Note how the two funcƟons are nearly indisƟnguishable on
(Ϯ, ϳ).

Our final example gives a brief introducƟon to using Taylor polynomials to
solve differenƟal equaƟons.

Example Ϯϲϲ ApproximaƟng an unknown funcƟon
A funcƟon y = f(x) is unknown save for the following two facts.

ϭ. y(Ϭ) = f(Ϭ) = ϭ, and

Ϯ. y ′ = yϮ

(This second fact says that amazingly, the derivaƟve of the funcƟon is actually
the funcƟon squared!)

Find the degree ϯ Maclaurin polynomial pϯ(x) of y = f(x).

Notes:

ϰϳϮ
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Figure ϴ.Ϯϴ: A graph of y = −ϭ/(x − ϭ)
and y = pϯ(x) from Example Ϯϲϲ.

ϴ.ϳ Taylor Polynomials

SÊ½çã®ÊÄ Onemight iniƟally think that not enough informaƟon is given
to find pϯ(x). However, note how the second fact above actually lets us know
what y ′(Ϭ) is:

y ′ = yϮ ⇒ y ′(Ϭ) = yϮ(Ϭ).

Since y(Ϭ) = ϭ, we conclude that y ′(Ϭ) = ϭ.
Nowwe find informaƟon about y ′′. StarƟng with y ′ = yϮ, take derivaƟves of

both sides, with respect to x. That means we must use implicit differenƟaƟon.

y ′ = yϮ

d
dx
(
y ′
)
=

d
dx
(
yϮ
)

y ′′ = Ϯy · y ′.

Now evaluate both sides at x = Ϭ:

y ′′(Ϭ) = Ϯy(Ϭ) · y ′(Ϭ)
y ′′(Ϭ) = Ϯ

We repeat this once more to find y ′′′(Ϭ). We again use implicit differenƟaƟon;
this Ɵme the Product Rule is also required.

d
dx
(
y ′′
)
=

d
dx
(
Ϯyy ′

)

y ′′′ = Ϯy ′ · y ′ + Ϯy · y ′′.

Now evaluate both sides at x = Ϭ:

y ′′′(Ϭ) = Ϯy ′(Ϭ)Ϯ + Ϯy(Ϭ)y ′′(Ϭ)
y ′′′(Ϭ) = Ϯ+ ϰ = ϲ

In summary, we have:

y(Ϭ) = ϭ y ′(Ϭ) = ϭ y ′′(Ϭ) = Ϯ y ′′′(Ϭ) = ϲ.

We can now form pϯ(x):

pϯ(x) = ϭ+ x+
Ϯ
Ϯ!
xϮ +

ϲ
ϯ!
xϯ

= ϭ+ x+ xϮ + xϯ.

It turns out that the differenƟal equaƟon we started with, y ′ = yϮ, where
y(Ϭ) = ϭ, can be solved without too much difficulty: y =

ϭ
ϭ− x

. Figure ϴ.Ϯϴ

shows this funcƟon ploƩed with pϯ(x). Note how similar they are near x = Ϭ.

Notes:

ϰϳϯ



Chapter ϴ Sequences and Series

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate soluƟons to differenƟal equaƟons. This topic is
oŌen broached in introductory DifferenƟal EquaƟons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximaƟon is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
secƟon has taken a step back from this study, focusing instead on finite summa-
Ɵon of terms. In the next secƟon, we explore Taylor Series, where we represent
a funcƟon with an infinite series.

Notes:

ϰϳϰ



Exercises ϴ.ϳ
Terms and Concepts

ϭ. What is the difference between a Taylor polynomial and a
Maclaurin polynomial?

Ϯ. T/F: In general, pn(x) approximates f(x) beƩer and beƩer
as n gets larger.

ϯ. For some funcƟon f(x), theMaclaurin polynomial of degree
ϰ is pϰ(x) = ϲ+ ϯx− ϰxϮ + ϱxϯ − ϳxϰ. What is pϮ(x)?

ϰ. For some funcƟon f(x), theMaclaurin polynomial of degree
ϰ is pϰ(x) = ϲ+ ϯx− ϰxϮ + ϱxϯ − ϳxϰ. What is f ′′′(Ϭ)?

Problems
In Exercises ϱ – ϭϮ, find the Maclaurin polynomial of degree
n for the given funcƟon.

ϱ. f(x) = e−x, n = ϯ

ϲ. f(x) = sin x, n = ϴ

ϳ. f(x) = x · ex, n = ϱ

ϴ. f(x) = tan x, n = ϲ

ϵ. f(x) = eϮx, n = ϰ

ϭϬ. f(x) =
ϭ

ϭ− x
, n = ϰ

ϭϭ. f(x) =
ϭ

ϭ+ x
, n = ϰ

ϭϮ. f(x) =
ϭ

ϭ+ x
, n = ϳ

In Exercises ϭϯ – ϮϬ, find the Taylor polynomial of degree n,
at x = c, for the given funcƟon.

ϭϯ. f(x) =
√
x, n = ϰ, c = ϭ

ϭϰ. f(x) = ln(x+ ϭ), n = ϰ, c = ϭ

ϭϱ. f(x) = cos x, n = ϲ, c = π/ϰ

ϭϲ. f(x) = sin x, n = ϱ, c = π/ϲ

ϭϳ. f(x) =
ϭ
x
, n = ϱ, c = Ϯ

ϭϴ. f(x) =
ϭ
xϮ
, n = ϴ, c = ϭ

ϭϵ. f(x) =
ϭ

xϮ + ϭ
, n = ϯ, c = −ϭ

ϮϬ. f(x) = xϮ cos x, n = Ϯ, c = π

In Exercises Ϯϭ – Ϯϰ, approximate the funcƟon value with the
indicated Taylor polynomial and give approximate bounds on
the error.

Ϯϭ. Approximate sin Ϭ.ϭ with the Maclaurin polynomial of de-
gree ϯ.

ϮϮ. Approximate cos ϭ with the Maclaurin polynomial of de-
gree ϰ.

Ϯϯ. Approximate
√
ϭϬ with the Taylor polynomial of degree Ϯ

centered at x = ϵ.

Ϯϰ. Approximate ln ϭ.ϱ with the Taylor polynomial of degree ϯ
centered at x = ϭ.

Exercises Ϯϱ – Ϯϴ ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

Ϯϱ. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin Ϭ.ϬϬϬϭof the actual value.

Ϯϲ. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = ϰ, approximates

√
ϯ within Ϭ.ϬϬϬϭ of

the actual value.

Ϯϳ. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/ϯ within Ϭ.ϬϬϬϭ of the ac-
tual value.

Ϯϴ. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within Ϭ.ϬϬϬϭ of the actual
value.

In Exercises Ϯϵ – ϯϯ, find the nth term of the indicated Taylor
polynomial.

Ϯϵ. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

ϯϬ. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

ϯϭ. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

ϭ
ϭ− x

.

ϯϮ. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

ϭ
ϭ+ x

.

ϯϯ. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x.

ϰϳϱ



In Exercises ϯϰ – ϯϲ, approximate the soluƟon to the given
differenƟal equaƟon with a degree ϰ Maclaurin polynomial.

ϯϰ. y′ = y, y(Ϭ) = ϭ

ϯϱ. y′ = ϱy, y(Ϭ) = ϯ

ϯϲ. y′ =
Ϯ
y
, y(Ϭ) = ϭ

ϰϳϲ



f(x) = cos x ⇒ f(Ϭ) = ϭ
f ′(x) = − sin x ⇒ f ′(Ϭ) = Ϭ
f ′′(x) = − cos x ⇒ f ′′(Ϭ) = −ϭ
f ′′′(x) = sin x ⇒ f ′′′(Ϭ) = Ϭ
f (ϰ)(x) = cos x ⇒ f (ϰ)(Ϭ) = ϭ
f (ϱ)(x) = − sin x ⇒ f (ϱ)(Ϭ) = Ϭ
f (ϲ)(x) = − cos x ⇒ f (ϲ)(Ϭ) = −ϭ
f (ϳ)(x) = sin x ⇒ f (ϳ)(Ϭ) = Ϭ
f (ϴ)(x) = cos x ⇒ f (ϴ)(Ϭ) = ϭ
f (ϵ)(x) = − sin x ⇒ f (ϵ)(Ϭ) = Ϭ

Figure ϴ.Ϯϵ: A table of the derivaƟves of
f(x) = cos x evaluated at x = Ϭ.

ϴ.ϴ Taylor Series

ϴ.ϴ Taylor Series
In SecƟon ϴ.ϲ, we showed how certain funcƟons can be represented by a power
series funcƟon. In ϴ.ϳ, we showed howwe can approximate funcƟons with poly-
nomials, given that enough derivaƟve informaƟon is available. In this secƟonwe
combine these concepts: if a funcƟon f(x) is infinitely differenƟable, we show
how to represent it with a power series funcƟon.

DefiniƟon ϯϵ Taylor and Maclaurin Series

Let f(x) have derivaƟves of all orders at x = c.

ϭ. The Taylor Series of f(x), centered at c is

∞∑

n=Ϭ

f (n)(c)
n!

(x− c)n.

Ϯ. Seƫng c = Ϭ gives theMaclaurin Series of f(x):

∞∑

n=Ϭ

f (n)(Ϭ)
n!

xn.

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the laƩer is
a series, a summaƟon of an infinite set of terms. When creaƟng the Taylor poly-
nomial of degree n for a funcƟon f(x) at x = c, we needed to evaluate f, and the
first n derivaƟves of f, at x = c. When creaƟng the Taylor series of f, it helps to
find a paƩern that describes the nth derivaƟve of f at x = c. We demonstrate
this in the next two examples.

Example Ϯϲϳ The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example Ϯϲϰ we found the ϴth degree Maclaurin polyno-
mial of cos x. In doing so, we created the table shown in Figure ϴ.Ϯϵ. NoƟce how
f (n)(Ϭ) = Ϭwhen n is odd, f (n)(Ϭ) = ϭwhen n is divisible by ϰ, and f (n)(Ϭ) = −ϭ
when n is even but not divisible by ϰ. Thus the Maclaurin series of cos x is

ϭ− xϮ

Ϯ
+

xϰ

ϰ!
− xϲ

ϲ!
+

xϴ

ϴ!
− · · ·

Notes:

ϰϳϳ



f(x) = ln x ⇒ f(ϭ) = Ϭ
f ′(x) = ϭ/x ⇒ f ′(ϭ) = ϭ
f ′′(x) = −ϭ/xϮ ⇒ f ′′(ϭ) = −ϭ
f ′′′(x) = Ϯ/xϯ ⇒ f ′′′(ϭ) = Ϯ
f (ϰ)(x) = −ϲ/xϰ ⇒ f (ϰ)(ϭ) = −ϲ
f (ϱ)(x) = Ϯϰ/xϱ ⇒ f (ϱ)(ϭ) = Ϯϰ
...

...
f (n)(x) = ⇒ f (n)(ϭ) =
(−ϭ)n+ϭ(n− ϭ)!

xn
(−ϭ)n+ϭ(n− ϭ)!

Figure ϴ.ϯϬ: DerivaƟves of ln x evaluated
at x = ϭ.

Chapter ϴ Sequences and Series

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of xϮn:

∞∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
.

Example Ϯϲϴ The Taylor series of f(x) = ln x at x = ϭ
Find the Taylor series of f(x) = ln x centered at x = ϭ.

SÊ½çã®ÊÄ Figure ϴ.ϯϬ shows the nth derivaƟve of ln x evaluated at x =
ϭ for n = Ϭ, . . . , ϱ, along with an expression for the nth term:

f (n)(ϭ) = (−ϭ)n+ϭ(n− ϭ)! for n ≥ ϭ.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(ϭ) = ln ϭ = Ϭ, we skip the
first term and start the summaƟon with n = ϭ, giving the Taylor series for ln x,
centered at x = ϭ, as

∞∑

n=ϭ

(−ϭ)n+ϭ(n− ϭ)!
ϭ
n!
(x− ϭ)n =

∞∑

n=ϭ

(−ϭ)n+ϭ (x− ϭ)n

n
.

It is important to note that DefiniƟon ϯϵ defines a Taylor series given a func-
Ɵon f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the Ɵme” they are equal, but we need to consider the
condiƟons that allow us to conclude this.

Theorem ϳϲ states that the error between a funcƟon f(x) and its nth–degree
Taylor polynomial pn(x) is Rn(x), where

∣
∣Rn(x)

∣
∣ ≤ max

∣
∣ f (n+ϭ)(z)

∣
∣

(n+ ϭ)!
∣
∣(x− c)(n+ϭ)∣∣.

If Rn(x) goes to Ϭ for each x in an interval I as n approaches infinity, we con-
clude that the funcƟon is equal to its Taylor series expansion.

Notes:

ϰϳϴ



ϴ.ϴ Taylor Series

Theorem ϳϳ FuncƟon and Taylor Series Equality

Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem ϳϲ, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = Ϭ for all x in I, then

f(x) =
∞∑

n=Ϭ

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

Example Ϯϲϵ Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example Ϯϲϳ,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by

∣
∣Rn(x)

∣
∣ ≤ max

∣
∣ f (n+ϭ)(z)

∣
∣

(n+ ϭ)!
∣
∣xn+ϭ∣∣.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by ϭ, we can state

∣
∣Rn(x)

∣
∣ ≤ ϭ

(n+ ϭ)!
∣
∣xn+ϭ∣∣

which implies

− |xn+ϭ|
(n+ ϭ)!

≤ Rn(x) ≤
|xn+ϭ|
(n+ ϭ)!

. (ϴ.ϳ)

For any x, lim
n→∞

xn+ϭ

(n+ ϭ)!
= Ϭ. Applying the Squeeze Theorem to EquaƟon (ϴ.ϳ),

we conclude that lim
n→∞

Rn(x) = Ϭ for all x, and hence

cos x =
∞∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
for all x.

It is natural to assume that a funcƟon is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem ϳϳ. This is a bit disappoinƟng, as we
developed beauƟful techniques for determining the interval of convergence of
a power series, and proving that Rn(x) → Ϭ can be cumbersome as it deals with
high order derivaƟves of the funcƟon.

Notes:
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There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, and most, if
not all, funcƟons that we encounter within this course are analyƟc funcƟons.
Generally speaking, any funcƟon that one creates with elementary funcƟons
(polynomials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise
defined is probably analyƟc. Formost funcƟons, we assume the funcƟon is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
ϳϳ when we suspect something may not work as expected.

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

Example ϮϳϬ The Binomial Series
Find the Maclaurin series of f(x) = (ϭ+ x)k, k ̸= Ϭ.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = ϰ, we have

f(x) = (ϭ+ x)ϰ = ϭ+ ϰx+ ϲxϮ + ϰxϯ + xϰ.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = ϭ/Ϯ, we have f(x) =
√
ϭ+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
ϭ.ϯ, for instance.

To develop the Maclaurin series for f(x) = (ϭ + x)k for any value of k ̸= Ϭ,
we consider the derivaƟves of f evaluated at x = Ϭ:

f(x) = (ϭ+ x)k f(Ϭ) = ϭ

f ′(x) = k(ϭ+ x)k−ϭ f ′(Ϭ) = k

f ′′(x) = k(k− ϭ)(ϭ+ x)k−Ϯ f ′′(Ϭ) = k(k− ϭ)

f ′′′(x) = k(k− ϭ)(k− Ϯ)(ϭ+ x)k−ϯ f ′′′(Ϭ) = k(k− ϭ)(k− Ϯ)
...

...

f (n)(x) = k(k− ϭ) · · ·
(

k− (n− ϭ)
)

(ϭ+ x)k−n f (n)(Ϭ) = k(k− ϭ) · · ·
(

k− (n− ϭ)
)

Thus the Maclaurin series for f(x) = (ϭ+ x)k is

ϭ+ k+
k(k− ϭ)

Ϯ!
+

k(k− ϭ)(k− Ϯ)
ϯ!

+ . . .+
k(k− ϭ) · · ·

(
k− (n− ϭ)

)

n!
+ . . .

It is important to determine the interval of convergence of this series. With

an =
k(k− ϭ) · · ·

(
k− (n− ϭ)

)

n!
xn,

Notes:
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we apply the RaƟo Test:

lim
n→∞

|an+ϭ|
|an|

= lim
n→∞

∣
∣
∣
∣

k(k− ϭ) · · · (k− n)
(n+ ϭ)!

xn+ϭ
∣
∣
∣
∣

/∣
∣
∣
∣
∣

k(k− ϭ) · · ·
(
k− (n− ϭ)

)

n!
xn
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

k− n
n

x
∣
∣
∣
∣

= |x|.

The series converges absolutely when the limit of the RaƟo Test is less than
ϭ; therefore, we have absolute convergence when |x| < ϭ.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > Ϭ, the interval of convergence is [−ϭ, ϭ]. When
−ϭ < k < Ϭ, the interval of convergence is [−ϭ, ϭ). If k ≤ −ϭ, the interval of
convergence is (−ϭ, ϭ).

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea ϯϮ (on the following page) we give a table of the Taylor series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea ϯϮ). Knowing that tan−ϭ(ϭ) = π/ϰ, we can
use this series to approximate the value of π:

π

ϰ
= tan−ϭ(ϭ) = ϭ− ϭ

ϯ
+

ϭ
ϱ
− ϭ

ϳ
+

ϭ
ϵ
− · · ·

π = ϰ
(

ϭ− ϭ
ϯ
+

ϭ
ϱ
− ϭ

ϳ
+

ϭ
ϵ
− · · ·

)

Unfortunately, this parƟcular expansion of π converges very slowly. The first
ϭϬϬ terms approximate π as ϯ.ϭϯϭϱϵ, which is not parƟcularly good.

Notes:
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Key Idea ϯϮ Important Taylor Series Expansions

FuncƟon and Series First Few Terms Interval of
Convergence

ex =
∞∑

n=Ϭ

xn

n!
ϭ+ x+

xϮ

Ϯ!
+

xϯ

ϯ!
+ · · · (−∞,∞)

sin x =
∞∑

n=Ϭ

(−ϭ)n
xϮn+ϭ

(Ϯn+ ϭ)!
x− xϯ

ϯ!
+

xϱ

ϱ!
− xϳ

ϳ!
+ · · · (−∞,∞)

cos x =
∞∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
− xϲ

ϲ!
+ · · · (−∞,∞)

ln x =
∞∑

n=ϭ

(−ϭ)n+ϭ (x− ϭ)n

n
(x− ϭ)− (x− ϭ)Ϯ

Ϯ
+

(x− ϭ)ϯ

ϯ
− · · · (Ϭ, Ϯ]

ϭ
ϭ− x

=
∞∑

n=Ϭ

xn ϭ+ x+ xϮ + xϯ + · · · (−ϭ, ϭ)

(ϭ+ x)k =
∞
∑

n=Ϭ

k(k− ϭ) · · ·
(

k− (n− ϭ)
)

n!
xn ϭ+ kx+

k(k− ϭ)
Ϯ!

xϮ + · · · (−ϭ, ϭ)a

tan−ϭ x =
∞∑

n=Ϭ

(−ϭ)n
xϮn+ϭ

Ϯn+ ϭ
x− xϯ

ϯ
+

xϱ

ϱ
− xϳ

ϳ
+ · · · [−ϭ, ϭ]

aConvergence at x = ±ϭ depends on the value of k.

Theorem ϳϴ Algebra of Power Series

Let f(x) =
∞∑

n=Ϭ

anxn and g(x) =
∞∑

n=Ϭ

bnxn converge absolutely for |x| < R, and let h(x) be conƟnuous.

ϭ. f(x)± g(x) =
∞∑

n=Ϭ

(an ± bn)xn for |x| < R.

Ϯ. f(x)g(x) =

( ∞∑

n=Ϭ

anxn
)( ∞∑

n=Ϭ

bnxn
)

=
∞∑

n=Ϭ

(
aϬbn + aϭbn−ϭ + . . . anbϬ

)
xn for |x| < R.

ϯ. f
(
h(x)

)
=

∞∑

n=Ϭ

an
(
h(x)

)n for |h(x)| < R.

Notes:
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Example Ϯϳϭ Combining Taylor series
Write out the first ϯ terms of the Taylor Series for f(x) = ex cos x using Key Idea
ϯϮ and Theorem ϳϴ.

SÊ½çã®ÊÄ Key Idea ϯϮ informs us that

ex = ϭ+ x+
xϮ

Ϯ!
+

xϯ

ϯ!
+ · · · and cos x = ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · · .

Applying Theorem ϳϴ, we find that

ex cos x =
(

ϭ+ x+
xϮ

Ϯ!
+

xϯ

ϯ!
+ · · ·

)(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

.

Distribute the right hand expression across the leŌ:

= ϭ
(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

+ x
(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

+
xϮ

Ϯ!

(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

+
xϯ

ϯ!

(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

+
xϰ

ϰ!

(

ϭ− xϮ

Ϯ!
+

xϰ

ϰ!
+ · · ·

)

+ · · ·

Distribute again and collect like terms.

= ϭ+ x− xϯ

ϯ
− xϰ

ϲ
− xϱ

ϯϬ
+

xϳ

ϲϯϬ
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x.

Example ϮϳϮ CreaƟng new Taylor series
Use Theorem ϳϴ to create series for y = sin(xϮ) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑

n=Ϭ

(−ϭ)n
xϮn+ϭ

(Ϯn+ ϭ)!
= x− xϯ

ϯ!
+

xϱ

ϱ!
− xϳ

ϳ!
+ · · · ,

we simply subsƟtute xϮ for x in the series, giving

sin(xϮ) =
∞∑

n=Ϭ

(−ϭ)n
(xϮ)Ϯn+ϭ

(Ϯn+ ϭ)!
= xϮ − xϲ

ϯ!
+

xϭϬ

ϱ!
− xϭϰ

ϳ!
· · · .

Notes:

ϰϴϯ



Note: In Example ϮϳϮ, one could create
a series for ln(

√
x) by simply recogniz-

ing that ln(
√
x) = ln(xϭ/Ϯ) = ϭ/Ϯ ln x,

and hence mulƟplying the Taylor series
for ln x by ϭ/Ϯ. This example was cho-
sen to demonstrate other aspects of se-
ries, such as the fact that the interval of
convergence changes.

Chapter ϴ Sequences and Series

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(xϮ).

The Taylor expansion for ln x given in Key Idea ϯϮ is centered at x = ϭ, so we
will center the series for ln(

√
x) at x = ϭ as well. With

ln x =
∞∑

n=ϭ

(−ϭ)n+ϭ (x− ϭ)n

n
= (x− ϭ)− (x− ϭ)Ϯ

Ϯ
+

(x− ϭ)ϯ

ϯ
− · · · ,

we subsƟtute
√
x for x to obtain

ln(
√
x) =

∞∑

n=ϭ

(−ϭ)n+ϭ (
√
x− ϭ)n

n
= (

√
x−ϭ)− (

√
x− ϭ)Ϯ

Ϯ
+

(
√
x− ϭ)ϯ

ϯ
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
funcƟon ln(

√
x). Since the interval of convergence of ln x is (Ϭ, Ϯ], and the range

of
√
x on (Ϭ, ϰ] is (Ϭ, Ϯ], the interval of convergence of this series expansion of

ln(
√
x) is (Ϭ, ϰ].

Example Ϯϳϯ Using Taylor series to evaluate definite integrals

Use the Taylor series of e−xϮ to evaluate
∫ ϭ

Ϭ
e−xϮ dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−xϮ

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−xϮ using the Taylor series of
ex:

ex =
∞∑

n=Ϭ

xn

n!
= ϭ+ x+

xϮ

Ϯ!
+

xϯ

ϯ!
+ · · ·

and so

e−xϮ =
∞∑

n=Ϭ

(−xϮ)n

n!

=
∞∑

n=Ϭ

(−ϭ)n
xϮn

n!

= ϭ− xϮ +
xϰ

Ϯ!
− xϲ

ϯ!
+ · · · .

Notes:

ϰϴϰ



ϴ.ϴ Taylor Series

We use Theorem ϳϱ to integrate:
∫

e−xϮ dx = C+ x− xϯ

ϯ
+

xϱ

ϱ · Ϯ! −
xϳ

ϳ · ϯ! + · · ·+ (−ϭ)n
xϮn+ϭ

(Ϯn+ ϭ)n!
+ · · ·

This is the anƟderivaƟve of e−xϮ ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
∫ ϭ

Ϭ
e−xϮ dx using this anƟderivaƟve; subsƟtuƟng ϭ and Ϭ for x and sub-

tracƟng gives
∫ ϭ

Ϭ
e−xϮ dx = ϭ− ϭ

ϯ
+

ϭ
ϱ · Ϯ! −

ϭ
ϳ · ϯ! +

ϭ
ϵ · ϰ! · · · .

Summing the ϱ terms shown above give the approximaƟon of Ϭ.ϳϰϳϰϵ. Since
this is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon
Theorem, (Theorem ϳϭ), to determine how accurate this approximaƟon is. The
next term of the series is ϭ/(ϭϭ · ϱ!) ≈ Ϭ.ϬϬϬϳϱϳϱϴ. Thus we know our approxi-
maƟon is within Ϭ.ϬϬϬϳϱϳϱϴ of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral.

Example Ϯϳϰ Using Taylor series to solve differenƟal equaƟons
Solve the differenƟal equaƟon y ′ = Ϯy in terms of a power series, and use the
theory of Taylor series to recognize the soluƟon in terms of an elementary func-
Ɵon.

SÊ½çã®ÊÄ We found the first ϱ terms of the power series soluƟon to
this differenƟal equaƟon in Example ϮϲϬ in SecƟon ϴ.ϲ. These are:

aϬ = ϭ, aϭ = Ϯ, aϮ =
ϰ
Ϯ
= Ϯ, aϯ =

ϴ
Ϯ · ϯ =

ϰ
ϯ
, aϰ =

ϭϲ
Ϯ · ϯ · ϰ =

Ϯ
ϯ
.

We include the “unsimplified” expressions for the coefficients found in Example
ϮϲϬ as we are looking for a paƩern. It can be shown that an = Ϯn/n!. Thus the
soluƟon, wriƩen as a power series, is

y =
∞∑

n=Ϭ

Ϯn

n!
xn =

∞∑

n=Ϭ

(Ϯx)n

n!
.

Using Key Idea ϯϮ and Theorem ϳϴ, we recognize f(x) = eϮx:

ex =
∞∑

n=Ϭ

xn

n!
⇒ eϮx =

∞∑

n=Ϭ

(Ϯx)n

n!
.

Notes:

ϰϴϱ



Chapter ϴ Sequences and Series

Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea ϯϮ, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we sƟll recover the funcƟon y = eϮx?

Suppose that all we know is that

aϬ = ϭ, aϭ = Ϯ, aϮ = Ϯ, aϯ =
ϰ
ϯ
, aϰ =

Ϯ
ϯ
.

DefiniƟon ϯϵ states that each term of the Taylor expansion of a funcƟon includes
an n!. This allows us to say that

aϮ = Ϯ =
bϮ
Ϯ!
, aϯ =

ϰ
ϯ
=

bϯ
ϯ!
, and aϰ =

Ϯ
ϯ
=

bϰ
ϰ!

for some values bϮ, bϯ and bϰ. Solving for these values, we see that bϮ = ϰ,
bϯ = ϴ and bϰ = ϭϲ. That is, we are recovering the paƩern we had previously
seen, allowing us to write

f(x) =
∞∑

n=Ϭ

anxn =
∞∑

n=Ϭ

bn
n!

xn

= ϭ+ Ϯx+
ϰ
Ϯ!
xϮ +

ϴ
ϯ!
xϯ +

ϭϲ
ϰ!

xϰ + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

There are simpler, more direct ways of solving the differenƟal equaƟon y ′ =
Ϯy. We applied power series techniques to this equaƟon to demonstrate its uƟl-
ity, and went on to show how someƟmes we are able to recover the soluƟon in
terms of elementary funcƟons using the theory of Taylor series. Most differen-
Ɵal equaƟons faced in real scienƟfic and engineering situaƟons are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximaƟng, the soluƟon.

This chapter introduced sequences, which are ordered lists of numbers, fol-
lowed by series, wherein we add up the terms of a sequence. We quickly saw
that such sums do not always add up to “infinity,” but rather converge. We stud-
ied tests for convergence, then ended the chapter with a formal way of defining
funcƟons based on series. Such “series–defined funcƟons” are a valuable tool
in solving a number of different problems throughout science and engineering.

Coming in the next chapters are new ways of defining curves in the plane
apart from using funcƟons of the form y = f(x). Curves created by these new
methods can be beauƟful, useful, and important.

Notes:

ϰϴϲ



Exercises ϴ.ϴ
Terms and Concepts

ϭ. What is the difference between a Taylor polynomial and a
Taylor series?

Ϯ. What theoremmustwe use to show that a funcƟon is equal
to its Taylor series?

Problems
Key Idea ϯϮ gives the nth term of the Taylor series of common
funcƟons. In Exercises ϯ – ϲ, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given funcƟon and idenƟfying a paƩern.

ϯ. f(x) = ex; c = Ϭ

ϰ. f(x) = sin x; c = Ϭ

ϱ. f(x) = ϭ/(ϭ− x); c = Ϭ

ϲ. f(x) = tan−ϭ x; c = Ϭ

In Exercises ϳ – ϭϮ, find a formula for the nth termof the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a paƩern. (The formu-
las for several of these are found in Key Idea ϯϮ; show work
verifying these formula.)

ϳ. f(x) = cos x; c = π/Ϯ

ϴ. f(x) = ϭ/x; c = ϭ

ϵ. f(x) = e−x; c = Ϭ

ϭϬ. f(x) = ln(ϭ+ x); c = Ϭ

ϭϭ. f(x) = x/(x+ ϭ); c = ϭ

ϭϮ. f(x) = sin x; c = π/ϰ

In Exercises ϭϯ – ϭϲ, show that the Taylor series for f(x), as
given in Key Idea ϯϮ, is equal to f(x) by applying Theorem ϳϳ;
that is, show lim

n→∞
Rn(x) = Ϭ.

ϭϯ. f(x) = ex

ϭϰ. f(x) = sin x

ϭϱ. f(x) = ln x

ϭϲ. f(x) = ϭ/(ϭ− x) (show equality only on (−ϭ, Ϭ))

In Exercises ϭϳ – ϮϬ, use the Taylor series given in Key Idea ϯϮ
to verify the given idenƟty.

ϭϳ. cos(−x) = cos x

ϭϴ. sin(−x) = − sin x

ϭϵ. d
dx

(

sin x
)

= cos x

ϮϬ. d
dx

(

cos x
)

= − sin x

In Exercises Ϯϭ – Ϯϰ, write out the first ϱ terms of the Binomial
series with the given k-value.

Ϯϭ. k = ϭ/Ϯ

ϮϮ. k = −ϭ/Ϯ

Ϯϯ. k = ϭ/ϯ

Ϯϰ. k = ϰ

In Exercises Ϯϱ – ϯϬ, use the Taylor series given in Key Idea ϯϮ
to create the Taylor series of the given funcƟons.

Ϯϱ. f(x) = cos
(

xϮ
)

Ϯϲ. f(x) = e−x

Ϯϳ. f(x) = sin
(

Ϯx+ ϯ
)

Ϯϴ. f(x) = tan−ϭ (x/Ϯ
)

Ϯϵ. f(x) = ex sin x (only find the first ϰ terms)

ϯϬ. f(x) = (ϭ+ x)ϭ/Ϯ cos x (only find the first ϰ terms)

In Exercises ϯϭ – ϯϮ, approximate the value of the given def-
inite integral by using the first ϰ nonzero terms of the inte-
grand’s Taylor series.

ϯϭ.
∫

√
π

Ϭ
sin
(

xϮ
)

dx

ϯϮ.
∫ πϮ/ϰ

Ϭ
cos
(√

x
)

dx

ϰϴϳ
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We have explored funcƟons of the form y = f(x) closely throughout this text.
We have explored their limits, their derivaƟves and their anƟderivaƟves; we
have learned to idenƟfy key features of their graphs, such as relaƟve maxima
andminima, inflecƟon points and asymptotes; we have found equaƟons of their
tangent lines, the areas between porƟons of their graphs and the x-axis, and the
volumes of solids generated by revolving porƟons of their graphs about a hori-
zontal or verƟcal axis.

Despite all this, the graphs created by funcƟons of the form y = f(x) are
limited. Since each x-value can correspond to only ϭ y-value, common shapes
like circles cannot be fully described by a funcƟon in this form. Fiƫngly, the
“verƟcal line test” excludes verƟcal lines from being funcƟons of x, even though
these lines are important in mathemaƟcs.

In this chapter we’ll explore new ways of drawing curves in the plane. We’ll
sƟll workwithin the framework of funcƟons, as an inputwill sƟll only correspond
to one output. However, our new techniques of drawing curves will render the
verƟcal line test pointless, and allow us to create important – and beauƟful –
new curves. Once these curves are defined, we’ll apply the concepts of calculus
to them, conƟnuing to find equaƟons of tangent lines and the areas of enclosed
regions.

ϵ.ϭ Conic SecƟons
The ancient Greeks recognized that interesƟng shapes can be formed by inter-
secƟng a plane with a double napped cone (i.e., two idenƟcal cones placed Ɵp–
to–Ɵp as shown in the following figures). As these shapes are formed as secƟons
of conics, they have earned the official name “conic secƟons.”

The three “most interesƟng” conic secƟons are given in the top rowof Figure
ϵ.ϭ. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the Ɵps of the cones
(usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure ϵ.ϭ: Conic SecƟons



..

Directrix

.

Focus

.
Vertex

.

}

p
.
}

p

.

(x, y)

.

d

. d.

Ax
is
of

.

Sy
m
m
et
ry

Figure ϵ.Ϯ: IllustraƟng the definiƟon of
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Chapter ϵ Curves in the Plane

When the plane does contain the origin, three degenerate cones can be
formed as shown the boƩom row of Figure ϵ.ϭ: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuiƟve, visual
way, these constructs are not very helpful when trying to analyze the shapes
algebraically or consider them as the graph of a funcƟon. It can be shown that
all conics can be defined by the general second–degree equaƟon

AxϮ + Bxy+ CyϮ + Dx+ Ey+ F = Ϭ.

While this algebraic definiƟon has its uses, most find another geometric per-
specƟve of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
saƟsfy a certain distance property. These distance properƟes can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
funcƟon.

Parabolas

DefiniƟon ϰϬ Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure ϵ.Ϯ illustrates this definiƟon. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the porƟon of the parabola on one side of
this line is the mirror–image of the porƟon on the opposite side.

The definiƟon leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (Ϭ, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (Ϭ, Ϭ).)

We use the Distance Formula to find the distance dϭ between F and P:

dϭ =
√

(x− Ϭ)Ϯ + (y− p)Ϯ.

The distance dϮ from P to the directrix is more straighƞorward:

dϮ = y− (−p) = y+ p.

Notes:

ϰϵϬ



ϵ.ϭ Conic SecƟons

These two distances are equal. Seƫng dϭ = dϮ, we can solve for y in terms of x:

dϭ = dϮ
√

xϮ + (y− p)Ϯ = y+ p

Now square both sides.

xϮ + (y− p)Ϯ = (y+ p)Ϯ

xϮ + yϮ − Ϯyp+ pϮ = yϮ + Ϯyp+ pϮ

xϮ = ϰyp

y =
ϭ
ϰp

xϮ.

The geometric definiƟon of the parabola has led us to the familiar quadraƟc
funcƟonwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (Ϭ, Ϭ), we get the following standard form of the parabola.

Key Idea ϯϯ General EquaƟon of a Parabola

ϭ. VerƟcal Axis of Symmetry: The equaƟon of the parabola with ver-
tex at (h, k) and directrix y = k− p in standard form is

y =
ϭ
ϰp

(x− h)Ϯ + k.

The focus is at (h, k+ p).

Ϯ. Horizontal Axis of Symmetry: The equaƟon of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
ϭ
ϰp

(y− k)Ϯ + h.

The focus is at (h+ p, k).

Note: p is not necessarily a posiƟve number.

Example Ϯϳϱ Finding the equaƟon of a parabola
Give the equaƟon of the parabola with focus at (ϭ, Ϯ) and directrix at y = ϯ.

SÊ½çã®ÊÄ The vertex is located halfway between the focus and direc-
trix, so (h, k) = (ϭ, Ϯ.ϱ). This gives p = −Ϭ.ϱ. Using Key Idea ϯϯ we have the

Notes:

ϰϵϭ
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Chapter ϵ Curves in the Plane

equaƟon of the parabola as

y =
ϭ

ϰ(−Ϭ.ϱ)
(x− ϭ)Ϯ + Ϯ.ϱ = −ϭ

Ϯ
(x− ϭ)Ϯ + Ϯ.ϱ.

The parabola is sketched in Figure ϵ.ϯ.

Example Ϯϳϲ Finding the focus and directrix of a parabola
Find the focus and directrix of the parabola x = ϭ

ϴy
Ϯ − y + ϭ. The point (ϳ, ϭϮ)

lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

SÊ½çã®ÊÄ We need to put the equaƟon of the parabola in its general
form. This requires us to complete the square:

x =
ϭ
ϴ
yϮ − y+ ϭ

=
ϭ
ϴ
(
yϮ − ϴy+ ϴ

)

=
ϭ
ϴ
(
yϮ − ϴy+ ϭϲ− ϭϲ+ ϴ

)

=
ϭ
ϴ
(
(y− ϰ)Ϯ − ϴ

)

=
ϭ
ϴ
(y− ϰ)Ϯ − ϭ.

Hence the vertex is located at (−ϭ, ϰ). We have ϭ
ϴ = ϭ

ϰp , so p = Ϯ. We conclude
that the focus is located at (ϭ, ϰ) and the directrix is x = −ϯ. The parabola is
graphed in Figure ϵ.ϰ, along with its focus and directrix.

The point (ϳ, ϭϮ) lies on the graph and is ϳ − (−ϯ) = ϭϬ units from the
directrix. The distance from (ϳ, ϭϮ) to the focus is:

√

(ϳ− ϭ)Ϯ + (ϭϮ− ϰ)Ϯ =
√
ϭϬϬ = ϭϬ.

Indeed, the point on the parabola is equidistant from the focus and directrix.

ReflecƟve Property

One of the fascinaƟng things about the nondegenerate conic secƟons is their
reflecƟve properƟes. Parabolas have the following reflecƟve property:

Any ray emanaƟng from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure ϵ.ϱ. The following theorem states this more rig-
orously.

Notes:

ϰϵϮ
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ϵ.ϭ Conic SecƟons

Theorem ϳϵ ReflecƟve Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

ϭ. The line containing P and the focus F, and

Ϯ. The line perpendicular to the directrix through P.

Because of this reflecƟve property, paraboloids (the ϯD analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effecƟvely approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

Ellipses

DefiniƟon ϰϭ Ellipse

An ellipse is the locus of all points whose sumof distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construcƟon of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil Ɵght against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure ϵ.ϲ.

We can again find an algebraic equaƟon for an ellipse using this geometric
definiƟon. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled as Fϭ = (−c, Ϭ) and FϮ = (c, Ϭ). Let P = (x, y) be a point
on the ellipse. The sum of distances from Fϭ to P (dϭ) and from FϮ to P (dϮ) is a
constant d. That is, dϭ + dϮ = d. Using the Distance Formula, we have

√

(x+ c)Ϯ + yϮ +
√

(x− c)Ϯ + yϮ = d.

Using a fair amount of algebra can produce the following equaƟon of an ellipse
(note that the equaƟon is an implicitly defined funcƟon; it has to be, as an ellipse
fails the VerƟcal Line Test):

xϮ
( d
Ϯ

)Ϯ +
yϮ

( d
Ϯ

)Ϯ − cϮ
= ϭ.

Notes:
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Figure ϵ.ϳ: Labeling the significant fea-
tures of an ellipse.
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Ϯϳϳ.

Chapter ϵ Curves in the Plane

This is not parƟcularly illuminaƟng, but by making the subsƟtuƟon a = d/Ϯ and
b =

√
aϮ − cϮ, we can rewrite the above equaƟon as

xϮ

aϮ
+

yϮ

bϮ
= ϭ.

This choice of a and b is not without reason; as shown in Figure ϵ.ϳ, the values
of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on themajor axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., Ϯa.

Allowing for the shiŌing of the ellipse gives the following standard equaƟons.

Key Idea ϯϰ Standard EquaƟon of the Ellipse

The equaƟon of an ellipse centered at (h, k)with major axis of length Ϯa
and minor axis of length Ϯb in standard form is:

ϭ. Horizontal major axis:
(x− h)Ϯ

aϮ
+

(y− k)Ϯ

bϮ
= ϭ.

Ϯ. VerƟcal major axis:
(x− h)Ϯ

bϮ
+

(y− k)Ϯ

aϮ
= ϭ.

The foci lie along the major axis, c units from the center, where cϮ =
aϮ − bϮ.

Example Ϯϳϳ Finding the equaƟon of an ellipse
Find the general equaƟon of the ellipse graphed in Figure ϵ.ϴ.

SÊ½çã®ÊÄ The center is located at (−ϯ, ϭ). The distance from the cen-
ter to a vertex is ϱ units, hence a = ϱ. The minor axis seems to have length ϰ,
so b = Ϯ. Thus the equaƟon of the ellipse is

(x+ ϯ)Ϯ

ϰ
+

(y− ϭ)Ϯ

Ϯϱ
= ϭ.

Example Ϯϳϴ Graphing an ellipse
Graph the ellipse defined by ϰxϮ + ϵyϮ − ϴx− ϯϲy = −ϰ.

Notes:
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Figure ϵ.ϭϬ: Understanding the eccentric-
ity of an ellipse.

ϵ.ϭ Conic SecƟons

SÊ½çã®ÊÄ It is simple to graph an ellipse once it is in standard form. In
order to put the given equaƟon in standard form, we must complete the square
with both the x and y terms. We first rewrite the equaƟon by regrouping:

ϰxϮ + ϵyϮ − ϴx− ϯϲy = −ϰ ⇒ (ϰxϮ − ϴx) + (ϵyϮ − ϯϲy) = −ϰ.

Now we complete the squares.

(ϰxϮ − ϴx) + (ϵyϮ − ϯϲy) = −ϰ

ϰ(xϮ − Ϯx) + ϵ(yϮ − ϰy) = −ϰ

ϰ(xϮ − Ϯx+ ϭ− ϭ) + ϵ(yϮ − ϰy+ ϰ− ϰ) = −ϰ

ϰ
(
(x− ϭ)Ϯ − ϭ

)
+ ϵ
(
(y− Ϯ)Ϯ − ϰ

)
= −ϰ

ϰ(x− ϭ)Ϯ − ϰ+ ϵ(y− Ϯ)Ϯ − ϯϲ = −ϰ

ϰ(x− ϭ)Ϯ + ϵ(y− Ϯ)Ϯ = ϯϲ
(x− ϭ)Ϯ

ϵ
+

(y− Ϯ)Ϯ

ϰ
= ϭ.

We see the center of the ellipse is at (ϭ, Ϯ). We have a = ϯ and b = Ϯ; the ma-
jor axis is horizontal, so the verƟces are located at (−Ϯ, Ϯ) and (ϰ, Ϯ). We find
c =

√
ϵ− ϰ =

√
ϱ ≈ Ϯ.Ϯϰ. The foci are located along the major axis, approxi-

mately Ϯ.Ϯϰ units from the center, at (ϭ± Ϯ.Ϯϰ, Ϯ). This is all graphed in Figure
ϵ.ϵ .

Eccentricity

When a = b, we have a circle. The general equaƟon becomes

(x− h)Ϯ

aϮ
+

(y− k)Ϯ

aϮ
= ϭ ⇒ (x− h)Ϯ + (y− k)Ϯ = aϮ,

the familiar equaƟon of the circle centered at (h, k) with radius a. Since a = b,
c =

√
aϮ − bϮ = Ϭ. The circle has “two” foci, but they lie on the same point, the

center of the circle.
Consider Figure ϵ.ϭϬ, where several ellipses are graphed with a = ϭ. In (a),

we have c = Ϭ and the ellipse is a circle. As c grows, the resulƟng ellipses look
less and less circular. A measure of this “noncircularness” is eccentricity.

DefiniƟon ϰϮ Eccentricity of an Ellipse

The eccentricity e of an ellipse is e =
c
a
.

Notes:

ϰϵϱ
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Figure ϵ.ϭϭ: IllustraƟng the reflecƟve
property of an ellipse.

Chapter ϵ Curves in the Plane

The eccentricity of a circle is Ϭ; that is, a circle has no “noncircularness.” As
c approaches a, e approaches ϭ, giving rise to a very noncircular ellipse, as seen
in Figure ϵ.ϭϬ (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are ellipƟcal. Earth has an eccentricity of Ϭ.Ϭϭϲϳ – it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = Ϭ.ϮϬϱϲ.
(Pluto’s eccentricity is greater, at e = Ϭ.Ϯϰϴ, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = Ϭ.ϬϬϲϴ. The Earth’s moon has an eccentricity of e = Ϭ.Ϭϱϰϵ, also very cir-
cular.

ReflecƟve Property

The ellipse also possesses an interesƟng reflecƟve property. Any ray ema-
naƟng from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure ϵ.ϭϭ. This property is given formally in
the following theorem.

Theorem ϴϬ ReflecƟve Property of an Ellipse

Let P be a point on a ellipse with foci Fϭ and FϮ. The tangent line to the
ellipse at Pmakes equal angles with the following two lines:

ϭ. The line through Fϭ and P, and

Ϯ. The line through FϮ and P.

This reflecƟve property is useful in opƟcs and is the basis of the phenomena
experienced in whispering halls.

Hyperbolas

The definiƟon of a hyperbola is very similar to the definiƟon of an ellipse; we
essenƟally just change the word “sum” to “difference.”

DefiniƟon ϰϯ Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

Notes:
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ϵ.ϭ Conic SecƟons

We do not have a convenient way of visualizing the construcƟon of a hyper-
bola as we did for the ellipse. The geometric definiƟon does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of
the line segment joining the foci is the center of the hyperbola. The transverse
axis intersects the hyperbola at two points, each a vertex of the hyperbola. The
line through the center and perpendicular to the transverse axis is the conju-
gate axis. This is illustrated in Figure ϵ.ϭϮ. It is easy to show that the constant
difference of distances used in the definiƟon of the hyperbola is the distance
between the verƟces, i.e., Ϯa.

Key Idea ϯϱ Standard EquaƟon of a Hyperbola

The equaƟon of a hyperbola centered at (h, k) in standard form is:

ϭ. Horizontal Transverse Axis:
(x− h)Ϯ

aϮ
− (y− k)Ϯ

bϮ
= ϭ.

Ϯ. VerƟcal Transverse Axis:
(y− k)Ϯ

aϮ
− (x− h)Ϯ

bϮ
= ϭ.

The verƟces are located a units from the center and the foci are located
c units from the center, where cϮ = aϮ + bϮ.

Graphing Hyperbolas

Consider the hyperbola xϮ
ϵ −

yϮ
ϭ = ϭ. Solving for y, we find y = ±

√

xϮ/ϵ− ϭ.
As x grows large, the “−ϭ” part of the equaƟon for y becomes less significant and
y ≈ ±

√

xϮ/ϵ = ±x/ϯ. That is, as x gets large, the graph of the hyperbola looks
verymuch like the lines y = ±x/ϯ. These lines are asymptotes of the hyperbola,
as shown in Figure ϵ.ϭϯ.

This is a valuable tool in sketching. Given the equaƟon of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length Ϯa parallel
to the transverse axis and sides of length Ϯb parallel to the conjugate axis. (See
Figure ϵ.ϭϰ for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is verƟcal, their slopes are±a/b. This
gives equaƟons:

Notes:

ϰϵϳ
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Horizontal
Transverse Axis

VerƟcal
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

Example Ϯϳϵ Graphing a hyperbola

Sketch the hyperbola given by
(y− Ϯ)Ϯ

Ϯϱ
− (x− ϭ)Ϯ

ϰ
= ϭ.

SÊ½çã®ÊÄ The hyperbola is centered at (ϭ, Ϯ); a = ϱ and b = Ϯ. In
Figure ϵ.ϭϱ we draw the prescribed rectangle centered at (ϭ, Ϯ) along with the
asymptotes defined by its diagonals. The hyperbola has a verƟcal transverse
axis, so the verƟces are located at (ϭ, ϳ) and (ϭ,−ϯ). This is enough to make a
good sketch.

We also find the locaƟon of the foci: as cϮ = aϮ + bϮ, we have c =
√
Ϯϵ ≈

ϱ.ϰ. Thus the foci are located at (ϭ, Ϯ± ϱ.ϰ) as shown in the figure.

Example ϮϴϬ Graphing a hyperbola
Sketch the hyperbola given by ϵxϮ − yϮ + Ϯy = ϭϬ.

SÊ½çã®ÊÄ Wemust complete the square to put the equaƟon in general
form. (We recognize this as a hyperbola since it is a general quadraƟc equaƟon
and the xϮ and yϮ terms have opposite signs.)

ϵxϮ − yϮ + Ϯy = ϭϬ

ϵxϮ − (yϮ − Ϯy) = ϭϬ

ϵxϮ − (yϮ − Ϯy+ ϭ− ϭ) = ϭϬ

ϵxϮ −
(
(y− ϭ)Ϯ − ϭ

)
= ϭϬ

ϵxϮ − (y− ϭ)Ϯ = ϵ

xϮ − (y− ϭ)Ϯ

ϵ
= ϭ

We see the hyperbola is centered at (Ϭ, ϭ), with a horizontal transverse axis,
where a = ϭ and b = ϯ. The appropriate rectangle is sketched in Figure ϵ.ϭϲ
along with the asymptotes of the hyperbola. The verƟces are located at (±ϭ, ϭ).
We have c =

√
ϭϬ ≈ ϯ.Ϯ, so the foci are located at (±ϯ.Ϯ, ϭ) as shown in the

figure.

Notes:
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Figure ϵ.ϭϳ: Understanding the eccentric-
ity of a hyperbola.

ϵ.ϭ Conic SecƟons

Eccentricity

DefiniƟon ϰϰ Eccentricity of a Hyperbola

The eccentricity of a hyperbola is e =
c
a
.

Note that this is the definiƟon of eccentricity as used for the ellipse. When
c is close in value to a (i.e., e ≈ ϭ), the hyperbola is very narrow (looking al-
most like crossed lines). Figure ϵ.ϭϳ shows hyperbolas centered at the origin
with a = ϭ. The graph in (a) has c = ϭ.Ϭϱ, giving an eccentricity of e = ϭ.Ϭϱ,
which is close to ϭ. As c grows larger, the hyperbola widens and begins to look
like parallel lines, as shown in part (d) of the figure.

ReflecƟve Property

Hyperbolas share a similar reflecƟve property with ellipses. However, in the
case of a hyperbola, a ray emanaƟng from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure ϵ.ϭϵ (on the next page). Hyperbolic mirrors are
commonly used in telescopes because of this reflecƟve property. It is stated
formally in the following theorem.

Theorem ϴϭ ReflecƟve Property of Hyperbolas

Let P be a point on a hyperbola with foci Fϭ and FϮ. The tangent line to
the hyperbola at Pmakes equal angles with the following two lines:

ϭ. The line through Fϭ and P, and

Ϯ. The line through FϮ and P.

LocaƟon DeterminaƟon

Determining the locaƟon of a known event has many pracƟcal uses (locaƟng
the epicenter of an earthquake, an airplane crash site, the posiƟon of the person
speaking in a large room, etc.).

To determine the locaƟon of an earthquake’s epicenter, seismologists use
trilateraƟon (not to be confused with triangulaƟon). A seismograph allows one

Notes:
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Chapter ϵ Curves in the Plane

to determine how far away the epicenter was; using three separate readings,
the locaƟon of the epicenter can be approximated.

A key to this method is knowing distances. What if this informaƟon is not
available? Consider three microphones at posiƟons A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown locaƟon D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the locaƟon be determined in such a situaƟon?

If each locaƟon has a clock set to the same Ɵme, hyperbolas can be used
to determine the locaƟon. Suppose the microphone at posiƟon A records the
sound at exactly ϭϮ:ϬϬ, locaƟon B records the Ɵme exactly ϭ second later, and
locaƟon C records the noise exactly Ϯ seconds aŌer that. We are interested in
the difference of Ɵmes. Since the speed of sound is approximately ϯϰϬ m/s, we
can conclude quickly that the sound was created ϯϰϬmeters closer to posiƟon A
than posiƟon B. If A and B are a known distance apart (as shown in Figure ϵ.ϭϴ
(a)), then we can determine a hyperbola on which Dmust lie.

The “difference of distances” is ϯϰϬ; this is also the distance between verƟces
of the hyperbola. So we know Ϯa = ϯϰϬ. PosiƟons A and B lie on the foci, so
Ϯc = ϭϬϬϬ. From this we can find b ≈ ϰϳϬ and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by posiƟons B and C. In this case,
Ϯa = ϲϴϬ as the sound traveled an extra Ϯ seconds to get to C. We sƟll have
Ϯc = ϭϬϬϬ, centering this hyperbola at (−ϱϬϬ, ϱϬϬ). We find b ≈ ϯϲϳ. This
hyperbola is sketched in part (c) of the figure. The intersecƟon point of the two
graphs is the locaƟon of the sound, at approximately (ϭϴϴ,−ϮϮϮ.ϱ).
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Figure ϵ.ϭϴ: Using hyperbolas in locaƟon detecƟon.

This chapter explores curves in the plane, in parƟcular curves that cannot
be described by funcƟons of the form y = f(x). In this secƟon, we learned of
ellipses and hyperbolas that are defined implicitly, not explicitly. In the following
secƟons, we will learn completely new ways of describing curves in the plane,
using parametric equaƟons and polar coordinates, then study these curves using
calculus techniques.

Notes:

ϱϬϬ



Exercises ϵ.ϭ
Terms and Concepts

ϭ. What is the difference between degenerate and nondegen-
erate conics?

Ϯ. Use your own words to explain what the eccentricity of an
ellipse measures.

ϯ. What has the largest eccentricity: an ellipse or a hyper-
bola?

ϰ. Explainwhy the following is true: “If the coefficient of the xϮ

term in the equaƟonof an ellipse in standard form is smaller
than the coefficient of the yϮ term, then the ellipse has a
horizontal major axis.”

ϱ. Explain how one can quickly look at the equaƟon of a hy-
perbola in standard form and determinewhether the trans-
verse axis is horizontal or verƟcal.

Problems
In Exercises ϲ – ϭϯ, find the equaƟon of the parabola defined
by the given informaƟon. Sketch the parabola.

ϲ. Focus: (ϯ, Ϯ); directrix: y = ϭ

ϳ. Focus: (−ϭ,−ϰ); directrix: y = Ϯ

ϴ. Focus: (ϭ, ϱ); directrix: x = ϯ

ϵ. Focus: (ϭ/ϰ, Ϭ); directrix: x = −ϭ/ϰ

ϭϬ. Focus: (ϭ, ϭ); vertex: (ϭ, Ϯ)

ϭϭ. Focus: (−ϯ, Ϭ); vertex: (Ϭ, Ϭ)

ϭϮ. Vertex: (Ϭ, Ϭ); directrix: y = −ϭ/ϭϲ

ϭϯ. Vertex: (Ϯ, ϯ); directrix: x = ϰ

In Exercises ϭϰ – ϭϱ, the equaƟon of a parabola and a point
on its graph are given. Find the focus and directrix of the
parabola, and verify that the given point is equidistant from
the focus and directrix.

ϭϰ. y = ϭ
ϰ x

Ϯ, P = (Ϯ, ϭ)

ϭϱ. x = ϭ
ϴ (y− Ϯ)Ϯ + ϯ, P = (ϭϭ, ϭϬ)

In Exercises ϭϲ – ϭϳ, sketch the ellipse defined by the given
equaƟon. Label the center, foci and verƟces.

ϭϲ.
(x− ϭ)Ϯ

ϯ
+

(y− Ϯ)Ϯ

ϱ
= ϭ

ϭϳ.
ϭ
Ϯϱ

xϮ +
ϭ
ϵ
(y+ ϯ)Ϯ = ϭ

In Exercises ϭϴ – ϭϵ, find the equaƟon of the ellipse shown in
the graph. Give the locaƟon of the foci and the eccentricity
of the ellipse.

ϭϴ.
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In Exercises ϮϬ – Ϯϯ, find the equaƟon of the ellipse defined
by the given informaƟon. Sketch the elllipse.

ϮϬ. Foci: (±Ϯ, Ϭ); verƟces: (±ϯ, Ϭ)

Ϯϭ. Foci: (−ϭ, ϯ) and (ϱ, ϯ); verƟces: (−ϯ, ϯ) and (ϳ, ϯ)

ϮϮ. Foci: (Ϯ,±Ϯ); verƟces: (Ϯ,±ϳ)

Ϯϯ. Focus: (−ϭ, ϱ); vertex: (−ϭ,−ϰ); center: (−ϭ, ϭ)

In Exercises Ϯϰ – Ϯϳ, write the equaƟon of the given ellipse in
standard form.

Ϯϰ. xϮ − Ϯx+ ϮyϮ − ϴy = −ϳ

Ϯϱ. ϱxϮ + ϯyϮ = ϭϱ

Ϯϲ. ϯxϮ + ϮyϮ − ϭϮy+ ϲ = Ϭ

Ϯϳ. xϮ + yϮ − ϰx− ϰy+ ϰ = Ϭ

Ϯϴ. Consider the ellipse given by
(x− ϭ)Ϯ

ϰ
+

(y− ϯ)Ϯ

ϭϮ
= ϭ.

(a) Verify that the foci are located at (ϭ, ϯ± Ϯ
√
Ϯ).

(b) The points Pϭ = (Ϯ, ϲ) and PϮ = (ϭ+
√
Ϯ, ϯ+

√
ϲ) ≈

(Ϯ.ϰϭϰ, ϱ.ϰϰϵ) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

ϱϬϭ



In Exercises Ϯϵ – ϯϮ, find the equaƟonof the hyperbola shown
in the graph.
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In Exercises ϯϯ – ϯϰ, sketch the hyperbola defined by the
given equaƟon. Label the center and foci.

ϯϯ.
(x− ϭ)Ϯ

ϭϲ
− (y+ Ϯ)Ϯ

ϵ
= ϭ

ϯϰ. (y− ϰ)Ϯ − (x+ ϭ)Ϯ

Ϯϱ
= ϭ

In Exercises ϯϱ – ϯϴ, find the equaƟon of the hyperbola de-
fined by the given informaƟon. Sketch the hyperbola.

ϯϱ. Foci: (±ϯ, Ϭ); verƟces: (±Ϯ, Ϭ)

ϯϲ. Foci: (Ϭ,±ϯ); verƟces: (Ϭ,±Ϯ)

ϯϳ. Foci: (−Ϯ, ϯ) and (ϴ, ϯ); verƟces: (−ϭ, ϯ) and (ϳ, ϯ)

ϯϴ. Foci: (ϯ,−Ϯ) and (ϯ, ϴ); verƟces: (ϯ, Ϭ) and (ϯ, ϲ)

In Exercises ϯϵ – ϰϮ, write the equaƟon of the hyperbola in
standard form.

ϯϵ. ϯxϮ − ϰyϮ = ϭϮ

ϰϬ. ϯxϮ − yϮ + Ϯy = ϭϬ

ϰϭ. xϮ − ϭϬyϮ + ϰϬy = ϯϬ

ϰϮ. (ϰy− x)(ϰy+ x) = ϰ

ϰϯ. Johannes Kepler discovered that the planets of our solar
system have ellipƟcal orbits with the Sun at one focus. The
Earth’s ellipƟcal orbit is used as a standard unit of distance;
the distance from the center of Earth’s ellipƟcal orbit to one
vertex is ϭ Astronomical Unit, or A.U.
The following table gives informaƟon about the orbits of
three planets.

Distance from
center to vertex

eccentricity

Mercury Ϭ.ϯϴϳ A.U. Ϭ.ϮϬϱϲ
Earth ϭ A.U. Ϭ.Ϭϭϲϳ
Mars ϭ.ϱϮϰ A.U. Ϭ.Ϭϵϯϰ

(a) In an ellipse, knowing cϮ = aϮ − bϮ and e = c/a
allows us to find b in terms of a and e. Show b =
a
√
ϭ− eϮ.

(b) For each planet, find equaƟons of their ellipƟcal orbit

of the form
xϮ

aϮ
+

yϮ

bϮ
= ϭ. (This places the center at

(Ϭ, Ϭ), but the Sun is in a different locaƟon for each
planet.)

(c) ShiŌ the equaƟons so that the Sun lies at the origin.
Plot the three ellipƟcal orbits.

ϰϰ. A loud sound is recorded at three staƟons that lie on a line
as shown in the figure below. StaƟon A recorded the sound
ϭ second aŌer StaƟon B, and StaƟon C recorded the sound
ϯ seconds aŌer B. Using the speed of sound as ϯϰϬm/s,
determine the locaƟon of the sound’s originaƟon.

A ϭϬϬϬm B ϮϬϬϬm C

ϱϬϮ
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ϵ.Ϯ Parametric EquaƟons
We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

Choose
x

Use a funcƟon
f to find y
(
y = f(x)

)

Plot point
(x, y)

The rectangular equaƟon y = f(x)workswell for some shapes like a parabola
with a verƟcal axis of symmetry, but in the previous secƟonwe encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “boƩom” separately.)

In this secƟon we introduce a new sketching procedure:

Choose
t

Use a funcƟon
f to find x
(
x = f(t)

)

Use a funcƟon
g to find y
(
y = g(t)

)

Plot point
(x, y)

Here, x and y are found separately but then ploƩed together. This leads us
to a definiƟon.

DefiniƟon ϰϱ Parametric EquaƟons and Curves

Let f and g be conƟnuous funcƟons on an interval I. The set of all points
(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I, is the graph

of the parametric equaƟons x = f(t) and y = g(t), where t is the param-
eter. A curve is a graph along with the parametric equaƟons that define
it.

This is a formal definiƟon of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is oŌen referred to as a plane curve. Examples
will help us understand the concepts introduced in the definiƟon.

Example Ϯϴϭ Ploƫng parametric funcƟons

Plot the graph of the parametric equaƟons x = tϮ, y = t+ ϭ for t in [−Ϯ, Ϯ].

Notes:
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t x y
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Figure ϵ.ϮϬ: A table of values of the para-
metric equaƟons in Example Ϯϴϭ along
with a sketch of their graph.

t x y
Ϭ ϭ Ϯ

π/ϰ ϭ/Ϯ ϭ+
√
Ϯ/Ϯ

π/Ϯ Ϭ ϭ
ϯπ/ϰ ϭ/Ϯ ϭ−

√
Ϯ/Ϯ

π ϭ Ϭ

(a)

.....
Ϭ.ϱ

.
ϭ

.
ϭ.ϱ

.

Ϭ.ϱ

.

ϭ

.

ϭ.ϱ

.

Ϯ

.

t = Ϭ

.

t = π/ϰ

.

t = π/Ϯ

.

t = ϯπ/ϰ

.
t = π

. x.

y

(b)

Figure ϵ.Ϯϭ: A table of values of the para-
metric equaƟons in Example ϮϴϮ along
with a sketch of their graph.

Chapter ϵ Curves in the Plane

SÊ½çã®ÊÄ We plot the graphs of parametric equaƟons in much the
samemanner as we ploƩed graphs of funcƟons like y = f(x): wemake a table of
values, plot points, then connect these pointswith a “reasonable” looking curve.
Figure ϵ.ϮϬ(a) shows such a table of values; note how we have ϯ columns.

The points (x, y) from the table are ploƩed in Figure ϵ.ϮϬ(b). The points have
been connected with a smooth curve. Each point has been labeled with its cor-
responding t-value. These values, along with the two arrows along the curve,
are used to indicate the orientaƟon of the graph. This informaƟon helps us de-
termine the direcƟon in which the graph is “moving.”

We oŌen use the leƩer t as the parameter as we oŌen regard t as represent-
ing Ɵme. Certainly there are many contexts in which the parameter is not Ɵme,
but it can be helpful to think in terms of Ɵme as one makes sense of parametric
plots and their orientaƟon (for instance, “At Ɵme t = Ϭ the posiƟon is (ϭ, Ϯ) and
at Ɵme t = ϯ the posiƟon is (ϱ, ϭ).”).

Example ϮϴϮ Ploƫng parametric funcƟons

Sketch the graph of the parametric equaƟons x = cosϮ t, y = cos t + ϭ for t
in [Ϭ, π].

SÊ½çã®ÊÄ We again start by making a table of values in Figure ϵ.Ϯϭ(a),
then plot the points (x, y) on the Cartesian plane in Figure ϵ.Ϯϭ(b).

It is not difficult to show that the curves in Examples Ϯϴϭ andϮϴϮ are porƟons
of the same parabola. While the parabola is the same, the curves are different.
In Example Ϯϴϭ, if we let t vary over all real numbers, we’d obtain the enƟre
parabola. In this example, leƫng t vary over all real numbers would sƟll produce
the same graph; this porƟon of the parabola would be traced, and re–traced,
infinitely. The orientaƟon shown in Figure ϵ.Ϯϭ shows the orientaƟon on [Ϭ, π],
but this orientaƟon is reversed on [π, Ϯπ].

These examples begin to illustrate the powerful nature of parametric equa-
Ɵons. Their graphs are far more diverse than the graphs of funcƟons produced
by “y = f(x)” funcƟons.

Technology Note: Most graphing uƟliƟes can graph funcƟons given in paramet-
ric form. OŌen the word “parametric” is abbreviated as “PAR” or “PARAM” in
the opƟons. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be ploƩed. The user is oŌen prompted to give a tminimum, a tmaximum, and
a “t-step” or “∆t.” Graphing uƟliƟes effecƟvely plot parametric funcƟons just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure ϵ.ϮϬ, the t-step is

Notes:
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Figure ϵ.ϮϮ: IllustraƟng how to shiŌ
graphs in Example Ϯϴϯ.
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Figure ϵ.Ϯϯ: A graph of the parametric
equaƟons from Example Ϯϴϰ.

ϵ.Ϯ Parametric EquaƟons

ϭ; in Figure ϵ.Ϯϭ, the t-step is π/ϰ.

One nice feature of parametric equaƟons is that their graphs are easy to
shiŌ. While this is not too difficult in the “y = f(x)” context, the resulƟng func-
Ɵon can look rather messy. (Plus, to shiŌ to the right by two, we replace x with
x− Ϯ, which is counter–intuiƟve.) The following example demonstrates this.

Example Ϯϴϯ ShiŌing the graph of parametric funcƟons
Sketch the graph of the parametric equaƟons x = tϮ + t, y = tϮ − t. Find new
parametric equaƟons that shiŌ this graph to the right ϯ places and down Ϯ.

SÊ½çã®ÊÄ The graph of the parametric equaƟons is given in Figure ϵ.ϮϮ
(a). It is a parabola with a axis of symmetry along the line y = x; the vertex is at
(Ϭ, Ϭ).

In order to shiŌ the graph to the right ϯ units, we need to increase the x-
value by ϯ for every point. The straighƞorward way to accomplish this is simply
to add ϯ to the funcƟon defining x: x = tϮ + t+ ϯ. To shiŌ the graph down by Ϯ
units, we wish to decrease each y-value by Ϯ, so we subtract Ϯ from the funcƟon
defining y: y = tϮ − t− Ϯ. Thus our parametric equaƟons for the shiŌed graph
are x = tϮ + t+ ϯ, y = tϮ − t− Ϯ. This is graphed in Figure ϵ.ϮϮ (b). NoƟce how
the vertex is now at (ϯ,−Ϯ).

Because the x- and y-values of a graph are determined independently, the
graphs of parametric funcƟons oŌen possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

Example Ϯϴϰ Graphs that cross themselves
Plot the parametric funcƟons x = tϯ − ϱtϮ + ϯt + ϭϭ and y = tϮ − Ϯt + ϯ and
determine the t-values where the graph crosses itself.

SÊ½çã®ÊÄ Using the methods developed in this secƟon, we again plot
points and graph the parametric equaƟons as shown in Figure ϵ.Ϯϯ. It appears
that the graph crosses itself at the point (Ϯ, ϲ), but we’ll need to analyƟcally
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of Ϯ equaƟons with Ϯ unknowns:

sϯ − ϱsϮ + ϯs+ ϭϭ = tϯ − ϱtϮ + ϯt+ ϭϭ
sϮ − Ϯs+ ϯ = tϮ − Ϯt+ ϯ

Notes:
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Chapter ϵ Curves in the Plane

Solving this system is not trivial but involves only algebra. Using the quadraƟc
formula, one can solve for t in the second equaƟon and find that t = ϭ ±
√

sϮ − Ϯs+ ϭ. This can be subsƟtuted into the first equaƟon, revealing that the
graph crosses itself at t = −ϭ and t = ϯ. We confirm our result by compuƟng
x(−ϭ) = x(ϯ) = Ϯ and y(−ϭ) = y(ϯ) = ϲ.

ConverƟng between rectangular and parametric equaƟons

It is someƟmes useful to rewrite equaƟons in rectangular form (i.e., y = f(x))
into parametric form, and vice–versa. ConverƟng from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equaƟons x = t, y = f(t)
produce the same graph. As an example, given y = xϮ, the parametric equaƟons
x = t, y = tϮ produce the familiar parabola. However, other parametrizaƟons
can be used. The following example demonstrates one possible alternaƟve.

Example Ϯϴϱ ConverƟng from rectangular to parametric
Consider y = xϮ. Find parametric equaƟons x = f(t), y = g(t) for the parabola
where t = dy

dx . That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

SÊ½çã®ÊÄ We start by compuƟng dy
dx : y

′ = Ϯx. Thus we set t = Ϯx. We
can solve for x and find x = t/Ϯ. Knowing that y = xϮ, we have y = tϮ/ϰ. Thus
parametric equaƟons for the parabola y = xϮ are

x = t/Ϯ y = tϮ/ϰ.

To find the point where the tangent line has a slope of −Ϯ, we set t = −Ϯ. This
gives the point (−ϭ, ϭ). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of−Ϯ.

We someƟmes chose the parameter to accurately model physical behavior.

Example Ϯϴϲ ConverƟng from rectangular to parametric
An object is fired from a height of ϬŌ and lands ϲ seconds later, ϭϵϮŌ away. As-
suming ideal projecƟlemoƟon, the height, in feet, of the object can be described
by h(x) = −xϮ/ϲϰ+ ϯx, where x is the distance in feet from the iniƟal locaƟon.
(Thus h(Ϭ) = h(ϭϵϮ) = ϬŌ.) Find parametric equaƟons x = f(t), y = g(t)
for the path of the projecƟle where x is the horizontal distance the object has
traveled at Ɵme t (in seconds) and y is the height at Ɵme t.

SÊ½çã®ÊÄ Physics tells us that the horizontal moƟon of the projecƟle
is linear; that is, the horizontal speed of the projecƟle is constant. Since the
object travels ϭϵϮŌ in ϲs, we deduce that the object is moving horizontally at

Notes:
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a rate of ϯϮŌ/s, giving the equaƟon x = ϯϮt. As y = −xϮ/ϲϰ + ϯx, we find
y = −ϭϲtϮ + ϵϲt. We can quickly verify that y ′′ = −ϯϮŌ/sϮ, the acceleraƟon
due to gravity, and that the projecƟle reaches its maximum at t = ϯ, halfway
along its path.

These parametric equaƟonsmake certain determinaƟons about the object’s
locaƟon easy: Ϯ seconds into the flight the object is at the point

(
x(Ϯ), y(Ϯ)

)
=

(
ϲϰ, ϭϮϴ

)
. That is, it has traveled horizontally ϲϰŌ and is at a height of ϭϮϴŌ, as

shown in Figure ϵ.Ϯϰ.

It is someƟmes necessary to convert given parametric equaƟons into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equaƟons can have very “complicated” rectangular equaƟons. This
conversion is oŌen referred to as “eliminaƟng the parameter,” as we are looking
for a relaƟonship between x and y that does not involve the parameter t.

Example Ϯϴϳ EliminaƟng the parameter
Find a rectangular equaƟon for the curve described by

x =
ϭ

tϮ + ϭ
and y =

tϮ

tϮ + ϭ
.

SÊ½çã®ÊÄ There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equaƟon and then subsƟtute that value in the second. We
use that technique here, then show a second, simpler method.

StarƟng with x = ϭ/(tϮ + ϭ), solve for t: t = ±
√

ϭ/x− ϭ. SubsƟtute this
value for t in the equaƟon for y:

y =
tϮ

tϮ + ϭ

=
ϭ/x− ϭ

ϭ/x− ϭ+ ϭ

=
ϭ/x− ϭ
ϭ/x

=

(
ϭ
x
− ϭ
)

· x

= ϭ− x.

Thus y = ϭ − x. One may have recognized this earlier by manipulaƟng the
equaƟon for y:

y =
tϮ

tϮ + ϭ
= ϭ− ϭ

tϮ + ϭ
= ϭ− x.

Notes:
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Figure ϵ.Ϯϲ: Graphing the parametric
equaƟons x = ϰ cos t+ ϯ, y = Ϯ sin t+ ϭ
in Example Ϯϴϴ.

Chapter ϵ Curves in the Plane

This is a shortcut that is very specific to this problem; someƟmes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the funcƟon y = ϭ − x. The
parametric equaƟons limit x to values in (Ϭ, ϭ], thus to produce the same graph
we should limit the domain of y = ϭ− x to the same.

The graphs of these funcƟons is given in Figure ϵ.Ϯϱ. The porƟonof the graph
defined by the parametric equaƟons is given in a thick line; the graph defined
by y = ϭ− x with unrestricted domain is given in a thin line.

Example Ϯϴϴ EliminaƟng the parameter
Eliminate the parameter in x = ϰ cos t+ ϯ, y = Ϯ sin t+ ϭ

SÊ½çã®ÊÄ We should not try to solve for t in this situaƟon as the re-
sulƟng algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equaƟon, respecƟvely. This gives

cos t =
x− ϯ
ϰ

and sin t =
y− ϭ
Ϯ

.

The Pythagorean Theorem gives cosϮ t+ sinϮ t = ϭ, so:

cosϮ t+ sinϮ t = ϭ
(
x− ϯ
ϰ

)Ϯ

+

(
y− ϭ
Ϯ

)Ϯ

= ϭ

(x− ϯ)Ϯ

ϭϲ
+

(y− ϭ)Ϯ

ϰ
= ϭ

This final equaƟon should look familiar – it is the equaƟon of an ellipse! Figure
ϵ.Ϯϲ plots the parametric equaƟons, demonstraƟng that the graph is indeed of
an ellipse with a horizontal major axis and center at (ϯ, ϭ).

The Pythagorean Theorem can also be used to idenƟfy parametric equaƟons
for hyperbolas. We give the parametric equaƟons for ellipses and hyperbolas in
the following Key Idea.

Notes:
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Key Idea ϯϲ Parametric EquaƟons of Ellipses and Hyperbolas

• The parametric equaƟons

x = a cos t+ h, y = b sin t+ k

define an ellipse with horizontal axis of length Ϯa and verƟcal axis
of length Ϯb, centered at (h, k).

• The parametric equaƟons

x = a tan t+ h, y = ±b sec t+ k

define a hyperbola with verƟcal transverse axis centered at (h, k),
and

x = ±a sec t+ h, y = b tan t+ k

defines a hyperbola with horizontal transverse axis. Each has
asymptotes at y = ±b/a(x− h) + k.

Special Curves

Figure ϵ.Ϯϳ gives a small gallery of “interesƟng” and “famous” curves along
with parametric equaƟons that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
funcƟons are not differenƟable at these points. This leads us to a definiƟon.

DefiniƟon ϰϲ Smooth

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if f ′ and
g ′ are conƟnuous on I and not simultaneously Ϭ (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be parƟƟoned
into subintervals where C is smooth on each subinterval.

Consider the astroid, given by x = cosϯ t, y = sinϯ t. Taking derivaƟves, we
have:

x ′ = −ϯ cosϮ t sin t and y ′ = ϯ sinϮ t cos t.

Notes:

ϱϬϵ



..... ϱ. ϭϬ.

Ϯ

.

ϰ

.

ϲ

.

8

.
x

.

y

Figure ϵ.Ϯϴ: Graphing the curve in Exam-
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It is clear that each is Ϭ when t = Ϭ, π/Ϯ, π, . . .. Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure.

We demonstrate this once more.

Example Ϯϴϵ Determine where a curve is not smooth
Let a curve C be defined by the parametric equaƟons x = tϯ − ϭϮt + ϭϳ and
y = tϮ − ϰt+ ϴ. Determine the points, if any, where it is not smooth.

SÊ½çã®ÊÄ We begin by taking derivaƟves.

x ′ = ϯtϮ − ϭϮ, y ′ = Ϯt− ϰ.

We set each equal to Ϭ:

x ′ = Ϭ ⇒ ϯtϮ − ϭϮ = Ϭ ⇒ t = ±Ϯ
y ′ = Ϭ ⇒ Ϯt− ϰ = Ϭ ⇒ t = Ϯ

We see at t = Ϯ both x ′ and y ′ are Ϭ; thus C is not smooth at t = Ϯ, correspond-
ing to the point (ϭ, ϰ). The curve is graphed in Figure ϵ.Ϯϴ, illustraƟng the cusp
at (ϭ, ϰ).

If a curve is not smooth at t = tϬ, it means that x ′(tϬ) = y ′(tϬ) = Ϭ as
defined. This, in turn, means that rate of change of x (and y) is Ϭ; that is, at
that instant, neither x nor y is changing. If the parametric equaƟons describe
the path of some object, this means the object is at rest at tϬ. An object at rest
canmake a “sharp” change in direcƟon, whereas moving objects tend to change
direcƟon in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = tϯ, y = tϲ pro-
duce the familiar y = xϮ parabola. However, in this parametrizaƟon, the curve
is not smooth. A parƟcle traveling along the parabola according to the given
parametric equaƟons comes to rest at t = Ϭ, though no sharp point is created.

Our previous experience with cusps taught us that a funcƟon was not differ-
enƟable at a cusp. This can lead us to wonder about derivaƟves in the context
of parametric equaƟons and the applicaƟon of other calculus concepts. Given a
curve defined parametrically, how do we find the slopes of tangent lines? Can
we determine concavity? We explore these concepts and more in the next sec-
Ɵon.

Notes:

ϱϭϬ



Exercises ϵ.Ϯ
Terms and Concepts

ϭ. T/F:When sketching the graph of parametric equaƟons, the
x and y values are found separately, then ploƩed together.

Ϯ. The direcƟon in which a graph is “moving” is called the
of the graph.

ϯ. An equaƟon wriƩen as y = f(x) is wriƩen in form.

ϰ. Create parametric equaƟons x = f(t), y = g(t) and sketch
their graph. Explain any interesƟng features of your graph
based on the funcƟons f and g.

Problems

In Exercises ϱ – ϴ, sketch the graph of the given parametric
equaƟons by hand, making a table of points to plot. Be sure
to indicate the orientaƟon of the graph.

ϱ. x = tϮ + t, y = ϭ− tϮ, −ϯ ≤ t ≤ ϯ

ϲ. x = ϭ, y = ϱ sin t, −π/Ϯ ≤ t ≤ π/Ϯ

ϳ. x = tϮ, y = Ϯ, −Ϯ ≤ t ≤ Ϯ

ϴ. x = tϯ − t+ ϯ, y = tϮ + ϭ, −Ϯ ≤ t ≤ Ϯ

In Exercises ϵ – ϭϳ, sketch the graph of the given paramet-
ric equaƟons; using a graphing uƟlity is advisable. Be sure to
indicate the orientaƟon of the graph.

ϵ. x = tϯ − ϮtϮ, y = tϮ, −Ϯ ≤ t ≤ ϯ

ϭϬ. x = ϭ/t, y = sin t, Ϭ < t ≤ ϭϬ

ϭϭ. x = ϯ cos t, y = ϱ sin t, Ϭ ≤ t ≤ Ϯπ

ϭϮ. x = ϯ cos t+ Ϯ, y = ϱ sin t+ ϯ, Ϭ ≤ t ≤ Ϯπ

ϭϯ. x = cos t, y = cos(Ϯt), Ϭ ≤ t ≤ π

ϭϰ. x = cos t, y = sin(Ϯt), Ϭ ≤ t ≤ Ϯπ

ϭϱ. x = Ϯ sec t, y = ϯ tan t, −π/Ϯ < t < π/Ϯ

ϭϲ. x = cos t+ ϭ
ϰ cos(ϴt), y = sin t+ ϭ

ϰ sin(ϴt), Ϭ ≤ t ≤ Ϯπ

ϭϳ. x = cos t+ ϭ
ϰ sin(ϴt), y = sin t+ ϭ

ϰ cos(ϴt), Ϭ ≤ t ≤ Ϯπ

In Exercises ϭϴ – ϭϵ, four sets of parametric equaƟons are
given. Describe how their graphs are similar and different.
Be sure to discuss orientaƟon and ranges.

ϭϴ. (a) x = t y = tϮ, −∞ < t < ∞

(b) x = sin t y = sinϮ t, −∞ < t < ∞

(c) x = et y = eϮt, −∞ < t < ∞

(d) x = −t y = tϮ, −∞ < t < ∞

ϭϵ. (a) x = cos t y = sin t, Ϭ ≤ t ≤ Ϯπ

(b) x = cos(tϮ) y = sin(tϮ), Ϭ ≤ t ≤ Ϯπ

(c) x = cos(ϭ/t) y = sin(ϭ/t), Ϭ < t < ϭ

(d) x = cos(cos t) y = sin(cos t), Ϭ ≤ t ≤ Ϯπ

In Exercises ϮϬ – Ϯϵ, eliminate the parameter in the given
parametric equaƟons.

ϮϬ. x = Ϯt+ ϱ, y = −ϯt+ ϭ

Ϯϭ. x = sec t, y = tan t

ϮϮ. x = ϰ sin t+ ϭ, y = ϯ cos t− Ϯ

Ϯϯ. x = tϮ, y = tϯ

Ϯϰ. x =
ϭ

t+ ϭ
, y =

ϯt+ ϱ
t+ ϭ

Ϯϱ. x = et, y = eϯt − ϯ

Ϯϲ. x = ln t, y = tϮ − ϭ

Ϯϳ. x = cot t, y = csc t

Ϯϴ. x = cosh t, y = sinh t

Ϯϵ. x = cos(Ϯt), y = sin t

In Exercises ϯϬ – ϯϯ, eliminate the parameter in the given
parametric equaƟons. Describe the curve defined by the
parametric equaƟons based on its rectangular form.

ϯϬ. x = at+ xϬ, y = bt+ yϬ

ϯϭ. x = r cos t, y = r sin t

ϯϮ. x = a cos t+ h, y = b sin t+ k

ϯϯ. x = a sec t+ h, y = b tan t+ k

ϱϭϭ



In Exercises ϯϰ – ϯϳ, find parametric equaƟons for the given

rectangular equaƟon using the parameter t =
dy
dx

. Verify that
at t = ϭ, the point on the graph has a tangent line with slope
of ϭ.

ϯϰ. y = ϯxϮ − ϭϭx+ Ϯ

ϯϱ. y = ex

ϯϲ. y = sin x on [Ϭ, π]

ϯϳ. y =
√
x on [Ϭ,∞)

In Exercises ϯϴ – ϰϭ, find the values of t where the graph of
the parametric equaƟons crosses itself.

ϯϴ. x = tϯ − t+ ϯ, y = tϮ − ϯ

ϯϵ. x = tϯ − ϰtϮ + t+ ϳ, y = tϮ − t

ϰϬ. x = cos t, y = sin(Ϯt) on [Ϭ, Ϯπ]

ϰϭ. x = cos t cos(ϯt), y = sin t cos(ϯt) on [Ϭ, π]

In Exercises ϰϮ – ϰϱ, find the value(s) of t where the curve
defined by the parametric equaƟons is not smooth.

ϰϮ. x = tϯ + tϮ − t, y = tϮ + Ϯt+ ϯ

ϰϯ. x = tϮ − ϰt, y = tϯ − ϮtϮ − ϰt

ϰϰ. x = cos t, y = Ϯ cos t

ϰϱ. x = Ϯ cos t− cos(Ϯt), y = Ϯ sin t− sin(Ϯt)

In Exercises ϰϲ – ϱϰ, find parametric equaƟons that describe
the given situaƟon.

ϰϲ. A projecƟle is fired from a height of ϬŌ, landing ϭϲŌ away
in ϰs.

ϰϳ. A projecƟle is fired from a height of ϬŌ, landing ϮϬϬŌ away
in ϰs.

ϰϴ. A projecƟle is fired from a height of ϬŌ, landing ϮϬϬŌ away
in ϮϬs.

ϰϵ. A circle of radius Ϯ, centered at the origin, that is traced
clockwise once on [Ϭ, Ϯπ].

ϱϬ. A circle of radius ϯ, centered at (ϭ, ϭ), that is traced once
counter–clockwise on [Ϭ, ϭ].

ϱϭ. An ellipse centered at (ϭ, ϯ) with verƟcal major axis of
length ϲ and minor axis of length Ϯ.

ϱϮ. An ellipse with foci at (±ϭ, Ϭ) and verƟces at (±ϱ, Ϭ).

ϱϯ. A hyperbola with foci at (ϱ,−ϯ) and (−ϭ,−ϯ), and with
verƟces at (ϭ,−ϯ) and (ϯ,−ϯ).

ϱϰ. A hyperbola with verƟces at (Ϭ,±ϲ) and asymptotes y =
±ϯx.

ϱϭϮ



ϵ.ϯ Calculus and Parametric EquaƟons

ϵ.ϯ Calculus and Parametric EquaƟons
The previous secƟon defined curves based on parametric equaƟons. In this sec-
Ɵon we’ll employ the techniques of calculus to study these curves.

We are sƟll interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximaƟons, and they indicate instantaneous direcƟon of travel.

The slope of the tangent line is sƟll dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equaƟons. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx

· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy
dt

/

dx
dt

=
g ′(t)
f ′(t)

,

provided that f ′(t) ̸= Ϭ. This is important so we label it a Key Idea.

Key Idea ϯϳ Finding dy
dx with Parametric EquaƟons.

Let x = f(t) and y = g(t), where f and g are differenƟable on some open
interval I and f ′(t) ̸= Ϭ on I. Then

dy
dx

=
g ′(t)
f ′(t)

.

We use this to define the tangent line.

DefiniƟon ϰϳ Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g(t), where f and g
are differenƟable funcƟons on some interval I containing t = tϬ. The
tangent line to C at t = tϬ is the line through

(
f(tϬ), g(tϬ)

)
with slope

m = g ′(tϬ)/f ′(tϬ), provided f ′(tϬ) ̸= Ϭ.

The normal line to C at t = tϬ is the line through
(
f(tϬ), g(tϬ)

)
with slope

m = −f ′(tϬ)/g ′(tϬ), provided g ′(tϬ) ̸= Ϭ.

The definiƟon leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above definiƟon as g ′(tϬ) = Ϭ.

Notes:
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Figure ϵ.Ϯϵ: Graphing tangent and nor-
mal lines in Example ϮϵϬ.
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Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definiƟon.

ϭ. If the tangent line at t = tϬ has a slope of Ϭ, the normal line to C at t = tϬ
is the line x = f(tϬ).

Ϯ. If the normal line at t = tϬ has a slope of Ϭ, the tangent line to C at t = tϬ
is the line x = f(tϬ).

Example ϮϵϬ Tangent and Normal Lines to Curves
Let x = ϱtϮ−ϲt+ϰ and y = tϮ+ϲt−ϭ, and let C be the curve defined by these
equaƟons.

ϭ. Find the equaƟons of the tangent and normal lines to C at t = ϯ.

Ϯ. Find where C has verƟcal and horizontal tangent lines.

SÊ½çã®ÊÄ

ϭ. We start by compuƟng f ′(t) = ϭϬt− ϲ and g ′(t) = Ϯt+ ϲ. Thus

dy
dx

=
Ϯt+ ϲ
ϭϬt− ϲ

.

Make note of something that might seem unusual: dy
dx is a funcƟon of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point onC at t = ϯ is (ϯϭ, Ϯϲ). The slope of the tangent line ism = ϭ/Ϯ
and the slope of the normal line ism = −Ϯ. Thus,

• the equaƟon of the tangent line is y =
ϭ
Ϯ
(x− ϯϭ) + Ϯϲ, and

• the equaƟon of the normal line is y = −Ϯ(x− ϯϭ) + Ϯϲ.

This is illustrated in Figure ϵ.Ϯϵ.

Ϯ. To find where C has a horizontal tangent line, we set dy
dx = Ϭ and solve for

t. In this case, this amounts to seƫng g ′(t) = Ϭ and solving for t (and
making sure that f ′(t) ̸= Ϭ).

g ′(t) = Ϭ ⇒ Ϯt+ ϲ = Ϭ ⇒ t = −ϯ.

The point on C corresponding to t = −ϯ is (ϲϳ,−ϭϬ); the tangent line at
that point is horizontal (hence with equaƟon y = −ϭϬ).

Notes:

ϱϭϰ



...

..

−1

.

1

.

−1

.

1

.

x

.

y

Figure ϵ.ϯϬ: IllustraƟng how a circle’s nor-
mal lines pass through its center.
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TofindwhereChas a verƟcal tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g ′(t) = Ϭ. This amounts to seƫng f ′(t) = Ϭ and
solving for t (and making sure that g ′(t) ̸= Ϭ).

f ′(t) = Ϭ ⇒ ϭϬt− ϲ = Ϭ ⇒ t = Ϭ.ϲ.

The point on C corresponding to t = Ϭ.ϲ is (Ϯ.Ϯ, Ϯ.ϵϲ). The tangent line at
that point is x = Ϯ.Ϯ.
The points where the tangent lines are verƟcal and horizontal are indi-
cated on the graph in Figure ϵ.Ϯϵ.

Example Ϯϵϭ Tangent and Normal Lines to a Circle

ϭ. Find where the unit circle, defined by x = cos t and y = sin t on [Ϭ, Ϯπ],
has verƟcal and horizontal tangent lines.

Ϯ. Find the equaƟon of the normal line at t = tϬ.

SÊ½çã®ÊÄ

ϭ. We compute the derivaƟve following Key Idea ϯϳ:

dy
dx

=
g ′(t)
f ′(t)

= −cos t
sin t

.

The derivaƟve is Ϭ when cos t = Ϭ; that is, when t = π/Ϯ, ϯπ/Ϯ. These
are the points (Ϭ, ϭ) and (Ϭ,−ϭ) on the circle.
The normal line is horizontal (and hence, the tangent line is verƟcal) when
sin t = Ϭ; that is, when t = Ϭ, π, Ϯπ, corresponding to the points (−ϭ, Ϭ)
and (Ϭ, ϭ) on the circle. These results should make intuiƟve sense.

Ϯ. The slope of the normal line at t = tϬ ism =
sin tϬ
cos tϬ

= tan tϬ. This normal

line goes through the point (cos tϬ, sin tϬ), giving the line

y =
sin tϬ
cos tϬ

(x− cos tϬ) + sin tϬ

= (tan tϬ)x,

as long as cos tϬ ̸= Ϭ. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure ϵ.ϯϬ.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles.

Notes:
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Figure ϵ.ϯϭ: A graph of an astroid.

Chapter ϵ Curves in the Plane

Example ϮϵϮ Tangent lines when dy
dx is not defined

Find the equaƟon of the tangent line to the astroid x = cosϯ t, y = sinϯ t at
t = Ϭ, shown in Figure ϵ.ϯϭ.

SÊ½çã®ÊÄ We start by finding x ′(t) and y ′(t):

x ′(t) = −ϯ sin t cosϮ t, y ′(t) = ϯ cos t sinϮ t.

Note that both of these are Ϭ at t = Ϭ; the curve is not smooth at t = Ϭ forming
a cusp on the graph. EvaluaƟng dy

dx at this point returns the indeterminate form
of “Ϭ/Ϭ”.

We can, however, examine the slopes of tangent lines near t = Ϭ, and take
the limit as t → Ϭ.

lim
t→Ϭ

y ′(t)
x ′(t)

= lim
t→Ϭ

ϯ cos t sinϮ t
−ϯ sin t cosϮ t

(We can cancel as t ̸= Ϭ.)

= lim
t→Ϭ

− sin t
cos t

= Ϭ.

Wehave accomplished something significant. When the derivaƟve dy
dx returns an

indeterminate form at t = tϬ, we can define its value by seƫng it to be lim
t→tϬ

dy
dx ,

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = Ϭ to be Ϭ; therefore the tan-
gent line is y = Ϭ, the x-axis.

Concavity

We conƟnue to analyze curves in the plane by considering their concavity;
that is, we are interested in dϮy

dxϮ , “the second derivaƟve of y with respect to x.”
To find this, we need to find the derivaƟve of dy

dx with respect to x; that is,

dϮy
dxϮ

=
d
dx

[
dy
dx

]

,

but recall that dy
dx is a funcƟon of t, not x, making this computaƟon not straight-

forward.
To make the upcoming notaƟon a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx

· dx
dt

⇒ dh
dx

=
dh
dt

/

dx
dt

.

Notes:
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equaƟons in Example Ϯϵϯ to demonstrate
concavity.
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In words, to find dϮy
dxϮ , we first take the derivaƟve of

dy
dx with respect to t, then

divide by x ′(t). We restate this as a Key Idea.

Key Idea ϯϴ Finding dϮy
dxϮ with Parametric EquaƟons

Let x = f(t) and y = g(t) be twice differenƟable funcƟons on an open
interval I, where f ′(t) ̸= Ϭ on I. Then

dϮy
dxϮ

=
d
dt

[
dy
dx

]/

dx
dt

=
d
dt

[
dy
dx

]/

f ′(t).

Examples will help us understand this Key Idea.

Example Ϯϵϯ Concavity of Plane Curves
Let x = ϱtϮ − ϲt + ϰ and y = tϮ + ϲt − ϭ as in Example ϮϵϬ. Determine the
t-intervals on which the graph is concave up/down.

SÊ½çã®ÊÄ Concavity is determined by the second derivaƟve of y with
respect to x, dϮy

dxϮ , so we compute that here following Key Idea ϯϴ.

In Example ϮϵϬ, we found
dy
dx

=
Ϯt+ ϲ
ϭϬt− ϲ

and f ′(t) = ϭϬt− ϲ. So:

dϮy
dxϮ

=
d
dt

[
Ϯt+ ϲ
ϭϬt− ϲ

]/

(ϭϬt− ϲ)

= − ϳϮ
(ϭϬt− ϲ)Ϯ

/

(ϭϬt− ϲ)

= − ϳϮ
(ϭϬt− ϲ)ϯ

= − ϵ
(ϱt− ϯ)ϯ

The graph of the parametric funcƟons is concave up when dϮy
dxϮ > Ϭ and con-

cave down when dϮy
dxϮ < Ϭ. We determine the intervals when the second deriva-

Ɵve is greater/less than Ϭ by first finding when it is Ϭ or undefined.

As the numerator of − ϵ
(ϱt− ϯ)ϯ

is never Ϭ, dϮy
dxϮ ̸= Ϭ for all t. It is undefined

when ϱt − ϯ = Ϭ; that is, when t = ϯ/ϱ. Following the work established in
SecƟon ϯ.ϰ, we look at values of t greater/less than ϯ/ϱ on a number line:

Notes:
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ϯ/ϱ

dϮy
dxϮ

> Ϭ

c. up

dϮy
dxϮ

< Ϭ

c. down

Reviewing Example ϮϵϬ, we see that when t = ϯ/ϱ = Ϭ.ϲ, the graph of the
parametric equaƟons has a verƟcal tangent line. This point is also a point of in-
flecƟon for the graph, illustrated in Figure ϵ.ϯϮ.

Example Ϯϵϰ Concavity of Plane Curves
Find the points of inflecƟon of the graph of the parametric equaƟons x =

√
t,

y = sin t, for Ϭ ≤ t ≤ ϭϲ.

SÊ½çã®ÊÄ We need to compute dy
dx and

dϮy
dxϮ .

dy
dx

=
y ′(t)
x ′(t)

=
cos t

ϭ/(Ϯ
√
t)

= Ϯ
√
t cos t.

dϮy
dxϮ

=
d
dt

[ dy
dx

]

x ′(t)
=

cos t/
√
t− Ϯ

√
t sin t

ϭ/(Ϯ
√
t)

= Ϯ cos t− ϰt sin t.

The points of inflecƟon are found by seƫng dϮy
dxϮ = Ϭ. This is not trivial, as equa-

Ɵons that mix polynomials and trigonometric funcƟons generally do not have
“nice” soluƟons.

In Figure ϵ.ϯϯ(a) we see a plot of the second derivaƟve. It shows that it has
zeros at approximately t = Ϭ.ϱ, ϯ.ϱ, ϲ.ϱ, ϵ.ϱ, ϭϮ.ϱ and ϭϲ. These approxima-
Ɵons are not very good, made only by looking at the graph. Newton’s Method
provides more accurate approximaƟons. Accurate to Ϯ decimal places, we have:

t = Ϭ.ϲϱ, ϯ.Ϯϵ, ϲ.ϯϲ, ϵ.ϰϴ, ϭϮ.ϲϭ and ϭϱ.ϳϰ.

The corresponding points have been ploƩed on the graph of the parametric
equaƟons in Figure ϵ.ϯϯ(b). Note how most occur near the x-axis, but not ex-
actly on the axis.

Arc Length

We conƟnue our study of the features of the graphs of parametric equaƟons
by compuƟng their arc length.

Recall in SecƟon ϳ.ϰ we found the arc length of the graph of a funcƟon, from
x = a to x = b, to be

L =
∫ b

a

√

ϭ+
(
dy
dx

)Ϯ

dx.

Notes:

ϱϭϴ
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We can use this equaƟon and convert it to the parametric equaƟon context.
Leƫng x = f(t) and y = g(t), we know that dy

dx = g ′(t)/f ′(t). It will also be
useful to calculate the differenƟal of x:

dx = f ′(t)dt ⇒ dt =
ϭ

f ′(t)
· dx.

StarƟng with the arc length formula above, consider:

L =
∫ b

a

√

ϭ+
(
dy
dx

)Ϯ

dx

=

∫ b

a

√

ϭ+
g ′(t)Ϯ

f ′(t)Ϯ
dx.

Factor out the f ′(t)Ϯ:

=

∫ b

a

√

f ′(t)Ϯ + g ′(t)Ϯ · ϭ
f ′(t)

dx
︸ ︷︷ ︸

=dt

=

∫ tϮ

tϭ

√

f ′(t)Ϯ + g ′(t)Ϯ dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding tϭ and tϮ such that a = f(tϭ) and b = f(tϮ). This formula is important,
so we restate it as a theorem.

Theorem ϴϮ Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equaƟons with f ′ and g ′ con-
Ɵnuous on some open interval I containing tϭ and tϮ on which the graph
traces itself only once. The arc length of the graph, from t = tϭ to t = tϮ,
is

L =
∫ tϮ

tϭ

√

f ′(t)Ϯ + g ′(t)Ϯ dt.

As before, these integrals are oŌen not easy to compute. We start with a
simple example, then give another where we approximate the soluƟon.

Notes:

ϱϭϵ
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Figure ϵ.ϯϰ: A graph of the parametric
equaƟons in Example Ϯϵϲ, where the arc
length of the teardrop is calculated.

Chapter ϵ Curves in the Plane

Example Ϯϵϱ Arc Length of a Circle
Find the arc length of the circle parametrized by x = ϯ cos t, y = ϯ sin t on
[Ϭ, ϯπ/Ϯ].

SÊ½çã®ÊÄ By direct applicaƟon of Theorem ϴϮ, we have

L =
∫ ϯπ/Ϯ

Ϭ

√

(−ϯ sin t)Ϯ + (ϯ cos t)Ϯ dt.

Apply the Pythagorean Theorem.

=

∫ ϯπ/Ϯ

Ϭ
ϯ dt

= ϯt
∣
∣
∣

ϯπ/Ϯ

Ϭ
= ϵπ/Ϯ.

This should make sense; we know from geometry that the circumference of
a circle with radius ϯ is ϲπ; since we are finding the arc length of ϯ/ϰ of a circle,
the arc length is ϯ/ϰ · ϲπ = ϵπ/Ϯ.

Example Ϯϵϲ Arc Length of a Parametric Curve
The graph of the parametric equaƟons x = t(tϮ − ϭ), y = tϮ − ϭ crosses itself as
shown in Figure ϵ.ϯϰ, forming a “teardrop.” Find the arc length of the teardrop.

SÊ½çã®ÊÄ We can see by the parametrizaƟons of x and y that when
t = ±ϭ, x = Ϭ and y = Ϭ. This means we’ll integrate from t = −ϭ to t = ϭ.
Applying Theorem ϴϮ, we have

L =
∫ ϭ

−ϭ

√

(ϯtϮ − ϭ)Ϯ + (Ϯt)Ϯ dt

=

∫ ϭ

−ϭ

√

ϵtϰ − ϮtϮ + ϭ dt.

Unfortunately, the integrand does not have an anƟderivaƟve expressible by el-
ementary funcƟons. We turn to numerical integraƟon to approximate its value.
Using ϰ subintervals, Simpson’s Rule approximates the value of the integral as
Ϯ.ϲϱϬϱϭ. Using a computer, more subintervals are easy to employ, and n = ϮϬ
gives a value of Ϯ.ϳϭϱϱϵ. Increasing n shows that this value is stable and a good
approximaƟon of the actual value.

Notes:

ϱϮϬ



Figure ϵ.ϯϱ: RotaƟng a teardrop shape
about the x-axis in Example Ϯϵϳ.

ϵ.ϯ Calculus and Parametric EquaƟons

Surface Area of a Solid of RevoluƟon

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea Ϯϴ from SecƟon ϳ.ϰ in a similar
way as done to produce the formula for arc length done before.

Key Idea ϯϵ Surface Area of a Solid of RevoluƟon

Consider the graph of the parametric equaƟons x = f(t) and y = g(t),
where f ′ and g ′ are conƟnuous on an open interval I containing tϭ and
tϮ on which the graph does not cross itself.

ϭ. The surface area of the solid formed by revolving the graph about
the x-axis is (where g(t) ≥ Ϭ on [tϭ, tϮ]):

Surface Area = Ϯπ
∫ tϮ

tϭ
g(t)

√

f ′(t)Ϯ + g ′(t)Ϯ dt.

Ϯ. The surface area of the solid formed by revolving the graph about
the y-axis is (where f(t) ≥ Ϭ on [tϭ, tϮ]):

Surface Area = Ϯπ
∫ tϮ

tϭ
f(t)
√

f ′(t)Ϯ + g ′(t)Ϯ dt.

Example Ϯϵϳ Surface Area of a Solid of RevoluƟon
Consider the teardrop shape formed by the parametric equaƟons x = t(tϮ − ϭ),
y = tϮ − ϭ as seen in Example Ϯϵϲ. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure ϵ.ϯϱ.

SÊ½çã®ÊÄ The teardrop shape is formed between t = −ϭ and t = ϭ.
Using Key Idea ϯϵ, we see we need for g(t) ≥ Ϭ on [−ϭ, ϭ], and this is not the
case. To fix this, we simplify replace g(t)with−g(t), which flips the whole graph
about the x-axis (and does not change the surface area of the resulƟng solid).
The surface area is:

Area S = Ϯπ
∫ ϭ

−ϭ
(ϭ− tϮ)

√

(ϯtϮ − ϭ)Ϯ + (Ϯt)Ϯ dt

= Ϯπ
∫ ϭ

−ϭ
(ϭ− tϮ)

√

ϵtϰ − ϮtϮ + ϭ dt.

Once again we arrive at an integral that we cannot compute in terms of ele-
mentary funcƟons. Using Simpson’s Rule with n = ϮϬ, we find the area to be

Notes:

ϱϮϭ
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S = ϵ.ϰϰ. Using larger values of n shows this is accurate to Ϯ places aŌer the
decimal.

AŌer defining a new way of creaƟng curves in the plane, in this secƟon
we have applied calculus techniques to the parametric equaƟon defining these
curves to study their properƟes. In the next secƟon, we define another way of
forming curves in the plane. To do so, we create a new coordinate system, called
polar coordinates, that idenƟfies points in the plane in a manner different than
from measuring distances from the y- and x- axes.

Notes:

ϱϮϮ



Exercises ϵ.ϯ
Terms and Concepts

ϭ. T/F: Given parametric equaƟons x = f(t) and y = g(t),
dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= Ϭ.

Ϯ. Given parametric equaƟons x = f(t) and y = g(t),
the derivaƟve dy

dx as given in Key Idea ϯϳ is a funcƟon of
?

ϯ. T/F: Given parametric equaƟons x = f(t) and y = g(t), to
find dϮy

dxϮ , one simply computes d
dt

(

dy
dx

)

.

ϰ. T/F: If dy
dx = Ϭ at t = tϬ, then the normal line to the curve at

t = tϬ is a verƟcal line.

Problems
In Exercises ϱ – ϭϮ, parametric equaƟons for a curve are given.

(a) Find
dy
dx

.

(b) Find the equaƟons of the tangent and normal line(s)
at the point(s) given.

(c) Sketch the graph of the parametric funcƟons along
with the found tangent and normal lines.

ϱ. x = t, y = tϮ; t = ϭ

ϲ. x =
√
t, y = ϱt+ Ϯ; t = ϰ

ϳ. x = tϮ − t, y = tϮ + t; t = ϭ

ϴ. x = tϮ − ϭ, y = tϯ − t; t = Ϭ and t = ϭ

ϵ. x = sec t, y = tan t on (−π/Ϯ, π/Ϯ); t = π/ϰ

ϭϬ. x = cos t, y = sin(Ϯt) on [Ϭ, Ϯπ]; t = π/ϰ

ϭϭ. x = cos t sin(Ϯt), y = sin t sin(Ϯt) on [Ϭ, Ϯπ]; t = ϯπ/ϰ

ϭϮ. x = et/ϭϬ cos t, y = et/ϭϬ sin t; t = π/Ϯ

In Exercises ϭϯ – ϮϬ, find t-values where the curve defined by
the given parametric equaƟons has a horizontal tangent line.
Note: these are the same equaƟons as in Exercises ϱ – ϭϮ.

ϭϯ. x = t, y = tϮ

ϭϰ. x =
√
t, y = ϱt+ Ϯ

ϭϱ. x = tϮ − t, y = tϮ + t

ϭϲ. x = tϮ − ϭ, y = tϯ − t

ϭϳ. x = sec t, y = tan t on (−π/Ϯ, π/Ϯ)

ϭϴ. x = cos t, y = sin(Ϯt) on [Ϭ, Ϯπ]

ϭϵ. x = cos t sin(Ϯt), y = sin t sin(Ϯt) on [Ϭ, Ϯπ]

ϮϬ. x = et/ϭϬ cos t, y = et/ϭϬ sin t

In Exercises Ϯϭ – Ϯϰ, find t = tϬ where the graph of the given

parametric equaƟons is not smooth, then find lim
t→tϬ

dy
dx

.

Ϯϭ. x =
ϭ

tϮ + ϭ
, y = tϯ

ϮϮ. x = −tϯ + ϳtϮ − ϭϲt+ ϭϯ, y = tϯ − ϱtϮ + ϴt− Ϯ

Ϯϯ. x = tϯ − ϯtϮ + ϯt− ϭ, y = tϮ − Ϯt+ ϭ

Ϯϰ. x = cosϮ t, y = ϭ− sinϮ t

In Exercises Ϯϱ – ϯϮ, parametric equaƟons for a curve are
given. Find dϮy

dxϮ , then determine the intervals on which the
graph of the curve is concave up/down. Note: these are the
same equaƟons as in Exercises ϱ – ϭϮ.

Ϯϱ. x = t, y = tϮ

Ϯϲ. x =
√
t, y = ϱt+ Ϯ

Ϯϳ. x = tϮ − t, y = tϮ + t

Ϯϴ. x = tϮ − ϭ, y = tϯ − t

Ϯϵ. x = sec t, y = tan t on (−π/Ϯ, π/Ϯ)

ϯϬ. x = cos t, y = sin(Ϯt) on [Ϭ, Ϯπ]

ϯϭ. x = cos t sin(Ϯt), y = sin t sin(Ϯt) on [−π/Ϯ, π/Ϯ]

ϯϮ. x = et/ϭϬ cos t, y = et/ϭϬ sin t

In Exercises ϯϯ – ϯϲ, find the arc length of the graph of the
parametric equaƟons on the given interval(s).

ϯϯ. x = −ϯ sin(Ϯt), y = ϯ cos(Ϯt) on [Ϭ, π]

ϯϰ. x = et/ϭϬ cos t, y = et/ϭϬ sin t on [Ϭ, Ϯπ] and [Ϯπ, ϰπ]

ϯϱ. x = ϱt+ Ϯ, y = ϭ− ϯt on [−ϭ, ϭ]

ϯϲ. x = Ϯtϯ/Ϯ, y = ϯt on [Ϭ, ϭ]

In Exercises ϯϳ – ϰϬ, numerically approximate the given arc
length.

ϯϳ. Approximate the arc length of one petal of the rose curve
x = cos t cos(Ϯt), y = sin t cos(Ϯt) using Simpson’s Rule
and n = ϰ.

ϱϮϯ



ϯϴ. Approximate the arc length of the “bow Ɵe curve” x =
cos t, y = sin(Ϯt) using Simpson’s Rule and n = ϲ.

ϯϵ. Approximate the arc length of the parabola x = tϮ − t,
y = tϮ + t on [−ϭ, ϭ] using Simpson’s Rule and n = ϰ.

ϰϬ. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ Ϯπ

√

aϮ + bϮ

Ϯ
.

Use this formula to approximate the circumference of x =
ϱ cos t, y = ϯ sin t and compare this to the approxima-
Ɵon given by Simpson’s Rule and n = ϲ.

In Exercises ϰϭ – ϰϰ, a solid of revoluƟon is described. Find or
approximate its surface area as specified.

ϰϭ. Find the surface area of the sphere formed by rotaƟng the
circle x = Ϯ cos t, y = Ϯ sin t about:

(a) the x-axis and

(b) the y-axis.

ϰϮ. Find the surface area of the torus (or “donut”) formed by
rotaƟng the circle x = cos t + Ϯ, y = sin t about the y-
axis.

ϰϯ. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow Ɵe curve x = cos t,
y = sin(Ϯt) on [Ϭ, π/Ϯ] about the x-axis, using Simpson’s
Rule and n = ϰ.

ϰϰ. Approximate the surface area of the solid formed by ro-
taƟng the one petal of the rose curve x = cos t cos(Ϯt),
y = sin t cos(Ϯt) on [Ϭ, π/ϰ] about the x-axis, using Simp-
son’s Rule and n = ϰ.

ϱϮϰ
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Figure ϵ.ϯϳ: Ploƫng polar points in Exam-
ple Ϯϵϴ.

ϵ.ϰ IntroducƟon to Polar Coordinates

ϵ.ϰ IntroducƟon to Polar Coordinates
We are generally introduced to the idea of graphing curves by relaƟng x-values
to y-values through a funcƟon f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good noƟon of how the curve looks. This method is useful
but has limitaƟons, not least of which is that curves that “fail the verƟcal line
test” cannot be graphed without using mulƟple funcƟons.

The previous two secƟons introduced and studied a new way of ploƫng
points in the x, y-plane. Using parametric equaƟons, x and y values are com-
puted independently and then ploƩed together. This method allows us to graph
an extraordinary range of curves. This secƟon introduces yet anotherway to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always idenƟfy this
point with the origin). From the pole, draw a ray, called the iniƟal ray (we will
always draw this ray horizontally, idenƟfying it with the posiƟve x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle θ formed between the iniƟal ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, θ). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the leƩer P, as in P(r, θ). This is illustrated in Figure ϵ.ϯϲ

PracƟce will make this process more clear.

Example Ϯϵϴ Ploƫng Polar Coordinates
Plot the following polar coordinates:

A = P(ϭ, π/ϰ) B = P(ϭ.ϱ, π) C = P(Ϯ,−π/ϯ) D = P(−ϭ, π/ϰ)

SÊ½çã®ÊÄ To aid in the drawing, a polar grid is provided at the boƩom
of this page. To place the point A, go out ϭ unit along the iniƟal ray (puƫng
you on the inner circle shown on the grid), then rotate counter-clockwise π/ϰ
radians (or ϰϱ◦). Alternately, one can consider the rotaƟon first: think about the
ray from O that forms an angle of π/ϰ with the iniƟal ray, then move out ϭ unit
along this ray (again placing you on the inner circle of the grid).

To plot B, go out ϭ.ϱ units along the iniƟal ray and rotate π radians (ϭϴϬ◦).
To plot C, go out Ϯ units along the iniƟal ray then rotate clockwise π/ϯ radi-

ans, as the angle given is negaƟve.
To plot D, move along the iniƟal ray “−ϭ” units – in other words, “back up” ϭ

unit, then rotate counter-clockwise by π/ϰ. The results are given in Figure ϵ.ϯϳ.

Notes:

ϱϮϱ
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Chapter ϵ Curves in the Plane

Consider the following two points: A = P(ϭ, π) and B = P(−ϭ, Ϭ). To locate
A, go out ϭ unit on the iniƟal ray then rotate π radians; to locate B, go out −ϭ
units on the iniƟal ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(ϭ, ϯπ), or D =
P(ϭ,−π); all four of these points share the same locaƟon.

This ability to idenƟfy a point in the plane with mulƟple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beauƟful funcƟons that intersect themselves (much like we sawwith parametric
funcƟons). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this secƟon.

Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure ϵ.ϯϴ shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, θ). Using
trigonometry, we can make the idenƟƟes given in the following Key Idea.

Key Idea ϰϬ ConverƟng Between Rectangular and Polar
Coordinates

Given the polar point P(r, θ), the rectangular coordinates are determined
by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

rϮ = xϮ + yϮ tan θ =
y
x
.

Example Ϯϵϵ ConverƟng Between Polar and Rectangular Coordinates

ϭ. Convert the polar coordinates P(Ϯ, Ϯπ/ϯ) and P(−ϭ, ϱπ/ϰ) to rectangular
coordinates.

Ϯ. Convert the rectangular coordinates (ϭ, Ϯ) and (−ϭ, ϭ) to polar coordi-
nates.

SÊ½çã®ÊÄ

Notes:

ϱϮϲ
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Figure ϵ.ϯϵ: Ploƫng rectangular and po-
lar points in Example Ϯϵϵ.

ϵ.ϰ IntroducƟon to Polar Coordinates

ϭ. (a) We start with P(Ϯ, Ϯπ/ϯ). Using Key Idea ϰϬ, we have

x = Ϯ cos(Ϯπ/ϯ) = −ϭ y = Ϯ sin(Ϯπ/ϯ) =
√
ϯ.

So the rectangular coordinates are (−ϭ,
√
ϯ) ≈ (−ϭ, ϭ.ϳϯϮ).

(b) The polar point P(−ϭ, ϱπ/ϰ) is converted to rectangular with:

x = −ϭ cos(ϱπ/ϰ) =
√
Ϯ/Ϯ y = −ϭ sin(ϱπ/ϰ) =

√
Ϯ/Ϯ.

So the rectangular coordinates are (
√
Ϯ/Ϯ,

√
Ϯ/Ϯ) ≈ (Ϭ.ϳϬϳ, Ϭ.ϳϬϳ).

These points are ploƩed in Figure ϵ.ϯϵ (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
laƟonship between the two can be seen.

Ϯ. (a) To convert the rectangular point (ϭ, Ϯ) to polar coordinates, we use
the Key Idea to form the following two equaƟons:

ϭϮ + ϮϮ = rϮ tan θ =
Ϯ
ϭ
.

The first equaƟon tells us that r =
√
ϱ. Using the inverse tangent

funcƟon, we find

tan θ = Ϯ ⇒ θ = tan−ϭ Ϯ ≈ ϭ.ϭϭ ≈ ϲϯ.ϰϯ◦.

Thus polar coordinates of (ϭ, Ϯ) are P(
√
ϱ, ϭ.ϭϭ).

(b) To convert (−ϭ, ϭ) to polar coordinates, we form the equaƟons

(−ϭ)Ϯ + ϭϮ = rϮ tan θ =
ϭ
−ϭ

.

Thus r =
√
Ϯ. We need to be careful in compuƟng θ: using the

inverse tangent funcƟon, we have

tan θ = −ϭ ⇒ θ = tan−ϭ(−ϭ) = −π/ϰ = −ϰϱ◦.

This is not the angle we desire. The range of tan−ϭ x is (−π/Ϯ, π/Ϯ);
that is, it returns angles that lie in the ϭst and ϰth quadrants. To
find locaƟons in the Ϯnd and ϯrd quadrants, add π to the result of
tan−ϭ x. So π + (−π/ϰ) puts the angle at ϯπ/ϰ. Thus the polar
point is P(

√
Ϯ, ϯπ/ϰ).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−ϭ, ϭ) as
P(−

√
Ϯ,−π/ϰ).

These points are ploƩed in Figure ϵ.ϯϵ (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used.

Notes:

ϱϮϳ
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Figure ϵ.ϰϬ: Ploƫng standard polar plots.

Chapter ϵ Curves in the Plane

Polar FuncƟons and Polar Graphs

Defining a new coordinate system allows us to create a new kind of func-
Ɵon, a polar funcƟon. Rectangular coordinates lent themselves well to creaƟng
funcƟons that related x and y, such as y = xϮ. Polar coordinates allow us to cre-
ate funcƟons that relate r and θ. Normally these funcƟons look like r = f(θ),
although we can create funcƟons of the form θ = f(r). The following examples
introduce us to this concept.

Example ϯϬϬ IntroducƟon to Graphing Polar FuncƟons
Describe the graphs of the following polar funcƟons.

ϭ. r = ϭ.ϱ

Ϯ. θ = π/ϰ

SÊ½çã®ÊÄ

ϭ. The equaƟon r = ϭ.ϱ describes all points that are ϭ.ϱ units from the pole;
as the angle is not specified, any θ is allowable. All points ϭ.ϱ units from
the pole describes a circle of radius ϭ.ϱ.

We can consider the rectangular equivalent of this equaƟon; using rϮ =
xϮ+yϮ, we see that ϭ.ϱϮ = xϮ+yϮ, which we recognize as the equaƟon of
a circle centered at (Ϭ, Ϭ) with radius ϭ.ϱ. This is sketched in Figure ϵ.ϰϬ.

Ϯ. The equaƟon θ = π/ϰ describes all points such that the line through them
and the polemake an angle of π/ϰwith the iniƟal ray. As the radius r is not
specified, it can be any value (even negaƟve). Thus θ = π/ϰ describes the
line through the pole that makes an angle of π/ϰ = ϰϱ◦ with the iniƟal
ray.

We can again consider the rectangular equivalent of this equaƟon. Com-
bine tan θ = y/x and θ = π/ϰ:

tan π/ϰ = y/x ⇒ x tan π/ϰ = y ⇒ y = x.

This graph is also ploƩed in Figure ϵ.ϰϬ.

The basic rectangular equaƟons of the form x = h and y = k create verƟcal
and horizontal lines, respecƟvely; the basic polar equaƟons r = h and θ = α
create circles and lines through the pole, respecƟvely. With this as a foundaƟon,
we can create more complicated polar funcƟons of the form r = f(θ). The input
is an angle; the output is a length, how far in the direcƟon of the angle to go out.

Notes:
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θ r = ϭ+ cos θ
Ϭ Ϯ

π/ϲ ϭ.ϴϲϲϬϯ
π/Ϯ ϭ
ϰπ/ϯ Ϭ.ϱ
ϳπ/ϰ ϭ.ϳϬϳϭϭ
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Figure ϵ.ϰϭ: Graphing a polar funcƟon in
Example ϯϬϭ by ploƫng points.
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Figure ϵ.ϰϮ: Using technology to graph a
polar funcƟon.
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We sketch these funcƟons much like we sketch rectangular and parametric
funcƟons: we plot lots of points and “connect the dots”with curves. We demon-
strate this in the following example.

Example ϯϬϭ Sketching Polar FuncƟons
Sketch the polar funcƟon r = ϭ+ cos θ on [Ϭ, Ϯπ] by ploƫng points.

SÊ½çã®ÊÄ AcommonquesƟonwhen sketching curves by ploƫngpoints
is “Which points should I plot?” With rectangular equaƟons, we oŌen choose
“easy” values – integers, then addedmore if needed. When ploƫng polar equa-
Ɵons, start with the “common” angles – mulƟples of π/ϲ and π/ϰ. Figure ϵ.ϰϭ
gives a table of just a few values of θ in [Ϭ, π].

Consider the point P(Ϭ, Ϯ) determined by the first line of the table. The angle
is Ϭ radians – we do not rotate from the iniƟal ray – then we go out Ϯ units from
the pole. When θ = π/ϲ, r = ϭ.ϴϲϲ (actually, it is ϭ+

√
ϯ/Ϯ); so rotate by π/ϲ

radians and go out ϭ.ϴϲϲ units.
The graph shownusesmorepoints, connectedwith straight lines. (The points

on the graph that correspond to points in the table are signifiedwith larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like.

Technology Note: Ploƫng funcƟons in this way can be tedious, just as it was
with rectangular funcƟons. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar funcƟons; in the menu, set the
ploƫng mode to something like polar or POL, depending on one’s calculator.
As with ploƫng parametric funcƟons, the viewing “window” no longer deter-
mines the x-values that are ploƩed, so addiƟonal informaƟon needs to be pro-
vided. OŌen with the “window” seƫngs are the seƫngs for the beginning and
ending θ values (oŌen called θmin and θmax) as well as the θstep – that is, how far
apart the θ values are spaced. The smaller the θstep value, the more accurate
the graph (which also increases ploƫng Ɵme). Using technology, we graphed
the polar funcƟon r = ϭ+ cos θ from Example ϯϬϭ in Figure ϵ.ϰϮ.

Example ϯϬϮ Sketching Polar FuncƟons
Sketch the polar funcƟon r = cos(Ϯθ) on [Ϭ, Ϯπ] by ploƫng points.

SÊ½çã®ÊÄ We start by making a table of cos(Ϯθ) evaluated at common
angles θ, as shown in Figure ϵ.ϰϯ. These points are then ploƩed in Figure ϵ.ϰϰ
(a). This parƟcular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.

Notes:
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Figure ϵ.ϰϰ: Polar plots from Example
ϯϬϮ.
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Pt. θ cos(Ϯθ)
ϭ Ϭ ϭ.
Ϯ π/ϲ Ϭ.ϱ
ϯ π/ϰ Ϭ.
ϰ π/ϯ −Ϭ.ϱ
ϱ π/Ϯ −ϭ.
ϲ Ϯπ/ϯ −Ϭ.ϱ
ϳ ϯπ/ϰ Ϭ.
ϴ ϱπ/ϲ Ϭ.ϱ
ϵ π ϭ.

Pt. θ cos(Ϯθ)
ϭϬ ϳπ/ϲ Ϭ.ϱ
ϭϭ ϱπ/ϰ Ϭ.
ϭϮ ϰπ/ϯ −Ϭ.ϱ
ϭϯ ϯπ/Ϯ −ϭ.
ϭϰ ϱπ/ϯ −Ϭ.ϱ
ϭϱ ϳπ/ϰ Ϭ.
ϭϲ ϭϭπ/ϲ Ϭ.ϱ
ϭϳ Ϯπ ϭ.

Figure ϵ.ϰϯ: Tables of points for ploƫng a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure ϵ.ϰϰ (b). This plot is an example of a rose curve.

It is someƟmes desirable to refer to a graph via a polar equaƟon, and other
Ɵmes by a rectangular equaƟon. Therefore it is necessary to be able to convert
between polar and rectangular funcƟons, which we pracƟce in the following ex-
ample. We will make frequent use of the idenƟƟes found in Key Idea ϰϬ.

Example ϯϬϯ ConverƟng between rectangular and polar equaƟons.

Convert from rectangular to polar.

ϭ. y = xϮ

Ϯ. xy = ϭ

Convert from polar to rectangular.

ϯ. r =
Ϯ

sin θ − cos θ

ϰ. r = Ϯ cos θ

SÊ½çã®ÊÄ

ϭ. Replace y with r sin θ and replace x with r cos θ, giving:

y = xϮ

r sin θ = rϮ cosϮ θ
sin θ
cosϮ θ

= r

We have found that r = sin θ/ cosϮ θ = tan θ sec θ. The domain of this
polar funcƟon is (−π/Ϯ, π/Ϯ); plot a few points to see how the familiar
parabola is traced out by the polar equaƟon.

Notes:

ϱϯϬ
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Figure ϵ.ϰϱ: Graphing xy = ϭ from Exam-
ple ϯϬϯ.
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Ϯ. We again replace x and y using the standard idenƟƟes and work to solve
for r:

xy = ϭ
r cos θ · r sin θ = ϭ

rϮ =
ϭ

cos θ sin θ

r =
ϭ√

cos θ sin θ

This funcƟon is valid only when the product of cos θ sin θ is posiƟve. This
occurs in the first and third quadrants, meaning the domain of this polar
funcƟon is (Ϭ, π/Ϯ) ∪ (π, ϯπ/Ϯ).
We can rewrite the original rectangular equaƟon xy = ϭ as y = ϭ/x.
This is graphed in Figure ϵ.ϰϱ; note how it only exists in the first and third
quadrants.

ϯ. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with
x and y, respecƟvely. We start in this problem by mulƟplying both sides
by sin θ − cos θ:

r =
Ϯ

sin θ − cos θ
r(sin θ − cos θ) = Ϯ
r sin θ − r cos θ = Ϯ. Now replace with y and x:

y− x = Ϯ
y = x+ Ϯ.

The original polar equaƟon, r = Ϯ/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equaƟons of lines
in polar form.

ϰ. By mulƟplying both sides by r, we obtain both an rϮ term and an r cos θ
term, which we replace with xϮ + yϮ and x, respecƟvely.

r = Ϯ cos θ

rϮ = Ϯr cos θ

xϮ + yϮ = Ϯx.

Notes:

ϱϯϭ
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We recognize this as a circle; by compleƟng the square we can find its
radius and center.

xϮ − Ϯx+ yϮ = Ϭ

(x− ϭ)Ϯ + yϮ = ϭ.

The circle is centered at (ϭ, Ϭ) and has radius ϭ. The upcoming gallery
of polar curves gives the equaƟons of some circles in polar form; circles
with arbitrary centers have a complicated polar equaƟon that we do not
consider here.

Some curves have very simple polar equaƟons but rather complicated rect-
angular ones. For instance, the equaƟon r = ϭ + cos θ describes a cardiod
(a shape important the sensiƟvity of microphones, among other things; one is
graphed in the gallery in the Limaçon secƟon). It’s rectangular form is not nearly
as simple; it is the implicit equaƟon xϰ + yϰ + ϮxϮyϮ − ϮxyϮ − Ϯxϯ − yϮ = Ϭ. The
conversion is not “hard,” but takes several steps, and is leŌ as a problem in the
Exercise secƟon.

Gallery of Polar Curves

There are a number of basic and “classic” polar curves, famous for their
beauty and/or applicability to the sciences. This secƟon endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to invesƟgate with technology other types of polar func-
Ɵons.

Lines

Through the origin: Horizontal line: VerƟcal line: Not through origin:

θ = α r = a csc θ r = a sec θ r =
b

sin θ −m cos θ

..
α

..
a
{

..︷ ︸︸ ︷.
a

..

slo
pe
=

m

.

}

b

Notes:
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Circles Spiral

Centered on x-axis: Centered on y-axis: Centered on origin: Archimedean spiral
r = a cos θ r = a sin θ r = a r = θ

..︷ ︸︸ ︷.
a

..

a



























..︷ ︸︸ ︷.
a

.

Limaçons
Symmetric about x-axis: r = a± b cos θ; Symmetric about y-axis: r = a± b sin θ; a, b > Ϭ

With inner loop: Cardiod: Dimpled: Convex:
a
b
< ϭ

a
b
= ϭ ϭ <

a
b
< Ϯ

a
b
> Ϯ

. . . .

Rose Curves
Symmetric about x-axis: r = a cos(nθ); Symmetric about y-axis: r = a sin(nθ)
Curve contains Ϯn petals when n is even and n petals when n is odd.

r = a cos(Ϯθ) r = a sin(Ϯθ) r = a cos(ϯθ) r = a sin(ϯθ)

. . . .

Special Curves

Rose curves Lemniscate: Eight Curve:

r = a sin(θ/ϱ) r = a sin(Ϯθ/ϱ) rϮ = aϮ cos(Ϯθ) rϮ = aϮ secϰ θ cos(Ϯθ)

. . . .
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Figure ϵ.ϰϲ: Graphs to help determine
the points of intersecƟon of the polar
funcƟons given in Example ϯϬϰ.
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Earlier we discussed how each point in the plane does not have a unique
representaƟon in polar form. This can be a “good” thing, as it allows for the
beauƟful and interesƟng curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

Example ϯϬϰ Finding points of intersecƟon with polar curves
Determinewhere the graphs of the polar equaƟons r = ϭ+ϯ cos θ and r = cos θ
intersect.

SÊ½çã®ÊÄ As technology is generally readily available, it is usually a
good idea to start with a graph. We have graphed the two funcƟons in Figure
ϵ.ϰϲ(a); to beƩer discern the intersecƟon points, part (b) of the figure zooms in
around the origin. We start by seƫng the two funcƟons equal to each other
and solving for θ:

ϭ+ ϯ cos θ = cos θ
Ϯ cos θ = −ϭ

cos θ = −ϭ
Ϯ

θ =
Ϯπ
ϯ
,
ϰπ
ϯ
.

(There are, of course, infinite soluƟons to the equaƟon cos θ = −ϭ/Ϯ; as the
limaçon is traced out once on [Ϭ, Ϯπ], we restrict our soluƟons to this interval.)

We need to analyze this soluƟon. When θ = Ϯπ/ϯ we obtain the point of
intersecƟon that lies in the ϰth quadrant. When θ = ϰπ/ϯ, we get the point of
intersecƟon that lies in the Ϯnd quadrant. There is more to say about this second
intersecƟon point, however. The circle defined by r = cos θ is traced out once on
[Ϭ, π], meaning that this point of intersecƟon occurs while tracing out the circle
a second Ɵme. It seems strange to pass by the point once and then recognize
it as a point of intersecƟon only when arriving there a “second Ɵme.” The first
Ɵme the circle arrives at this point is when θ = π/ϯ. It is key to understand that
these two points are the same: (cos π/ϯ, π/ϯ) and (cos ϰπ/ϯ, ϰπ/ϯ).

To summarize what we have done so far, we have found two points of in-
tersecƟon: when θ = Ϯπ/ϯ and when θ = ϰπ/ϯ. When referencing the circle
r = cos θ, the laƩer point is beƩer referenced as when θ = π/ϯ.

There is yet another point of intersecƟon: the pole (or, the origin). We did
not recognize this intersecƟon point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = Ϭ. Considering the circle r = cos θ,
r = Ϭ when θ = π/Ϯ (and odd mulƟples thereof, as the circle is repeatedly

Notes:

ϱϯϰ
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traced). The limaçon intersects the pole when ϭ+ϯ cos θ = Ϭ; this occurs when
cos θ = −ϭ/ϯ, or for θ = cos−ϭ(−ϭ/ϯ). This is a nonstandard angle, approxi-
mately θ = ϭ.ϵϭϬϲ = ϭϬϵ.ϰϳ◦. The limaçon intersects the pole twice in [Ϭ, Ϯπ];
the other angle at which the limaçon is at the pole is the reflecƟon of the first
angle across the x-axis. That is, θ = ϰ.ϯϳϮϲ = ϮϱϬ.ϱϯ◦.

If all one is concernedwith is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (Ϭ, Ϭ);
we might not care at what θ value. Likewise, using θ = Ϯπ/ϯ and θ = ϰπ/ϯ
can give us the needed rectangular coordinates. However, in the next secƟon
we apply calculus concepts to polar funcƟons. When compuƟng the area of a
region bounded by polar curves, understanding the nuances of the points of
intersecƟon becomes important.

Notes:
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Exercises ϵ.ϰ
Terms and Concepts
ϭ. In your own words, describe how to plot the polar point

P(r, θ).

Ϯ. T/F: When ploƫng a point with polar coordinate P(r, θ), r
must be posiƟve.

ϯ. T/F: Every point in the Cartesian plane can be represented
by a polar coordinate.

ϰ. T/F: Every point in the Cartesian plane can be represented
uniquely by a polar coordinate.

Problems
ϱ. Plot the points with the given polar coordinates.

(a) A = P(Ϯ, Ϭ)

(b) B = P(ϭ, π)

(c) C = P(−Ϯ, π/Ϯ)

(d) D = P(ϭ, π/ϰ)

ϲ. Plot the points with the given polar coordinates.

(a) A = P(Ϯ, ϯπ)

(b) B = P(ϭ,−π)

(c) C = P(ϭ, Ϯ)

(d) D = P(ϭ/Ϯ, ϱπ/ϲ)

ϳ. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where Ϭ ≤ θ ≤ Ϯπ.

O ϭ Ϯ ϯ

A

B

C

D

ϴ. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where−π ≤ θ ≤ π.

O ϭ Ϯ ϯ

A

B

C

D

ϵ. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(Ϯ, π/ϰ)

(b) B = P(Ϯ,−π/ϰ)

(c) C = (Ϯ,−ϭ)

(d) D = (−Ϯ, ϭ)

ϭϬ. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(ϯ, π)

(b) B = P(ϭ, Ϯπ/ϯ)

(c) C = (Ϭ, ϰ)

(d) D = (ϭ,−
√
ϯ)

In Exercises ϭϭ – Ϯϵ, graph the polar funcƟon on the given
interval.

ϭϭ. r = Ϯ, Ϭ ≤ θ ≤ π/Ϯ

ϭϮ. θ = π/ϲ, −ϭ ≤ r ≤ Ϯ

ϭϯ. r = ϭ− cos θ, [Ϭ, Ϯπ]

ϭϰ. r = Ϯ+ sin θ, [Ϭ, Ϯπ]

ϭϱ. r = Ϯ− sin θ, [Ϭ, Ϯπ]

ϭϲ. r = ϭ− Ϯ sin θ, [Ϭ, Ϯπ]

ϭϳ. r = ϭ+ Ϯ sin θ, [Ϭ, Ϯπ]

ϭϴ. r = cos(Ϯθ), [Ϭ, Ϯπ]

ϭϵ. r = sin(ϯθ), [Ϭ, π]

ϮϬ. r = cos(θ/ϯ), [Ϭ, ϯπ]

Ϯϭ. r = cos(Ϯθ/ϯ), [Ϭ, ϲπ]

ϮϮ. r = θ/Ϯ, [Ϭ, ϰπ]

Ϯϯ. r = ϯ sin(θ), [Ϭ, π]

Ϯϰ. r = cos θ sin θ, [Ϭ, Ϯπ]

Ϯϱ. r = θϮ − (π/Ϯ)Ϯ, [−π, π]

Ϯϲ. r =
ϯ

ϱ sin θ − cos θ
, [Ϭ, Ϯπ]

Ϯϳ. r =
−Ϯ

ϯ cos θ − Ϯ sin θ
, [Ϭ, Ϯπ]

Ϯϴ. r = ϯ sec θ, (−π/Ϯ, π/Ϯ)

Ϯϵ. r = ϯ csc θ, (Ϭ, π)

In Exercises ϯϬ – ϯϴ, convert the polar equaƟon to a rectan-
gular equaƟon.

ϯϬ. r = Ϯ cos θ

ϯϭ. r = −ϰ sin θ

ϯϮ. r = cos θ + sin θ

ϱϯϲ



ϯϯ. r =
ϳ

ϱ sin θ − Ϯ cos θ

ϯϰ. r =
ϯ

cos θ

ϯϱ. r =
ϰ

sin θ

ϯϲ. r = tan θ

ϯϳ. r = Ϯ

ϯϴ. θ = π/ϲ

In Exercises ϯϵ – ϰϲ, convert the rectangular equaƟon to a
polar equaƟon.

ϯϵ. y = x

ϰϬ. y = ϰx+ ϳ

ϰϭ. x = ϱ

ϰϮ. y = ϱ

ϰϯ. x = yϮ

ϰϰ. xϮy = ϭ

ϰϱ. xϮ + yϮ = ϳ

ϰϲ. (x+ ϭ)Ϯ + yϮ = ϭ

In Exercises ϰϳ – ϱϰ, find the points of intersecƟon of the po-
lar graphs.

ϰϳ. r = sin(Ϯθ) and r = cos θ on [Ϭ, π]

ϰϴ. r = cos(Ϯθ) and r = cos θ on [Ϭ, π]

ϰϵ. r = Ϯ cos θ and r = Ϯ sin θ on [Ϭ, π]

ϱϬ. r = sin θ and r =
√
ϯ+ ϯ sin θ on [Ϭ, Ϯπ]

ϱϭ. r = sin(ϯθ) and r = cos(ϯθ) on [Ϭ, π]

ϱϮ. r = ϯ cos θ and r = ϭ+ cos θ on [−π, π]

ϱϯ. r = ϭ and r = Ϯ sin(Ϯθ) on [Ϭ, Ϯπ]

ϱϰ. r = ϭ− cos θ and r = ϭ+ sin θ on [Ϭ, Ϯπ]

ϱϱ. Pick a integer value for n, where n ̸= Ϯ, ϯ, and use technol-
ogy to plot r = sin

(m
n
θ
)

for three different integer values
of m. Sketch these and determine a minimal interval on
which the enƟre graph is shown.

ϱϲ. Create your own polar funcƟon, r = f(θ) and sketch it. De-
scribe why the graph looks as it does.

ϱϯϳ
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ϵ.ϱ Calculus and Polar FuncƟons

The previous secƟon defined polar coordinates, leading to polar funcƟons. We
invesƟgated ploƫng these funcƟons and solving a fundamental quesƟon about
their graphs, namely, where do two polar graphs intersect?

We now turn our aƩenƟon to answering other quesƟons, whose soluƟons
require the use of calculus. A basis for much of what is done in this secƟon is
the ability to turn a polar funcƟon r = f(θ) into a set of parametric equaƟons.
Using the idenƟƟes x = r cos θ and y = r sin θ, we can create the parametric
equaƟons x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of SecƟon ϵ.ϯ.

Polar FuncƟons and
dy
dx

We are interested in the lines tangent a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equaƟons. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea ϯϳ we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two derivaƟves on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

Key Idea ϰϭ Finding dy
dx with Polar FuncƟons

Let r = f(θ) be a polar funcƟon. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

Example ϯϬϱ Finding dy
dx with polar funcƟons.

Consider the limaçon r = ϭ+ Ϯ sin θ on [Ϭ, Ϯπ].

ϭ. Find the equaƟons of the tangent and normal lines to the graph at θ =
π/ϰ.

Ϯ. Find where the graph has verƟcal and horizontal tangent lines.

Notes:
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Figure ϵ.ϰϳ: The limaçon in Example ϯϬϱ
with its tangent line at θ = π/ϰ and
points of verƟcal and horizontal tangency.
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SÊ½çã®ÊÄ

ϭ. We start by compuƟng dy
dx . With f ′(θ) = Ϯ cos θ, we have

dy
dx

=
Ϯ cos θ sin θ + cos θ(ϭ+ Ϯ sin θ)
Ϯ cosϮ θ − sin θ(ϭ+ Ϯ sin θ)

=
cos θ(ϰ sin θ + ϭ)

Ϯ(cosϮ θ − sinϮ θ)− sin θ
.

When θ = π/ϰ, dy
dx = −Ϯ

√
Ϯ − ϭ (this requires a bit of simplificaƟon).

In rectangular coordinates, the point on the graph at θ = π/ϰ is (ϭ +√
Ϯ/Ϯ, ϭ +

√
Ϯ/Ϯ). Thus the rectangular equaƟon of the line tangent to

the limaçon at θ = π/ϰ is

y = (−Ϯ
√
Ϯ− ϭ)

(
x− (ϭ+

√
Ϯ/Ϯ)

)
+ ϭ+

√
Ϯ/Ϯ ≈ −ϯ.ϴϯx+ ϴ.Ϯϰ.

The limaçon and the tangent line are graphed in Figure ϵ.ϰϳ.
The normal line has the opposite–reciprocal slope as the tangent line, so
its equaƟon is

y ≈ ϭ
ϯ.ϴϯ

x+ ϭ.Ϯϲ.

Ϯ. To find the horizontal lines of tangency, we find where dy
dx = Ϭ; thus we

find where the numerator of our equaƟon for dy
dx is Ϭ.

cos θ(ϰ sin θ + ϭ) = Ϭ ⇒ cos θ = Ϭ or ϰ sin θ + ϭ = Ϭ.

On [Ϭ, Ϯπ], cos θ = Ϭ when θ = π/Ϯ, ϯπ/Ϯ.
Seƫng ϰ sin θ + ϭ = Ϭ gives θ = sin−ϭ(−ϭ/ϰ) ≈ −Ϭ.ϮϱϮϳ = −ϭϰ.ϰϴ◦.
We want the results in [Ϭ, Ϯπ]; we also recognize there are two soluƟons,
one in the ϯrd quadrant and one in the ϰth. Using reference angles, we
have our two soluƟons as θ = ϯ.ϯϵ and ϲ.Ϭϯ radians. The four points we
obtained where the limaçon has a horizontal tangent line are given in Fig-
ure ϵ.ϰϳ with black–filled dots.

To find the verƟcal lines of tangency, we set the denominator of dy
dx = Ϭ.

Ϯ(cosϮ θ − sinϮ θ)− sin θ = Ϭ.

Convert the cosϮ θ term to ϭ− sinϮ θ:

Ϯ(ϭ− sinϮ θ − sinϮ θ)− sin θ = Ϭ

ϰ sinϮ θ + sin θ − ϭ = Ϭ.

Notes:

ϱϯϵ
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Figure ϵ.ϰϴ: Graphing the tangent lines at
the pole in Example ϯϬϲ.
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Recognize this as a quadraƟc in the variable sin θ. Using the quadraƟc
formula, we have

sin θ =
−ϭ±

√
ϯϯ

ϴ
.

We solve sin θ = −ϭ+
√
ϯϯ

ϴ and sin θ = −ϭ−
√
ϯϯ

ϴ :

sin θ =
−ϭ+

√
ϯϯ

ϴ
sin θ =

−ϭ−
√
ϯϯ

ϴ

θ = sin−ϭ
(−ϭ+

√
ϯϯ

ϴ

)

θ = sin−ϭ
(−ϭ−

√
ϯϯ

ϴ

)

θ = Ϭ.ϲϯϵϵ θ = −ϭ.ϬϬϯϬ

In each of the soluƟons above, we only get one of the possible two so-
luƟons as sin−ϭ x only returns soluƟons in [−π/Ϯ, π/Ϯ], the ϰth and ϭst
quadrants. Again using reference angles, we have:

sin θ =
−ϭ+

√
ϯϯ

ϴ
⇒ θ = Ϭ.ϲϯϵϵ, ϯ.ϳϴϭϱ radians

and

sin θ =
−ϭ−

√
ϯϯ

ϴ
⇒ θ = ϰ.ϭϰϰϲ, ϱ.ϮϴϬϮ radians.

These points are also shown in Figure ϵ.ϰϳ with white–filled dots.

When the graph of the polar funcƟon r = f(θ) intersects the pole, it means
that f(α) = Ϭ for some angle α. Thus the formula for dy

dx in such instances is very
simple, reducing simply to

dy
dx

= tanα.

This equaƟon makes an interesƟng point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Example
ϯϬϬ) shows us that the line through the pole with slope tanα has polar equaƟon
θ = α. Thus when a polar graph touches the pole at θ = α, the equaƟon of the
tangent line at the pole is θ = α.

Example ϯϬϲ Finding tangent lines at the pole.
Let r = ϭ + Ϯ sin θ, a limaçon. Find the equaƟons of the lines tangent to the
graph at the pole.

Notes:
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Note: Recall that the area of a sector of a
circle with radius r subtended by an angle
θ is A = ϭ

Ϯθr
Ϯ.
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Figure ϵ.ϰϵ: CompuƟng the area of a po-
lar region.
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SÊ½çã®ÊÄ We need to know when r = Ϭ.

ϭ+ Ϯ sin θ = Ϭ
sin θ = −ϭ/Ϯ

θ =
ϳπ
ϲ
,
ϭϭπ
ϲ

.

Thus the equaƟons of the tangent lines, in polar, are θ = ϳπ/ϲ and θ = ϭϭπ/ϲ.
In rectangular form, the tangent lines are y = tan(ϳπ/ϲ)x and y = tan(ϭϭπ/ϲ)x.
The full limaçon can be seen in Figure ϵ.ϰϳ; we zoom in on the tangent lines in
Figure ϵ.ϰϴ.

Area

When using rectangular coordinates, the equaƟons x = h and y = k defined
verƟcal and horzontal lines, respecƟvely, and combinaƟons of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equaƟons θ = α and r = c form lines
through the origin and circles centered at the origin, respecƟvely, and combi-
naƟons of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar funcƟons by first approximaƟng
with sectors of circles.

Consider Figure ϵ.ϰϵ (a) where a region defined by r = f(θ) on [α, β] is given.
(Note how the “sides” of the region are the lines θ = α and θ = β, whereas in
rectangular coordinates the “sides” of regionswere oŌen the verƟcal lines x = a
and x = b.)

ParƟƟon the interval [α, β] into n equally spaced subintervals as α = θϭ <
θϮ < · · · < θn+ϭ = β. The length of each subinterval is ∆θ = (β − α)/n,
represenƟng a small change in angle. The area of the region defined by the i th
subinterval [θi, θi+ϭ] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi, θi+ϭ]. The area of this sector is ϭ

Ϯ f(ci)
Ϯ∆θ. This is shown

in part (b) of the figure, where [α, β] has been divided into ϰ subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=ϭ

ϭ
Ϯ
f(ci)Ϯ∆θ.

This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the

Notes:
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Note: Example ϯϬϳ requires the use of

the integral
∫

cosϮ θ dθ. This is handled

well by using the power reducing formula
as found in the back of this text. Due to
the nature of the area formula, integrat-
ing cosϮ θ and sinϮ θ is required oŌen.
We offer here these indefinite integrals
as a Ɵme–saving measure.
∫

cosϮ θ dθ =
ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ) + C

∫

sinϮ θ dθ =
ϭ
Ϯ
θ − ϭ

ϰ
sin(Ϯθ) + C

...

..

ϭ

.

Ϯ

.

ϭ

.

θ =
π/

6

.

θ
=

π
/
ϯ

.
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.

π/Ϯ

Figure ϵ.ϱϬ: Finding the area of the
shaded region of a cardiod in Example
ϯϬϴ.
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exact area of the region in the form of a definite integral.

Theorem ϴϯ Area of a Polar Region

Let f be conƟnuous and non-negaƟve on [α, β], where Ϭ ≤ β− α ≤ Ϯπ.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
ϭ
Ϯ

∫ β

α

f(θ)Ϯ dθ =
ϭ
Ϯ

∫ β

α

r Ϯ dθ

The theorem states that Ϭ ≤ β−α ≤ Ϯπ. This ensures that region does not
overlap itself, which would give a result that does not correspond directly to the
area.

Example ϯϬϳ Area of a polar region
Find the area of the circle defined by r = cos θ. (Recall this circle has radius ϭ/Ϯ.)

SÊ½çã®ÊÄ This is a direct applicaƟonof Theoremϴϯ. The circle is traced
out on [Ϭ, π], leading to the integral

Area =
ϭ
Ϯ

∫ π

Ϭ
cosϮ θ dθ

=
ϭ
Ϯ

∫ π

Ϭ

ϭ+ cos(Ϯθ)
Ϯ

dθ

=
ϭ
ϰ
(
θ +

ϭ
Ϯ
sin(Ϯθ)

)

∣
∣
∣
∣
∣

π

Ϭ

=
ϭ
ϰ
π.

Of course, we already knew the area of a circle with radius ϭ/Ϯ. We did this ex-
ample to demonstrate that the area formula is correct.

Example ϯϬϴ Area of a polar region
Find the area of the cardiod r = ϭ+cos θ bound between θ = π/ϲ and θ = π/ϯ,
as shown in Figure ϵ.ϱϬ.

Notes:
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SÊ½çã®ÊÄ This is again a direct applicaƟon of Theorem ϴϯ.

Area =
ϭ
Ϯ

∫ π/ϯ

π/ϲ
(ϭ+ cos θ)Ϯ dθ

=
ϭ
Ϯ

∫ π/ϯ

π/ϲ
(ϭ+ Ϯ cos θ + cosϮ θ) dθ

=
ϭ
Ϯ

(

θ + Ϯ sin θ +
ϭ
Ϯ
θ +

ϭ
ϰ
sin(Ϯθ)

)
∣
∣
∣
∣
∣

π/ϯ

π/ϲ

=
ϭ
ϴ
(
π + ϰ

√
ϯ− ϰ

)
≈ Ϭ.ϳϱϴϳ.

Area Between Curves

Our study of area in the context of rectangular funcƟons led naturally to
finding area bounded between curves. We consider the same in the context of
polar funcƟons.

Consider the shaded region shown in Figure ϵ.ϱϭ. We can find the area of
this region by compuƟng the area bounded by rϮ = fϮ(θ) and subtracƟng the
area bounded by rϭ = fϭ(θ) on [α, β]. Thus

Area =
ϭ
Ϯ

∫ β

α

r ϮϮ dθ − ϭ
Ϯ

∫ β

α

r Ϯϭ dθ =
ϭ
Ϯ

∫ β

α

(
r ϮϮ − r Ϯϭ

)
dθ.

Key Idea ϰϮ Area Between Polar Curves

The area A of the region bounded by rϭ = fϭ(θ) and rϮ = fϮ(θ), θ = α
and θ = β, where fϭ(θ) ≤ fϮ(θ) on [α, β], is

A =
ϭ
Ϯ

∫ β

α

(
r ϮϮ − r Ϯϭ

)
dθ.

Example ϯϬϵ Area between polar curves
Find the area bounded between the curves r = ϭ + cos θ and r = ϯ cos θ, as
shown in Figure ϵ.ϱϮ.

SÊ½çã®ÊÄ We need to find the points of intersecƟon between these

Notes:
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Figure ϵ.ϱϯ: Graphing the region
bounded by the funcƟons in Example
ϯϭϬ.
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two funcƟons. Seƫng them equal to each other, we find:

ϭ+ cos θ = ϯ cos θ
cos θ = ϭ/Ϯ

θ = ±π/ϯ

Thus we integrate ϭ
Ϯ

(
(ϯ cos θ)Ϯ − (ϭ+ cos θ)Ϯ

)
on [−π/ϯ, π/ϯ].

Area =
ϭ
Ϯ

∫ π/ϯ

−π/ϯ

(
(ϯ cos θ)Ϯ − (ϭ+ cos θ)Ϯ

)
dθ

=
ϭ
Ϯ

∫ π/ϯ

−π/ϯ

(
ϴ cosϮ θ − Ϯ cos θ − ϭ

)
dθ

=
(
Ϯ sin(Ϯθ)− Ϯ sin θ + ϯθ

)

∣
∣
∣
∣
∣

π/ϯ

−π/ϯ

= Ϯπ.

Amazingly enough, the area between these curves has a “nice” value.

Example ϯϭϬ Area defined by polar curves
Find the area bounded between the polar curves r = ϭ and r = Ϯ cos(Ϯθ), as
shown in Figure ϵ.ϱϯ (a).

SÊ½çã®ÊÄ We need to find the point of intersecƟon between the two
curves. Seƫng the two funcƟons equal to each other, we have

Ϯ cos(Ϯθ) = ϭ ⇒ cos(Ϯθ) =
ϭ
Ϯ

⇒ Ϯθ = π/ϯ ⇒ θ = π/ϲ.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = Ϭ. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = ϭ, θ = Ϭ and θ = π/ϲ. (Note:
the dashed line lies on the line θ = π/ϲ.) Above the dashed line the region is
bounded by r = Ϯ cos(Ϯθ) and θ = π/ϲ. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line Aϭ and the area above the dashed line
AϮ. They are determined by the following integrals:

Aϭ =
ϭ
Ϯ

∫ π/ϲ

Ϭ
(ϭ)Ϯ dθ AϮ =

ϭ
Ϯ

∫ π/ϰ

π/ϲ

(
Ϯ cos(Ϯθ)

)Ϯ dθ.

Notes:
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(The upper bound of the integral compuƟng AϮ is π/ϰ as r = Ϯ cos(Ϯθ) is at the
pole when θ = π/ϰ.)

We omit the integraƟon details and let the reader verify that Aϭ = π/ϭϮ and
AϮ = π/ϭϮ−

√
ϯ/ϴ; the total area is A = π/ϲ−

√
ϯ/ϴ.

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equaƟons, we now consider it in the context of polar equa-
Ɵons. Recall that the arc length L of the graph defined by the parametric equa-
Ɵons x = f(t), y = g(t) on [a, b] is

L =
∫ b

a

√

f ′(t)Ϯ + g ′(t)Ϯ dt =
∫ b

a

√

x ′(t)Ϯ + y ′(t)Ϯ dt. (ϵ.ϭ)

Now consider the polar funcƟon r = f(θ). We again use the idenƟƟes x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equaƟons based on the polar
funcƟon. We compute x ′(θ) and y ′(θ) as done before when compuƟng dy

dx , then
apply EquaƟon (ϵ.ϭ).

The expression x ′(θ)Ϯ + y ′(θ)Ϯ can be simplified a great deal; we leave this
as an exercise and state that

x ′(θ)Ϯ + y ′(θ)Ϯ = f ′(θ)Ϯ + f(θ)Ϯ.

This leads us to the arc length formula.

Key Idea ϰϯ Arc Length of Polar Curves

Let r = f(θ) be a polar funcƟon with f ′ conƟnuous on an open interval
I containing [α, β], on which the graph traces itself only once. The arc
length L of the graph on [α, β] is

L =
∫ β

α

√

f ′(θ)Ϯ + f(θ)Ϯ dθ =

∫ β

α

√

(r ′)Ϯ + rϮ dθ.

Example ϯϭϭ Arc length of a limaçon
Find the arc length of the limaçon r = ϭ+ Ϯ sin t.

SÊ½çã®ÊÄ With r = ϭ + Ϯ sin t, we have r ′ = Ϯ cos t. The limaçon is
traced out once on [Ϭ, Ϯπ], giving us our bounds of integraƟon. Applying Key

Notes:

ϱϰϱ



.....−Ϯ. −ϭ. ϭ. Ϯ.

ϭ

.

Ϯ

.

ϯ

.
Ϭ

.

π/Ϯ

Figure ϵ.ϱϰ: The limaçon in Example ϯϭϭ
whose arc length is measured.
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Idea ϰϯ, we have

L =
∫ Ϯπ

Ϭ

√

(Ϯ cos θ)Ϯ + (ϭ+ Ϯ sin θ)Ϯ dθ

=

∫ Ϯπ

Ϭ

√

ϰ cosϮ θ + ϰ sinϮ θ + ϰ sin θ + ϭ dθ

=

∫ Ϯπ

Ϭ

√
ϰ sin θ + ϱ dθ

≈ ϭϯ.ϯϲϰϵ.

The final integral cannot be solved in terms of elementary funcƟons, so we re-
sorted to a numerical approximaƟon. (Simpson’s Rule, with n = ϰ, approximates
the value with ϭϯ.ϬϲϬϴ. Using n = ϮϮ gives the value above, which is accurate
to ϰ places aŌer the decimal.)

Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Key Idea is based on Key Idea ϯϵ.

Key Idea ϰϰ Surface Area of a Solid of RevoluƟon

Consider the graph of the polar equaƟon r = f(θ), where f ′ is conƟnuous
on an open interval containing [α, β] on which the graph does not cross
itself.

ϭ. The surface area of the solid formed by revolving the graph about
the iniƟal ray (θ = Ϭ) is:

Surface Area = Ϯπ
∫ β

α

f(θ) sin θ
√

f ′(θ)Ϯ + f(θ)Ϯ dθ.

Ϯ. The surface area of the solid formed by revolving the graph about
the line θ = π/Ϯ is:

Surface Area = Ϯπ
∫ β

α

f(θ) cos θ
√

f ′(θ)Ϯ + f(θ)Ϯ dθ.

Notes:
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Figure ϵ.ϱϱ: Finding the surface area of a
rose–curve petal that is revolved around
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Example ϯϭϮ Surface area determined by a polar curve
Find the surface area formedby revolving onepetal of the rose curve r = cos(Ϯθ)
about its central axis (see Figure ϵ.ϱϱ).

SÊ½çã®ÊÄ We choose, as implied by the figure, to revolve the porƟon
of the curve that lies on [Ϭ, π/ϰ] about the iniƟal ray. Using Key Idea ϰϰ and the
fact that f ′(θ) = −Ϯ sin(Ϯθ), we have

Surface Area = Ϯπ
∫ π/ϰ

Ϭ
cos(Ϯθ) sin(θ)

√
(
− Ϯ sin(Ϯθ)

)Ϯ
+
(
cos(Ϯθ)

)Ϯ dθ

≈ ϭ.ϯϲϳϬϳ.

The integral is another that cannot be evaluated in terms of elementary func-
Ɵons. Simpson’s Rule, with n = ϰ, approximates the value at ϭ.ϯϲϳϱϭ.

This chapter has been about curves in the plane. While there is great math-
emaƟcs to be discovered in the two dimensions of a plane, we live in a three
dimensional world and hence we should also look to do mathemaƟcs in ϯD –
that is, in space. The next chapter begins our exploraƟon into space by introduc-
ing the topic of vectors, which are incredibly useful and powerful mathemaƟcal
objects.

Notes:
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Exercises ϵ.ϱ
Terms and Concepts

ϭ. Given polar equaƟon r = f(θ), how can one create para-
metric equaƟons of the same curve?

Ϯ. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with .

Problems

In Exercises ϯ – ϭϬ, find:

(a)
dy
dx

(b) the equaƟon of the tangent and normal lines to the
curve at the indicated θ–value.

ϯ. r = ϭ; θ = π/ϰ

ϰ. r = cos θ; θ = π/ϰ

ϱ. r = ϭ+ sin θ; θ = π/ϲ

ϲ. r = ϭ− ϯ cos θ; θ = ϯπ/ϰ

ϳ. r = θ; θ = π/Ϯ

ϴ. r = cos(ϯθ); θ = π/ϲ

ϵ. r = sin(ϰθ); θ = π/ϯ

ϭϬ. r =
ϭ

sin θ − cos θ
; θ = π

In Exercises ϭϭ – ϭϰ, find the values of θ in the given inter-
val where the graph of the polar funcƟon has horizontal and
verƟcal tangent lines.

ϭϭ. r = ϯ; [Ϭ, Ϯπ]

ϭϮ. r = Ϯ sin θ; [Ϭ, π]

ϭϯ. r = cos(Ϯθ); [Ϭ, Ϯπ]

ϭϰ. r = ϭ+ cos θ; [Ϭ, Ϯπ]

In Exercises ϭϱ – ϭϲ, find the equaƟon of the lines tangent to
the graph at the pole.

ϭϱ. r = sin θ; [Ϭ, π]

ϭϲ. r = sin(ϯθ); [Ϭ, π]

In Exercises ϭϳ – Ϯϳ, find the area of the described region.

ϭϳ. Enclosed by the circle: r = ϰ sin θ

ϭϴ. Enclosed by the circle r = ϱ

ϭϵ. Enclosed by one petal of r = sin(ϯθ)

ϮϬ. Enclosed by the cardiod r = ϭ− sin θ

Ϯϭ. Enclosed by the inner loop of the limaçon r = ϭ+ Ϯ cos t

ϮϮ. Enclosed by the outer loop of the limaçon r = ϭ + Ϯ cos t
(including area enclosed by the inner loop)

Ϯϯ. Enclosed between the inner and outer loop of the limaçon
r = ϭ+ Ϯ cos t

Ϯϰ. Enclosed by r = Ϯ cos θ and r = Ϯ sin θ, as shown:

.....

−1

.

1

.

2

. −1.

1

.

2

.

x

.

y

Ϯϱ. Enclosed by r = cos(ϯθ) and r = sin(ϯθ), as shown:

.....

1

.

0.5
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Ϯϲ. Enclosed by r = cos θ and r = sin(Ϯθ), as shown:
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Ϯϳ. Enclosed by r = cos θ and r = ϭ− cos θ, as shown:

.....
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y

In Exercises Ϯϴ – ϯϮ, answer the quesƟons involving arc
length.

Ϯϴ. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug-
gested by the text, that

x ′(θ)Ϯ + y ′(θ)Ϯ = f ′(θ)Ϯ + f(θ)Ϯ.

Ϯϵ. Use the arc length formula to compute the arc length of the
circle r = Ϯ.

ϯϬ. Use the arc length formula to compute the arc length of the
circle r = ϰ sin θ.

ϯϭ. Approximate the arc length of one petal of the rose curve
r = sin(ϯθ) with Simpson’s Rule and n = ϰ.

ϯϮ. Approximate the arc length of the cardiod r = ϭ + cos θ
with Simpson’s Rule and n = ϲ.

In Exercises ϯϯ – ϯϳ, answer the quesƟons involving surface
area.

ϯϯ. Use Key Idea ϰϰ to find the surface area of the sphere
formed by revolving the circle r = Ϯ about the iniƟal ray.

ϯϰ. Use Key Idea ϰϰ to find the surface area of the sphere
formed by revolving the circle r = Ϯ cos θ about the iniƟal
ray.

ϯϱ. Find the surface area of the solid formed by revolving the
cardiod r = ϭ+ cos θ about the iniƟal ray.

ϯϲ. Find the surface area of the solid formed by revolving the
circle r = Ϯ cos θ about the line θ = π/Ϯ.

ϯϳ. Find the surface area of the solid formed by revolving the
line r = ϯ sec θ, −π/ϰ ≤ θ ≤ π/ϰ, about the line
θ = π/Ϯ.

ϱϰϵ





ϭϬ: V��ãÊÙÝ
This chapter introduces a new mathemaƟcal object, the vector. Defined in Sec-
Ɵon ϭϬ.Ϯ, we will see that vectors provide a powerful language for describing
quanƟƟes that have magnitude and direcƟon aspects. A simple example of
such a quanƟty is force: when applying a force, one is generally interested in
howmuch force is applied (i.e., the magnitude of the force) and the direcƟon in
which the force was applied. Vectors will play an important role in many of the
subsequent chapters in this text.

This chapter begins with moving our mathemaƟcs out of the plane and into
“space.” That is, we begin to think mathemaƟcally not only in two dimensions,
but in three. With this foundaƟon, we can explore vectors both in the plane and
in space.

ϭϬ.ϭ IntroducƟon to Cartesian Coordinates in Space

Up to this point in this text we have consideredmathemaƟcs in a Ϯ–dimensional
world. We have ploƩed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properƟes of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotaƟng it out of the plane.

While there is wonderful mathemaƟcs to explore in “ϮD,” we live in a “ϯD”
world and eventually we will want to apply mathemaƟcs involving this third di-
mension. In this secƟon we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundaƟon for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relaƟve posiƟon of P along the x-, y- and z-axes,
respecƟvely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problemaƟc, as we are trying
to represent a ϯ-dimensional concept on a Ϯ–dimensional medium. We cannot
draw three lines represenƟng the three axes in which each line is perpendicu-
lar to the other two. Despite this issue, standard convenƟons exist for ploƫng
shapes in space that we will discuss that are more than adequate.

One convenƟon is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
Ɵon of the posiƟve x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the posiƟve y-axis, then the extended thumb
will point in the direcƟon of the posiƟve z-axis. (It may take some thought to



Figure ϭϬ.ϭ: Ploƫng the point P =
(Ϯ, ϭ, ϯ) in space.

Figure ϭϬ.Ϯ: Ploƫng the point P =
(Ϯ, ϭ, ϯ) in space with a perspecƟve used
in this text.

Chapter ϭϬ Vectors

verify this, but this system is inherently different from the one created by using
the “leŌ hand rule.”)

As long as the coordinate axes are posiƟoned so that they follow this rule,
it does not maƩer how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure ϭϬ.ϭ we see the point P = (Ϯ, ϭ, ϯ) ploƩed on a set of axes. The
basic convenƟon here is that the x-y plane is drawn in its standard way, with the
z-axis down to the leŌ. The perspecƟve is that the paper represents the x-y plane
and the posiƟve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in relaƟon
to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posiƟve z-axis is poinƟng up. When one steps back and looks
at this room, onemight draw the axes as shown in Figure ϭϬ.Ϯ. The same point P
is drawn, again with dashed lines. This point of view is preferred by most math-
emaƟcians, and is the convenƟon adopted by this text.

Measuring Distances

It is of criƟcal importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

DefiniƟon ϰϴ Distance In Space

Let P = (xϭ, yϭ, zϭ) and Q = (xϮ, yϮ, zϮ) be points in space. The distance
D between P and Q is

D =
√

(xϮ − xϭ)Ϯ + (yϮ − yϭ)Ϯ + (zϮ − zϭ)Ϯ.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

Example ϯϭϯ Length of a line segment
Let P = (ϭ, ϰ,−ϭ) and let Q = (Ϯ, ϭ, ϭ). Draw the line segment PQ and find its
length.

SÊ½çã®ÊÄ The points P andQ are ploƩed in Figure ϭϬ.ϯ; no special con-
sideraƟon need bemade to draw the line segment connecƟng these two points;

Notes:
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Figure ϭϬ.ϯ: Ploƫng points P and Q in Ex-
ample ϯϭϯ.

ϭϬ.ϭ IntroducƟon to Cartesian Coordinates in Space

simply connect them with a straight line. One cannot actually measure this line
on the page and deduce anything meaningful; its true length must be measured
analyƟcally. Applying DefiniƟon ϰϴ, we have

||PQ|| =
√

(Ϯ− ϭ)Ϯ + (ϭ− ϰ)Ϯ + (ϭ− (−ϭ))Ϯ =
√
ϭϰ ≈ ϯ.ϳϰ.

Spheres

Just as a circle is the set of all points in the plane equidistant from a given
point (its center), a sphere is the set of all points in space that are equidistant
from a given point. DefiniƟon ϰϴ allows us to write an equaƟon of the sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

||PC|| =
√

(x− a)Ϯ + (y− b)Ϯ + (z− c)Ϯ = r.

Squaring both sides, we get the standard equaƟon of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

Key Idea ϰϱ Standard EquaƟon of a Sphere in Space

The standard equaƟon of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)Ϯ + (y− b)Ϯ + (z− c)Ϯ = rϮ.

Example ϯϭϰ EquaƟon of a sphere
Find the center and radius of the sphere defined by xϮ+Ϯx+yϮ−ϰy+zϮ−ϲz = Ϯ.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
Ɵon in standard form. This requires us to complete the square (three Ɵmes).

xϮ + Ϯx+ yϮ − ϰy+ zϮ − ϲz = Ϯ

(xϮ + Ϯx+ ϭ) + (yϮ − ϰy+ ϰ) + (zϮ − ϲz+ ϵ)− ϭϰ = Ϯ

(x+ ϭ)Ϯ + (y− Ϯ)Ϯ + (z− ϯ)Ϯ = ϭϲ

The sphere is centered at (−ϭ, Ϯ, ϯ) and has a radius of ϰ.

The equaƟon of a sphere is an example of an implicit funcƟon defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situaƟons where surfaces are defined where one or two of these

Notes:
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Figure ϭϬ.ϱ: The plane x = Ϯ.

Figure ϭϬ.ϲ: Sketching the boundaries of
a region in Example ϯϭϱ.

Chapter ϭϬ Vectors

variables are absent.

IntroducƟon to Planes in Space

The coordinate axes naturally define three planes (shown in Figure ϭϬ.ϰ), the
coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y plane
is characterized as the set of all points in space where the z-value is Ϭ. This,
in fact, gives us an equaƟon that describes this plane: z = Ϭ. Likewise, the x-z
plane is all points where the y-value is Ϭ, characterized by y = Ϭ.

the x-y plane the y-z plane the x-z plane

Figure ϭϬ.ϰ: The coordinate planes.

The equaƟon x = Ϯ describes all points in space where the x-value is Ϯ. This
is a plane, parallel to the y-z coordinate plane, shown in Figure ϭϬ.ϱ.

Example ϯϭϱ Regions defined by planes
Sketch the region defined by the inequaliƟes−ϭ ≤ y ≤ Ϯ.

SÊ½çã®ÊÄ The region is all points between the planes y = −ϭ and
y = Ϯ. These planes are sketched in Figure ϭϬ.ϲ, which are parallel to the x-z
plane. Thus the region extends infinitely in the x and z direcƟons, and is bounded
by planes in the y direcƟon.

Cylinders

The equaƟon x = ϭ obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equaƟon xϮ + yϮ = ϭ in space. In the plane, this equaƟon describes a circle
of radius ϭ, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure ϭϬ.ϴ (a), we show part of the graph
of the equaƟon xϮ + yϮ = ϭ by sketching ϯ circles: the boƩom one has a con-
stant z-value of−ϭ.ϱ, the middle one has a z-value of Ϭ and the top circle has a

Notes:
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(a)

(b)

Figure ϭϬ.ϴ: Sketching xϮ + yϮ = ϭ.

ϭϬ.ϭ IntroducƟon to Cartesian Coordinates in Space

z-value of ϭ. By ploƫng all possible z-values, we get the surface shown in Figure
ϭϬ.ϴ (b). This surface looks like a “tube,” or a “cylinder”; mathemaƟcians call
this surface a cylinder for an enƟrely different reason.

DefiniƟon ϰϵ Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equaƟons involving Ϯ
variables, and the rulings will be parallel to the axis of the ϯrd variable.

In the example preceding the definiƟon, the curve xϮ + yϮ = ϭ in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure ϭϬ.ϴ can be considered a directrix; we simply choose the one
where z = Ϭ.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definiƟon.

Example ϯϭϲ Graphing cylinders
Graph the cylinder following cylinders.

ϭ. z = yϮ Ϯ. x = sin z

SÊ½çã®ÊÄ

ϭ. We can view the equaƟon z = yϮ as a parabola in the y-z plane, as illus-
trated in Figure ϭϬ.ϳ (a). As x does not appear in the equaƟon, the rulings
are lines through this parabola parallel to the x-axis, shown in (b). These
rulings give a general idea as to what the surface looks like, drawn in (c).

(a) (b) (c)

Figure ϭϬ.ϳ: Sketching the cylinder defined by z = yϮ.

Notes:
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(a)

(b)

Figure ϭϬ.ϭϬ: Introducing surfaces of rev-
oluƟon.

Chapter ϭϬ Vectors

Ϯ. We can view the equaƟon x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure ϭϬ.ϵ (a). The rules are parallel to the y axis as
the variable y does not appear in the equaƟon x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.

(a) (b) (c)

Figure ϭϬ.ϵ: Sketching the cylinder defined by x = sin z.

Surfaces of RevoluƟon

One of the applicaƟons of integraƟon we learned previously was to find the
volume of solids of revoluƟon – solids formed by revolving a curve about a hori-
zontal or verƟcal axis. We now consider how to find the equaƟon of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

secƟons of this surface parallel to the y-z plane are circles, as shown in Figure
ϭϬ.ϭϬ(a). Each circle has equaƟon of the form yϮ + zϮ = rϮ for some radius r.
The radius is a funcƟon of x; in fact, it is r(x) =

√
x. Thus the equaƟon of the

surface shown in Figure ϭϬ.ϭϬb is yϮ + zϮ = (
√
x)Ϯ.

We generalize the above principles to give the equaƟons of surfaces formed
by revolving curves about the coordinate axes.

Key Idea ϰϲ Surfaces of RevoluƟon, Part ϭ

Let r be a radius funcƟon.

ϭ. The equaƟon of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is yϮ + zϮ = r(x)Ϯ.

Ϯ. The equaƟon of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is xϮ + zϮ = r(y)Ϯ.

ϯ. The equaƟon of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is xϮ + yϮ = r(z)Ϯ.

Notes:
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(a)

(b)

Figure ϭϬ.ϭϭ: Revolving y = sin z about
the z-axis in Example ϯϭϳ.

(a)

(b)

Figure ϭϬ.ϭϮ: Revolving z = sin x about
the z-axis in Example ϯϭϴ.

ϭϬ.ϭ IntroducƟon to Cartesian Coordinates in Space

Example ϯϭϳ Finding equaƟon of a surface of revoluƟon
Let y = sin z on [Ϭ, π]. Find the equaƟon of the surface of revoluƟon formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea ϰϲ, wefind the surface has equaƟon xϮ+yϮ =
sinϮ z. The curve is sketched in Figure ϭϬ.ϭϭ(a) and the surface is drawn in Figure
ϭϬ.ϭϭ(b).

Note how the surface (and hence the resulƟng equaƟon) is the same if we
began with the curve x = sin z, which is also drawn in Figure ϭϬ.ϭϭ(a).

This parƟcular method of creaƟng surfaces of revoluƟon is limited. For in-
stance, in Example ϮϭϮ of SecƟon ϳ.ϯ we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
Ɵon of y is not trivial, as simply wriƟng x = sin−ϭ y only gives part of the region
we desire.

What we desire is a way of wriƟng the surface of revoluƟon formed by ro-
taƟng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotaƟng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points saƟsfy the equaƟon rϮ = xϮ + yϮ; hence r =

√

xϮ + yϮ. Replacing r with
√

xϮ + yϮ in f(r) gives z = f(
√

xϮ + yϮ). This is the equaƟon of the surface.

Key Idea ϰϳ Surfaces of RevoluƟon, Part Ϯ

Let z = f(x), x ≥ Ϭ, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equaƟon z = f

(√

xϮ + yϮ
)
.

Example ϯϭϴ Finding equaƟon of surface of revoluƟon
Find the equaƟon of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea ϰϳ, the surface has equaƟon z = sin
(√

xϮ + yϮ
)
.

The curve and surface are graphed in Figure ϭϬ.ϭϮ.

Notes:
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Figure ϭϬ.ϭϯ: The ellipƟc paraboloid z =
xϮ/ϰ+ yϮ.

Chapter ϭϬ Vectors

Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definiƟon may
look inƟmidaƟng, but we will show how to analyze these surfaces in an illumi-
naƟng way.

DefiniƟon ϱϬ Quadric Surface

A quadric surface is the graph of the general second–degree equaƟon in
three variables:

AxϮ + ByϮ + CzϮ + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = Ϭ.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these co-
effiecients are Ϭ; we will not consider rotaƟons. There are six basic quadric sur-
faces: the ellipƟc paraboloid, ellipƟc cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersecƟons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellipƟc paraboloid z = xϮ/ϰ + yϮ, shown in Figure ϭϬ.ϭϯ. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equaƟon:

d =
xϮ

ϰ
+ yϮ.

Divide both sides by d:

ϭ =
xϮ

ϰd
+

yϮ

d
.

This describes an ellipse – so cross secƟons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross secƟons parallel to the x-z plane. For instance, leƫng
y = Ϭ gives the equaƟon z = xϮ/ϰ, clearly a parabola. IntersecƟng with the
plane x = Ϭ gives a cross secƟon defined by z = yϮ, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellipƟc paraboloid gets its name: some cross secƟons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equaƟon of each, provide a sketch with representaƟve traces, and de-
scribe these traces.

Notes:
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EllipƟc Paraboloid, z =
xϮ

aϮ
+

yϮ

bϮ

Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse

One variable in the equaƟon of the ellipƟc paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direcƟon of this variable’s axis. Thus
x = yϮ/aϮ + zϮ/bϮ is an ellipƟc paraboloid that opens along the x-axis.

MulƟplying the right hand side by (−ϭ) defines an ellipƟc paraboloid that “opens” in the opposite
direcƟon.

EllipƟc Cone, zϮ =
xϮ

aϮ
+

yϮ

bϮ

Plane Trace
x = Ϭ Crossed Lines
y = Ϭ Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

One can rewrite the equaƟon as zϮ − xϮ/aϮ − yϮ/bϮ = Ϭ. The one variable with a posiƟve
coefficient corresponds to the axis that the cones “open” along.

ϱϱϵ



Ellipsoid,
xϮ

aϮ
+

yϮ

bϮ
+

zϮ

cϮ
= ϭ

Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

If a = b = c ̸= Ϭ, the ellipsoid is a sphere with radius a; compare to Key Idea ϰϱ.

Hyperboloid of One Sheet,
xϮ

aϮ
+

yϮ

bϮ
− zϮ

cϮ
= ϭ

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a negaƟve coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets,
zϮ

cϮ
− xϮ

aϮ
− yϮ

bϮ
= ϭ

Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

The one variable with a posiƟve coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
xϮ

aϮ
− yϮ

bϮ

Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

The parabolic traces will open along the axis of the one variable that is raised to the first power.
ϱϲϭ



(a)

(b)

Figure ϭϬ.ϭϰ: Sketching an ellipƟc
paraboloid.

(a)

(b)

Figure ϭϬ.ϭϱ: Sketching an ellipsoid.

Chapter ϭϬ Vectors

Example ϯϭϵ Sketching quadric surfaces
Sketch the quadric surface defined by the given equaƟon.

ϭ. y =
xϮ

ϰ
+

zϮ

ϭϲ
Ϯ. xϮ +

yϮ

ϵ
+

zϮ

ϰ
= ϭ. ϯ. z = yϮ − xϮ.

SÊ½çã®ÊÄ

ϭ. y =
xϮ

ϰ
+

zϮ

ϭϲ
:

Wefirst idenƟfy thequadric by paƩern–matchingwith the equaƟons given
previously. Only two surfaces have equaƟons where one variable is raised
to the first power, the ellipƟc paraboloid and the hyperbolic paraboloid.
In the laƩer case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the paraboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = Ϭ and z = Ϭ form parabolas that outline the shape.

x = Ϭ: The trace is the parabola y = zϮ/ϭϲ

z = Ϭ: The trace is the parabola y = xϮ/ϰ.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure ϭϬ.ϭϰ(a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

Ϯ. xϮ +
yϮ

ϵ
+

zϮ

ϰ
= ϭ :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = Ϭ: The trace is the ellipse
yϮ

ϵ
+

zϮ

ϰ
= ϭ. The major axis is along the

y–axis with length ϲ (as b = ϯ, the length of the axis is ϲ); the minor axis
is along the z-axis with length ϰ.

y = Ϭ: The trace is the ellipse xϮ +
zϮ

ϰ
= ϭ. The major axis is along the

z-axis, and the minor axis has length Ϯ along the x-axis.

z = Ϭ: The trace is the ellipse xϮ +
yϮ

ϵ
= ϭ, with major axis along the

y-axis.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure ϭϬ.ϭϱ(a). Filling in the surface gives Figure ϭϬ.ϭϱ(b).

ϯ. z = yϮ − xϮ:

Notes:

ϱϲϮ



(a)

(b)

Figure ϭϬ.ϭϲ: Sketching a hyperbolic
paraboloid.

Figure ϭϬ.ϭϳ: A possible equaƟon of this
quadric surface is found in Example ϯϮϬ.

ϭϬ.ϭ IntroducƟon to Cartesian Coordinates in Space

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric secƟons. Consider the traces in the y−z and x−z planes:
x = Ϭ: The trace is z = yϮ, a parabola opening up in the y− z plane.
y = Ϭ: The trace is z = −xϮ, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure ϭϬ.ϭϲ (a),
and filling in the surface gives a sketch like (b).

Example ϯϮϬ IdenƟfying quadric surfaces
Consider the quadric surface shown in Figure ϭϬ.ϭϳ. Which of the following
equaƟons best fits this surface?

(a) xϮ − yϮ − zϮ

ϵ
= Ϭ (c) zϮ − xϮ − yϮ = ϭ

(b) xϮ − yϮ − zϮ = ϭ (d) ϰxϮ − yϮ − zϮ

ϵ
= ϭ

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equaƟon will have a form similar to zϮ

cϮ − xϮ
aϮ −

yϮ
bϮ = ϭ.

We can immediately eliminate opƟon (a), as the constant in that equaƟon is
not ϭ.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posiƟve coefficient, eliminaƟng (c).

The hyperboloid is wider in the z-direcƟon than in the y-direcƟon, so we
need an equaƟon where c > b. This eliminates (b), leaving us with (d). We
should verify that the equaƟon given in (d), ϰxϮ − yϮ − zϮ

ϵ = ϭ, fits.
We already established that this equaƟon describes a hyperboloid of two

sheets that opens in the x-direcƟon and is wider in the z-direcƟon than in the
y. Now note the coefficient of the x-term. RewriƟng ϰxϮ in standard form, we

have: ϰxϮ =
xϮ

(ϭ/Ϯ)Ϯ
. Thus when y = Ϭ and z = Ϭ, x must be ϭ/Ϯ; i.e., each

hyperboloid “starts” at x = ϭ/Ϯ. This matches our figure.

We conclude that ϰxϮ − yϮ − zϮ

ϵ
= ϭ best fits the graph.

This secƟon has introduced points in space and shown how equaƟons can
describe surfaces. The next secƟons explore vectors, an importantmathemaƟcal
object that we’ll use to explore curves in space.

Notes:
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Exercises ϭϬ.ϭ
Terms and Concepts
ϭ. Axes drawn in space must conform to the

rule.

Ϯ. In the plane, the equaƟon x = Ϯ defines a ; in
space, x = Ϯ defines a .

ϯ. In the plane, the equaƟon y = xϮ defines a ; in
space, y = xϮ defines a .

ϰ. Which quadric surface looks like a Pringles® chip?

ϱ. Consider the hyperbola xϮ − yϮ = ϭ in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

ϲ. Consider the hyperbola xϮ − yϮ = ϭ in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
ϳ. The points A = (ϭ, ϰ, Ϯ), B = (Ϯ, ϲ, ϯ) and C = (ϰ, ϯ, ϭ)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

ϴ. The points A = (ϭ, ϭ, ϯ), B = (ϯ, Ϯ, ϳ), C = (Ϯ, Ϭ, ϴ) and
D = (Ϭ,−ϭ, ϰ) form a quadrilateral ABCD in space. Is this
a parallelogram?

ϵ. Find the center and radius of the sphere defined by
xϮ − ϴx+ yϮ + Ϯy+ zϮ + ϴ = Ϭ.

ϭϬ. Find the center and radius of the sphere defined by
xϮ + yϮ + zϮ + ϰx− Ϯy− ϰz+ ϰ = Ϭ.

In Exercises ϭϭ – ϭϰ, describe the region in space defined by
the inequaliƟes.

ϭϭ. xϮ + yϮ + zϮ < ϭ

ϭϮ. Ϭ ≤ x ≤ ϯ

ϭϯ. x ≥ Ϭ, y ≥ Ϭ, z ≥ Ϭ

ϭϰ. y ≥ ϯ

In Exercises ϭϱ – ϭϴ, sketch the cylinder in space.

ϭϱ. z = xϯ

ϭϲ. y = cos z

ϭϳ.
xϮ

ϰ
+

yϮ

ϵ
= ϭ

ϭϴ. y =
ϭ
x

In Exercises ϭϵ – ϮϮ, give the equaƟon of the surface of revo-
luƟon described.

ϭϵ. Revolve z =
ϭ

ϭ+ yϮ
about the y-axis.

ϮϬ. Revolve y = xϮ about the x-axis.

Ϯϭ. Revolve z = xϮ about the z-axis.

ϮϮ. Revolve z = ϭ/x about the z-axis.

In Exercises Ϯϯ – Ϯϲ, a quadric surface is sketched. Determine
which of the given equaƟons best fits the graph.

Ϯϯ.

(a) x = yϮ +
zϮ

ϵ
(b) x = yϮ +

zϮ

ϯ

Ϯϰ.

(a) xϮ − yϮ − zϮ = Ϭ (b) xϮ − yϮ + zϮ = Ϭ

Ϯϱ.

(a) xϮ +
yϮ

ϯ
+

zϮ

Ϯ
= ϭ (b) xϮ +

yϮ

ϵ
+

zϮ

ϰ
= ϭ

ϱϲϰ



Ϯϲ.

(a) yϮ − xϮ − zϮ = ϭ (b) yϮ + xϮ − zϮ = ϭ

In Exercises Ϯϳ – ϯϮ, sketch the quadric surface.

Ϯϳ. z− yϮ + xϮ = Ϭ

Ϯϴ. zϮ = xϮ +
yϮ

ϰ

Ϯϵ. x = −yϮ − zϮ

ϯϬ. ϭϲxϮ − ϭϲyϮ − ϭϲzϮ = ϭ

ϯϭ.
xϮ

ϵ
− yϮ +

zϮ

Ϯϱ
= ϭ

ϯϮ. ϰxϮ + ϮyϮ + zϮ = ϰ

ϱϲϱ
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Figure ϭϬ.ϭϴ: Drawing the same vector
with different iniƟal points.
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Figure ϭϬ.ϭϵ: IllustraƟng how equal vec-
tors have the same displacement.
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ϭϬ.Ϯ An IntroducƟon to Vectors

Many quanƟƟes we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster oŌen describes wind with its speed and its direcƟon (“. . .
with winds from the southeast gusƟng up to ϯϬ mph . . .”). When applying a
force, we are concerned with both the magnitude and direcƟon of that force.
In both of these examples, direcƟon is important. Because of this, we study
vectors, mathemaƟcal objects that convey both magnitude and direcƟon infor-
maƟon.

One “bare–bones” definiƟon of a vector is based on what we wrote above:
“a vector is a mathemaƟcal object with magnitude and direcƟon parameters.”
This definiƟon leaves much to be desired, as it gives no indicaƟon as to how
such an object is to be used. Several other definiƟons exist; we choose here a
definiƟon rooted in a geometric visualizaƟon of vectors. It is very simplisƟc but
readily permits further invesƟgaƟon.

DefiniƟon ϱϭ Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the iniƟal point of
the vector, and the point Q is the terminal point.

The magnitude, length or norm of #  ‰PQ is the length of the line segment
PQ: || #  ‰PQ || = || PQ ||.

Two vectors are equal if they have the same magnitude and direcƟon.

Figure ϭϬ.ϭϴ showsmulƟple instances of the same vector. Each directed line
segment has the same direcƟon and length (magnitude), hence each is the same
vector.

We use RϮ (pronounced “r two”) to represent all the vectors in the plane,
and use Rϯ (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure ϭϬ.ϭϵ. The vectors look to
be equal; that is, they seem to have the same length and direcƟon. Indeed, they
are. Both vectors move Ϯ units to the right and ϭ unit up from the iniƟal point
to reach the terminal point. One can analyze this movement to measure the

Notes:
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ϭϬ.Ϯ An IntroducƟon to Vectors

magnitude of the vector, and the movement itself gives direcƟon informaƟon
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direcƟon, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direcƟons the terminal point is from the iniƟal
point. Both the vectors #  ‰PQ and #‰RS in Figure ϭϬ.ϭϵ have an x-displacement of Ϯ
and a y-displacement of ϭ. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the iniƟal point is the origin, (Ϭ, Ϭ). This
leads us to a definiƟon of a standard and concise way of referring to vectors.

DefiniƟon ϱϮ Component Form of a Vector

ϭ. The component form of a vector v⃗ in RϮ, whose terminal point is
(a, b) when its iniƟal point is (Ϭ, Ϭ), is ⟨a, b⟩ .

Ϯ. The component form of a vector v⃗ in Rϯ, whose terminal point is
(a, b, c) when its iniƟal point is (Ϭ, Ϭ, Ϭ), is ⟨a, b, c⟩ .

The numbers a, b (and c, respecƟvely) are the components of v⃗.

It follows from the definiƟon that the component form of the vector #  ‰PQ,
where P = (xϭ, yϭ) and Q = (xϮ, yϮ) is

#  ‰PQ = ⟨xϮ − xϭ, yϮ − yϭ⟩ ;

in space, where P = (xϭ, yϭ, zϭ) and Q = (xϮ, yϮ, zϮ), the component form of #  ‰PQ
is

#  ‰PQ = ⟨xϮ − xϭ, yϮ − yϭ, zϮ − zϭ⟩ .
We pracƟce using this notaƟon in the following example.

Example ϯϮϭ Using component form notaƟon for vectors

ϭ. Sketch the vector v⃗ = ⟨Ϯ,−ϭ⟩ starƟng at P = (ϯ, Ϯ) and find its magni-
tude.

Ϯ. Find the component formof the vector w⃗whose iniƟal point isR = (−ϯ,−Ϯ)
and whose terminal point is S = (−ϭ, Ϯ).

ϯ. Sketch the vector u⃗ = ⟨Ϯ,−ϭ, ϯ⟩ starƟng at the point Q = (ϭ, ϭ, ϭ) and
find its magnitude.

Notes:
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Figure ϭϬ.ϮϬ: Graphing vectors in Exam-
ple ϯϮϭ.

Chapter ϭϬ Vectors
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ϭ. Using P as the iniƟal point, wemove Ϯ units in the posiƟve x-direcƟon and
−ϭ units in the posiƟve y-direcƟon to arrive at the terminal point P ′ =
(ϱ, ϭ), as drawn in Figure ϭϬ.ϮϬ(a).

The magnitude of v⃗ is determined directly from the component form:

|| v⃗ || =
√

ϮϮ + (−ϭ)Ϯ =
√
ϱ.

Ϯ. Using the note following DefiniƟon ϱϮ, we have

#‰RS = ⟨−ϭ− (−ϯ), Ϯ− (−Ϯ)⟩ = ⟨Ϯ, ϰ⟩ .

One can readily see from Figure ϭϬ.ϮϬ(a) that the x- and y-displacement
of #‰RS is Ϯ and ϰ, respecƟvely, as the component form suggests.

ϯ. Using Q as the iniƟal point, we move Ϯ units in the posiƟve x-direcƟon,
−ϭ unit in the posiƟve y-direcƟon, and ϯ units in the posiƟve z-direcƟon
to arrive at the terminal pointQ′ = (ϯ, Ϭ, ϰ), illustrated in Figure ϭϬ.ϮϬ(b).

The magnitude of u⃗ is:

|| u⃗ || =
√

ϮϮ + (−ϭ)Ϯ + ϯϮ =
√
ϭϰ.

Now thatwehave defined vectors, and have created a nice notaƟonbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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Figure ϭϬ.Ϯϭ: Graphing the sumof vectors
in Example ϯϮϮ.

ϭϬ.Ϯ An IntroducƟon to Vectors

DefiniƟon ϱϯ Vector Algebra

ϭ. Let u⃗ = ⟨uϭ, uϮ⟩ and v⃗ = ⟨vϭ, vϮ⟩ be vectors in RϮ, and let c be a
scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨uϭ + vϭ, uϮ + vϮ⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨vϭ, vϮ⟩ = ⟨cvϭ, cvϮ⟩ .

Ϯ. Let u⃗ = ⟨uϭ, uϮ, uϯ⟩ and v⃗ = ⟨vϭ, vϮ, vϯ⟩ be vectors in Rϯ, and let c
be a scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨uϭ + vϭ, uϮ + vϮ, uϯ + vϯ⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨vϭ, vϮ, vϯ⟩ = ⟨cvϭ, cvϮ, cvϯ⟩ .

In short, we say addiƟon and scalarmulƟplicaƟonare computed “component–
wise.”

Example ϯϮϮ Adding vectors
Sketch the vectors u⃗ = ⟨ϭ, ϯ⟩, v⃗ = ⟨Ϯ, ϭ⟩ and u⃗ + v⃗ all with iniƟal point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨ϭ, ϯ⟩+ ⟨Ϯ, ϭ⟩
= ⟨ϯ, ϰ⟩ .

These are all sketched in Figure ϭϬ.Ϯϭ.

As vectors convey magnitude and direcƟon informaƟon, the sum of vectors
also convey length and magnitude informaƟon. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

Notes:
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Figure ϭϬ.ϮϮ: IllustraƟng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.
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Figure ϭϬ.Ϯϯ: IllustraƟng how to subtract
vectors graphically.
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“StarƟng at an iniƟal point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure ϭϬ.ϮϮ, where the iniƟal point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addiƟon is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acƟng on a body, the sum u⃗ + v⃗ gives the resulƟng force. Because of various
physical applicaƟons of vector addiƟon, the sum u⃗+ v⃗ is oŌen referred to as the
resultant vector, or just the “resultant.”

AnalyƟcally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure ϭϬ.ϮϮ also gives a
graphical representaƟon of this, using gray vectors. Note that the vectors u⃗ and
v⃗, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗ + v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the iniƟal
point of u⃗ + v⃗ is the common iniƟal point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in Rϯ as well.

It follows from the properƟes of the real numbers and DefiniƟon ϱϯ that

u⃗− v⃗ = u⃗+ (−ϭ)⃗v.

The Parallelogram Law gives us a good way to visualize this subtracƟon. We
demonstrate this in the following example.

Example ϯϮϯ Vector SubtracƟon
Let u⃗ = ⟨ϯ, ϭ⟩ and v⃗ = ⟨ϭ, Ϯ⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computaƟon of u⃗ − v⃗ is straighƞorward, and we show
all steps below. Usually the formal step of mulƟplying by (−ϭ) is omiƩed and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−ϭ)⃗v
= ⟨ϯ, ϭ⟩+ ⟨−ϭ,−Ϯ⟩
= ⟨Ϯ,−ϭ⟩ .

Figure ϭϬ.Ϯϯ illustrates, using the Head to Tail Rule, how the subtracƟon can be
viewed as the sum u⃗ + (−v⃗). The figure also illustrates how u⃗ − v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their iniƟal points
are the same).

Example ϯϮϰ Scaling vectors

ϭ. Sketch the vectors v⃗ = ⟨Ϯ, ϭ⟩ and Ϯ⃗v with iniƟal point at the origin.

Notes:
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Figure ϭϬ.Ϯϰ: Graphing vectors v⃗ and Ϯ⃗v
in Example ϯϮϰ.
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Ϯ. Compute the magnitudes of v⃗ and Ϯ⃗v.

SÊ½çã®ÊÄ

ϭ. We compute Ϯ⃗v:

Ϯ⃗v = Ϯ ⟨Ϯ, ϭ⟩
= ⟨ϰ, Ϯ⟩ .

Both v⃗ and Ϯ⃗v are sketched in Figure ϭϬ.Ϯϰ. Make note that Ϯ⃗v does not
start at the terminal point of v⃗; rather, its iniƟal point is also the origin.

Ϯ. The figure suggests that Ϯ⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

|| v⃗ || =
√

ϮϮ + ϭϮ

=
√
ϱ.

|| Ϯ⃗v || =
√

ϰϮ + ϮϮ

=
√
ϮϬ

=
√
ϰ · ϱ = Ϯ

√
ϱ.

As we suspected, Ϯ⃗v is twice as long as v⃗.

The zero vector is the vector whose iniƟal point is also its terminal point. It
is denoted by Ϭ⃗. Its component form, inRϮ, is ⟨Ϭ, Ϭ⟩; inRϯ, it is ⟨Ϭ, Ϭ, Ϭ⟩. Usually
the context makes is clear whether Ϭ⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mulƟply vectors by a scalar. The following the-
orem states formally the properƟes of these operaƟons.

Notes:
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Theorem ϴϰ ProperƟes of Vector OperaƟons

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in RϮ or where u⃗, v⃗ and w⃗ are all in Rϯ:

ϭ. u⃗+ v⃗ = v⃗+ u⃗ CommutaƟve Property

Ϯ. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) AssociaƟve Property

ϯ. v⃗+ Ϭ⃗ = v⃗ AddiƟve IdenƟty

ϰ. (cd)⃗v = c(d⃗v)

ϱ. c(⃗u+ v⃗) = c⃗u+ c⃗v DistribuƟve Property

ϲ. (c+ d)⃗v = c⃗v+ d⃗v DistribuƟve Property

ϳ. Ϭ⃗v = Ϭ⃗

ϴ. || c⃗v || = |c| · || v⃗ ||

ϵ. || u⃗ || = Ϭ if, and only if, u⃗ = Ϭ⃗.

As stated before, each vector v⃗ conveys magnitude and direcƟon informa-
Ɵon. We have a method of extracƟng the magnitude, which we write as || v⃗ ||.
Unit vectors are a way of extracƟng just the direcƟon informaƟon from a vector.

DefiniƟon ϱϰ Unit Vector

A unit vector is a vector v⃗ with a magnitude of ϭ; that is,

|| v⃗ || = ϭ.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length ϭϬ in the direcƟon of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direcƟon of v⃗, the answer would be easy: ϭϬu⃗. So how do
we find u⃗ ?

Property ϴ of Theorem ϴϰ holds the key. If we divide v⃗ by its magnitude, it
becomes a vector of length ϭ. Consider:

∣
∣
∣
∣

∣
∣
∣
∣

ϭ
|| v⃗ || v⃗

∣
∣
∣
∣

∣
∣
∣
∣
=

ϭ
|| v⃗ || || v⃗ || (we can pull out

ϭ
|| v⃗ || as it is a scalar)

= ϭ.

Notes:
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Figure ϭϬ.Ϯϱ: Graphing vectors in Exam-
ple ϯϮϱ. All vectors shown have their ini-
Ɵal point at the origin.

ϭϬ.Ϯ An IntroducƟon to Vectors

So the vector of length ϭϬ in the direcƟon of v⃗ is ϭϬ
ϭ

|| v⃗ || v⃗. An example will make

this more clear.

Example ϯϮϱ Using Unit Vectors
Let v⃗ = ⟨ϯ, ϭ⟩ and let w⃗ = ⟨ϭ, Ϯ, Ϯ⟩.

ϭ. Find the unit vector in the direcƟon of v⃗.

Ϯ. Find the unit vector in the direcƟon of w⃗.

ϯ. Find the vector in the direcƟon of v⃗ with magnitude ϱ.

SÊ½çã®ÊÄ

ϭ. We find || v⃗ || =
√
ϭϬ. So the unit vector u⃗ in the direcƟon of v⃗ is

u⃗ =
ϭ√
ϭϬ

v⃗ =
⟨

ϯ√
ϭϬ

,
ϭ√
ϭϬ

⟩

.

Ϯ. We find || w⃗ || = ϯ, so the unit vector z⃗ in the direcƟon of w⃗ is

u⃗ =
ϭ
ϯ
w⃗ =

⟨
ϭ
ϯ
,
Ϯ
ϯ
,
Ϯ
ϯ

⟩

.

ϯ. To create a vector with magnitude ϱ in the direcƟon of v⃗, we mulƟply the
unit vector u⃗ by ϱ. Thus ϱu⃗ =

⟨
ϭϱ/

√
ϭϬ, ϱ/

√
ϭϬ
⟩
is the vector we seek.

This is sketched in Figure ϭϬ.Ϯϱ.

The basic formaƟon of the unit vector u⃗ in the direcƟon of a vector v⃗ leads
to a interesƟng equaƟon. It is:

v⃗ = || v⃗ || ϭ
|| v⃗ || v⃗.

We rewrite the equaƟon with parentheses to make a point:

v⃗ = || v⃗ ||
︸︷︷︸

magnitude

·
(

ϭ
|| v⃗ || v⃗

)

︸ ︷︷ ︸

direcƟon

.

This equaƟon illustrates the fact that a vector has both magnitude and di-
recƟon, where we view a unit vector as supplying only direcƟon informaƟon.
IdenƟfying unit vectors with direcƟon allows us to define parallel vectors.

Notes:
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Note: Ϭ⃗ is direcƟonless; because || Ϭ⃗ || =
Ϭ, there is no unit vector in the “direcƟon”
of Ϭ⃗.
Some texts define two vectors as being
parallel if one is a scalar mulƟple of the
other. By this definiƟon, Ϭ⃗ is parallel to
all vectors as Ϭ⃗ = Ϭ⃗v for all v⃗.
We prefer the given definiƟon of parallel
as it is grounded in the fact that unit vec-
tors provide direcƟon informaƟon. One
may adopt the convenƟon that Ϭ⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page ϱϵϲ.)

..

ϱ0lb

.

ϰϱ◦

.

ϯ0◦

Figure ϭϬ.Ϯϲ: A diagram of a weight hang-
ing from Ϯ chains in Example ϯϮϲ.
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DefiniƟon ϱϱ Parallel Vectors

ϭ. Unit vectors u⃗ϭ and u⃗Ϯ are parallel if u⃗ϭ = ±u⃗Ϯ.

Ϯ. Nonzero vectors v⃗ϭ and v⃗Ϯ are parallel if their respecƟve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗ϭ and v⃗Ϯ are parallel if there is a scalar
c ̸= Ϭ such that v⃗ϭ = c⃗vϮ (see marginal note).

If one graphed all unit vectors in RϮ with the iniƟal point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inRϮ

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construcƟon inRϯ shows that the terminal points all lie on the unit

sphere. These vectors also have a parƟcular component form, but its derivaƟon
is not as straighƞorward as the one for unit vectors in RϮ. Important concepts
about unit vectors are given in the following Key Idea.

Key Idea ϰϴ Unit Vectors

ϭ. The unit vector in the direcƟon of v⃗ is

u⃗ =
ϭ

|| v⃗ || v⃗.

Ϯ. A vector u⃗ in RϮ is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

ϯ. A vector u⃗ in Rϯ is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situaƟons, especially the
formula for unit vectors in the plane.

Example ϯϮϲ Finding Component Forces
Consider a weight of ϱϬlb hanging from two chains, as shown in Figure ϭϬ.Ϯϲ.
One chain makes an angle of ϯϬ◦ with the verƟcal, and the other an angle of
ϰϱ◦. Find the force applied to each chain.

SÊ½çã®ÊÄ Knowing that gravity is pulling the ϱϬlbweight straight down,

Notes:

ϱϳϰ



..

F⃗ϭ

.

F⃗Ϯ

.
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. ϭϮϬ◦.
45◦

Figure ϭϬ.Ϯϳ: A diagram of the force vec-
tors from Example ϯϮϲ.

ϭϬ.Ϯ An IntroducƟon to Vectors

we can create a vector F⃗ to represent this force.

F⃗ = ϱϬ ⟨Ϭ,−ϭ⟩ = ⟨Ϭ,−ϱϬ⟩ .

We can view each chain as “pulling” theweight up, prevenƟng it from falling.
We can represent the force from each chain with a vector. Let F⃗ϭ represent the
force from the chain making an angle of ϯϬ◦ with the verƟcal, and let F⃗Ϯ repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure ϭϬ.Ϯϳ), and apply Key Idea ϰϴ. As we do not yet
know the magnitudes of these vectors, (that is the problem at hand), we usemϭ
andmϮ to represent them.

F⃗ϭ = mϭ ⟨cos ϭϮϬ◦, sin ϭϮϬ◦⟩

F⃗Ϯ = mϮ ⟨cos ϰϱ◦, sin ϰϱ◦⟩
As the weight is not moving, we know the sum of the forces is Ϭ⃗. This gives:

F⃗+ F⃗ϭ + F⃗Ϯ = Ϭ⃗

⟨Ϭ,−ϱϬ⟩+mϭ ⟨cos ϭϮϬ◦, sin ϭϮϬ◦⟩+mϮ ⟨cos ϰϱ◦, sin ϰϱ◦⟩ = Ϭ⃗

The sum of the entries in the first component is Ϭ, and the sum of the entries
in the second component is also Ϭ. This leads us to the following two equaƟons:

mϭ cos ϭϮϬ◦ +mϮ cos ϰϱ◦ = Ϭ
mϭ sin ϭϮϬ◦ +mϮ sin ϰϱ◦ = ϱϬ

This is a simple Ϯ-equaƟon, Ϯ-unkown system of linear equaƟons. We leave it to
the reader to verify that the soluƟon is

mϭ = ϱϬ(
√
ϯ− ϭ) ≈ ϯϲ.ϲ; mϮ =

ϱϬ
√
Ϯ

ϭ+
√
ϯ
≈ Ϯϱ.ϴϴ.

It might seem odd that the sum of the forces applied to the chains is more
than ϱϬlb. We leave it to a physics class to discuss the full details, but offer this
short explanaƟon. Our equaƟons were established so that the verƟcal compo-
nents of each force sums to ϱϬlb, thus supporƟng the weight. Since the chains
are at an angle, they also pull against each other, creaƟng an “addiƟonal” hori-
zontal force while holding the weight in place.

Unit vectors were very important in the previous calculaƟon; they allowed
us to define a vector in the proper direcƟon but with an unknown magnitude.
Our computaƟons were then computed component–wise. Because such calcu-
laƟons are oŌen necessary, the standard unit vectors can be useful.

Notes:
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Figure ϭϬ.Ϯϴ: A figure of a weight being
pushed by the wind in Example ϯϮϴ.
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DefiniƟon ϱϲ Standard Unit Vectors

ϭ. In RϮ, the standard unit vectors are

i⃗ = ⟨ϭ, Ϭ⟩ and j⃗ = ⟨Ϭ, ϭ⟩ .

Ϯ. In Rϯ, the standard unit vectors are

i⃗ = ⟨ϭ, Ϭ, Ϭ⟩ and j⃗ = ⟨Ϭ, ϭ, Ϭ⟩ and k⃗ = ⟨Ϭ, Ϭ, ϭ⟩ .

Example ϯϮϳ Using standard unit vectors

ϭ. Rewrite v⃗ = ⟨Ϯ,−ϯ⟩ using the standard unit vectors.

Ϯ. Rewrite w⃗ = ϰ⃗i− ϱ⃗j+ Ϯ⃗k in component form.

SÊ½çã®ÊÄ

ϭ. v⃗ = ⟨Ϯ,−ϯ⟩
= ⟨Ϯ, Ϭ⟩+ ⟨Ϭ,−ϯ⟩
= Ϯ ⟨ϭ, Ϭ⟩ − ϯ ⟨Ϭ, ϭ⟩
= Ϯ⃗i− ϯ⃗j

Ϯ. w⃗ = ϰ⃗i− ϱ⃗j+ Ϯ⃗k
= ⟨ϰ, Ϭ, Ϭ⟩+ ⟨Ϭ,−ϱ, Ϭ⟩+ ⟨Ϭ, Ϭ, Ϯ⟩
= ⟨ϰ,−ϱ, Ϯ⟩

These two examples demonstrate that converƟng between component form
and the standard unit vectors is rather straighƞorward. Many mathemaƟcians
prefer component form, and it is the preferred notaƟon in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use
that notaƟon.

Example ϯϮϴ Finding Component Force
Aweight of Ϯϱlb is suspended from a chain of length ϮŌwhile a wind pushes the
weight to the right with constant force of ϱlb as shown in Figure ϭϬ.Ϯϴ. What
angle will the chain make with the verƟcal as a result of the wind’s pushing?
How much higher will the weight be?

Notes:
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ϭϬ.Ϯ An IntroducƟon to Vectors

SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = ϱ⃗i.
The force of gravity on the weight is represented by F⃗g = −Ϯϱ⃗j. The direcƟon
and magnitude of the vector represenƟng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the verƟcal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is Ϭ⃗:

F⃗c + F⃗w + F⃗g = Ϭ⃗

m cosφ i⃗+m sinφ j⃗+ ϱ⃗i− Ϯϱ⃗j = Ϭ⃗

Thus the sum of the i⃗ and j⃗ components are Ϭ, leading us to the following
system of equaƟons:

ϱ+m cosφ = Ϭ
−Ϯϱ+m sinφ = Ϭ

(ϭϬ.ϭ)

This is enough to determine F⃗c already, as we know m cosφ = −ϱ and
m sinφ = Ϯϱ. Thus Fc = ⟨−ϱ, Ϯϱ⟩ . We can use this to find the magnitude
m:

m =
√

(−ϱ)Ϯ + ϮϱϮ = ϱ
√
Ϯϲ ≈ Ϯϱ.ϱlb.

We can then use either equality from EquaƟon (ϭϬ.ϭ) to solve for φ. We choose
the first equality as using arccosine will return an angle in the Ϯnd quadrant:

ϱ+ ϱ
√
Ϯϲ cosφ = Ϭ ⇒ φ = cos−ϭ

( −ϱ
ϱ
√
Ϯϲ

)

≈ ϭ.ϳϲϴϮ ≈ ϭϬϭ.ϯϭ◦.

SubtracƟng ϵϬ◦ from this angle gives us an angle of ϭϭ.ϯϭ◦ with the verƟcal.
We can now use trigonometry to find out how high the weight is liŌed.

The diagram shows that a right triangle is formed with the ϮŌ chain as the hy-
potenuse with an interior angle of ϭϭ.ϯϭ◦. The length of the adjacent side (in
the diagram, the dashed verƟcal line) is Ϯ cos ϭϭ.ϯϭ◦ ≈ ϭ.ϵϲŌ. Thus the weight
is liŌed by about Ϭ.ϬϰŌ, almost ϭ/Ϯin.

The algebra we have applied to vectors is already demonstraƟng itself to be
very useful. There are two more fundamental operaƟons we can perform with
vectors, the dot product and the cross product. The next two secƟons explore
each in turn.

Notes:
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Exercises ϭϬ.Ϯ
Terms and Concepts

ϭ. Name two different things that cannot be described with
just one number, but rather need Ϯ or more numbers to
fully describe them.

Ϯ. What is the difference between (ϭ, Ϯ) and ⟨ϭ, Ϯ⟩?

ϯ. What is a unit vector?

ϰ. What does it mean for two vectors to be parallel?

ϱ. What effect does mulƟplying a vector by−Ϯ have?

Problems
In Exercises ϲ – ϵ, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

ϲ. P = (Ϯ,−ϭ), Q = (ϯ, ϱ)

ϳ. P = (ϯ, Ϯ), Q = (ϳ,−Ϯ)

ϴ. P = (Ϭ, ϯ,−ϭ), Q = (ϲ, Ϯ, ϱ)

ϵ. P = (Ϯ, ϭ, Ϯ), Q = (ϰ, ϯ, Ϯ)

ϭϬ. Let u⃗ = ⟨ϭ,−Ϯ⟩ and v⃗ = ⟨ϭ, ϭ⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, Ϯ⃗u− ϯ⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = Ϯ⃗v− x⃗.

ϭϭ. Let u⃗ = ⟨ϭ, ϭ,−ϭ⟩ and v⃗ = ⟨Ϯ, ϭ, Ϯ⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
Ϯ⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ Ϯ⃗x.

In Exercises ϭϮ – ϭϱ, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

ϭϮ.

.....

u⃗

. v⃗.

x

.

y

ϭϯ.

.....

u⃗

.

v⃗

.

x

.

y

ϭϰ.

...

..
u⃗

.v⃗ .

x

.

y

.

z

ϭϱ.

...

..
u⃗
.

v⃗

.

x

.

y

.

z

In Exercises ϭϲ – ϭϵ, find || u⃗ ||, || v⃗ ||, || u⃗+ v⃗ || and || u⃗− v⃗ ||.

ϭϲ. u⃗ = ⟨Ϯ, ϭ⟩, v⃗ = ⟨ϯ,−Ϯ⟩

ϭϳ. u⃗ = ⟨−ϯ, Ϯ, Ϯ⟩, v⃗ = ⟨ϭ,−ϭ, ϭ⟩

ϭϴ. u⃗ = ⟨ϭ, Ϯ⟩, v⃗ = ⟨−ϯ,−ϲ⟩

ϭϵ. u⃗ = ⟨Ϯ,−ϯ, ϲ⟩, v⃗ = ⟨ϭϬ,−ϭϱ, ϯϬ⟩

ϮϬ. Under what condiƟons is || u⃗ ||+ || v⃗ || = || u⃗+ v⃗ ||?

In Exercises Ϯϭ – Ϯϰ, find the unit vector u⃗ in the direcƟon of
v⃗.

Ϯϭ. v⃗ = ⟨ϯ, ϳ⟩

ϮϮ. v⃗ = ⟨ϲ, ϴ⟩

Ϯϯ. v⃗ = ⟨ϭ,−Ϯ, Ϯ⟩

Ϯϰ. v⃗ = ⟨Ϯ,−Ϯ, Ϯ⟩

Ϯϱ. Find the unit vector in the first quadrant of RϮ that makes
a ϱϬ◦ angle with the x-axis.

ϱϳϴ



Ϯϲ. Find the unit vector in the second quadrant of RϮ that
makes a ϯϬ◦ angle with the y-axis.

Ϯϳ. Verify, fromKey Idea ϰϴ, that u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩
is a unit vector for all angles θ and φ.

A weight of ϭϬϬlb is suspended from two chains, making an-
gles with the verƟcal of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises Ϯϴ – ϯϭ, angles θ and φ are given. Find the force
applied to each chain.

Ϯϴ. θ = ϯϬ◦, φ = ϯϬ◦

Ϯϵ. θ = ϲϬ◦, φ = ϲϬ◦

ϯϬ. θ = ϮϬ◦, φ = ϭϱ◦

ϯϭ. θ = Ϭ◦, φ = Ϭ◦

A weight of plb is suspended from a chain of length ℓ while
a constant force of F⃗w pushes the weight to the right, making
an angle of θ with the verƟcal, as shown in the figure below.

..

ℓ Ō





















.

p lb

.

θ

.

F⃗w

In Exercises ϯϮ – ϯϱ, a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is liŌed as it moves to
the right.

ϯϮ. F⃗w = ϭlb, ℓ = ϭŌ, p = ϭlb

ϯϯ. F⃗w = ϭlb, ℓ = ϭŌ, p = ϭϬlb

ϯϰ. F⃗w = ϭlb, ℓ = ϭϬŌ, p = ϭlb

ϯϱ. F⃗w = ϭϬlb, ℓ = ϭϬŌ, p = ϭlb

ϱϳϵ



Chapter ϭϬ Vectors

ϭϬ.ϯ The Dot Product
The previous secƟon introduced vectors and described how to add them to-
gether and how to mulƟply them by scalars. This secƟon introduces a mulƟ-
plicaƟon on vectors called the dot product.

DefiniƟon ϱϳ Dot Product

ϭ. Let u⃗ = ⟨uϭ, uϮ⟩ and v⃗ = ⟨vϭ, vϮ⟩ in RϮ. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = uϭvϭ + uϮvϮ.

Ϯ. Let u⃗ = ⟨uϭ, uϮ, uϯ⟩ and v⃗ = ⟨vϭ, vϮ, vϯ⟩ in Rϯ. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = uϭvϭ + uϮvϮ + uϯvϯ.

Note how this product of vectors returns a scalar, not another vector. We
pracƟce evaluaƟng a dot product in the following example, then we will discuss
why this product is useful.

Example ϯϮϵ EvaluaƟng dot products

ϭ. Let u⃗ = ⟨ϭ, Ϯ⟩, v⃗ = ⟨ϯ,−ϭ⟩ in RϮ. Find u⃗ · v⃗.

Ϯ. Let x⃗ = ⟨Ϯ,−Ϯ, ϱ⟩ and y⃗ = ⟨−ϭ, Ϭ, ϯ⟩ in Rϯ. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

ϭ. Using DefiniƟon ϱϳ, we have

u⃗ · v⃗ = ϭ(ϯ) + Ϯ(−ϭ) = ϭ.

Ϯ. Using the definiƟon, we have

x⃗ · y⃗ = Ϯ(−ϭ)− Ϯ(Ϭ) + ϱ(ϯ) = ϭϯ.

Notes:
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Figure ϭϬ.Ϯϵ: IllustraƟng the angle
formed by two vectors with the same
iniƟal point.

ϭϬ.ϯ The Dot Product

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definiƟon gives no hint as to why
we would care about this operaƟon, there is an amazing connecƟon between
the dot product and angles formed by the vectors. Before staƟng this connec-
Ɵon, we give a theorem staƟng some of the properƟes of the dot product.

Theorem ϴϱ ProperƟes of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in RϮ or Rϯ and let c be a scalar.

ϭ. u⃗ · v⃗ = v⃗ · u⃗ CommutaƟve Property

Ϯ. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ DistribuƟve Property

ϯ. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

ϰ. Ϭ⃗ · v⃗ = Ϭ

ϱ. v⃗ · v⃗ = || v⃗ ||Ϯ

The last statement of the theorem makes a handy connecƟon between the
magnitude of a vector and the dot product with itself. Our definiƟon and theo-
rem give properƟes of the dot product, but we are sƟll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecƟng the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same iniƟal point as illustrated in Figure
ϭϬ.Ϯϵ(a). (We always take θ to be the angle in [Ϭ, π] as two angles are actually
created.)

The same is also true of Ϯ vectors in space: given u⃗ and v⃗ inRϯ with the same
iniƟal point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗ are co-
linear, there are infinite planes that contain both vectors.) In that plane, we can
again find an angle θ between them (and again, Ϭ ≤ θ ≤ π). This is illustrated
in Figure ϭϬ.Ϯϵ(b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Notes:
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Figure ϭϬ.ϯϭ: Vectors used in Example
ϯϯϬ.
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Theorem ϴϲ The Dot Product and Angles

Let u⃗ and v⃗ be vectors in RϮ or Rϯ. Then

u⃗ · v⃗ = || u⃗ || || v⃗ || cos θ,

where θ, Ϭ ≤ θ ≤ π, is the angle between u⃗ and v⃗.

When θ is an acute angle (i.e., Ϭ ≤ θ < π/Ϯ), cos θ is posiƟve; when θ =
π/Ϯ, cos θ = Ϭ; when θ is an obtuse angle (π/Ϯ < θ ≤ π), cos θ is negaƟve.
Thus the sign of the dot product gives a general indicaƟon of the angle between
the vectors, illustrated in Figure ϭϬ.ϯϬ.

..
u⃗ · v⃗ > 0
. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure ϭϬ.ϯϬ: IllustraƟng the relaƟonship between the angle between vectors and the
sign of their dot product.

We can use Theorem ϴϲ to compute the dot product, but generally this the-
orem is used to find the angle between known vectors (since the dot product is
generally easy to compute). To this end, we rewrite the theorem’s equaƟon as

cos θ =
u⃗ · v⃗

|| u⃗ |||| v⃗ || ⇔ θ = cos−ϭ
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)

.

We pracƟce using this theorem in the following example.

Example ϯϯϬ Using the dot product to find angles
Let u⃗ = ⟨ϯ, ϭ⟩, v⃗ = ⟨−Ϯ, ϲ⟩ and w⃗ = ⟨−ϰ, ϯ⟩, as shown in Figure ϭϬ.ϯϭ. Find the
angles α, β and θ.

SÊ½çã®ÊÄ We start by compuƟng the magnitude of each vector.

|| u⃗ || =
√
ϭϬ; || v⃗ || = Ϯ

√
ϭϬ; || w⃗ || = ϱ.

Notes:

ϱϴϮ



Figure ϭϬ.ϯϮ: Vectors used in Example
ϯϯϭ.

ϭϬ.ϯ The Dot Product

We now apply Theorem ϴϲ to find the angles.

α = cos−ϭ
(

u⃗ · v⃗
(
√
ϭϬ)(Ϯ

√
ϭϬ)

)

= cos−ϭ(Ϭ) =
π

Ϯ
= ϵϬ◦.

β = cos−ϭ
(

v⃗ · w⃗
(Ϯ
√
ϭϬ)(ϱ)

)

= cos−ϭ
(

Ϯϲ
ϭϬ

√
ϭϬ

)

≈ Ϭ.ϲϬϱϱ ≈ ϯϰ.ϳ◦.

θ = cos−ϭ
(

u⃗ · w⃗
(
√
ϭϬ)(ϱ)

)

= cos−ϭ
( −ϵ
ϱ
√
ϭϬ

)

≈ Ϯ.ϭϳϲϯ ≈ ϭϮϰ.ϳ◦

We see from our computaƟon that α+ β = θ, as indicated by Figure ϭϬ.ϯϭ.
While we knew this should be the case, it is nice to see that this non-intuiƟve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

Example ϯϯϭ Using the dot product to find angles
Let u⃗ = ⟨ϭ, ϭ, ϭ⟩, v⃗ = ⟨−ϭ, ϯ,−Ϯ⟩ and w⃗ = ⟨−ϱ, ϭ, ϰ⟩, as illustrated in Figure
ϭϬ.ϯϮ. Find the angle between each pair of vectors.

SÊ½çã®ÊÄ

ϭ. Between u⃗ and v⃗:

θ = cos−ϭ
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)

= cos−ϭ
(

Ϭ√
ϯ
√
ϭϰ

)

=
π

Ϯ
.

Notes:

ϱϴϯ



Note: The term perpendicular originally
referred to lines. As mathemaƟcs pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in ϱ-dimensional space are or-
thogonal if their dot product is Ϭ. It is not
wrong to say they are perpendicular, but
common convenƟon gives preference to
the word orthogonal.

Chapter ϭϬ Vectors

Ϯ. Between u⃗ and w⃗:

θ = cos−ϭ
(

u⃗ · w⃗
|| u⃗ |||| w⃗ ||

)

= cos−ϭ
(

Ϭ√
ϯ
√
ϰϮ

)

=
π

Ϯ
.

ϯ. Between v⃗ and w⃗:

θ = cos−ϭ
(

v⃗ · w⃗
|| v⃗ |||| w⃗ ||

)

= cos−ϭ
(

Ϭ√
ϭϰ

√
ϰϮ

)

=
π

Ϯ
.

While our work shows that each angle is π/Ϯ, i.e., ϵϬ◦, none of these angles
looks to be a right angle in Figure ϭϬ.ϯϮ. Such is the case when drawing three–
dimensional objects on the page.

All three angles between these vectors was π/Ϯ, or ϵϬ◦. We know from
geometry and everyday life that ϵϬ◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/Ϯ. NoƟce the common
feature in each calculaƟon (and also the calculaƟon of α in Example ϯϯϬ): the
dot products of each pair of angles was Ϭ. We use this as a basis for a definiƟon
of the term orthogonal, which is essenƟally synonymous to perpendicular.

DefiniƟon ϱϴ Orthogonal

Vectors u⃗ and v⃗ are orthogonal if their dot product is Ϭ.

Example ϯϯϮ Finding orthogonal vectors
Let u⃗ = ⟨ϯ, ϱ⟩ and v⃗ = ⟨ϭ, Ϯ, ϯ⟩.

ϭ. Find two vectors in RϮ that are orthogonal to u⃗.

Ϯ. Find two non–parallel vectors in Rϯ that are orthogonal to v⃗.

SÊ½çã®ÊÄ

Notes:
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v⃗

.

u⃗

.
θ

(a)

..

v⃗

.

u⃗

.

w⃗

.

z⃗

.
θ

(b)

Figure ϭϬ.ϯϯ: Developing the construc-
Ɵon of the orthogonal projecƟon.

ϭϬ.ϯ The Dot Product

ϭ. Recall that a line perpendicular to a line with slope m has slope −ϭ/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as ϱ/ϯ, its
“rise over run.” A vector orthogonal to u⃗ will have slope−ϯ/ϱ. There are
many such choices, though all parallel:

⟨−ϱ, ϯ⟩ or ⟨ϱ,−ϯ⟩ or ⟨−ϭϬ, ϲ⟩ or ⟨ϭϱ,−ϵ⟩ , etc.

Ϯ. There are infinite direcƟons in space orthogonal to any given direcƟon,
so there are an infinite number of non–parallel vectors orthogonal to v⃗.
Since there are so many, we have great leeway in finding some.

One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗ϭ = ⟨Ϯ, ϳ, z⟩. If v⃗ϭ is to be orthogonal
to v⃗, then v⃗ϭ · v⃗ = Ϭ, so

Ϯ+ ϭϰ+ ϯz = Ϭ ⇒ z =
−ϭϲ
ϯ

.

So v⃗ϭ = ⟨Ϯ, ϳ,−ϭϲ/ϯ⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.

Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part ϭ. Let v⃗Ϯ = ⟨−Ϯ, ϭ, Ϭ⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Leƫng the third component be Ϭ effecƟvely ignores the
third component of v⃗, and it is easy to see that

v⃗Ϯ · v⃗ = ⟨−Ϯ, ϭ, Ϭ⟩ · ⟨ϭ, Ϯ, ϯ⟩ = Ϭ.

Clearly v⃗ϭ and v⃗Ϯ are not parallel.

An important construcƟon is illustrated in Figure ϭϬ.ϯϯ, where vectors u⃗ and
v⃗ are sketched. In part (a), a doƩed line is drawn from the Ɵp of u⃗ to the line
containing v⃗, where the doƩed line is orthogonal to v⃗. In part (b), the doƩed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construcƟon is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construcƟon
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure ϭϬ.ϯϯ (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

|| w⃗ || = || u⃗ || cos θ. (ϭϬ.Ϯ)

Notes:

ϱϴϱ
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We also know that w⃗ is parallel to to v⃗ ; that is, the direcƟon of w⃗ is the
direcƟon of v⃗, described by the unit vector ϭ

|| v⃗ || v⃗. The vector w⃗ is the vector in
the direcƟon ϭ

|| v⃗ || v⃗ with magnitude || u⃗ || cos θ:

w⃗ =
(

|| u⃗ || cos θ
) ϭ
|| v⃗ || v⃗.

Replace cos θ using Theorem ϴϲ:

=

(

|| u⃗ || u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)
ϭ

|| v⃗ || v⃗

=
u⃗ · v⃗
|| v⃗ ||Ϯ v⃗.

Now apply Theorem ϴϱ.

=
u⃗ · v⃗
v⃗ · v⃗ v⃗.

Since this construcƟon is so important, it is given a special name.

DefiniƟon ϱϵ Orthogonal ProjecƟon

Let u⃗ and v⃗ be given. The orthogonal projecƟon of u⃗ onto v⃗, denoted
proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗.

Example ϯϯϯ CompuƟng the orthogonal projecƟon

ϭ. Let u⃗ = ⟨−Ϯ, ϭ⟩ and v⃗ = ⟨ϯ, ϭ⟩. Find proj v⃗ u⃗, and sketch all three vectors
with iniƟal points at the origin.

Ϯ. Let w⃗ = ⟨Ϯ, ϭ, ϯ⟩ and x⃗ = ⟨ϭ, ϭ, ϭ⟩. Find proj x⃗ w⃗, and sketch all three
vectors with iniƟal points at the origin.

SÊ½çã®ÊÄ

Notes:
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Figure ϭϬ.ϯϰ: Graphing the vectors used
in Example ϯϯϯ.

..

v⃗

.

u⃗

.
proj v⃗ u⃗.

z⃗

Figure ϭϬ.ϯϱ: IllustraƟng the orthogonal
projecƟon.

ϭϬ.ϯ The Dot Product

ϭ. Applying DefiniƟon ϱϵ, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗ v⃗

=
−ϱ
ϭϬ

⟨ϯ, ϭ⟩

=

⟨

−ϯ
Ϯ
,−ϭ

Ϯ

⟩

.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure ϭϬ.ϯϰ(a). Note how the
projecƟon is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direcƟon. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than ϵϬ◦).

Ϯ. Apply the definiƟon:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗ x⃗

=
ϲ
ϯ
⟨ϭ, ϭ, ϭ⟩

= ⟨Ϯ, Ϯ, Ϯ⟩ .

These vectors are sketched in Figure ϭϬ.ϯϰ(b), and again in part (c) from
a different perspecƟve. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
Ɵon has the geometric properƟes it should. The graph shown in part (c)
illustrates these properƟes beƩer.

Consider Figure ϭϬ.ϯϱ where the concept of the orthogonal projecƟon is
again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (ϭϬ.ϯ)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite EquaƟon (ϭϬ.ϯ) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (NotaƟon note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notaƟon to state

Notes:

ϱϴϳ



Chapter ϭϬ Vectors

“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

Key Idea ϰϵ Orthogonal DecomposiƟon of Vectors

Let u⃗ and v⃗ be given. Then u⃗ can be wriƩen as the sum of two vectors,
one of which is parallel to v⃗, and one of which is orthogonal to v⃗:

u⃗ = proj v⃗ u⃗
︸ ︷︷ ︸

∥ v⃗

+ (⃗u− proj v⃗ u⃗
︸ ︷︷ ︸

⊥ v⃗

).

We illustrate the use of this equality in the following example.

Example ϯϯϰ Orthogonal decomposiƟon of vectors

ϭ. Let u⃗ = ⟨−Ϯ, ϭ⟩ and v⃗ = ⟨ϯ, ϭ⟩ as in Example ϯϯϯ. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

Ϯ. Let w⃗ = ⟨Ϯ, ϭ, ϯ⟩ and x⃗ = ⟨ϭ, ϭ, ϭ⟩ as in Example ϯϯϯ. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

SÊ½çã®ÊÄ

ϭ. In Example ϯϯϯ, we found that proj v⃗ u⃗ = ⟨−ϭ.ϱ,−Ϭ.ϱ⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−Ϯ, ϭ⟩ − ⟨−ϭ.ϱ,−Ϭ.ϱ⟩ = ⟨−Ϭ.ϱ, ϭ.ϱ⟩ .

Is z⃗ orthogonal to v⃗ ? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−Ϭ.ϱ, ϭ.ϱ⟩ · ⟨ϯ, ϭ⟩ = Ϭ.

Since the dot product is Ϭ, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−Ϯ, ϭ⟩ = ⟨−ϭ.ϱ,−Ϭ.ϱ⟩

︸ ︷︷ ︸

∥ v⃗

+ ⟨−Ϭ.ϱ, ϭ.ϱ⟩
︸ ︷︷ ︸

⊥ v⃗

.

Ϯ. We found in Example ϯϯϯ that proj x⃗ w⃗ = ⟨Ϯ, Ϯ, Ϯ⟩. Applying the Key Idea,
we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨Ϯ, ϭ, ϯ⟩ − ⟨Ϯ, Ϯ, Ϯ⟩ = ⟨Ϭ,−ϭ, ϭ⟩ .

Notes:

ϱϴϴ
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Figure ϭϬ.ϯϲ: Sketching the ramp and box
in Example ϯϯϱ. Note: The vectors are not
drawn to scale.

ϭϬ.ϯ The Dot Product

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨Ϭ,−ϭ, ϭ⟩ · ⟨ϭ, ϭ, ϭ⟩ = Ϭ.

Since the dot product is Ϭ, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨Ϯ, ϭ, ϯ⟩ = ⟨Ϯ, Ϯ, Ϯ⟩

︸ ︷︷ ︸

∥ x⃗

+ ⟨Ϭ,−ϭ, ϭ⟩
︸ ︷︷ ︸

⊥ x⃗

We give an example of where this decomposiƟon is useful.

Example ϯϯϱ Orthogonally decomposing a force vector
Consider Figure ϭϬ.ϯϲ(a), showing a box weighing ϱϬlb on a ramp that rises ϱŌ
over a span of ϮϬŌ. Find the components of force, and their magnitudes, acƟng
on the box (as sketched in part (b) of the figure):

ϭ. in the direcƟon of the ramp, and

Ϯ. orthogonal to the ramp.

SÊ½çã®ÊÄ As the ramp rises ϱŌ over a horizontal distance of ϮϬŌ, we can
represent the direcƟon of the ramp with the vector r⃗ = ⟨ϮϬ, ϱ⟩. Gravity pulls
down with a force of ϱϬlb, which we represent with g⃗ = ⟨Ϭ,−ϱϬ⟩.

ϭ. To find the force of gravity in the direcƟonof the ramp,we compute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗ r⃗

=
−ϮϱϬ
ϰϮϱ

⟨ϮϬ, ϱ⟩

=

⟨

−ϮϬϬ
ϭϳ

,−ϱϬ
ϭϳ

⟩

≈ ⟨−ϭϭ.ϳϲ,−Ϯ.ϵϰ⟩ .

The magnitude of proj r⃗ g⃗ is || proj r⃗ g⃗ || = ϱϬ/
√
ϭϳ ≈ ϭϮ.ϭϯlb. Though

the box weighs ϱϬlb, a force of about ϭϮlb is enough to keep the box from
sliding down the ramp.

Ϯ. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea ϰϵ.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
ϮϬϬ
ϭϳ

,−ϴϬϬ
ϭϳ

⟩

≈ ⟨ϭϭ.ϳϲ,−ϰϳ.Ϭϲ⟩ .

Notes:
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Figure ϭϬ.ϯϳ: Finding work when the
force and direcƟon of travel are given as
vectors.

Chapter ϭϬ Vectors

Themagnitude of this force is || z⃗ || ≈ ϰϴ.ϱϭlb. In physics and engineering,
knowing this force is importantwhen compuƟng things like staƟc fricƟonal
force. (For instance, we could easily compute if the staƟc fricƟonal force
alone was enough to keep the box from sliding down the ramp.)

ApplicaƟon to Work

In physics, the applicaƟon of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direcƟon of travel). The orthogonal projecƟon allows us to compute work when
the force is not in the direcƟon of travel.

Consider Figure ϭϬ.ϯϳ, where a force F⃗ is being applied to an object moving
in the direcƟon of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direcƟon of d⃗, || proj d⃗ F⃗ ||, Ɵmes || d⃗ ||:

|| proj d⃗ F⃗ || · || d⃗ || =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

F⃗ · d⃗
d⃗ · d⃗

d⃗

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
· || d⃗ ||

=

∣
∣
∣
∣
∣

F⃗ · d⃗
|| d⃗ ||Ϯ

∣
∣
∣
∣
∣
· || d⃗ || · || d⃗ ||

=

∣
∣
∣⃗F · d⃗

∣
∣
∣

|| d⃗ ||Ϯ
|| d⃗ ||Ϯ

=
∣
∣
∣⃗F · d⃗

∣
∣
∣ .

The expression F⃗ · d⃗ will be posiƟve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negaƟve), the force is causing moƟon
in the opposite direcƟon of d⃗, resulƟng in “negaƟve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

DefiniƟon ϲϬ Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

Example ϯϯϲ CompuƟng work
Aman slides a box along a ramp that rises ϯŌ over a distance of ϭϱŌ by applying
ϱϬlb of force as shown in Figure ϭϬ.ϯϴ. Compute the work done.

Notes:
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Figure ϭϬ.ϯϴ: CompuƟng work when slid-
ing a box up a ramp in Example ϯϯϲ.

ϭϬ.ϯ The Dot Product

SÊ½çã®ÊÄ The figure indicates that the force applied makes a ϯϬ◦ an-
gle with the horizontal, so F⃗ = ϱϬ ⟨cos ϯϬ◦, sin ϯϬ◦⟩ ≈ ⟨ϰϯ.ϯ, Ϯϱ⟩ . The ramp is
represented by d⃗ = ⟨ϭϱ, ϯ⟩. The work done is simply

F⃗ · d⃗ = ϱϬ ⟨cos ϯϬ◦, sin ϯϬ◦⟩ · ⟨ϭϱ, ϯ⟩ ≈ ϳϮϰ.ϱŌ–lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direcƟon of travel; this is all inherently com-
puted by the dot product!

The dot product is a powerful way of evaluaƟng computaƟons that depend
onangleswithout actually using angles. Thenext secƟonexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.

Notes:

ϱϵϭ



Exercises ϭϬ.ϯ
Terms and Concepts

ϭ. The dot product of two vectors is a , not a vector.

Ϯ. How are the concepts of the dot product and vector mag-
nitude related?

ϯ. How can one quickly tell if the angle between two vectors
is acute or obtuse?

ϰ. Give a synonym for “orthogonal.”

Problems

In Exercises ϱ – ϭϬ, find the dot product of the given vectors.

ϱ. u⃗ = ⟨Ϯ,−ϰ⟩, v⃗ = ⟨ϯ, ϳ⟩

ϲ. u⃗ = ⟨ϱ, ϯ⟩, v⃗ = ⟨ϲ, ϭ⟩

ϳ. u⃗ = ⟨ϭ,−ϭ, Ϯ⟩, v⃗ = ⟨Ϯ, ϱ, ϯ⟩

ϴ. u⃗ = ⟨ϯ, ϱ,−ϭ⟩, v⃗ = ⟨ϰ,−ϭ, ϳ⟩

ϵ. u⃗ = ⟨ϭ, ϭ⟩, v⃗ = ⟨ϭ, Ϯ, ϯ⟩

ϭϬ. u⃗ = ⟨ϭ, Ϯ, ϯ⟩, v⃗ = ⟨Ϭ, Ϭ, Ϭ⟩

ϭϭ. Create your own vectors u⃗, v⃗ and w⃗ in RϮ and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

ϭϮ. Create your own vectors u⃗ and v⃗ inRϯ and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises ϭϯ – ϭϲ, find the measure of the angle between
the two vectors in both radians and degrees.

ϭϯ. u⃗ = ⟨ϭ, ϭ⟩, v⃗ = ⟨ϭ, Ϯ⟩

ϭϰ. u⃗ = ⟨−Ϯ, ϭ⟩, v⃗ = ⟨ϯ, ϱ⟩

ϭϱ. u⃗ = ⟨ϴ, ϭ,−ϰ⟩, v⃗ = ⟨Ϯ, Ϯ, Ϭ⟩

ϭϲ. u⃗ = ⟨ϭ, ϳ, Ϯ⟩, v⃗ = ⟨ϰ,−Ϯ, ϱ⟩

In Exercises ϭϳ – ϮϬ, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

ϭϳ. v⃗ = ⟨ϰ, ϳ⟩

ϭϴ. v⃗ = ⟨−ϯ, ϱ⟩

ϭϵ. v⃗ = ⟨ϭ, ϭ, ϭ⟩

ϮϬ. v⃗ = ⟨ϭ,−Ϯ, ϯ⟩

In Exercises Ϯϭ – Ϯϲ, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projecƟon of u⃗ onto v⃗, and sketch all three
vectors on the same axes.

Ϯϭ. u⃗ = ⟨ϭ, Ϯ⟩, v⃗ = ⟨−ϭ, ϯ⟩

ϮϮ. u⃗ = ⟨ϱ, ϱ⟩, v⃗ = ⟨ϭ, ϯ⟩

Ϯϯ. u⃗ = ⟨−ϯ, Ϯ⟩, v⃗ = ⟨ϭ, ϭ⟩

Ϯϰ. u⃗ = ⟨−ϯ, Ϯ⟩, v⃗ = ⟨Ϯ, ϯ⟩

Ϯϱ. u⃗ = ⟨ϭ, ϱ, ϭ⟩, v⃗ = ⟨ϭ, Ϯ, ϯ⟩

Ϯϲ. u⃗ = ⟨ϯ,−ϭ, Ϯ⟩, v⃗ = ⟨Ϯ, Ϯ, ϭ⟩

In Exercises Ϯϳ – ϯϮ, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises Ϯϭ – Ϯϲ.

Ϯϳ. u⃗ = ⟨ϭ, Ϯ⟩, v⃗ = ⟨−ϭ, ϯ⟩

Ϯϴ. u⃗ = ⟨ϱ, ϱ⟩, v⃗ = ⟨ϭ, ϯ⟩

Ϯϵ. u⃗ = ⟨−ϯ, Ϯ⟩, v⃗ = ⟨ϭ, ϭ⟩

ϯϬ. u⃗ = ⟨−ϯ, Ϯ⟩, v⃗ = ⟨Ϯ, ϯ⟩

ϯϭ. u⃗ = ⟨ϭ, ϱ, ϭ⟩, v⃗ = ⟨ϭ, Ϯ, ϯ⟩

ϯϮ. u⃗ = ⟨ϯ,−ϭ, Ϯ⟩, v⃗ = ⟨Ϯ, Ϯ, ϭ⟩

ϯϯ. A ϭϬlb box sits on a ramp that rises ϰŌ over a distance of
ϮϬŌ. Howmuch force is required to keep the box from slid-
ing down the ramp?

ϯϰ. A ϭϬlb box sits on a ϭϱŌ ramp that makes a ϯϬ◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

ϯϱ. How much work is performed in moving a box horizontally
ϭϬŌ with a force of ϮϬlb applied at an angle of ϰϱ◦ to the
horizontal?

ϯϲ. How much work is performed in moving a box horizontally
ϭϬŌ with a force of ϮϬlb applied at an angle of ϭϬ◦ to the
horizontal?

ϯϳ. Howmuchwork is performed inmoving a box up the length
of a ramp that rises ϮŌ over a distance of ϭϬŌ, with a force
of ϱϬlb applied horizontally?

ϯϴ. Howmuchwork is performed inmoving a box up the length
of a ramp that rises ϮŌ over a distance of ϭϬŌ, with a force
of ϱϬlb applied at an angle of ϰϱ◦ to the horizontal?

ϯϵ. Howmuchwork is performed inmoving a box up the length
of a ϭϬŌ ramp that makes a ϱ◦ angle with the horizontal,
with ϱϬlb of force applied in the direcƟon of the ramp?ϱϵϮ



ϭϬ.ϰ The Cross Product

ϭϬ.ϰ The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = Ϭ.

Given two non–parallel, nonzero vectors u⃗ and v⃗ in space, it is very useful
to find a vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operaƟon,
called the cross product, that creates such a vector. This secƟon defines the
cross product, then explores its properƟes and applicaƟons.

DefiniƟon ϲϭ Cross Product

Let u⃗ = ⟨uϭ, uϮ, uϯ⟩ and v⃗ = ⟨vϭ, vϮ, vϯ⟩ be vectors in Rϯ. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨uϮvϯ − uϯvϮ,−(uϭvϯ − uϯvϭ), uϭvϮ − uϮvϭ⟩ .

This definiƟon can be a bit cumbersome to remember. AŌer an example we
will give a convenient method for compuƟng the cross product. For now, careful
examinaƟon of the products and differences given in the definiƟon should reveal
a paƩern that is not too difficult to remember. (For instance, in the first compo-
nent only Ϯ and ϯ appear as subscripts; in the second component, only ϭ and ϯ
appear as subscripts. Further study reveals the order in which they appear.)

Let’s pracƟce using this definiƟon by compuƟng a cross product.

Example ϯϯϳ CompuƟng a cross product
Let u⃗ = ⟨Ϯ,−ϭ, ϰ⟩ and v⃗ = ⟨ϯ, Ϯ, ϱ⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

SÊ½çã®ÊÄ Using DefiniƟon ϲϭ, we have

u⃗× v⃗ =
⟨
(−ϭ)ϱ− (ϰ)Ϯ,−

(
(Ϯ)ϱ− (ϰ)ϯ

)
, (Ϯ)Ϯ− (−ϭ)ϯ

⟩
= ⟨−ϭϯ, Ϯ, ϳ⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:
(
u⃗× v⃗

)
· u⃗ = ⟨−ϭϯ, Ϯ, ϳ⟩ · ⟨Ϯ,−ϭ, ϰ⟩ = Ϭ,

(
u⃗× v⃗

)
· v⃗ = ⟨−ϭϯ, Ϯ, ϳ⟩ · ⟨ϯ, Ϯ, ϱ⟩ = Ϭ.

Since both dot products are zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗.

Notes:

ϱϵϯ



Chapter ϭϬ Vectors

A convenient method of compuƟng the cross product starts with forming a
parƟcular ϯ × ϯ matrix, or rectangular array. The first row comprises the stan-
dard unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respecƟvely. Using u⃗ and v⃗ from Example ϯϯϳ, we begin with:

i⃗ j⃗ k⃗
Ϯ −ϭ ϰ
ϯ Ϯ ϱ

Now repeat the first two columns aŌer the original three:

i⃗ j⃗ k⃗ i⃗ j⃗
Ϯ −ϭ ϰ Ϯ −ϭ
ϯ Ϯ ϱ ϯ Ϯ

This gives three full “upper leŌ to lower right” diagonals, and three full “up-
per right to lower leŌ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
leŌ:

i⃗ j⃗ k⃗ i⃗ j⃗
Ϯ −ϭ ϰ Ϯ −ϭ
ϯ Ϯ ϱ ϯ Ϯ

−ϱ⃗i ϭϮ⃗j ϰ⃗k−ϯ⃗k ϴ⃗i ϭϬ⃗j

u⃗× v⃗ =
(
− ϱ⃗i+ϭϮ⃗j+ ϰ⃗k

)
−
(
− ϯ⃗k+ ϴ⃗i+ϭϬ⃗j

)
= −ϭϯ⃗i+ Ϯ⃗j+ ϳ⃗k = ⟨−ϭϯ, Ϯ, ϳ⟩ .

We pracƟce using this method.

Example ϯϯϴ CompuƟng a cross product
Let u⃗ = ⟨ϭ, ϯ, ϲ⟩ and v⃗ = ⟨−ϭ, Ϯ, ϭ⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗
ϭ ϯ ϲ ϭ ϯ
−ϭ Ϯ ϭ −ϭ Ϯ

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
ϯ⃗i− ϲ⃗j+ Ϯ⃗k

)
−
(
− ϯ⃗k+ ϭϮ⃗i+ j⃗

)
= ⟨−ϵ,−ϳ, ϱ⟩ .

Notes:

ϱϵϰ



ϭϬ.ϰ The Cross Product

To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mulƟply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗
−ϭ Ϯ ϭ −ϭ Ϯ
ϭ ϯ ϲ ϭ ϯ

Note how with the rows being switched, the products that once appeared on
the right now appear on the leŌ, and vice–versa. Thus the result is:

v⃗× u⃗ =
(
ϭϮ⃗i+ j⃗− ϯ⃗k

)
−
(
Ϯ⃗k+ ϯ⃗i− ϲ⃗j

)
= ⟨ϵ, ϳ,−ϱ⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗.

ProperƟes of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using DefiniƟon ϲϭ that this will always be the case. The following
theorem states several useful properƟes of the cross product, each of which can
be verified by referring to the definiƟon.

Theorem ϴϳ ProperƟes of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in Rϯ and let c be a scalar. The following idenƟƟes
hold:

ϭ. u⃗× v⃗ = −(⃗v× u⃗) AnƟcommutaƟve Property

Ϯ. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ DistribuƟve ProperƟes

(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

ϯ. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

ϰ. (a) (⃗u× v⃗) · u⃗ = Ϭ Orthogonality ProperƟes

(b) (⃗u× v⃗) · v⃗ = Ϭ

ϱ. u⃗× u⃗ = Ϭ⃗

ϲ. u⃗× Ϭ⃗ = Ϭ⃗

ϳ. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

Notes:

ϱϵϱ



Note: DefiniƟon ϱϴ (through Theorem
ϴϲ) defines u⃗ and v⃗ to be orthogonal if
u⃗ · v⃗ = Ϭ. We could use Theorem ϴϴ to
define u⃗ and v⃗ are parallel if u⃗× v⃗ = Ϭ. By
such a definiƟon, Ϭ⃗ would be both orthog-
onal and parallel to every vector. Appar-
ent paradoxes such as this are not uncom-
mon in mathemaƟcs and can be very use-
ful. (See also the marginal note on page
ϱϳϰ.)

Chapter ϭϬ Vectors

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construcƟon given in
DefiniƟon ϲϭ saƟsfies this property. Theorem ϴϳ asserts this property holds; we
leave it as a problem in the Exercise secƟon to verify this.

Property ϱ from the theorem is also leŌ to the reader to prove in the Exercise
secƟon, but it reveals something more interesƟng than “the cross product of a
vector with itself is Ϭ⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property ϯ of Theorem ϴϳ)
= Ϭ⃗. (by Property ϱ of Theorem ϴϳ)

We have just shown that the cross product of parallel vectors is Ϭ⃗. This hints
at something deeper. Theorem ϴϲ related the angle between two vectors and
their dot product; there is a similar relaƟonship relaƟng the cross product of two
vectors and the angle between them, given by the following theorem.

Theorem ϴϴ The Cross Product and Angles

Let u⃗ and v⃗ be vectors in Rϯ. Then

|| u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ,

where θ, Ϭ ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is Ϭ or π (i.e., the vectors are parallel),
themagnitude of the cross product is Ϭ. The only vector with amagnitude of Ϭ is
Ϭ⃗ (see Property ϵ of Theoremϴϰ), hence the cross product of parallel vectors is Ϭ⃗.

We demonstrate the truth of this theorem in the following example.

Example ϯϯϵ The cross product and angles
Let u⃗ = ⟨ϭ, ϯ, ϲ⟩ and v⃗ = ⟨−ϭ, Ϯ, ϭ⟩ as in Example ϯϯϴ. Verify Theorem ϴϴ by
finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Notes:

ϱϵϲ



Figure ϭϬ.ϯϵ: IllustraƟng the Right Hand
Rule of the cross product.

ϭϬ.ϰ The Cross Product

SÊ½çã®ÊÄ We use Theorem ϴϲ to find the angle between u⃗ and v⃗.

θ = cos−ϭ
(

u⃗ · v⃗
|| u⃗ || || v⃗ ||

)

= cos−ϭ
(

ϭϭ√
ϰϲ

√
ϲ

)

≈ Ϭ.ϴϰϳϭ = ϰϴ.ϱϰ◦.

Ourwork in Example ϯϯϴ showed that u⃗×v⃗ = ⟨−ϵ,−ϳ, ϱ⟩, hence || u⃗×v⃗ || =√
ϭϱϱ. Is || u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ? Using numerical approximaƟons, we find:

|| u⃗× v⃗ || =
√
ϭϱϱ || u⃗ || || v⃗ || sin θ =

√
ϰϲ

√
ϲ sin Ϭ.ϴϰϳϭ

≈ ϭϮ.ϰϱ. ≈ ϭϮ.ϰϱ.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(

cos−ϭ
(

ϭϭ√
ϰϲ

√
ϲ

))

=

√
ϭϱϱ√
ϰϲ

√
ϲ
,

which allows us to verify the theorem exactly.

Right Hand Rule

The anƟcommutaƟve property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direcƟon. When seeking a vector perpendicular to u⃗ and v⃗, we
essenƟally have two direcƟons to choose from, one in the direcƟon of u⃗× v⃗ and
one in the direcƟon of v⃗× u⃗. Does it maƩer which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in Rϯ with the same iniƟal point, point
the index finger of your right hand in the direcƟon of u⃗ and let yourmiddle finger
point in the direcƟon of v⃗ (much as we did when establishing the right hand rule
for the ϯ-dimensional coordinate system). Your thumb will naturally extend in
the direcƟon of u⃗× v⃗. One can “pracƟce” this using Figure ϭϬ.ϯϵ. If you switch,
and point the index finder in the direcƟon of v⃗ and the middle finger in the di-
recƟon of u⃗, your thumb will now point in the opposite direcƟon, allowing you
to “visualize” the anƟcommutaƟve property of the cross product.

ApplicaƟons of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
maƟcs, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:

ϱϵϳ
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Figure ϭϬ.ϰϬ: Using the cross product to
find the area of a parallelogram.
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Figure ϭϬ.ϰϭ: Sketching the parallelo-
grams in Example ϯϰϬ.

Chapter ϭϬ Vectors

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure ϭϬ.ϰϬ(a). As shown when defining the Parallelogram Law of
vector addiƟon, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same iniƟal point, as illustrated in Figure ϭϬ.ϰϬ(b). Trigonometry tells us that
h = || u⃗ || sin θ, hence the area of the parallelogram is

A = || u⃗ || || v⃗ || sin θ = || u⃗× v⃗ ||, (ϭϬ.ϰ)

where the second equality comes from Theorem ϴϴ. We illustrate using Equa-
Ɵon (ϭϬ.ϰ) in the following example.

Example ϯϰϬ Finding the area of a parallelogram

ϭ. Find the area of the parallelogram defined by the vectors u⃗ = ⟨Ϯ, ϭ⟩ and
v⃗ = ⟨ϭ, ϯ⟩.

Ϯ. Verify that the points A = (ϭ, ϭ, ϭ), B = (Ϯ, ϯ, Ϯ), C = (ϰ, ϱ, ϯ) and
D = (ϯ, ϯ, Ϯ) are the verƟces of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

ϭ. Figure ϭϬ.ϰϭ(a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in RϮ, not Rϯ, and
the cross product is only defined on vectors in Rϯ. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofRϯ, and rewrite themas u⃗ =
⟨Ϯ, ϭ, Ϭ⟩ and v⃗ = ⟨ϭ, ϯ, Ϭ⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨Ϭ, Ϭ, ϱ⟩; therefore the area of the parallelogram
is A = || u⃗× v⃗ || = ϱ.

Ϯ. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
ϭϬ.ϰϭ(b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨ϭ, Ϯ, ϭ⟩ and # ‰BC =
#  ‰AD = ⟨Ϯ, Ϯ, ϭ⟩. We find

the area by compuƟng the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨Ϭ, ϭ,−Ϯ⟩ ⇒ || # ‰AB× # ‰BC || =

√
ϱ ≈ Ϯ.Ϯϯϲ.

This applicaƟon is perhaps more useful in finding the area of a triangle (in
short, triangles are used more oŌen than parallelograms). We illustrate this in
the following example.

Notes:

ϱϵϴ
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Figure ϭϬ.ϰϮ: Finding the area of a trian-
gle in Example ϯϰϭ.

Note: The word “parallelepiped” is pro-
nounced “parallel–eh–pipe–ed.”

Figure ϭϬ.ϰϯ: A parallelepiped is the three
dimensional analogue to the parallelo-
gram.

Figure ϭϬ.ϰϰ: A parallelepiped in Example
ϯϰϮ.

ϭϬ.ϰ The Cross Product

Example ϯϰϭ Area of a triangle
Find the area of the triangle with verƟces A = (ϭ, Ϯ), B = (Ϯ, ϯ) and C = (ϯ, ϭ),
as pictured in Figure ϭϬ.ϰϮ.

SÊ½çã®ÊÄ We found the area of this triangle in Example ϮϬϮ to be ϭ.ϱ
using integraƟon. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ ϭϮbh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨ϭ, ϭ⟩ and # ‰AC = ⟨Ϯ,−ϭ⟩. As in the previous example, we will
rewrite these vectors with a third component of Ϭ so that we can apply the cross
product. The area of the triangle is

ϭ
Ϯ
|| # ‰AB× # ‰AC || = ϭ

Ϯ
|| ⟨ϭ, ϭ, Ϭ⟩ × ⟨Ϯ,−ϭ, Ϭ⟩ || = ϭ

Ϯ
|| ⟨Ϭ, Ϭ,−ϯ⟩ || = ϯ

Ϯ
.

We arrive at the same answer as before with less work.

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the face opposite face, as illustrated in Figure ϭϬ.ϰϯ. By
crossing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base.
Doƫng this vector with u⃗ computes the volume of parallelepiped! (Up to a sign;
take the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (ϭϬ.ϱ)

Note how this is the Triple Scalar Product, first seen in Theorem ϴϳ. Applying
the idenƟƟes given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

Example ϯϰϮ Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨ϭ, ϭ, Ϭ⟩, v⃗ =
⟨−ϭ, ϭ, Ϭ⟩ and w⃗ = ⟨Ϭ, ϭ, ϭ⟩.

SÊ½çã®ÊÄ We apply EquaƟon (ϭϬ.ϱ). We first find v⃗× w⃗ = ⟨ϭ, ϭ,−ϭ⟩.
Then

|⃗u · (⃗v× w⃗)| = | ⟨ϭ, ϭ, Ϭ⟩ · ⟨ϭ, ϭ,−ϭ⟩ | = Ϯ.

So the volume of the parallelepiped is Ϯ cubic units.

Notes:

ϱϵϵ
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Figure ϭϬ.ϰϱ: Showing a force being ap-
plied to a lever in Example ϯϰϯ.

Chapter ϭϬ Vectors

While this applicaƟon of the Triple Scalar Product is interesƟng, it is not used
all that oŌen: parallelepipeds are not a common shape in physics and engineer-
ing. The last applicaƟon of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the applicaƟon of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
recƟon orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek leƩer
τ, or tau, and has units of N·m, a Newton–meter, or Ō·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulƟng torque is

τ⃗ = ℓ⃗× F⃗. (ϭϬ.ϲ)

Example ϯϰϯ CompuƟng torque
A lever of length ϮŌmakes an anglewith the horizontal of ϰϱ◦. Find the resulƟng
torque when a force of ϭϬlb is applied to the end of the level where:

ϭ. the force is perpendicular to the lever, and

Ϯ. the force makes an angle of ϲϬ◦ with the lever, as shown in Figure ϭϬ.ϰϱ.

SÊ½çã®ÊÄ

ϭ. We start by determining vectors for the force and lever arm. Since the
lever arm makes a ϰϱ◦ angle with the horizontal and is ϮŌ long, we can
state that ℓ⃗ = Ϯ ⟨cos ϰϱ◦, sin ϰϱ◦⟩ =

⟨√
Ϯ,
√
Ϯ
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
leŌ hand side of Figure ϭϬ.ϰϱ), we can conclude it is making an angle of
−ϰϱ◦ with the horizontal. As it has a magnitude of ϭϬlb, we can state
F⃗ = ϭϬ ⟨cos(−ϰϱ◦), sin(−ϰϱ◦)⟩ =

⟨
ϱ
√
Ϯ,−ϱ

√
Ϯ
⟩
.

Using EquaƟon (ϭϬ.ϲ) to find the torque requires a cross product. We
again let the third component of each vector be Ϭ and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

Ϯ,
√
Ϯ, Ϭ
⟩

×
⟨

ϱ
√
Ϯ,−ϱ

√
Ϯ, Ϭ
⟩

= ⟨Ϭ, Ϭ,−ϮϬ⟩

Notes:

ϲϬϬ



ϭϬ.ϰ The Cross Product

This clearly has a magnitude of ϮϬ Ō-lb.

We can view the force and lever arm vectors as lying “on the page”; our
computaƟon of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

Ϯ. Our lever arm can sƟll be represented by ℓ⃗ =
⟨√

Ϯ,
√
Ϯ
⟩
. As our force

vector makes a ϲϬ◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−ϭϱ◦ angle with the horizontal. Thus

F⃗ = ϭϬ ⟨cos−ϭϱ◦, sin−ϭϱ◦⟩ =
⟨
ϱ(ϭ+

√
ϯ)√

Ϯ
,−ϱ(ϭ+

√
ϯ)√

Ϯ

⟩

≈ ⟨ϵ.ϲϱϵ,−Ϯ.ϱϴϴ⟩ .

We again make the third component Ϭ and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

Ϯ,
√
Ϯ, Ϭ
⟩

×
⟨
ϱ(ϭ+

√
ϯ)√

Ϯ
,−ϱ(ϭ+

√
ϯ)√

Ϯ
, Ϭ
⟩

=
⟨

Ϭ, Ϭ,−ϭϬ
√
ϯ
⟩

≈ ⟨Ϭ, Ϭ,−ϭϳ.ϯϮϭ⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

While the cross product has a variety of applicaƟons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector is orthogonal to two others is of incredible importance, as it allows
us to find the equaƟons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
maƟcs. We study lines and planes in the next two secƟons.

Notes:
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Exercises ϭϬ.ϰ
Terms and Concepts
ϭ. The cross product of two vectors is a , not a

scalar.

Ϯ. One can visualize the direcƟon of u⃗× v⃗ using the
.

ϯ. Give a synonym for “orthogonal.”

ϰ. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

ϱ. is a measure of the turning force applied to an
object.

Problems
In Exercises ϲ – ϭϰ, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

ϲ. u⃗ = ⟨ϯ, Ϯ,−Ϯ⟩, v⃗ = ⟨Ϭ, ϭ, ϱ⟩

ϳ. u⃗ = ⟨ϱ,−ϰ, ϯ⟩, v⃗ = ⟨Ϯ,−ϱ, ϭ⟩

ϴ. u⃗ = ⟨ϰ,−ϱ,−ϱ⟩, v⃗ = ⟨ϯ, ϯ, ϰ⟩

ϵ. u⃗ = ⟨−ϰ, ϳ,−ϭϬ⟩, v⃗ = ⟨ϰ, ϰ, ϭ⟩

ϭϬ. u⃗ = ⟨ϭ, Ϭ, ϭ⟩, v⃗ = ⟨ϱ, Ϭ, ϳ⟩

ϭϭ. u⃗ = ⟨ϭ, ϱ,−ϰ⟩, v⃗ = ⟨−Ϯ,−ϭϬ, ϴ⟩

ϭϮ. u⃗ = i⃗, v⃗ = j⃗

ϭϯ. u⃗ = i⃗, v⃗ = k⃗

ϭϰ. u⃗ = j⃗, v⃗ = k⃗

ϭϱ. Pick any vectors u⃗, v⃗ and w⃗ inRϯ and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

ϭϲ. Pick any vectors u⃗, v⃗ and w⃗ inRϯ and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises ϭϳ – ϮϬ, the magnitudes of vectors u⃗ and v⃗ in Rϯ

are given, along with the angle θ between them. Use this in-
formaƟon to find the magnitude of u⃗× v⃗.

ϭϳ. || u⃗ || = Ϯ, || v⃗ || = ϱ, θ = ϯϬ◦

ϭϴ. || u⃗ || = ϯ, || v⃗ || = ϳ, θ = π/Ϯ

ϭϵ. || u⃗ || = ϯ, || v⃗ || = ϰ, θ = π

ϮϬ. || u⃗ || = Ϯ, || v⃗ || = ϱ, θ = ϱπ/ϲ

In Exercises Ϯϭ – Ϯϰ, find the area of the parallelogram de-
fined by the given vectors.

Ϯϭ. u⃗ = ⟨ϭ, ϭ, Ϯ⟩, v⃗ = ⟨Ϯ, Ϭ, ϯ⟩

ϮϮ. u⃗ = ⟨−Ϯ, ϭ, ϱ⟩, v⃗ = ⟨−ϭ, ϯ, ϭ⟩

Ϯϯ. u⃗ = ⟨ϭ, Ϯ⟩, v⃗ = ⟨Ϯ, ϭ⟩

Ϯϰ. u⃗ = ⟨Ϯ, Ϭ⟩, v⃗ = ⟨Ϭ, ϯ⟩

In Exercises Ϯϱ – Ϯϴ, find the area of the triangle with the
given verƟces.

Ϯϱ. VerƟces: (Ϭ, Ϭ, Ϭ), (ϭ, ϯ,−ϭ) and (Ϯ, ϭ, ϭ).

Ϯϲ. VerƟces: (ϱ, Ϯ,−ϭ), (ϯ, ϲ, Ϯ) and (ϭ, Ϭ, ϰ).

Ϯϳ. VerƟces: (ϭ, ϭ), (ϭ, ϯ) and (Ϯ, Ϯ).

Ϯϴ. VerƟces: (ϯ, ϭ), (ϭ, Ϯ) and (ϰ, ϯ).

In Exercises Ϯϵ – ϯϬ, find the area of the quadrilateral with
the given verƟces. (Hint: break the quadrilateral into Ϯ trian-
gles.)

Ϯϵ. VerƟces: (Ϭ, Ϭ), (ϭ, Ϯ), (ϯ, Ϭ) and (ϰ, ϯ).

ϯϬ. VerƟces: (Ϭ, Ϭ, Ϭ), (Ϯ, ϭ, ϭ), (−ϭ, Ϯ,−ϴ) and (ϭ,−ϭ, ϱ).

In Exercises ϯϭ – ϯϮ, find the volume of the parallelepiped
defined by the given vectors.

ϯϭ. u⃗ = ⟨ϭ, ϭ, ϭ⟩, v⃗ = ⟨ϭ, Ϯ, ϯ⟩, w⃗ = ⟨ϭ, Ϭ, ϭ⟩

ϯϮ. u⃗ = ⟨−ϭ, Ϯ, ϭ⟩, v⃗ = ⟨Ϯ, Ϯ, ϭ⟩, w⃗ = ⟨ϯ, ϭ, ϯ⟩

In Exercises ϯϯ – ϯϲ, find a unit vector orthogonal to both u⃗
and v⃗.

ϯϯ. u⃗ = ⟨ϭ, ϭ, ϭ⟩, v⃗ = ⟨Ϯ, Ϭ, ϭ⟩

ϯϰ. u⃗ = ⟨ϭ,−Ϯ, ϭ⟩, v⃗ = ⟨ϯ, Ϯ, ϭ⟩

ϯϱ. u⃗ = ⟨ϱ, Ϭ, Ϯ⟩, v⃗ = ⟨−ϯ, Ϭ, ϳ⟩

ϯϲ. u⃗ = ⟨ϭ,−Ϯ, ϭ⟩, v⃗ = ⟨−Ϯ, ϰ,−Ϯ⟩

ϯϳ. A bicycle rider applies ϭϱϬlb of force, straight down,
onto a pedal that extends ϳin horizontally from the
crankshaŌ. Find the magnitude of the torque applied to
the crankshaŌ.

ϯϴ. A bicycle rider applies ϭϱϬlb of force, straight down, onto
a pedal that extends ϳin from the crankshaŌ, making a ϯϬ◦

anglewith the horizontal. Find themagnitude of the torque
applied to the crankshaŌ.

ϲϬϮ



ϯϵ. To turn a stubborn bolt, ϴϬlb of force is applied to a ϭϬin
wrench. What is the maximum amount of torque that can
be applied to the bolt?

ϰϬ. To turn a stubborn bolt, ϴϬlb of force is applied to a ϭϬin
wrench in a confined space, where the direcƟon of ap-
plied force makes a ϭϬ◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

ϰϭ. Show, using the definiƟon of the Cross Product, that u⃗ · (⃗u×
v⃗) = Ϭ; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

ϰϮ. Show, using the definiƟon of the Cross Product, that u⃗×u⃗ =
Ϭ⃗.

ϲϬϯ



Figure ϭϬ.ϰϳ: Defining a line in space.

Chapter ϭϬ Vectors

ϭϬ.ϱ Lines
To find the equaƟon of a line in the x-y plane, we need two pieces of informaƟon:
a point and the slope. The slope conveys direcƟon informaƟon. As verƟcal lines
have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direcƟon of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with iniƟal point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direcƟon of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direcƟon parallel to d⃗. For instance, starƟng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure ϭϬ.ϰϳ where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starƟng
with p⃗ and moving a certain distance in the direcƟon of d⃗. That is, we can define
the line as a funcƟon of t:

ℓ⃗(t) = p⃗+ t d⃗. (ϭϬ.ϳ)

In many ways, this is not a new concept. Compare EquaƟon (ϭϬ.ϳ) to the
familiar “y = mx+ b” equaƟon of a line:

y = b + mx ℓ⃗(t) = p⃗ + t d⃗

StarƟng
Point DirecƟon

How Far To
Go In That
DirecƟon

Figure ϭϬ.ϰϲ: Understanding the vector equaƟon of a line.

The equaƟons exhibit the same structure: they give a starƟng point, define
a direcƟon, and state how far in that direcƟon to travel.

EquaƟon (ϭϬ.ϳ) is an example of a vector–valued funcƟon; the input of the
funcƟon is a real number and the output is a vector. Wewill cover vector–valued
funcƟons extensively in the next chapter.

Notes:
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ϭϬ.ϱ Lines

There are other ways to represent a line. Let p⃗ = ⟨xϬ, yϬ, zϬ⟩ and let d⃗ =

⟨a, b, c⟩. Then the equaƟon of the line through p⃗ in the direcƟon of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨xϬ, yϬ, zϬ⟩+ t ⟨a, b, c⟩
= ⟨xϬ + at, yϬ + bt, zϬ + ct⟩ .

The last line states the the x values of the line are given by x = xϬ + at, the
y values are given by y = yϬ + bt, and the z values are given by z = zϬ + ct.
These three equaƟons, taken together, are the parametric equaƟons of the line
through p⃗ in the direcƟon of d⃗.

Finally, each of the equaƟons for x, y and z above contain the variable t. We
can solve for t in each equaƟon:

x = xϬ + at ⇒ t =
x− xϬ

a
,

y = yϬ + bt ⇒ t =
y− yϬ

b
,

z = zϬ + ct ⇒ t =
z− zϬ

c
,

assuming a, b, c ̸= Ϭ. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equaƟons of the line through
p⃗ in the direcƟon of d⃗:

x− xϬ
a

=
y− yϬ

b
=

z− zϬ
c

.

Each representaƟon has its own advantages, depending on the context. We
summarize these three forms in the following definiƟon, then give examples of
their use.

Notes:
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Figure ϭϬ.ϰϴ: Graphing a line in Example
ϯϰϰ.

Chapter ϭϬ Vectors

DefiniƟon ϲϮ EquaƟons of Lines in Space

Consider the line in space that passes through p⃗ = ⟨xϬ, yϬ, zϬ⟩ in the
direcƟon of d⃗ = ⟨a, b, c⟩ .

ϭ. The vector equaƟon of the line is

ℓ⃗(t) = p⃗+ t⃗d.

Ϯ. The parametric equaƟons of the line are

x = xϬ + at, y = yϬ + bt, z = zϬ + ct.

ϯ. The symmetric equaƟons of the line are

x− xϬ
a

=
y− yϬ

b
=

z− zϬ
c

.

Example ϯϰϰ Finding the equaƟon of a line
Give all three equaƟons, as given inDefiniƟon ϲϮ, of the line throughP = (Ϯ, ϯ, ϭ)
in the direcƟon of d⃗ = ⟨−ϭ, ϭ, Ϯ⟩. Does the pointQ = (−ϭ, ϲ, ϲ) lie on this line?

SÊ½çã®ÊÄ We idenƟfy the point P = (Ϯ, ϯ, ϭ) with the vector p⃗ =
⟨Ϯ, ϯ, ϭ⟩. Following the definiƟon, we have

• the vector equaƟon of the line is ℓ⃗(t) = ⟨Ϯ, ϯ, ϭ⟩+ t ⟨−ϭ, ϭ, Ϯ⟩;

• the parametric equaƟons of the line are

x = Ϯ− t, y = ϯ+ t, z = ϭ+ Ϯt; and

• the symmetric equaƟons of the line are

x− Ϯ
−ϭ

=
y− ϯ
ϭ

=
z− ϭ
Ϯ

.

The first two equaƟons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculaƟng with a computer; most soŌware programs easily handle equa-
Ɵons in these formats. (For instance, to make Figure ϭϬ.ϰϴ, a certain graphics
program was given the input (2-x,3+x,1+2*x). This parƟcular program re-
quires the variable always be “x” instead of “t”).

Notes:
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Figure ϭϬ.ϰϵ: A graph of the line in Exam-
ple ϯϰϱ.

ϭϬ.ϱ Lines

Does the point Q = (−ϭ, ϲ, ϲ) lie on the line? The graph in Figure ϭϬ.ϰϴ
makes it clear that it does not. We can answer this quesƟon without the graph
using any of the three equaƟon forms. Of the three, the symmetric equaƟons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−ϭ− Ϯ
−ϭ

?
=

ϲ− ϯ
ϭ

?
=

ϲ− ϭ
Ϯ

⇒ ϯ = ϯ ̸= Ϯ.ϱ.

We see that Q does not lie on the line as it did not saƟsfy the symmetric equa-
Ɵons.

Example ϯϰϱ Finding the equaƟon of a line through two points
Find the parametric equaƟons of the line through the points P = (Ϯ,−ϭ, Ϯ) and
Q = (ϭ, ϯ,−ϭ).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this secƟon:
to find the equaƟon of a line, we need a point and a direcƟon. We have two
points; either one will suffice. The direcƟon of the line can be found by the
vector with iniƟal point P and terminal point Q: #  ‰PQ = ⟨−ϭ, ϰ,−ϯ⟩.

The parametric equaƟons of the line ℓ through P in the direcƟon of #  ‰PQ are:

ℓ : x = Ϯ− t y = −ϭ+ ϰt z = Ϯ− ϯt.

A graph of the points and line are given in Figure ϭϬ.ϰϵ. Note how in the
given parametrizaƟon of the line, t = Ϭ corresponds to the point P, and t = ϭ
corresponds to the pointQ. This relates to the understanding of the vector equa-
Ɵon of a line described in Figure ϭϬ.ϰϲ. The parametric equaƟons “start” at the
point P, and t determines how far in the direcƟon of #  ‰PQ to travel. When t = Ϭ,
we travel Ϭ lengths of #  ‰PQ; when t = ϭ, we travel one length of #  ‰PQ, resulƟng in
the point Q.

Parallel, IntersecƟng and Skew Lines

In the plane, two disƟnct lines can either be parallel or they will intersect
at exactly one point. In space, given equaƟons of two lines, it can someƟmes
be difficult to tell whether the lines are disƟnct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗ϭ(t) = p⃗ϭ+ t⃗dϭ and ℓ⃗Ϯ(t) = p⃗Ϯ+ t⃗dϮ,
we have four possibiliƟes: ℓ⃗ϭ and ℓ⃗Ϯ are

the same line they share all points;
intersecƟng lines share only ϭ point;
parallel lines d⃗ϭ ∥ d⃗Ϯ, no points in common; or
skew lines d⃗ϭ ∦ d⃗Ϯ, no points in common.

Notes:
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Figure ϭϬ.ϱϬ: Sketching the lines from Ex-
ample ϯϰϲ.

Chapter ϭϬ Vectors

The next two examples invesƟgate these possibiliƟes.

Example ϯϰϲ Comparing lines
Consider lines ℓϭ and ℓϮ, given in parametric equaƟon form:

ℓϭ :
x = ϭ+ ϯt
y = Ϯ− t
z = t

ℓϮ :
x = −Ϯ+ ϰs
y = ϯ+ s
z = ϱ+ Ϯs.

Determine whether ℓϭ and ℓϮ are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the direcƟons of each line. Line ℓϭ
has the direcƟon given by d⃗ϭ = ⟨ϯ,−ϭ, ϭ⟩ and line ℓϮ has the direcƟon given by
d⃗Ϯ = ⟨ϰ, ϭ, Ϯ⟩. It should be clear that d⃗ϭ and d⃗Ϯ are not parallel, hence ℓϭ and ℓϮ
are not the same line, nor are they parallel. Figure ϭϬ.ϱϬ verifies this fact (where
the points and direcƟons indicated by the equaƟons of each line are idenƟfied).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respecƟve x, y
and z values are the same. That is, we want s and t such that:

ϭ+ ϯt = −Ϯ+ ϰs
Ϯ− t = ϯ+ s
t = ϱ+ Ϯs.

This is a relaƟvely simple system of linear equaƟons. Since the last equaƟon is
already solved for t, subsƟtute that value of t into the equaƟon above it:

Ϯ− (ϱ+ Ϯs) = ϯ+ s ⇒ s = −Ϯ, t = ϭ.

A key to remember is that we have three equaƟons; we need to check if s =
−Ϯ, t = ϭ saƟsfies the first equaƟon as well:

ϭ+ ϯ(ϭ) ̸= −Ϯ+ ϰ(−Ϯ).

It does not. Therefore, we conclude that the lines ℓϭ and ℓϮ are skew.

Example ϯϰϳ Comparing lines
Consider lines ℓϭ and ℓϮ, given in parametric equaƟon form:

ℓϭ :
x = −Ϭ.ϳ+ ϭ.ϲt
y = ϰ.Ϯ+ Ϯ.ϳϮt
z = Ϯ.ϯ− ϯ.ϯϲt

ℓϮ :
x = Ϯ.ϴ− Ϯ.ϵs
y = ϭϬ.ϭϱ− ϰ.ϵϯs
z = −ϱ.Ϭϱ+ ϲ.Ϭϵs.

Determine whether ℓϭ and ℓϮ are the same line, intersect, are parallel, or skew.

Notes:
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Figure ϭϬ.ϱϭ: Graphing the lines in Exam-
ple ϯϰϳ.

ϭϬ.ϱ Lines

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equaƟons
and discern anything. This is done intenƟonally. In the “real world,” most equa-
Ɵons that are used do not have nice, integer coefficients. Rather, there are lots
of digits aŌer the decimal and the equaƟons can look “messy.”

We again start by deciding whether or not each line has the same direcƟon.
The direcƟon of ℓϭ is given by d⃗ϭ = ⟨ϭ.ϲ, Ϯ.ϳϮ,−ϯ.ϯϲ⟩ and the direcƟon of ℓϮ
is given by d⃗Ϯ = ⟨−Ϯ.ϵ,−ϰ.ϵϯ, ϲ.Ϭϵ⟩. When it is not clear through observaƟon
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respecƟve unit vectors. Using a calculator, we find:

u⃗ϭ =
d⃗ϭ

|| d⃗ϭ ||
= ⟨Ϭ.ϯϰϳϭ, Ϭ.ϱϵϬϭ,−Ϭ.ϳϮϴϵ⟩

u⃗Ϯ =
d⃗Ϯ

|| d⃗Ϯ ||
= ⟨−Ϭ.ϯϰϳϭ,−Ϭ.ϱϵϬϭ, Ϭ.ϳϮϴϵ⟩ .

The two vectors seem to be parallel (at least, their components are equal to
ϰ decimal places). In most situaƟons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗ϭ and d⃗Ϯ
in terms of fracƟons, not decimals. We have

d⃗ϭ =
⟨
ϭϲ
ϭϬ

,
ϮϳϮ
ϭϬϬ

,−ϯϯϲ
ϭϬϬ

⟩

d⃗Ϯ =
⟨

−Ϯϵ
ϭϬ

,−ϰϵϯ
ϭϬϬ

,
ϲϬϵ
ϭϬϬ

⟩

.

One can then find the magnitudes of each vector in terms of fracƟons, then
compute the unit vectors likewise. AŌer a lot of manual arithmeƟc (or aŌer
briefly using a computer algebra system), one finds that

u⃗ϭ =

⟨√

ϭϬ
ϴϯ

,
ϭϳ√
ϴϯϬ

,− Ϯϭ√
ϴϯϬ

⟩

u⃗Ϯ =

⟨

−
√

ϭϬ
ϴϯ

,− ϭϳ√
ϴϯϬ

,
Ϯϭ√
ϴϯϬ

⟩

.

We can now say without equivocaƟon that these lines are parallel.
Are they the same line? The parametric equaƟons for a line describe one

point that lies on the line, so we know that the point Pϭ = (−Ϭ.ϳ, ϰ.Ϯ, Ϯ.ϯ) lies
on ℓϭ. To determine if this point also lies on ℓϮ, plug in the x, y and z values of Pϭ
into the symmetric equaƟons for ℓϮ:

(−Ϭ.ϳ)− Ϯ.ϴ
−Ϯ.ϵ

?
=

(ϰ.Ϯ)− ϭϬ.ϭϱ
−ϰ.ϵϯ

?
=

(Ϯ.ϯ)− (−ϱ.Ϭϱ)
ϲ.Ϭϵ

⇒ ϭ.ϮϬϲϵ = ϭ.ϮϬϲϵ = ϭ.ϮϬϲϵ.

The point Pϭ lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure ϭϬ.ϱϭ graphs this line along with the points and
vectors described by the parametric equaƟons. Note how d⃗ϭ and d⃗Ϯ are parallel,
though point in opposite direcƟons (as indicated by their unit vectors above).

Notes:
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Figure ϭϬ.ϱϮ: Establishing the distance
from a point to a line.

Figure ϭϬ.ϱϯ: Establishing the distance
between lines.

Chapter ϭϬ Vectors

Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is oŌen useful to know
the distance from the point to the line. (Here we use the standard definiƟon
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) IdenƟfying p⃗ with the point P, Figure ϭϬ.ϱϮ will help establish a general
method of compuƟng this distance h.

From trigonometry, we know h = || #  ‰PQ || sin θ. We have a similar idenƟty
involving the cross product: || #  ‰PQ × d⃗ || = || #  ‰PQ || || d⃗ || sin θ. Divide both sides
of this laƩer equaƟon by || d⃗ || to obtain h:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
. (ϭϬ.ϴ)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗ϭ(t) = p⃗ϭ + t⃗dϭ and ℓ⃗Ϯ(t) = p⃗Ϯ + t⃗dϮ be given, as shown in Figure ϭϬ.ϱϯ.
To find the direcƟon orthogonal to both d⃗ϭ and d⃗Ϯ, we take the cross product:
c⃗ = d⃗ϭ × d⃗Ϯ. The magnitude of the orthogonal projecƟon of #      ‰PϭPϮ onto c⃗ is the
distance h we seek:

h =
∣
∣
∣
∣ proj c⃗

#      ‰PϭPϮ
∣
∣
∣
∣

=

∣
∣
∣
∣

∣
∣
∣
∣

#      ‰PϭPϮ · c⃗
c⃗ · c⃗ c⃗

∣
∣
∣
∣

∣
∣
∣
∣

=
| #      ‰PϭPϮ · c⃗|
|| c⃗ ||Ϯ || c⃗ ||

=
| #      ‰PϭPϮ · c⃗|
|| c⃗ || .

A problem in the Exercise secƟon is to show that this distance is Ϭ when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰PϭPϮ · c =

#      ‰PϭPϮ · (⃗dϭ × d⃗Ϯ).

The following Key Idea restates these two distance formulas.

Notes:
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ϭϬ.ϱ Lines

Key Idea ϱϬ Distances to Lines

ϭ. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
.

Ϯ. Let Pϭ be a point on line ℓϭ that is parallel to d⃗ϭ, and let PϮ be a
point on line ℓϮ parallel to d⃗Ϯ, and let c⃗ = d⃗ϭ × d⃗Ϯ, where lines ℓϭ
and ℓϮ are not parallel. The distance h between the two lines is:

h =
| #      ‰PϭPϮ · c⃗|
|| c⃗ || .

Example ϯϰϴ Finding the distance from a point to a line
Find the distance from the point Q = (ϭ, ϭ, ϯ) to the line ℓ⃗(t) = ⟨ϭ,−ϭ, ϭ⟩ +
t ⟨Ϯ, ϯ, ϭ⟩ .

SÊ½çã®ÊÄ TheequaƟonof the line line gives us the pointP = (ϭ,−ϭ, ϭ)
that lies on the line, hence #  ‰PQ = ⟨Ϭ, Ϯ, Ϯ⟩. The equaƟon also gives d⃗ = ⟨Ϯ, ϯ, ϭ⟩.
Following Key Idea ϱϬ, we have the distance as

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||

=
|| ⟨−ϰ, ϰ,−ϰ⟩ ||√

ϭϰ

=
ϰ
√
ϯ√

ϭϰ
≈ ϭ.ϴϱϮ.

The point Q is approximately ϭ.ϴϱϮ units from the line ℓ⃗(t).

Example ϯϰϵ Finding the distance between lines
Find the distance between the lines

ℓϭ :
x = ϭ+ ϯt
y = Ϯ− t
z = t

ℓϮ :
x = −Ϯ+ ϰs
y = ϯ+ s
z = ϱ+ Ϯs.

Notes:
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Chapter ϭϬ Vectors

SÊ½çã®ÊÄ These are the sames lines as given in Example ϯϰϲ, where
we showed them to be skew. The equaƟons allow us to idenƟfy the following
points and vectors:

Pϭ = (ϭ, Ϯ, Ϭ) PϮ = (−Ϯ, ϯ, ϱ) ⇒ #      ‰PϭPϮ = ⟨−ϯ, ϭ, ϱ⟩ .

d⃗ϭ = ⟨ϯ,−ϭ, ϭ⟩ d⃗Ϯ = ⟨ϰ, ϭ, Ϯ⟩ ⇒ c⃗ = d⃗ϭ × d⃗Ϯ = ⟨−ϯ,−Ϯ, ϳ⟩ .
From Key Idea ϱϬ we have the distance h between the two lines is

h =
| #      ‰PϭPϮ · c⃗|
|| c⃗ ||

=
ϰϮ√
ϲϮ

≈ ϱ.ϯϯϰ.

The lines are approximately ϱ.ϯϯϰ units apart.

One of the key points to understand from this secƟon is this: to describe a
line, we need a point and a direcƟon. Whenever a problem is posed concern-
ing a line, one needs to take whatever informaƟon is offered and glean point
and direcƟon informaƟon. Many quesƟons can be asked (and are asked in the
Exercise secƟon) whose answer immediately follows from this understanding.

Lines are one of two fundamental objects of study in space. The other fun-
damental object is the plane, which we study in detail in the next secƟon. Many
complex three dimensional objects are studied by approximaƟng their surfaces
with lines and planes.

Notes:
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Exercises ϭϬ.ϱ
Terms and Concepts

ϭ. To find an equaƟon of a line, what two pieces of informa-
Ɵon are needed?

Ϯ. Two disƟnct lines in the plane can intersect or be
.

ϯ. Two disƟnct lines in space can intersect, be or be
.

ϰ. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises ϱ – ϭϰ, write the vector, parametric and symmet-
ric equaƟons of the lines described.

ϱ. Passes through P = (Ϯ,−ϰ, ϭ), parallel to d⃗ = ⟨ϵ, Ϯ, ϱ⟩.

ϲ. Passes through P = (ϲ, ϭ, ϳ), parallel to d⃗ = ⟨−ϯ, Ϯ, ϱ⟩.

ϳ. Passes through P = (Ϯ, ϭ, ϱ) and Q = (ϳ,−Ϯ, ϰ).

ϴ. Passes through P = (ϭ,−Ϯ, ϯ) and Q = (ϱ, ϱ, ϱ).

ϵ. Passes through P = (Ϭ, ϭ, Ϯ) and orthogonal to both
d⃗ϭ = ⟨Ϯ,−ϭ, ϳ⟩ and d⃗Ϯ = ⟨ϳ, ϭ, ϯ⟩.

ϭϬ. Passes through P = (ϱ, ϭ, ϵ) and orthogonal to both
d⃗ϭ = ⟨ϭ, Ϭ, ϭ⟩ and d⃗Ϯ = ⟨Ϯ, Ϭ, ϯ⟩.

ϭϭ. Passes through the point of intersecƟon of ℓ⃗ϭ(t) and ℓ⃗Ϯ(t)
and orthogonal to both lines, where
ℓ⃗ϭ(t) = ⟨Ϯ, ϭ, ϭ⟩+ t ⟨ϱ, ϭ,−Ϯ⟩ and
ℓ⃗Ϯ(t) = ⟨−Ϯ,−ϭ, Ϯ⟩+ t ⟨ϯ, ϭ,−ϭ⟩.

ϭϮ. Passes through the point of intersecƟon of ℓϭ(t) and ℓϮ(t)
and orthogonal to both lines, where

ℓϭ =











x = t
y = −Ϯ+ Ϯt
z = ϭ+ t

and ℓϮ =











x = Ϯ+ t
y = Ϯ− t
z = ϯ+ Ϯt

.

ϭϯ. Passes through P = (ϭ, ϭ), parallel to d⃗ = ⟨Ϯ, ϯ⟩.

ϭϰ. Passes through P = (−Ϯ, ϱ), parallel to d⃗ = ⟨Ϭ, ϭ⟩.

In Exercises ϭϱ – ϮϮ, determine if the described lines are the
same line, parallel lines, intersecƟng or skew lines. If inter-
secƟng, give the point of intersecƟon.

ϭϱ. ℓ⃗ϭ(t) = ⟨ϭ, Ϯ, ϭ⟩+ t ⟨Ϯ,−ϭ, ϭ⟩,
ℓ⃗Ϯ(t) = ⟨ϯ, ϯ, ϯ⟩+ t ⟨−ϰ, Ϯ,−Ϯ⟩.

ϭϲ. ℓ⃗ϭ(t) = ⟨Ϯ, ϭ, ϭ⟩+ t ⟨ϱ, ϭ, ϯ⟩,
ℓ⃗Ϯ(t) = ⟨ϭϰ, ϱ, ϵ⟩+ t ⟨ϭ, ϭ, ϭ⟩.

ϭϳ. ℓ⃗ϭ(t) = ⟨ϯ, ϰ, ϭ⟩+ t ⟨Ϯ,−ϯ, ϰ⟩,
ℓ⃗Ϯ(t) = ⟨−ϯ, ϯ,−ϯ⟩+ t ⟨ϯ,−Ϯ, ϰ⟩.

ϭϴ. ℓ⃗ϭ(t) = ⟨ϭ, ϭ, ϭ⟩+ t ⟨ϯ, ϭ, ϯ⟩,
ℓ⃗Ϯ(t) = ⟨ϳ, ϯ, ϳ⟩+ t ⟨ϲ, Ϯ, ϲ⟩.

ϭϵ. ℓϭ =











x = ϭ+ Ϯt
y = ϯ− Ϯt
z = t

and ℓϮ =











x = ϯ− t
y = ϯ+ ϱt
z = Ϯ+ ϳt

ϮϬ. ℓϭ =











x = ϭ.ϭ+ Ϭ.ϲt
y = ϯ.ϳϳ+ Ϭ.ϵt
z = −Ϯ.ϯ+ ϭ.ϱt

and ℓϮ =











x = ϯ.ϭϭ+ ϯ.ϰt
y = Ϯ+ ϱ.ϭt
z = Ϯ.ϱ+ ϴ.ϱt

Ϯϭ. ℓϭ =











x = Ϭ.Ϯ+ Ϭ.ϲt
y = ϭ.ϯϯ− Ϭ.ϰϱt
z = −ϰ.Ϯ+ ϭ.Ϭϱt

and ℓϮ =











x = Ϭ.ϴϲ+ ϵ.Ϯt
y = Ϭ.ϴϯϱ− ϲ.ϵt
z = −ϯ.Ϭϰϱ+ ϭϲ.ϭt

ϮϮ. ℓϭ =











x = Ϭ.ϭ+ ϭ.ϭt
y = Ϯ.ϵ− ϭ.ϱt
z = ϯ.Ϯ+ ϭ.ϲt

and ℓϮ =











x = ϰ− Ϯ.ϭt
y = ϭ.ϴ+ ϳ.Ϯt
z = ϯ.ϭ+ ϭ.ϭt

In Exercises Ϯϯ – Ϯϲ, find the distance from the point to the
line.

Ϯϯ. P = (ϭ, ϭ, ϭ), ℓ⃗(t) = ⟨Ϯ, ϭ, ϯ⟩+ t ⟨Ϯ, ϭ,−Ϯ⟩

Ϯϰ. P = (Ϯ, ϱ, ϲ), ℓ⃗(t) = ⟨−ϭ, ϭ, ϭ⟩+ t ⟨ϭ, Ϭ, ϭ⟩

Ϯϱ. P = (Ϭ, ϯ), ℓ⃗(t) = ⟨Ϯ, Ϭ⟩+ t ⟨ϭ, ϭ⟩

Ϯϲ. P = (ϭ, ϭ), ℓ⃗(t) = ⟨ϰ, ϱ⟩+ t ⟨−ϰ, ϯ⟩

In Exercises Ϯϳ – Ϯϴ, find the distance between the two lines.

Ϯϳ. ℓ⃗ϭ(t) = ⟨ϭ, Ϯ, ϭ⟩+ t ⟨Ϯ,−ϭ, ϭ⟩,
ℓ⃗Ϯ(t) = ⟨ϯ, ϯ, ϯ⟩+ t ⟨ϰ, Ϯ,−Ϯ⟩.

Ϯϴ. ℓ⃗ϭ(t) = ⟨Ϭ, Ϭ, ϭ⟩+ t ⟨ϭ, Ϭ, Ϭ⟩,
ℓ⃗Ϯ(t) = ⟨Ϭ, Ϭ, ϯ⟩+ t ⟨Ϭ, ϭ, Ϭ⟩.

Exercises Ϯϵ – ϯϭ explore special cases of the distance formu-
las found in Key Idea ϱϬ.

Ϯϵ. Let Q be a point on the line ℓ(t). Show why the distance
formula correctly gives the distance from the point to the
line as Ϭ.

ϯϬ. Let lines ℓϭ(t) and ℓϮ(t) be intersecƟng lines. Show why
the distance formula correctly gives the distance between
these lines as Ϭ.

ϲϭϯ



ϯϭ. Let lines ℓϭ(t) and ℓϮ(t) be parallel.

(a) Showwhy the distance formula for distance between
lines cannot be used as stated to find the distance be-
tween the lines.

(b) Show why leƫng c = (
#     ‰PϭPϮ × d⃗Ϯ)× d⃗Ϯ allows one to

the use the formula.

(c) Show how one can use the formula for the distance
between a point and a line to find the distance be-
tween parallel lines.

ϲϭϰ



Figure ϭϬ.ϱϰ: IllustraƟng defining a plane
with a sheet of cardboard and a nail.

ϭϬ.ϲ Planes

ϭϬ.ϲ Planes
Any flat surface, such as a wall, table top or sƟff piece of cardboard can be
thought of as represenƟng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and sƟck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure ϭϬ.ϱϰ

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locaƟons in space. TilƟng the nail (but keeping P fixed) Ɵlts
the cardboard. Both moving and ƟlƟng the cardboard defines a different plane
in space. In fact, we can define a plane by: ϭ) the locaƟon of P in space, and Ϯ)
the direcƟon of the nail.

The previous secƟon showed that one can define a line given a point on the
line and the direcƟon of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direcƟon the plane “faces” (using the descripƟon above, the
direcƟon of the nail). Once again, the direcƟon informaƟon will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = Ϭ for all P and Q.

This gives us way of wriƟng an equaƟon describing the plane. Let P =
(xϬ, yϬ, zϬ) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− xϬ, y− yϬ, z− zϬ⟩, consider:

#  ‰PQ · n⃗ = Ϭ
⟨x− xϬ, y− yϬ, z− zϬ⟩ · ⟨a, b, c⟩ = Ϭ

a(x− xϬ) + b(y− yϬ) + c(z− zϬ) = Ϭ (ϭϬ.ϵ)

EquaƟon (ϭϬ.ϵ) defines an implicit funcƟon describing the plane. More algebra
produces:

ax+ by+ cz = axϬ + byϬ + czϬ.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (ϭϬ.ϭϬ)

As long as c ̸= Ϭ, we can solve for z:

z =
ϭ
c
(d− ax− by). (ϭϬ.ϭϭ)

Notes:

ϲϭϱ



Figure ϭϬ.ϱϱ: Sketching the plane in Ex-
ample ϯϱϬ.

Chapter ϭϬ Vectors

EquaƟon (ϭϬ.ϭϭ) is especially useful asmany computer programs can graph func-
Ɵons in this form. EquaƟons (ϭϬ.ϵ) and (ϭϬ.ϭϬ) have specific names, given next.

DefiniƟon ϲϯ EquaƟons of a Plane in Standard and General Forms

The plane passing through the point P = (xϬ, yϬ, zϬ) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equaƟon with standard form

a(x− xϬ) + b(y− yϬ) + c(z− zϬ) = Ϭ;

the equaƟon’s general form is

ax+ by+ cz = d.

A key to remember throughout this secƟon is this: to find the equaƟon of a
plane, we need a point and a normal vector. We will give several examples of
finding the equaƟon of a plane, and in each one different types of informaƟon
are given. In each case, we need to use the given informaƟon to find a point on
the plane and a normal vector.

Example ϯϱϬ Finding the equaƟon of a plane.
Write the equaƟon of the plane that passes through the points P = (ϭ, ϭ, Ϭ),
Q = (ϭ, Ϯ,−ϭ) and R = (Ϭ, ϭ, Ϯ) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straighƞorward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨Ϯ, ϭ, ϭ⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following DefiniƟon ϲϯ, the equaƟon of the plane in standard form is

Ϯ(x− ϭ) + (y− ϭ) + z = Ϭ.

The plane is sketched in Figure ϭϬ.ϱϱ.

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

Example ϯϱϭ Finding the equaƟon of a plane.
Verify that lines ℓϭ and ℓϮ, whose parametric equaƟons are given below, inter-

Notes:

ϲϭϲ



Figure ϭϬ.ϱϲ: Sketching the plane in Ex-
ample ϯϱϭ.

Figure ϭϬ.ϱϳ: The line and plane in Exam-
ple ϯϱϮ.

ϭϬ.ϲ Planes

sect, then give the equaƟon of the plane that contains these two lines in general
form.

ℓϭ :
x = −ϱ+ Ϯs
y = ϭ+ s
z = −ϰ+ Ϯs

ℓϮ :
x = Ϯ+ ϯt
y = ϭ− Ϯt
z = ϭ+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersecƟon, we set the x, y and z equaƟons equal to
each other and solve for s and t:

−ϱ+ Ϯs = Ϯ+ ϯt
ϭ+ s = ϭ− Ϯt

−ϰ+ Ϯs = ϭ+ t
⇒ s = Ϯ, t = −ϭ.

When s = Ϯ and t = −ϭ, the lines intersect at the point P = (−ϭ, ϯ, Ϭ).
Let d⃗ϭ = ⟨Ϯ, ϭ, Ϯ⟩ and d⃗Ϯ = ⟨ϯ,−Ϯ, ϭ⟩ be the direcƟons of lines ℓϭ and ℓϮ,

respecƟvely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗ϭ and d⃗Ϯ. Thus we find a normal vector n⃗ by compuƟng
n⃗ = d⃗ϭ × d⃗Ϯ = ⟨ϱ, ϰ− ϳ⟩.

We can pick any point in the plane with which to write our equaƟon; each
line gives us infinite choices of points. We choose P, the point of intersecƟon.
We follow DefiniƟon ϲϯ to write the plane’s equaƟon in general form:

ϱ(x+ ϭ) + ϰ(y− ϯ)− ϳz = Ϭ
ϱx+ ϱ+ ϰy− ϭϮ− ϳz = Ϭ

ϱx+ ϰy− ϳz = ϳ.

The plane’s equaƟon in general form is ϱx+ ϰy− ϳz = ϳ; it is sketched in Figure
ϭϬ.ϱϲ.

Example ϯϱϮ Finding the equaƟon of a plane
Give the equaƟon, in standard form, of the plane that passes through the point
P = (−ϭ, Ϭ, ϭ) and is orthogonal to the linewith vector equaƟon ℓ⃗(t) = ⟨−ϭ, Ϭ, ϭ⟩+
t ⟨ϭ, Ϯ, Ϯ⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direcƟon of the line given by d⃗ = ⟨ϭ, Ϯ, Ϯ⟩. We use this as
our normal vector. Thus the plane’s equaƟon, in standard form, is

(x+ ϭ) + Ϯy+ Ϯ(z− ϭ) = Ϭ.

The line and plane are sketched in Figure ϭϬ.ϱϳ.

Notes:

ϲϭϳ



Figure ϭϬ.ϱϴ: Graphing the planes and
their line of intersecƟon in Example ϯϱϯ.

Chapter ϭϬ Vectors

Example ϯϱϯ Finding the intersecƟon of two planes
Give the parametric equaƟons of the line that is the intersecƟon of the planes
pϭ and pϮ, where:

pϭ : x− (y− Ϯ) + (z− ϭ) = Ϭ
pϮ : −Ϯ(x− Ϯ) + (y+ ϭ) + (z− ϯ) = Ϭ

SÊ½çã®ÊÄ To find an equaƟon of a line, we need a point on the line and
the direcƟon of the line.

We can find a point on the line by solving each equaƟon of the planes for z:

pϭ : z = −x+ y− ϭ
pϮ : z = Ϯx− y− Ϯ

We can now set these two equaƟons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value):

−x+ y− ϭ = Ϯx− y− Ϯ
Ϯy = ϯx− ϭ

y =
ϭ
Ϯ
(ϯx− ϭ)

We can choose any value for x; we choose x = ϭ. This determines that y = ϭ.
We can now use the equaƟons of either plane to find z: when x = ϭ and y = ϭ,
z = −ϭ on both planes. We have found a point P on the line: P = (ϭ, ϭ,−ϭ).

We now need the direcƟon of the line. Since the line lies in each plane,
its direcƟon is orthogonal to a normal vector for each plane. Considering the
equaƟons for pϭ and pϮ, we can quickly determine their normal vectors. For pϭ,
n⃗ϭ = ⟨ϭ,−ϭ, ϭ⟩ and for pϮ, n⃗Ϯ = ⟨−Ϯ, ϭ, ϭ⟩ . A direcƟon orthogonal to both of
these direcƟons is their cross product: d⃗ = n⃗ϭ × n⃗Ϯ = ⟨−Ϯ,−ϯ,−ϭ⟩ .

The parametric equaƟons of the line through P = (ϭ, ϭ,−ϭ) in the direcƟon
of d = ⟨−Ϯ,−ϯ,−ϭ⟩ is:

ℓ : x = −Ϯt+ ϭ y = −ϯt+ ϭ z = −t− ϭ.

The planes and line are graphed in Figure ϭϬ.ϱϴ.

Example ϯϱϰ Finding the intersecƟon of a plane and a line
Find the point of intersecƟon, if any, of the line ℓ(t) = ⟨ϯ,−ϯ,−ϭ⟩+ t ⟨−ϭ, Ϯ, ϭ⟩
and the plane with equaƟon in general form Ϯx+ y+ z = ϰ.

SÊ½çã®ÊÄ TheequaƟonof the plane shows that the vector n⃗ = ⟨Ϯ, ϭ, ϭ⟩
is a normal vector to the plane, and the equaƟon of the line shows that the line

Notes:

ϲϭϴ



Figure ϭϬ.ϱϵ: IllustraƟng the intersecƟon
of a line and a plane in Example ϯϱϰ.

Figure ϭϬ.ϲϬ: IllustraƟng finding the dis-
tance from a point to a plane.

ϭϬ.ϲ Planes

moves parallel to d⃗ = ⟨−ϭ, Ϯ, ϭ⟩. Since these are not orthogonal, we know
there is a point of intersecƟon. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecƟng or the
line was in the plane itself.)

To find the point of intersecƟon, we need to find a t value such that ℓ(t)
saƟsfies the equaƟon of the plane. RewriƟng the equaƟon of the line with para-
metric equaƟons will help:

ℓ(t) =







x = ϯ− t
y = −ϯ+ Ϯt
z = −ϭ+ t

.

Replacing x, y and z in the equaƟon of the plane with the expressions containing
t found in the equaƟon of the line allows us to determine a t value that indicates
the point of intersecƟon:

Ϯx+ y+ z = ϰ
Ϯ(ϯ− t) + (−ϯ+ Ϯt) + (−ϭ+ t) = ϰ

t = Ϯ.

When t = Ϯ, the point on the line saƟsfies the equaƟon of the plane; that point
is ℓ(Ϯ) = ⟨ϭ, ϭ, ϭ⟩. Thus the point (ϭ, ϭ, ϭ) is the point of intersecƟon between
the plane and the line, illustrated in Figure ϭϬ.ϱϵ.

Distances

Just as itwas useful to finddistances betweenpoints and lines in the previous
secƟon, it is also oŌen necessary to find the distance from a point to a plane.

Consider Figure ϭϬ.ϲϬ, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projecƟon of #  ‰PQ
onto n⃗. That is, we want:

∣
∣
∣
∣ proj n⃗

#  ‰PQ
∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n⃗ · #  ‰PQ
|| n⃗ ||Ϯ n⃗

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

|⃗n · #  ‰PQ|
|| n⃗ || (ϭϬ.ϭϮ)

EquaƟon (ϭϬ.ϭϮ) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because EquaƟon (ϭϬ.ϭϮ) is important, we restate it as a Key Idea.

Notes:
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Chapter ϭϬ Vectors

Key Idea ϱϭ Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
|| n⃗ || ,

where P is any point in the plane.

Example ϯϱϱ Distance between a point and a plane
Find the distance bewteen the point Q = (Ϯ, ϭ, ϰ) and the plane with equaƟon
Ϯx− ϱy+ ϲz = ϵ.

SÊ½çã®ÊÄ Using the equaƟon of the plane, we find the normal vector
n⃗ = ⟨Ϯ,−ϱ, ϲ⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever saƟsfies the equaƟon. Leƫng x and y be Ϭ seems
simple; this makes z = ϭ.ϱ. Thus we let P = ⟨Ϭ, Ϭ, ϭ.ϱ⟩, and #  ‰PQ = ⟨Ϯ, ϭ, Ϯ.ϱ⟩ .

The distance h from Q to the plane is given by Key Idea ϱϭ:

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

=
| ⟨Ϯ,−ϱ,−ϲ⟩ · ⟨Ϯ, ϭ, Ϯ.ϱ⟩ |

|| ⟨Ϯ,−ϱ,−ϲ⟩ ||

=
| − ϭϲ|√

ϲϱ
≈ ϭ.ϵϴ.

We can use Key Idea ϱϭ to find other distances. Given two parallel planes,
we can find the distance between these planes by leƫng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use the
Key Idea to find the distance between them as well: again, let P be a point in the
plane and let Q be any point on the line. (One can also use Key Idea ϱϬ.) The
Exercise secƟon contains problems of these types.

These past two secƟons have not explored lines and planes in space as an ex-
ercise of mathemaƟcal curiosity. However, there are many, many applicaƟons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraŌ may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fricƟon. Many
equaƟons that help determine air flow and heat dissipaƟon are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximaƟng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:

ϲϮϬ



Exercises ϭϬ.ϲ
Terms and Concepts

ϭ. In order to find the equaƟon of a plane, what two pieces of
informaƟon must one have?

Ϯ. What is the relaƟonship between a plane and one of its nor-
mal vectors?

Problems

In Exercises ϯ – ϲ, give any two points in the given plane.

ϯ. Ϯx− ϰy+ ϳz = Ϯ

ϰ. ϯ(x+ Ϯ) + ϱ(y− ϵ)− ϰz = Ϭ

ϱ. x = Ϯ

ϲ. ϰ(y+ Ϯ)− (z− ϲ) = Ϭ

In Exercises ϳ – ϮϬ, give the equaƟon of the described plane
in standard and general forms.

ϳ. Passes through (Ϯ, ϯ, ϰ) and has normal vector
n⃗ = ⟨ϯ,−ϭ, ϳ⟩.

ϴ. Passes through (ϭ, ϯ, ϱ) and has normal vector
n⃗ = ⟨Ϭ, Ϯ, ϰ⟩.

ϵ. Passes through the points (ϭ, Ϯ, ϯ), (ϯ,−ϭ, ϰ) and (ϭ, Ϭ, ϭ).

ϭϬ. Passes through the points (ϱ, ϯ, ϴ), (ϲ, ϰ, ϵ) and (ϯ, ϯ, ϯ).

ϭϭ. Contains the intersecƟng lines
ℓϭ(t) = ⟨Ϯ, ϭ, Ϯ⟩+ t ⟨ϭ, Ϯ, ϯ⟩ and
ℓϮ(t) = ⟨Ϯ, ϭ, Ϯ⟩+ t ⟨Ϯ, ϱ, ϰ⟩.

ϭϮ. Contains the intersecƟng lines
ℓϭ(t) = ⟨ϱ, Ϭ, ϯ⟩+ t ⟨−ϭ, ϭ, ϭ⟩ and
ℓϮ(t) = ⟨ϭ, ϰ, ϳ⟩+ t ⟨ϯ, Ϭ,−ϯ⟩.

ϭϯ. Contains the parallel lines
ℓϭ(t) = ⟨ϭ, ϭ, ϭ⟩+ t ⟨ϭ, Ϯ, ϯ⟩ and
ℓϮ(t) = ⟨ϭ, ϭ, Ϯ⟩+ t ⟨ϭ, Ϯ, ϯ⟩.

ϭϰ. Contains the parallel lines
ℓϭ(t) = ⟨ϭ, ϭ, ϭ⟩+ t ⟨ϰ, ϭ, ϯ⟩ and
ℓϮ(t) = ⟨Ϯ, Ϯ, Ϯ⟩+ t ⟨ϰ, ϭ, ϯ⟩.

ϭϱ. Contains the point (Ϯ,−ϲ, ϭ) and the line

ℓ(t) =











x = Ϯ+ ϱt
y = Ϯ+ Ϯt
z = −ϭ+ Ϯt

ϭϲ. Contains the point (ϱ, ϳ, ϯ) and the line

ℓ(t) =











x = t
y = t
z = t

ϭϳ. Contains the point (ϱ, ϳ, ϯ) and is orthogonal to the line
ℓ(t) = ⟨ϰ, ϱ, ϲ⟩+ t ⟨ϭ, ϭ, ϭ⟩.

ϭϴ. Contains the point (ϰ, ϭ, ϭ) and is orthogonal to the line

ℓ(t) =











x = ϰ+ ϰt
y = ϭ+ ϭt
z = ϭ+ ϭt

ϭϵ. Contains the point (−ϰ, ϳ, Ϯ) and is parallel to the plane
ϯ(x− Ϯ) + ϴ(y+ ϭ)− ϭϬz = Ϭ.

ϮϬ. Contains the point (ϭ, Ϯ, ϯ) and is parallel to the plane
x = ϱ.

In Exercises Ϯϭ – ϮϮ, give the equaƟon of the line that is the
intersecƟon of the given planes.

Ϯϭ. pϭ : ϯ(x− Ϯ) + (y− ϭ) + ϰz = Ϭ, and
pϮ : Ϯ(x− ϭ)− Ϯ(y+ ϯ) + ϲ(z− ϭ) = Ϭ.

ϮϮ. pϭ : ϱ(x− ϱ) + Ϯ(y+ Ϯ) + ϰ(z− ϭ) = Ϭ, and
pϮ : ϯx− ϰ(y− ϭ) + Ϯ(z− ϭ) = Ϭ.

In Exercises Ϯϯ – Ϯϲ, find the point of intersecƟon between
the line and the plane.

Ϯϯ. line: ⟨ϱ, ϭ,−ϭ⟩+ t ⟨Ϯ, Ϯ, ϭ⟩,
plane: ϱx− y− z = −ϯ

Ϯϰ. line: ⟨ϰ, ϭ, Ϭ⟩+ t ⟨ϭ, Ϭ,−ϭ⟩,
plane: ϯx+ y− Ϯz = ϴ

Ϯϱ. line: ⟨ϭ, Ϯ, ϯ⟩+ t ⟨ϯ, ϱ,−ϭ⟩,
plane: ϯx− Ϯy− z = ϰ

Ϯϲ. line: ⟨ϭ, Ϯ, ϯ⟩+ t ⟨ϯ, ϱ,−ϭ⟩,
plane: ϯx− Ϯy− z = −ϰ

In Exercises Ϯϳ – ϯϬ, find the given distances.

Ϯϳ. The distance from the point (ϭ, Ϯ, ϯ) to the plane
ϯ(x− ϭ) + (y− Ϯ) + ϱ(z− Ϯ) = Ϭ.

Ϯϴ. The distance from the point (Ϯ, ϲ, Ϯ) to the plane
Ϯ(x− ϭ)− y+ ϰ(z+ ϭ) = Ϭ.

Ϯϵ. The distance between the parallel planes
x+ y+ z = Ϭ and
(x− Ϯ) + (y− ϯ) + (z+ ϰ) = Ϭ

ϲϮϭ



ϯϬ. The distance between the parallel planes
Ϯ(x− ϭ) + Ϯ(y+ ϭ) + (z− Ϯ) = Ϭ and
Ϯ(x− ϯ) + Ϯ(y− ϭ) + (z− ϯ) = Ϭ

ϯϭ. Show why if the point Q lies in a plane, then the distance

formula correctly gives the distance from the point to the
plane as Ϭ.

ϯϮ. How is Exercise ϯϬ in SecƟon ϭϬ.ϱ easier to answer once we
have an understanding of planes?

ϲϮϮ
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Figure ϭϭ.ϭ: Sketching the graph of a
vector–valued funcƟon.

ϭϭ: V��ãÊÙ V�½ç�� FçÄ�ã®ÊÄÝ
In the previous chapter, we learned about vectors and were introduced to the
power of vectors within mathemaƟcs. In this chapter, we’ll build on this foun-
daƟon to define funcƟons whose input is a real number and whose output is a
vector. We’ll see how to graph these funcƟons and apply calculus techniques
to analyze their behavior. Most importantly, we’ll see why we are interested in
doing this: we’ll see beauƟful applicaƟons to the study of moving objects.

ϭϭ.ϭ Vector–Valued FuncƟons
We are very familiar with real valued funcƟons, that is, funcƟons whose output
is a real number. This secƟon introduces vector–valued funcƟons – funcƟons
whose output is a vector.

DefiniƟon ϲϰ Vector–Valued FuncƟons

A vector–valued funcƟon is a funcƟon of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued funcƟons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

EvaluaƟng and Graphing Vector–Valued FuncƟons

EvaluaƟng a vector–valued funcƟon at a specific value of t is straighƞorward;
simply evaluate each component funcƟon at that value of t. For instance, if
r⃗(t) =

⟨
tϮ, tϮ + t− ϭ

⟩
, then r⃗(−Ϯ) = ⟨ϰ, ϭ⟩. We can sketch this vector, as is

done in Figure ϭϭ.ϭ(a). Ploƫng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued funcƟon is the set of all terminal points of r⃗(t), where the
iniƟal point of each vector is always the origin. In Figure ϭϭ.ϭ(b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respecƟve
vector, as shown.

Vector–valued funcƟons are closely related to parametric equaƟons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued funcƟons each such point represents a
vector. The implicaƟons of this will be more fully realized in the next secƟon as
we apply calculus ideas to these funcƟons.
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Figure ϭϭ.Ϯ: Sketching the vector–valued
funcƟon of Example ϯϱϲ.

Figure ϭϭ.ϯ: Viewing a vector–valued
funcƟon, and its derivaƟve at one point.

Chapter ϭϭ Vector Valued FuncƟons

Example ϯϱϲ Graphing vector–valued funcƟons

Graph r⃗(t) =
⟨

tϯ − t,
ϭ

tϮ + ϭ

⟩

, for−Ϯ ≤ t ≤ Ϯ. Sketch r⃗(−ϭ) and r⃗(Ϯ).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown in
Figure ϭϭ.Ϯ(a). Ploƫng these points gives an indicaƟon of what the graph looks
like. In Figure ϭϭ.Ϯ(b), we indicate these points and sketch the full graph. We
also highlight r⃗(−ϭ) and r⃗(Ϯ) on the graph.

Example ϯϱϳ Graphing vector–valued funcƟons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for Ϭ ≤ t ≤ ϰπ.

SÊ½çã®ÊÄ We can again plot points, but careful consideraƟon of this
funcƟon is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius ϭ centered at the origin.
NoƟcing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posiƟve z direcƟon, forming a
spiral. This is graphed in Figure ϭϭ.ϯ. In the graph r⃗(ϳπ/ϰ) ≈ (Ϭ.ϳϬϳ,−Ϭ.ϳϬϳ, ϱ.ϰϵϴ)
is highlighted to help us understand the graph.

Algebra of Vector–Valued FuncƟons

DefiniƟon ϲϱ OperaƟons on Vector–Valued FuncƟons

Let r⃗ϭ(t) = ⟨fϭ(t), gϭ(t)⟩ and r⃗Ϯ(t) = ⟨fϮ(t), gϮ(t)⟩ be vector–valued
funcƟons in RϮ and let c be a scalar. Then:

ϭ. r⃗ϭ(t)± r⃗Ϯ(t) = ⟨ fϭ(t)± fϮ(t), gϭ(t)± gϮ(t) ⟩.

Ϯ. c⃗rϭ(t) = ⟨ cfϭ(t), cgϭ(t) ⟩.

A similar definiƟon holds for vector–valued funcƟons in Rϯ.

This definiƟon states that we add, subtract and scale vector-valued funcƟons
component–wise. Combining vector–valued funcƟons in this way can be very
useful (as well as create interesƟng graphs).

Example ϯϱϴ Adding and scaling vector–valued funcƟons.
Let r⃗ϭ(t) = ⟨ Ϭ.Ϯt, Ϭ.ϯt ⟩, r⃗Ϯ(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗ϭ(t) + r⃗Ϯ(t). Graph
r⃗ϭ(t), r⃗Ϯ(t), r⃗(t) and ϱ⃗r(t) on−ϭϬ ≤ t ≤ ϭϬ.

Notes:

ϲϮϰ
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Figure ϭϭ.ϰ: Graphing the funcƟons in Ex-
ample ϯϱϴ.
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SÊ½çã®ÊÄ We can graph r⃗ϭ and r⃗Ϯ easily by ploƫng points (or just using
technology). Let’s think about each for a moment to beƩer understand how
vector–valued funcƟons work.

We can rewrite r⃗ϭ(t) = ⟨ Ϭ.Ϯt, Ϭ.ϯt ⟩ as r⃗ϭ(t) = t ⟨Ϭ.Ϯ, Ϭ.ϯ⟩. That is, the
funcƟon r⃗ϭ scales the vector ⟨Ϭ.Ϯ, Ϭ.ϯ⟩ by t. This scaling of a vector produces a
line in the direcƟon of ⟨Ϭ.Ϯ, Ϭ.ϯ⟩.

We are familiar with r⃗Ϯ(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius ϭ. Figure ϭϭ.ϰ(a) graphs r⃗ϭ(t) and r⃗Ϯ(t).

Adding r⃗ϭ(t) to r⃗Ϯ(t) produces r⃗(t) = ⟨ cos t+ Ϭ.Ϯt, sin t+ Ϭ.ϯt ⟩, graphed
in Figure ϭϭ.ϰ(b). The linear movement of the line combines with the circle to
create loops that move in the direcƟon of ⟨Ϭ.Ϯ, Ϭ.ϯ⟩. (We encourage the reader
to experiment by changing r⃗ϭ(t) to ⟨Ϯt, ϯt⟩, etc., and observe the effects on the
loops.)

MulƟplying r⃗(t) by ϱ scales the funcƟon by ϱ, producing ϱ⃗r(t) = ⟨ϱ cos t +
ϭ, ϱ sin t + ϭ.ϱ⟩, which is graphed in Figure ϭϭ.ϰ(c) along with r⃗(t). The new
funcƟon is “ϱ Ɵmes bigger” than r⃗(t). Note how the graph of ϱ⃗r(t) in (c) looks
idenƟcal to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly ϱ Ɵmes larger than the bounds in (b).

Example ϯϱϵ Adding and scaling vector–valued funcƟons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
ϭϭ.ϱ. Find an equaƟon describing the cycloid, where the circle has radius ϭ.

..
p

Figure ϭϭ.ϱ: Tracing a cycloid.

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by leƫng p⃗(t) describe the posiƟon of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is relaƟvely simple given our previous experienceswith parametric
equaƟons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by leƫng c⃗(t) represent
the locaƟon of the center of the circle. It should be clear that the y component
of c⃗(t) should be ϭ; the center of the circle is always going to be ϭ if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear funcƟon of t: f(t) = mt for some scalarm.
When t = Ϭ, f(t) = Ϭ (the circle starts centered on the y-axis). When t = Ϯπ,
the circle has made one complete revoluƟon, traveling a distance equal to its

Notes:
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circumference, which is also Ϯπ. This gives us a point on our line f(t) = mt, the
point (Ϯπ, Ϯπ). It should be clear thatm = ϭ and f(t) = t. So c⃗(t) = ⟨t, ϭ⟩.

Wenow combine p⃗ and c⃗ together to form the equaƟon of the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ ϭ⟩, which is graphed in Figure ϭϭ.ϲ.

Displacement

A vector–valued funcƟon r⃗(t) is oŌen used to describe the posiƟon of amov-
ing object at Ɵme t. At t = tϬ, the object is at r⃗(tϬ); at t = tϭ, the object is at
r⃗(tϭ). Knowing the locaƟons r⃗(tϬ) and r⃗(tϭ) give no indicaƟon of the path taken
between them, but oŌen we only care about the difference of the locaƟons,
r⃗(tϭ)− r⃗(tϬ), the displacement.

DefiniƟon ϲϲ Displacement

Let r⃗(t) be a vector–valued funcƟon and let tϬ < tϭ be values in the
domain. The displacement d⃗ of r⃗, from t = tϬ to t = tϭ, is

d⃗ = r⃗(tϭ)− r⃗(tϬ).

When the displacement vector is drawnwith iniƟal point at r⃗(tϬ), its terminal
point is r⃗(tϭ). We think of it as the vector which points from a starƟng posiƟon
to an ending posiƟon.

Example ϯϲϬ Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( πϮ t), sin(

π
Ϯ t)
⟩
. Graph r⃗(t) on−ϭ ≤ t ≤ ϭ, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The funcƟon r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrizaƟon. At tϬ = −ϭ, we have
r⃗(tϬ) = ⟨Ϭ,−ϭ⟩; at tϭ = ϭ, we have r⃗(tϭ) = ⟨Ϭ, ϭ⟩. The displacement of r⃗(t) on
[−ϭ, ϭ] is thus d⃗ = ⟨Ϭ, ϭ⟩ − ⟨Ϭ,−ϭ⟩ = ⟨Ϭ, Ϯ⟩ .

A graph of r⃗(t) on [−ϭ, ϭ] is given in Figure ϭϭ.ϳ, along with the displacement
vector d⃗ on this interval.

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example ϯϲϬ took,
we can quickly verify that the object ended up a distance of Ϯ units from its iniƟal
locaƟon. That is, we can compute || d⃗ || = Ϯ. However, measuring distance from
the starƟng point is different from measuring distance traveled. Being a semi–

Notes:

ϲϮϲ
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circle, we can measure the distance traveled by this object as π ≈ ϯ.ϭϰ units.
Knowing distance from the starƟng point allows us to compute average rate of
change.

DefiniƟon ϲϳ Average Rate of Change

Let r⃗(t) be a vector–valued funcƟon, where each of its component func-
Ɵons is conƟnuous on its domain, and let tϬ < tϭ. The average rate of
change of r⃗(t) on [tϬ, tϭ] is

average rate of change =
r⃗(tϭ)− r⃗(tϬ)

tϭ − tϬ
.

Example ϯϲϭ Average rate of change
Let r⃗(t) =

⟨
cos( πϮ t), sin(

π
Ϯ t)
⟩
as in Example ϯϲϬ. Find the average rate of change

of r⃗(t) on [−ϭ, ϭ] and on [−ϭ, ϱ].

SÊ½çã®ÊÄ We computed in Example ϯϲϬ that the displacement of r⃗(t)
on [−ϭ, ϭ] was d⃗ = ⟨Ϭ, Ϯ⟩. Thus the average rate of change of r⃗(t) on [−ϭ, ϭ] is:

r⃗(ϭ)− r⃗(−ϭ)
ϭ− (−ϭ)

=
⟨Ϭ, Ϯ⟩
Ϯ

= ⟨Ϭ, ϭ⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the leŌ, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨Ϭ, ϭ⟩ per unit of Ɵme.

We canquickly see that the displacement on [−ϭ, ϱ] is the sameas on [−ϭ, ϭ],
so d⃗ = ⟨Ϭ, Ϯ⟩. The average rate of change is different, though:

r⃗(ϱ)− r⃗(−ϭ)
ϱ− (−ϭ)

=
⟨Ϭ, Ϯ⟩
ϲ

= ⟨Ϭ, ϭ/ϯ⟩ .

As it took “ϯ Ɵmes as long” to arrive at the same place, this average rate of
change on [−ϭ, ϱ] is ϭ/ϯ the average rate of change on [−ϭ, ϭ].

We considered average rates of change in SecƟons ϭ.ϭ and Ϯ.ϭ as we studied
limits and derivaƟves. The same is true here; in the following secƟon we apply
calculus concepts to vector–valued funcƟons as we find limits, derivaƟves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivaƟve; displacement gives us one applicaƟon of integraƟon.

Notes:

ϲϮϳ



Exercises ϭϭ.ϭ
Terms and Concepts

ϭ. Vector–valued funcƟons are closely related to
of graphs.

Ϯ. When sketching vector–valued funcƟons, technically one
isn’t graphing points, but rather .

ϯ. It can be useful to think of as a vector that points
from a starƟng posiƟon to an ending posiƟon.

Problems

In Exercises ϰ – ϭϭ, sketch the vector–valued funcƟon on the
given interval.

ϰ. r⃗(t) =
⟨

tϮ, tϮ − ϭ
⟩

, for−Ϯ ≤ t ≤ Ϯ.

ϱ. r⃗(t) =
⟨

tϮ, tϯ
⟩

, for−Ϯ ≤ t ≤ Ϯ.

ϲ. r⃗(t) =
⟨

ϭ/t, ϭ/tϮ
⟩

, for−Ϯ ≤ t ≤ Ϯ.

ϳ. r⃗(t) =
⟨ ϭ
ϭϬ t

Ϯ, sin t
⟩

, for−Ϯπ ≤ t ≤ Ϯπ.

ϴ. r⃗(t) =
⟨ ϭ
ϭϬ t

Ϯ, sin t
⟩

, for−Ϯπ ≤ t ≤ Ϯπ.

ϵ. r⃗(t) = ⟨ϯ sin(πt), Ϯ cos(πt)⟩, on [Ϭ, Ϯ].

ϭϬ. r⃗(t) = ⟨ϯ cos t, Ϯ sin(Ϯt)⟩, on [Ϭ, Ϯπ].

ϭϭ. r⃗(t) = ⟨Ϯ sec t, tan t⟩, on [−π, π].

In Exercises ϭϮ – ϭϱ, sketch the vector–valued funcƟon on the
given interval inRϯ. Technologymay be useful in creaƟng the
sketch.

ϭϮ. r⃗(t) = ⟨Ϯ cos t, t, Ϯ sin t⟩, on [Ϭ, Ϯπ].

ϭϯ. r⃗(t) = ⟨ϯ cos t, sin t, t/π⟩ on [Ϭ, Ϯπ].

ϭϰ. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [Ϭ, Ϯπ].

ϭϱ. r⃗(t) = ⟨cos t, sin t, sin(Ϯt)⟩ on [Ϭ, Ϯπ].

In Exercises ϭϲ – ϭϵ, find || r⃗(t) ||.

ϭϲ. r⃗(t) =
⟨

t, tϮ
⟩

.

ϭϳ. r⃗(t) = ⟨ϱ cos t, ϯ sin t⟩.

ϭϴ. r⃗(t) = ⟨Ϯ cos t, Ϯ sin t, t⟩.

ϭϵ. r⃗(t) =
⟨

cos t, t, tϮ
⟩

.

In Exercises ϮϬ – Ϯϳ, create a vector–valued funcƟon whose
graph matches the given descripƟon.

ϮϬ. A circle of radius Ϯ, centered at (ϭ, Ϯ), traced counter–
clockwise once on [Ϭ, Ϯπ].

Ϯϭ. A circle of radius ϯ, centered at (ϱ, ϱ), traced clockwise
once on [Ϭ, Ϯπ].

ϮϮ. An ellipse, centered at (Ϭ, Ϭ) with verƟcal major axis of
length ϭϬ and minor axis of length ϯ, traced once counter–
clockwise on [Ϭ, Ϯπ].

Ϯϯ. An ellipse, centered at (ϯ,−Ϯ)with horizontal major axis of
length ϲ and minor axis of length ϰ, traced once clockwise
on [Ϭ, Ϯπ].

Ϯϰ. A line through (Ϯ, ϯ) with a slope of ϱ.

Ϯϱ. A line through (ϭ, ϱ) with a slope of−ϭ/Ϯ.

Ϯϲ. A verƟcally oriented helix with radius of Ϯ that starts at
(Ϯ, Ϭ, Ϭ) and ends at (Ϯ, Ϭ, ϰπ) aŌer ϭ revoluƟon on [Ϭ, Ϯπ].

Ϯϳ. A verƟcally oriented helix with radius of ϯ that starts at
(ϯ, Ϭ, Ϭ) and ends at (ϯ, Ϭ, ϯ) aŌer Ϯ revoluƟons on [Ϭ, ϭ].

In Exercises Ϯϴ – ϯϭ, find the average rate of change of r⃗(t) on
the given interval.

Ϯϴ. r⃗(t) =
⟨

t, tϮ
⟩

on [−Ϯ, Ϯ].

Ϯϵ. r⃗(t) = ⟨t, t+ sin t⟩ on [Ϭ, Ϯπ].

ϯϬ. r⃗(t) = ⟨ϯ cos t, Ϯ sin t, t⟩ on [Ϭ, Ϯπ].

ϯϭ. r⃗(t) =
⟨

t, tϮ, tϯ
⟩

on [−ϭ, ϯ].

ϲϮϴ



ϭϭ.Ϯ Calculus and Vector–Valued FuncƟons

ϭϭ.Ϯ Calculus and Vector–Valued FuncƟons

The previous secƟon introduced us to a new mathemaƟcal object, the vector–
valued funcƟon. We now apply calculus concepts to these funcƟons. We start
with the limit, then work our way through derivaƟves to integrals.

Limits of Vector–Valued FuncƟons

The iniƟal definiƟon of the limit of a vector–valued funcƟon is a bit inƟmi-
daƟng, as was the definiƟon of the limit in DefiniƟon ϭ. The theorem following
the definiƟon shows that in pracƟce, taking limits of vector–valued funcƟons is
no more difficult than taking limits of real–valued funcƟons.

DefiniƟon ϲϴ Limits of Vector–Valued FuncƟons

Let I be an open interval containing c, and let r⃗(t) be a vector–valued
funcƟon defined on I, except possibly at c. The limit of r⃗(t), as t ap-
proaches c, is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > Ϭ, there exists a δ > Ϭ such that for all t ̸= c,
if |t− c| < δ, we have || r⃗(t)− L⃗ || < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

Theorem ϴϵ Limits of Vector–Valued FuncƟons

ϭ. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued funcƟon in RϮ defined
on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨

lim
t→c

f(t) , lim
t→c

g(t)
⟩

.

Ϯ. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued funcƟon in Rϯ de-
fined on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨

lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Notes:
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Theorem ϴϵ states that we compute limits component–wise.

Example ϯϲϮ Finding limits of vector–valued funcƟons

Let r⃗(t) =
⟨
sin t
t

, tϮ − ϯt+ ϯ, cos t
⟩

. Find lim
t→Ϭ

r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→Ϭ

r⃗(t) =
⟨

lim
t→Ϭ

sin t
t

, lim
t→Ϭ

tϮ − ϯt+ ϯ , lim
t→Ϭ

cos t
⟩

= ⟨ϭ, ϯ, ϭ⟩ .

ConƟnuity

DefiniƟon ϲϵ ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c.

ϭ. r⃗(t) is conƟnuous at c if lim
t→c

r⃗(t) = r(c).

Ϯ. If r⃗(t) is conƟnuous at all c in I, then r⃗(t) is conƟnuous on I.

We again have a theorem that lets us evaluate conƟnuity component–wise.

Theorem ϵϬ ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c. r⃗(t) is conƟnuous at c if, and only if, each of its component
funcƟons is conƟnuous at c.

Example ϯϲϯ EvaluaƟng conƟnuity of vector–valued funcƟons

Let r⃗(t) =

⟨
sin t
t

, tϮ − ϯt+ ϯ, cos t
⟩

. Determine whether r⃗ is conƟnuous at

t = Ϭ and t = ϭ.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = Ϭ, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = Ϭ, r⃗(t) is not defined at t = Ϭ, and hence it is not conƟnuous
at t = Ϭ.

Notes:

ϲϯϬ



Alternate notaƟons for the derivaƟve of r⃗
include:

r⃗ ′(t) =
d
dt
(

r⃗(t)
)

=
d⃗r
dt
.

ϭϭ.Ϯ Calculus and Vector–Valued FuncƟons

At t = ϭ each of the component funcƟons is conƟnuous. Therefore r⃗(t) is
conƟnuous at t = ϭ.

DerivaƟves

Consider a vector–valued funcƟon r⃗ defined on an open interval I containing
tϬ and tϭ. We can compute the displacement of r⃗ on [tϬ, tϭ], as shown in Figure
ϭϭ.ϴ(a). Recall that dividing the displacement vector by tϭ− tϬ gives the average
rate of change on [tϬ, tϭ], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)
t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure ϭϭ.ϴ: IllustraƟng displacement, leading to an understanding of the derivaƟve of vector–valued funcƟons.

The derivaƟve of a vector–valued funcƟon is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [tϬ, tϭ] goes to Ϭ.
Instead of thinking of an interval as [tϬ, tϭ], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= Ϭ. We take the limit as h → Ϭ tomeasure the instantaneous
rate of change; this is the derivaƟve of r⃗.

DefiniƟon ϳϬ DerivaƟve of a Vector–Valued FuncƟon

Let r⃗(t) be conƟnuous on an open interval I containing c.

ϭ. The derivaƟve of r⃗ at t = c is

r⃗ ′(c) = lim
h→Ϭ

r⃗(c+ h)− r⃗(c)
h

.

Ϯ. The derivaƟve of r⃗ is

r⃗ ′(t) = lim
h→Ϭ

r⃗(t+ h)− r⃗(t)
h

.

Notes:
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Figure ϭϭ.ϵ: Graphing the derivaƟve of a
vector–valued funcƟon in Example ϯϲϰ.
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If a vector–valued funcƟon has a derivaƟve for all c in an open interval I, we
say that r⃗(t) is differenƟable on I.

Once again we might view this definiƟon as inƟmidaƟng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivaƟves component–wise as well, making the task
not too difficult.

Theorem ϵϭ DerivaƟves of Vector–Valued FuncƟons

ϭ. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t) ⟩ .

Ϯ. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g ′(t), h ′(t) ⟩ .

Example ϯϲϰ DerivaƟves of vector–valued funcƟons
Let r⃗(t) =

⟨
tϮ, t
⟩
.

ϭ. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

Ϯ. Compute r⃗ ′(ϭ) and sketch this vector with its iniƟal point at the origin and
at r⃗(ϭ).

SÊ½çã®ÊÄ

ϭ. Theorem ϵϭ allows us to compute derivaƟves component–wise, so

r⃗ ′(t) = ⟨Ϯt, ϭ⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure ϭϭ.ϵ(a). Note how ploƫng
the two of these together, in this way, is not very illuminaƟng. When
dealing with real–valued funcƟons, ploƫng f(x) with f ′(x) gave us useful
informaƟon as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued funcƟons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

Ϯ. We easily compute r⃗ ′(ϭ) = ⟨Ϯ, ϭ⟩, which is drawn in Figure ϭϭ.ϵ with its
iniƟal point at the origin, as well as at r⃗(ϭ) = ⟨ϭ, ϭ⟩ . These are sketched
in Figure ϭϭ.ϵ(b).

Notes:
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Figure ϭϭ.ϭϬ: Viewing a vector–valued
funcƟon and its derivaƟve at one point.

Figure ϭϭ.ϭϭ: Graphing a curve in space
with its tangent line.
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Example ϯϲϱ DerivaƟves of vector–valued funcƟons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/Ϯ). Sketch r⃗ ′(π/Ϯ) with its
iniƟal point at the origin and at r⃗(π/Ϯ).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, ϭ⟩. At t = π/Ϯ, we
have r⃗ ′(π/Ϯ) = ⟨−ϭ, Ϭ, ϭ⟩. Figure ϭϭ.ϭϬ shows a graph of r⃗(t), with r⃗ ′(π/Ϯ)
ploƩed with its iniƟal point at the origin and at r⃗(π/Ϯ).

In Examples ϯϲϰ and ϯϲϱ, sketching a parƟcular derivaƟve with its iniƟal
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its iniƟal point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivaƟve to define this term.

DefiniƟon ϳϭ Tangent Vector, Tangent Line

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
containing c, where r⃗ ′(c) ̸= Ϭ⃗.

ϭ. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

Ϯ. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direcƟon parallel to r⃗ ′(c). An equaƟon of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

Example ϯϲϲ Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, tϮ, tϯ

⟩
on [−ϭ.ϱ, ϭ.ϱ]. Find the vector equaƟon of the line tangent

to the graph of r⃗ at t = −ϭ.

SÊ½çã®ÊÄ To find the equaƟon of a line, we need a point on the line
and the line’s direcƟon. The point is given by r⃗(−ϭ) = ⟨−ϭ, ϭ,−ϭ⟩. (To be clear,
⟨−ϭ, ϭ,−ϭ⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direcƟon comes from r⃗ ′(−ϭ). We compute, component–wise, r⃗ ′(t) =
⟨
ϭ, Ϯt, ϯtϮ

⟩
. Thus r⃗ ′(−ϭ) = ⟨ϭ,−Ϯ, ϯ⟩.

The vector equaƟon of the line is ℓ(t) = ⟨−ϭ, ϭ,−ϭ⟩+ t ⟨ϭ,−Ϯ, ϯ⟩. This line
and r⃗(t) are sketched in Figure ϭϭ.ϭϭ.

Notes:

ϲϯϯ
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Figure ϭϭ.ϭϮ: Graphing r⃗(t) and its tan-
gent line in Example ϯϲϳ.
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Example ϯϲϳ Finding tangent lines to curves
Find the equaƟons of the lines tangent to r⃗(t) =

⟨
tϯ, tϮ

⟩
at t = −ϭ and t = Ϭ.

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
ϯtϮ, Ϯt

⟩
. At t = −ϭ, we have

r⃗(−ϭ) = ⟨−ϭ, ϭ⟩ and r⃗ ′(−ϭ) = ⟨ϯ,−Ϯ⟩ ,

so the equaƟon of the line tangent to the graph of r⃗(t) at t = −ϭ is

ℓ(t) = ⟨−ϭ, ϭ⟩+ t ⟨ϯ,−Ϯ⟩ .

This line is graphed with r⃗(t) in Figure ϭϭ.ϭϮ.

At t = Ϭ, we have r⃗ ′(Ϭ) = ⟨Ϭ, Ϭ⟩ = Ϭ⃗! This implies that the tangent line “has
no direcƟon.” We cannot apply DefiniƟon ϳϭ, hence cannot find the equaƟon of
the tangent line.

We were unable to compute the equaƟon of the tangent line to r⃗(t) =
⟨
tϯ, tϮ

⟩
at t = Ϭ because r⃗ ′(Ϭ) = Ϭ⃗. The graph in Figure ϭϭ.ϭϮ shows that there

is a cusp at this point. This leads us to another definiƟon of smooth, previously
defined by DefiniƟon ϰϲ in SecƟon ϵ.Ϯ.

DefiniƟon ϳϮ Smooth Vector–Valued FuncƟons

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I.
r⃗(t) is smooth on I if r⃗ ′(t) ̸= Ϭ⃗ on I.

Having established derivaƟves of vector–valued funcƟons, we now explore
the relaƟonships between the derivaƟve and other vector operaƟons. The fol-
lowing theorem states how the derivaƟve interacts with vector addiƟon and the
various vector products.

Notes:
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Figure ϭϭ.ϭϯ: Graphing r⃗(t) and u⃗(t) in Ex-
ample ϯϲϴ.
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Theorem ϵϮ Properies of DerivaƟves of Vector–Valued FuncƟons

Let r⃗ and s⃗ be differenƟable vector–valued funcƟons, let f be a differen-
Ɵable real–valued funcƟon, and let c be a real number.

ϭ.
d
dt

(

r⃗(t)± s⃗(t)
)

= r⃗ ′(t)± s⃗ ′(t)

Ϯ.
d
dt

(

c⃗r(t)
)

= c⃗r ′(t)

ϯ. d
dt

(

f(t)⃗r(t)
)

= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

ϰ. d
dt

(

r⃗(t) · s⃗(t)
)

= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

ϱ. d
dt

(

r⃗(t)× s⃗(t)
)

= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

ϲ. d
dt

(

r⃗
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

Example ϯϲϴ Using derivaƟve properƟes of vector–valued funcƟons
Let r⃗(t) =

⟨
t, tϮ − ϭ

⟩
and let u⃗(t) be the unit vector that points in the direcƟon

of r⃗(t).

ϭ. Graph r⃗(t) and u⃗(t) on the same axes, on [−Ϯ, Ϯ].

Ϯ. Find u⃗ ′(t) and sketch u⃗ ′(−Ϯ), u⃗ ′(−ϭ) and u⃗ ′(Ϭ). Sketch each with iniƟal
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

ϭ. To form the unit vector that points in the direcƟon of r⃗, we need to divide
r⃗(t) by its magnitude.

|| r⃗(t) || =
√

tϮ + (tϮ − ϭ)Ϯ ⇒ u⃗(t) =
ϭ

√

tϮ + (tϮ − ϭ)Ϯ
⟨
t, tϮ − ϭ

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure ϭϭ.ϭϯ. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is ϭ for
all t.

Notes:

ϲϯϱ
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Figure ϭϭ.ϭϰ: Graphing some of the
derivaƟves of u⃗(t) in Example ϯϲϴ.
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Ϯ. To compute u⃗ ′(t), we use Theorem ϵϮ, wriƟng

u⃗(t) = f(t)⃗r(t), where f(t) =
ϭ

√

tϮ + (tϮ − ϭ)Ϯ
=
(
tϮ+(tϮ−ϭ)Ϯ

)−ϭ/Ϯ
.

(We could write

u⃗(t) =

⟨

t
√

tϮ + (tϮ − ϭ)Ϯ
,

tϮ − ϭ
√

tϮ + (tϮ − ϭ)Ϯ

⟩

and then take the derivaƟve. It is amaƩer of preference; this laƩermethod
requires two applicaƟons of theQuoƟent Rulewhere ourmethod uses the
Product and Chain Rules.)

We find f ′(t) using the Chain Rule:

f ′(t) = −ϭ
Ϯ
(
tϮ + (tϮ − ϭ)Ϯ

)−ϯ/Ϯ(Ϯt+ Ϯ(tϮ − ϭ)(Ϯt)
)

= − Ϯt(ϮtϮ − ϭ)

Ϯ
(√

tϮ + (tϮ − ϭ)Ϯ
)ϯ

We now find u⃗ ′(t) using part ϯ of Theorem ϵϮ:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − Ϯt(ϮtϮ − ϭ)

Ϯ
(√

tϮ + (tϮ − ϭ)Ϯ
)ϯ

⟨
t, tϮ − ϭ

⟩
+

ϭ
√

tϮ + (tϮ − ϭ)Ϯ
⟨ϭ, Ϯt⟩ .

This is admiƩedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ (−Ϯ), u⃗ (−ϭ)
and u⃗ (Ϭ):

u⃗ (−Ϯ) =
⟨

− ϭϱ
ϭϯ

√
ϭϯ

,− ϭϬ
ϭϯ

√
ϭϯ

⟩

≈ ⟨−Ϭ.ϯϮϬ,−Ϭ.Ϯϭϯ⟩

u⃗ (−ϭ) = ⟨Ϭ,−Ϯ⟩
u⃗ (Ϭ) = ⟨ϭ, Ϭ⟩

Each of these is sketched in Figure ϭϭ.ϭϰ. Note how the length of the
vector gives an indicaƟon of how quickly the circle is being traced at that
point. When t = −Ϯ, the circle is being drawn relaƟvely slow; when t =
−ϭ, the circle is being traced much more quickly.

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:

ϲϯϲ
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illustrated in Figure ϭϭ.ϭϰ; each tangent vector is perpendicular to the line that
passes through its iniƟal point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = Ϭ,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = Ϭ.

This is true of any vector–valued funcƟon that has a constant length, that is,
that traces out part of a circle. It has important implicaƟons later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

Theorem ϵϯ Vector–Valued FuncƟons of Constant Length

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I of
constant length. That is, || r⃗(t) || = c for all t in I (equivalently, r⃗(t) ·⃗r(t) =
cϮ for all t in I). Then r⃗(t) · r⃗ ′(t) = Ϭ for all t in I.

IntegraƟon

Indefinite and definite integrals of vector–valued funcƟons are also evalu-
ated component–wise.

Theoremϵϰ Indefinite and Definite Integrals of Vector–Valued
FuncƟons

Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued funcƟon in RϮ.

ϭ.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

Ϯ.
∫ b

a
r⃗(t) dt =

⟨
∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued funcƟons in Rϯ.

Example ϯϲϵ EvaluaƟng a definite integral of a vector–valued funcƟon

Let r⃗(t) =
⟨
eϮt, sin t

⟩
. Evaluate

∫ ϭ

Ϭ
r⃗(t) dt.

Notes:
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SÊ½çã®ÊÄ We follow Theorem ϵϰ.
∫ ϭ

Ϭ
r⃗(t) dt =

∫ ϭ

Ϭ

⟨
eϮt, sin t

⟩
dt

=

⟨∫ ϭ

Ϭ
eϮt dt ,

∫ ϭ

Ϭ
sin t dt

⟩

=

⟨
ϭ
Ϯ
eϮt
∣
∣
∣

ϭ

Ϭ
,− cos t

∣
∣
∣

ϭ

Ϭ

⟩

=

⟨
ϭ
Ϯ
(eϮ − ϭ) ,− cos(ϭ) + ϭ

⟩

≈ ⟨ϯ.ϭϵ, Ϭ.ϰϲϬ⟩ .

Example ϯϳϬ Solving an iniƟal value problem
Let r⃗ ′′(t) = ⟨Ϯ, cos t, ϭϮt⟩. Find r⃗(t) where:

• r⃗(Ϭ) = ⟨−ϳ,−ϭ, Ϯ⟩ and
• r⃗ ′(Ϭ) = ⟨ϱ, ϯ, Ϭ⟩ .

SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨Ϯ, cos t, ϭϮt⟩, we find r⃗ ′(t) by evaluaƟng the
indefinite integral.

∫

r⃗ ′′(t) dt =
⟨∫

Ϯ dt ,
∫

cos t dt ,
∫

ϭϮt dt
⟩

=
⟨
Ϯt+ Cϭ, sin t+ CϮ, ϲtϮ + Cϯ

⟩

=
⟨
Ϯt, sin t, ϲtϮ

⟩
+ ⟨Cϭ, CϮ, Cϯ⟩

=
⟨
Ϯt, sin t, ϲtϮ

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(Ϭ) = ⟨ϱ, ϯ, Ϭ⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
Ϯt, sin t, ϲtϮ

⟩
+ C⃗

r⃗ ′(Ϭ) = ⟨Ϭ, Ϭ, Ϭ⟩+ C⃗

⟨ϱ, ϯ, Ϭ⟩ = C⃗.

So r⃗ ′(t) =
⟨
Ϯt, sin t, ϲtϮ

⟩
+ ⟨ϱ, ϯ, Ϭ⟩ =

⟨
Ϯt+ ϱ, sin t+ ϯ, ϲtϮ

⟩
. To find r⃗(t),

we integrate once more.

∫

r⃗ ′(t) dt =
⟨∫

Ϯt+ ϱ dt,
∫

sin t+ ϯ dt,
∫

ϲtϮ dt
⟩

=
⟨
tϮ + ϱt,− cos t+ ϯt, Ϯtϯ

⟩
+ C⃗.

With r⃗(Ϭ) = ⟨−ϳ,−ϭ, Ϯ⟩, we solve for C⃗:

Notes:
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r⃗(t) =
⟨
tϮ + ϱt,− cos t+ ϯt, Ϯtϯ

⟩
+ C⃗

r⃗(Ϭ) = ⟨Ϭ,−ϭ, Ϭ⟩+ C⃗

⟨−ϳ,−ϭ, Ϯ⟩ = ⟨Ϭ,−ϭ, Ϭ⟩+ C⃗

⟨−ϳ, Ϭ, Ϯ⟩ = C⃗.

So r⃗(t) =
⟨
tϮ + ϱt,− cos t+ ϯt, Ϯtϯ

⟩
+⟨−ϳ, Ϭ, Ϯ⟩ =

⟨
tϮ + ϱt− ϳ,− cos t+ ϯt, Ϯtϯ + Ϯ

⟩
.

What does the integraƟon of a vector–valued funcƟon mean? There are
many applicaƟons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued funcƟon.

A key understanding for us comes from considering the integral of a deriva-
Ɵve:

∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣
∣
∣

b

a
= r⃗(b)− r⃗(a).

IntegraƟng a rate of change funcƟon gives displacement.
NoƟng that vector–valued funcƟons are closely related to parametric equa-

Ɵons, we can describe the arc length of the graph of a vector–valued funcƟon
as an integral. Given parametric equaƟons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√

f ′(t)Ϯ + g ′(t)Ϯ dt,

as stated in TheoremϴϮ in SecƟonϵ.ϯ. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)Ϯ + g ′(t)Ϯ =
|| r⃗ ′(t) ||. Therefore we can express the arc length of the graph of a vector–
valued funcƟon as an integral of the magnitude of its derivaƟve.

Theorem ϵϱ Arc Length of a Vector–Valued FuncƟon

Let r⃗(t) be a vector–valued funcƟon where r⃗ ′(t) is conƟnuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
|| r⃗ ′(t) || dt.

Note that we are actually integraƟng a scalar–funcƟon here, not a vector–
valued funcƟon.

The next secƟon takes what we have established thus far and applies it to
objects in moƟon. We will let r⃗(t) describe the path of an object in the plane or
in space and will discover the informaƟon provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:
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Exercises ϭϭ.Ϯ
Terms and Concepts
ϭ. Limits, derivaƟves and integrals of vector–valued funcƟons

are all evaluated –wise.

Ϯ. The definite integral of a rate of change funcƟon gives
.

ϯ. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

Problems
In Exercises ϰ – ϳ, evaluate the given limit.

ϰ. lim
t→ϱ

⟨

Ϯt+ ϭ, ϯtϮ − ϭ, sin t
⟩

ϱ. lim
t→ϯ

⟨

et,
tϮ − ϵ
t+ ϯ

⟩

ϲ. lim
t→Ϭ

⟨ t
sin t

, (ϭ+ t)
ϭ
t

⟩

ϳ. lim
h→Ϭ

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨

tϮ, t, ϭ
⟩

.

In Exercises ϴ – ϵ, idenƟfy the interval(s) on which r⃗(t) is con-
Ɵnuous.

ϴ. r⃗(t) =
⟨

tϮ, ϭ/t
⟩

ϵ. r⃗(t) =
⟨

cos t, et, ln t
⟩

In Exercises ϭϬ – ϭϰ, find the derivaƟve of the given funcƟon.

ϭϬ. r⃗(t) =
⟨

cos t, et, ln t
⟩

ϭϭ. r⃗(t) =
⟨

ϭ
t
,
Ϯt− ϭ
ϯt+ ϭ

, tan t
⟩

ϭϮ. r⃗(t) = (tϮ) ⟨sin t, Ϯt+ ϱ⟩

ϭϯ. r⃗(t) =
⟨

tϮ + ϭ, t− ϭ
⟩

· ⟨sin t, Ϯt+ ϱ⟩

ϭϰ. r⃗(t) =
⟨

tϮ + ϭ, t− ϭ, ϭ
⟩

× ⟨sin t, Ϯt+ ϱ, ϭ⟩

In Exercises ϭϱ – ϭϴ, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(ϭ), with the
iniƟal point of r⃗ ′(ϭ) at r⃗(ϭ).

ϭϱ. r⃗(t) =
⟨

tϮ + t, tϮ − t
⟩

ϭϲ. r⃗(t) =
⟨

tϮ − Ϯt+ Ϯ, tϯ − ϯtϮ + Ϯt
⟩

ϭϳ. r⃗(t) =
⟨

tϮ + ϭ, tϯ − t
⟩

ϭϴ. r⃗(t) =
⟨

tϮ − ϰt+ ϱ, , tϯ − ϲtϮ + ϭϭt− ϲ
⟩

In Exercises ϭϵ – ϮϮ, give the equaƟon of the line tangent to
the graph of r⃗(t) at the given t value.

ϭϵ. r⃗(t) =
⟨

tϮ + t, tϮ − t
⟩

at t = ϭ.

ϮϬ. r⃗(t) = ⟨ϯ cos t, sin t⟩ at t = π/ϰ.

Ϯϭ. r⃗(t) = ⟨ϯ cos t, ϯ sin t, t⟩ at t = π.

ϮϮ. r⃗(t) =
⟨

et, tan t, t
⟩

at t = Ϭ.

In Exercises Ϯϯ – Ϯϲ, find the value(s) of t for which r⃗(t) is not
smooth.

Ϯϯ. r⃗(t) = ⟨cos t, sin t− t⟩

Ϯϰ. r⃗(t) =
⟨

tϮ − Ϯt+ ϭ, tϯ + tϮ − ϱt+ ϯ
⟩

Ϯϱ. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(ϰt)⟩

Ϯϲ. r⃗(t) =
⟨

tϯ − ϯt+ Ϯ,− cos(πt), sinϮ(πt)
⟩

Exercises Ϯϳ – Ϯϵ ask you to verify parts of Theorem ϵϮ.
In each let f(t) = tϯ, r⃗(t) =

⟨

tϮ, t− ϭ, ϭ
⟩

and s⃗(t) =
⟨

sin t, et, t
⟩

. Compute the various derivaƟves as indicated.

Ϯϳ. Simplify f(t)⃗r(t), then find its derivaƟve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

Ϯϴ. Simplify r⃗(t) · s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

Ϯϵ. Simplify r⃗(t)× s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

In Exercises ϯϬ – ϯϯ , evaluate the given definite or indefinite
integral.

ϯϬ.
∫

⟨

tϯ, cos t, tet
⟩

dt

ϯϭ.
∫
⟨

ϭ
ϭ+ tϮ

, secϮ t
⟩

dt

ϯϮ.
∫ π

Ϭ
⟨− sin t, cos t⟩ dt

ϯϯ.
∫ Ϯ

−Ϯ
⟨Ϯt+ ϭ, Ϯt− ϭ⟩ dt

In Exercises ϯϰ – ϯϳ , solve the given iniƟal value problems.

ϯϰ. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(Ϭ) = ⟨Ϯ, Ϯ⟩.

ϯϱ. Find r⃗(t), given that r⃗ ′(t) = ⟨ϭ/(t+ ϭ), tan t⟩ and
r⃗(Ϭ) = ⟨ϭ, Ϯ⟩.

ϲϰϬ



ϯϲ. Find r⃗(t), given that r⃗ ′′(t) =
⟨

tϮ, t, ϭ
⟩

,
r⃗ ′(Ϭ) = ⟨ϭ, Ϯ, ϯ⟩ and r⃗(Ϭ) = ⟨ϰ, ϱ, ϲ⟩.

ϯϳ. Find r⃗(t), given that r⃗ ′′(t) =
⟨

cos t, sin t, et
⟩

,
r⃗ ′(Ϭ) = ⟨Ϭ, Ϭ, Ϭ⟩ and r⃗(Ϭ) = ⟨Ϭ, Ϭ, Ϭ⟩.

In Exercises ϯϴ – ϰϭ , find the arc length of r⃗(t) on the indi-
cated interval.

ϯϴ. r⃗(t) = ⟨Ϯ cos t, Ϯ sin t, ϯt⟩ on [Ϭ, Ϯπ].

ϯϵ. r⃗(t) = ⟨ϱ cos t, ϯ sin t, ϰ sin t⟩ on [Ϭ, Ϯπ].

ϰϬ. r⃗(t) =
⟨

tϯ, tϮ, tϯ
⟩

on [Ϭ, ϭ].

ϰϭ. r⃗(t) =
⟨

e−t cos t, e−t sin t
⟩

on [Ϭ, ϭ].

ϰϮ. Prove Theorem ϵϯ; that is, show if r⃗(t) has constant length
and is differenƟable, then r⃗(t) · r⃗ ′(t) = Ϭ. (Hint: use the
Product Rule to compute d

dt

(

r⃗(t) · r⃗(t)
)

.)

ϲϰϭ
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Figure ϭϭ.ϭϱ: Graphing the posiƟon, ve-
locity and acceleraƟon of an object in Ex-
ample ϯϳϭ.

Chapter ϭϭ Vector Valued FuncƟons

ϭϭ.ϯ The Calculus of MoƟon
A common use of vector–valued funcƟons is to describe themoƟon of an object
in the plane or in space. A posiƟon funcƟon r⃗(t) gives the posiƟon of an object
at Ɵme t. This secƟon explores how derivaƟves and integrals are used to study
the moƟon described by such a funcƟon.

DefiniƟon ϳϯ Velocity, Speed and AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon in RϮ or Rϯ.

ϭ. Velocity, denoted v⃗(t), is the instantaneous rate of posiƟon
change; that is, v⃗(t) = r⃗ ′(t).

Ϯ. Speed is the magnitude of velocity, || v⃗(t) ||.

ϯ. AcceleraƟon, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

Example ϯϳϭ Finding velocity and acceleraƟon
An object is moving with posiƟon funcƟon r⃗(t) =

⟨
tϮ − t, tϮ + t

⟩
, −ϯ ≤ t ≤ ϯ,

where distances are measured in feet and Ɵme is measured in seconds.

ϭ. Find v⃗(t) and a⃗(t).

Ϯ. Sketch r⃗(t); plot v⃗(−ϭ), a⃗(−ϭ), v⃗(ϭ) and a⃗(ϭ), each with their iniƟal point
at their corresponding point on the graph of r⃗(t).

ϯ. When is the object’s speed minimized?

SÊ½çã®ÊÄ

ϭ. Taking derivaƟves, we find

v⃗(t) = r⃗ ′(t) = ⟨Ϯt− ϭ, Ϯt+ ϭ⟩ and a⃗(t) = r⃗ ′′(t) = ⟨Ϯ, Ϯ⟩ .

Note that acceleraƟon is constant.

Ϯ. v⃗(−ϭ) = ⟨−ϯ,−ϭ⟩, a⃗(−ϭ) = ⟨Ϯ, Ϯ⟩; v⃗(ϭ) = ⟨ϭ, ϯ⟩, a⃗(ϭ) = ⟨Ϯ, Ϯ⟩.
These are ploƩed with r⃗(t) in Figure ϭϭ.ϭϱ(a).

We can think of acceleraƟon as “pulling” the velocity vector in a certain
direcƟon. At t = −ϭ, the velocity vector points down and to the leŌ; at
t = ϭ, the velocity vector has been pulled in the ⟨Ϯ, Ϯ⟩ direcƟon and is

Notes:
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Figure ϭϭ.ϭϲ: Ploƫng velocity and accel-
eraƟon vectors for Object ϭ in Example
ϯϳϮ.

ϭϭ.ϯ The Calculus of MoƟon

now poinƟng up and to the right. In Figure ϭϭ.ϭϱ(b) we plot more veloc-
ity/acceleraƟon vectors, making more clear the effect acceleraƟon has on
velocity.

Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = ϭϬ, v⃗(ϭϬ) = ⟨ϭϵ, Ϯϭ⟩, which is
nearly parallel to ⟨Ϯ, Ϯ⟩.

ϯ. The object’s speed is given by

|| v⃗(t) || =
√

(Ϯt− ϭ)Ϯ + (Ϯt+ ϭ)Ϯ =
√

ϴtϮ + Ϯ.

To find the minimal speed, we could apply calculus techniques (such as
set the derivaƟve equal to Ϭ and solve for t, etc.) but we can find it by
inspecƟon. Inside the square root we have a quadraƟc which is minimized
when t = Ϭ. Thus the speed is minimized at t = Ϭ, with a speed of

√
Ϯ

Ō/s.

The graph in Figure ϭϭ.ϭϱ(b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −ϯ
and ϯ. Dots that are far apart imply the object traveled a far distance in
ϭ second, indicaƟng high speed; dots that are close together imply the
object did not travel far in ϭ second, indicaƟng a low speed. The dots are
closest together near t = Ϭ, implying the speed is minimized near that
value.

Example ϯϳϮ Analyzing MoƟon
Two objects follow an idenƟcal path at different rates on [−ϭ, ϭ]. The posiƟon
funcƟon for Object ϭ is r⃗ϭ(t) =

⟨
t, tϮ
⟩
; the posiƟon funcƟon for Object Ϯ is

r⃗Ϯ(t) =
⟨
tϯ, tϲ

⟩
, where distances are measured in feet and Ɵme is measured

in seconds. Compare the velocity, speed and acceleraƟon of the two objects on
the path.

SÊ½çã®ÊÄ We begin by compuƟng the velocity and acceleraƟon func-
Ɵon for each object:

v⃗ϭ(t) = ⟨ϭ, Ϯt⟩ v⃗Ϯ(t) =
⟨
ϯtϮ, ϲtϱ

⟩

a⃗ϭ(t) = ⟨Ϭ, Ϯ⟩ a⃗Ϯ(t) =
⟨
ϲt, ϯϬtϰ

⟩

We immediately see that Object ϭ has constant acceleraƟon, whereas Object Ϯ
does not.

At t = −ϭ, we have v⃗ϭ(−ϭ) = ⟨ϭ,−Ϯ⟩ and v⃗Ϯ(−ϭ) = ⟨ϯ,−ϲ⟩; the velocity
of Object Ϯ is three Ɵmes that of Object ϭ and so it follows that the speed of
Object Ϯ is three Ɵmes that of Object ϭ (ϯ

√
ϱ Ō/s compared to

√
ϱ Ō/s.)

Notes:
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Figure ϭϭ.ϭϳ: Comparing the posiƟons of
Objects ϭ and Ϯ in Example ϯϳϮ.

Chapter ϭϭ Vector Valued FuncƟons

At t = Ϭ, the velocity of Object ϭ is v⃗(ϭ) = ⟨ϭ, Ϭ⟩ and the velocity of Object
Ϯ is Ϭ⃗! This tells us that Object Ϯ comes to a complete stop at t = Ϭ.

In Figure ϭϭ.ϭϲ, we see the velocity and acceleraƟon vectors for Object ϭ
ploƩed for t = −ϭ,−ϭ/Ϯ, Ϭ, ϭ/Ϯ and t = ϭ. Note again how the constant accel-
eraƟon vector seems to “pull” the velocity vector from poinƟng down, right to
up, right. We could plot the analogous picture for Object Ϯ, but the velocity and
acceleraƟon vectors are rather large (⃗aϮ(−ϭ) = ⟨−ϲ, ϯϬ⟩!)

Instead, we simply plot the locaƟons of Object ϭ and Ϯ on intervals of ϭ/ϭϬth
of a second, shown in Figure ϭϭ.ϭϳ(a) and (b). Note how the x-values of Object
ϭ increase at a steady rate. This is because the x-component of a⃗(t) is Ϭ; there is
no acceleraƟon in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −ϭ and t = ϭ than near t = Ϭ.

In part (b) of the Figure, we see the points ploƩed for Object Ϯ. Note the
large change in posiƟon from t = −ϭ to t = −Ϭ.ϵ; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = Ϭ. While it looks like there are ϯ points near the origin,
there are in reality ϱ points there.

Since the objects begin and end at the same locaƟon, the have the same dis-
placement. Since they begin and end at the same Ɵme, with the same displace-
ment, they have they have the same average rate of change (i.e, they have the
same average velocity). Since they follow the same path, they have the same
distance traveled. Even though these three measurements are the same, the
objects obviously travel the path in very different ways.

Example ϯϳϯ Analyzing the moƟon of a whirling ball on a string
A young boy whirls a ball, aƩached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes Ϯ revoluƟons per
second. The string has length ϮŌ.

ϭ. Find the posiƟon funcƟon r⃗(t) that describes this situaƟon.

Ϯ. Find the acceleraƟon of the ball and derive a physical interpretaƟon of it.

ϯ. A tree stands ϭϬŌ in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

ϭ. The ball whirls in a circle. Since the string is ϮŌ long, the radius of the
circle is Ϯ. The posiƟon funcƟon r⃗(t) = ⟨Ϯ cos t, Ϯ sin t⟩ describes a circle
with radius Ϯ, centered at the origin, but makes a full revoluƟon every
Ϯπ seconds, not two revoluƟons per second. Wemodify the period of the

Notes:
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trigonometric funcƟons to be ϭ/Ϯ bymulƟplying t by ϰπ. The final posiƟon
funcƟon is thus

r⃗(t) = ⟨Ϯ cos(ϰπt), Ϯ sin(ϰπt)⟩ .

(Plot this for Ϭ ≤ t ≤ ϭ/Ϯ to verify that one revoluƟon is made in ϭ/Ϯ a
second.)

Ϯ. To find a⃗(t), we derive r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−ϴπ sin(ϰπt), ϴπ cos(ϰπt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−ϯϮπϮ cos(ϰπt),−ϯϮπϮ sin(ϰπt)

⟩

= −ϯϮπϮ ⟨cos(ϰπt), sin(ϰπt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direcƟon. Why is this?

Recall the classic physics equaƟon, “Force=mass× acceleraƟon.” A force
acƟng on a mass induces acceleraƟon (i.e., the mass moves); acceleraƟon
acƟng on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleraƟon are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
aƩached to the boy’s handby a string. The string applies a force to the ball,
affecƟng it’s moƟon: the string accelerates the ball. This is not accelera-
Ɵon in the sense of “it travels faster;” rather, this acceleraƟon is changing
the velocity of the ball. In what direcƟon is this force/acceleraƟon being
applied? In the direcƟon of the string, towards the boy’s hand.

Themagnitude of the acceleraƟon is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direcƟon/velocity.
When velocity is changing rapidly, the acceleraƟon must be “large.”

ϯ. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleraƟon is Ϭ⃗ and the ball can nowmove in a straight
line in the direcƟon of v⃗(t).

Let t = tϬ be the Ɵme when the boy lets go of the string. The ball will be
at r⃗(tϬ), traveling in the direcƟon of v⃗(tϬ). We want to find tϬ so that this
line contains the point (Ϭ, ϭϬ) (since the tree is ϭϬŌ directly in front of the
boy).

There are many ways to find this Ɵme value. We choose one that is rela-
Ɵvely simple computaƟonally. As shown in Figure ϭϭ.ϭϴ, the vector from
the release point to the tree is ⟨Ϭ, ϭϬ⟩− r⃗(tϬ). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(tϬ) itself, so their
dot product is Ϭ.

Notes:
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r⃗(tϬ) ·
(
⟨Ϭ, ϭϬ⟩ − r⃗(tϬ)

)
= Ϭ

⟨Ϯ cos(ϰπtϬ), Ϯ sin(ϰπtϬ)⟩ · ⟨−Ϯ cos(ϰπtϬ), ϭϬ− Ϯ sin(ϰπtϬ)⟩ = Ϭ

−ϰ cosϮ(ϰπtϬ) + ϮϬ sin(ϰπtϬ)− ϰ sinϮ(ϰπtϬ) = Ϭ
ϮϬ sin(ϰπtϬ)− ϰ = Ϭ

sin(ϰπtϬ) = ϭ/ϱ

ϰπtϬ = sin−ϭ(ϭ/ϱ)
ϰπtϬ ≈ Ϭ.Ϯ+ Ϯπn,

where n is an integer. Solving for tϬ we have:

tϬ ≈ Ϭ.Ϭϭϲ+ n/Ϯ

This is a wonderful formula. Every ϭ/Ϯ second aŌer t = Ϭ.Ϭϭϲs the boy
can release the string (since the ball makes Ϯ revoluƟons per second, he
has two chances each second to release the ball).

Example ϯϳϰ Analyzing moƟon in space
An object moves in a spiral with posiƟon funcƟon r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and Ɵme is in minutes. Describe the object’s
speed and acceleraƟon at Ɵme t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, ϭ⟩ and
a⃗(t) = ⟨− cos t,− sin t, Ϭ⟩ .

The speed of the object is || v⃗(t) || =
√

(− sin t)Ϯ + cosϮ t+ ϭ =
√
Ϯm/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direcƟon, but rather moves up at a constant rate of ϭm/min.

The objects in Examples ϯϳϯ and ϯϳϰ traveled at a constant speed. That is,
|| v⃗(t) || = c for some constant c. Recall Theorem ϵϯ, which states that if a
vector–valued funcƟon r⃗(t) has constant length, then r⃗(t) is perpendicular to
its derivaƟve: r⃗(t) · r⃗ ′(t) = Ϭ. In these examples, the velocity funcƟon has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleraƟon: v⃗(t) · a⃗(t) = Ϭ. A quick check verifies this.

There is an intuiƟve understanding of this. If acceleraƟon is parallel to veloc-
ity, then it is only affecƟng the object’s speed; it does not change the direcƟon
of travel. (For example, consider a dropped stone. AcceleraƟon and velocity are

Notes:
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parallel – straight down – and the direcƟon of velocity never changes, though
speed does increase.) If acceleraƟon is not perpendicular to velocity, then there
is some acceleraƟon in the direcƟon of travel, influencing the speed. If speed
is constant, then acceleraƟon must be orthogonal to velocity, as it then only
affects direcƟon, and not speed.

Key Idea ϱϮ Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and acceleraƟon
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = Ϭ.

ProjecƟle MoƟon

An important applicaƟon of vector–valued posiƟon funcƟons is projecƟle
moƟon: the moƟon of objects under only the influence of gravity. We will mea-
sure Ɵme in seconds, and distances will either be inmeters or feet. Wewill show
that we can completely describe the path of such an object knowing its iniƟal
posiƟon and iniƟal velocity (i.e., where it is and where it is going.)

Suppose an object has iniƟal posiƟon r⃗(Ϭ) = ⟨xϬ, yϬ⟩ and iniƟal velocity
v⃗(Ϭ) = ⟨vx, vy⟩. It is customary to rewrite v⃗(Ϭ) in terms of its speed vϬ and
direcƟon u⃗, where u⃗ is a unit vector. Recall all unit vectors in RϮ can be wriƩen
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevaƟon.) Thus v⃗(Ϭ) = vϬ ⟨cos θ, sin θ⟩ .

Since the acceleraƟon of the object is known, namely a⃗(t) = ⟨Ϭ,−g⟩, where
g is the gravitaƟonal constant, we can find r⃗(t) knowing our two iniƟal condi-
Ɵons. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨Ϭ,−g⟩ dt

v⃗(t) = ⟨Ϭ,−gt⟩+ C⃗.

Knowing v⃗(Ϭ) = vϬ ⟨cos θ, sin θ⟩, we have C⃗ = vϬ ⟨cos t, sin t⟩ and so

v⃗(t) =
⟨
vϬ cos θ,−gt+ vϬ sin θ

⟩
.

Notes:
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We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫
⟨
vϬ cos θ,−gt+ vϬ sin θ

⟩
dt

r⃗(t) =
⟨
(
vϬ cos θ

)
t,−ϭ

Ϯ
gtϮ +

(
vϬ sin θ

)
t
⟩

+ C⃗.

Knowing r⃗(Ϭ) = ⟨xϬ, yϬ⟩, we conclude C⃗ = ⟨xϬ, yϬ⟩ and

r⃗(t) =
⟨
(
vϬ cos θ

)
t+ xϬ ,−

ϭ
Ϯ
gtϮ +

(
vϬ sin θ

)
t+ yϬ

⟩

.

Key Idea ϱϯ ProjecƟle MoƟon

The posiƟon funcƟon of a projecƟle propelled from an iniƟal posiƟon of
r⃗Ϭ = ⟨xϬ, yϬ⟩, with iniƟal speed vϬ, with angle of elevaƟon θ and neglect-
ing all acceleraƟons but gravity is

r⃗(t) =
⟨
(
vϬ cos θ

)
t+ xϬ ,−

ϭ
Ϯ
gtϮ +

(
vϬ sin θ

)
t+ yϬ

⟩

.

Leƫng v⃗Ϭ = vϬ ⟨cos θ, sin θ⟩, r⃗(t) can be wriƩen as

r⃗(t) =
⟨

Ϭ,−ϭ
Ϯ
gtϮ
⟩

+ v⃗Ϭt+ r⃗Ϭ.

We demonstrate how to use this posiƟon funcƟon in the next two examples.

Example ϯϳϱ ProjecƟle MoƟon
Sydney shoots her Red Ryder® bb gun across level ground from an elevaƟon of
ϰŌ, where the barrel of the gun makes a ϱ◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adverƟsed rate
of ϯϱϬŌ/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct applicaƟon of Key Idea ϱϯ gives

r⃗(t) =
⟨
(ϯϱϬ cos ϱ◦)t,−ϭϲtϮ + (ϯϱϬ sin ϱ◦)t+ ϰ

⟩

≈
⟨
ϯϰϲ.ϲϳt,−ϭϲtϮ + ϯϬ.ϱϬt+ ϰ

⟩
,

Notes:

ϲϰϴ



ϭϭ.ϯ The Calculus of MoƟon

wherewe set her iniƟal posiƟon to be ⟨Ϭ, ϰ⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by seƫng the y-component equal
to Ϭ and solving for t:

−ϭϲtϮ + ϯϬ.ϱϬt+ ϰ = Ϭ

t =
−ϯϬ.ϱϬ±

√

ϯϬ.ϱϬϮ − ϰ(−ϭϲ)(ϰ)
−ϯϮ

t ≈ Ϯ.Ϭϯs.

(We discarded a negaƟve soluƟon that resulted from our quadraƟc equaƟon.)
We have found that the bb lands Ϯ.Ϭϯs aŌer firing; with t = Ϯ.Ϭϯ, we find

the x-component of our posiƟon funcƟon is ϯϰϲ.ϲϳ(Ϯ.Ϭϯ) = ϳϬϯ.ϳϰŌ. The bb
lands about ϳϬϰ feet away.

Example ϯϳϲ ProjecƟle MoƟon
Alex holds his sister’s bb gun at a height of ϯŌ and wants to shoot a target that
is ϲŌ above the ground, ϮϱŌ away. At what angle should he hold the gun to hit
his target? (We sƟll assume the muzzle velocity is ϯϱϬŌ/s.)

SÊ½çã®ÊÄ The posiƟon funcƟon for the path of Alex’s bb is

r⃗(t) =
⟨
(ϯϱϬ cos θ)t,−ϭϲtϮ + (ϯϱϬ sin θ)t+ ϯ

⟩
.

We need to find θ so that r⃗(t) = ⟨Ϯϱ, ϲ⟩ for some value of t. That is, we want to
find θ and t such that

(ϯϱϬ cos θ)t = Ϯϱ and − ϭϲtϮ + (ϯϱϬ sin θ)t+ ϯ = ϲ.

This is not trivial (though not “hard”). We start by solving each equaƟon for cos θ
and sin θ, respecƟvely.

cos θ =
Ϯϱ
ϯϱϬt

and sin θ =
ϯ+ ϭϲtϮ

ϯϱϬt
.

Using the Pythagorean IdenƟty cosϮ θ + sinϮ θ = ϭ, we have
(

Ϯϱ
ϯϱϬt

)Ϯ

+

(
ϯ+ ϭϲtϮ

ϯϱϬt

)Ϯ

= ϭ

MulƟply both sides by (ϯϱϬt)Ϯ:

ϮϱϮ + (ϯ+ ϭϲtϮ)Ϯ = ϯϱϬϮtϮ

Ϯϱϲtϰ − ϭϮϮ, ϰϬϰtϮ + ϲϯϰ = Ϭ.

Notes:

ϲϰϵ
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This is a quadraƟc in tϮ. That is, we can apply the quadraƟc formula to find tϮ,
then solve for t itself.

tϮ =
ϭϮϮ, ϰϬϰ±

√

ϭϮϮ, ϰϬϰϮ − ϰ(Ϯϱϲ)(ϲϯϰ)
ϱϭϮ

tϮ = Ϭ.ϬϬϱϮ, ϰϳϴ.ϭϯϱ
t = ±Ϭ.ϬϳϮ, ±Ϯϭ.ϴϲϲ

Clearly the negaƟve t values do not fit our context, so we have t = Ϭ.ϬϳϮ and
t = Ϯϭ.ϴϲϲ. Using cos θ = Ϯϱ/(ϯϱϬt), we can solve for θ:

θ = cos−ϭ
(

Ϯϱ
ϯϱϬ · Ϭ.ϬϳϮ

)

and cos−ϭ
(

Ϯϱ
ϯϱϬ · Ϯϭ.ϴϲϲ

)

θ = ϳ.Ϭϯ◦ and ϴϵ.ϴ◦.

Alex has two choices of angle. He can hold the rifle at an angle of about ϳ◦ with
the horizontal and hit his target Ϭ.Ϭϳs aŌer firing, or he can hold his rifle almost
straight up, with an angle of ϴϵ.ϴ◦, where he’ll hit his target about ϮϮs later. The
first opƟon is clearly the opƟon he should choose.

Distance Traveled

Consider a driver who sets her cruise–control to ϲϬmph, and travels at this
speed for an hour. We can ask:

ϭ. How far did the driver travel?

Ϯ. How far from her starƟng posiƟon is the driver?

The first is easy to answer: she traveled ϲϬ miles. The second is impossible to
answer with the given informaƟon. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || v⃗(t) ||.

Theorem ϵϲ Distance Traveled

Let v⃗(t) be a velocity funcƟon for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a
|| v⃗(t) || dt.

Note that this is just a restatement of Theorem ϵϱ: arc length is the same as dis-
tance traveled, just viewed in a different context.

Notes:

ϲϱϬ



Figure ϭϭ.ϭϵ: The path of the parƟcle in
Example ϯϳϳ.

ϭϭ.ϯ The Calculus of MoƟon

Example ϯϳϳ Distance Traveled, Displacement, and Average Speed
AparƟclemoves in spacewith posiƟon funcƟon r⃗(t) =

⟨
t, tϮ, sin(πt)

⟩
on [−Ϯ, Ϯ],

where t is measured in seconds and distances are in meters. Find:

ϭ. The distance traveled by the parƟcle on [−Ϯ, Ϯ].

Ϯ. The displacement of the parƟcle on [−Ϯ, Ϯ].

ϯ. The parƟcle’s average speed.

SÊ½çã®ÊÄ

ϭ. We use Theorem ϵϲ to establish the integral:

distance traveled =

∫ Ϯ

−Ϯ
|| v⃗(t) || dt

=

∫ Ϯ

−Ϯ

√

ϭ+ (Ϯt)Ϯ + πϮ cosϮ(πt) dt.

This cannot be solved in terms of elementary funcƟons so we turn to nu-
merical integraƟon, finding the distance to be ϭϮ.ϴϴm.

Ϯ. The displacement is the vector

r⃗(Ϯ)− r⃗(−Ϯ) = ⟨Ϯ, ϰ, Ϭ⟩ − ⟨−Ϯ, ϰ, Ϭ⟩ = ⟨ϰ, Ϭ, Ϭ⟩ .

That is, the parƟcle ends with an x-value increased by ϰ and with y- and
z-values the same (see Figure ϭϭ.ϭϵ).

ϯ. We found above that the parƟcle traveled ϭϮ.ϴϴmover ϰ seconds. We can
compute average speed by dividing: ϭϮ.ϴϴ/ϰ = ϯ.ϮϮm/s.
We should also consider DefiniƟon ϮϮ of SecƟon ϱ.ϰ, which says that the
average value of a funcƟon f on [a, b] is ϭ

b−a

∫ b
a f(x) dx. In our context, the

average value of the speed is

average speed =
ϭ

Ϯ− (−Ϯ)

∫ Ϯ

−Ϯ
|| v⃗(t) || dt ≈ ϭ

ϰ
ϭϮ.ϴϴ = ϯ.ϮϮm/s.

Note how the physical context of a parƟcle traveling gives meaning to a
more abstract concept learned earlier.

In DefiniƟon ϮϮ of Chapter ϱ we defined the average value of a funcƟon f(x)
on [a, b] to be

ϭ
b− a

∫ b

a
f(x) dx.

Notes:

ϲϱϭ
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Note how in Example ϯϳϳ we computed the average speed as

distance traveled
travel Ɵme

=
ϭ

Ϯ− (−Ϯ)

∫ Ϯ

−Ϯ
|| v⃗(t) || dt;

that is, we just found the average value of || v⃗(t) || on [−Ϯ, Ϯ].
Likewise, given posiƟon funcƟon r⃗(t), the average velocity on [a, b] is

displacement
travel Ɵme

=
ϭ

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

Key Idea ϱϰ Average Speed, Average Velocity

Let r⃗(t) be a conƟnuous posiƟon funcƟon on an open interval I contain-
ing a < b.

The average speed is:

distance traveled
travel Ɵme

=

∫ b
a || v⃗(t) || dt

b− a
=

ϭ
b− a

∫ b

a
|| v⃗(t) || dt.

The average velocity is:

displacement
travel Ɵme

=

∫ b
a r⃗ ′(t) dt
b− a

=
ϭ

b− a

∫ b

a
r⃗ ′(t) dt.

The next two secƟons invesƟgate more properƟes of the graphs of vector–
valued funcƟons and we’ll apply these new ideas to what we just learned about
moƟon.

Notes:

ϲϱϮ



Exercises ϭϭ.ϯ
Terms and Concepts

ϭ. How is velocity different from speed?

Ϯ. What is the difference between displacement and distance
traveled?

ϯ. What is the difference between average velocity and aver-
age speed?

ϰ. Distance traveled is the same as , just
viewed in a different context.

ϱ. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

ϲ. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises ϳ – ϭϬ , a posiƟon funcƟon r⃗(t) is given. Find v⃗(t)
and a⃗(t).

ϳ. r⃗(t) = ⟨Ϯt+ ϭ, ϱt− Ϯ, ϳ⟩

ϴ. r⃗(t) =
⟨

ϯtϮ − Ϯt+ ϭ,−tϮ + t+ ϭϰ
⟩

ϵ. r⃗(t) = ⟨cos t, sin t⟩

ϭϬ. r⃗(t) = ⟨t/ϭϬ,− cos t, sin t⟩

In Exercises ϭϭ – ϭϰ , a posiƟon funcƟon r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(tϬ) and a⃗(tϬ) to your sketch, with their iniƟal points at r⃗(tϬ),
for the given value of tϬ.

ϭϭ. r⃗(t) = ⟨t, sin t⟩ on [Ϭ, π/Ϯ]; tϬ = π/ϰ

ϭϮ. r⃗(t) =
⟨

tϮ, sin tϮ
⟩

on [Ϭ, π/Ϯ]; tϬ =
√

π/ϰ

ϭϯ. r⃗(t) =
⟨

tϮ + t,−tϮ + Ϯt
⟩

on [−Ϯ, Ϯ]; tϬ = ϭ

ϭϰ. r⃗(t) =
⟨

Ϯt+ ϯ
tϮ + ϭ

, tϮ
⟩

on [−ϭ, ϭ]; tϬ = Ϭ

In Exercises ϭϱ – Ϯϰ , a posiƟon funcƟon r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

ϭϱ. r⃗(t) =
⟨

tϮ, t
⟩

on [−ϭ, ϭ]

ϭϲ. r⃗(t) =
⟨

tϮ, tϮ − tϯ
⟩

on [−ϭ, ϭ]

ϭϳ. r⃗(t) = ⟨ϱ cos t, ϱ sin t⟩ on [Ϭ, Ϯπ]

ϭϴ. r⃗(t) = ⟨Ϯ cos t, ϱ sin t⟩ on [Ϭ, Ϯπ]

ϭϵ. r⃗(t) = ⟨sec t, tan t⟩ on [Ϭ, π/ϰ]

ϮϬ. r⃗(t) = ⟨t+ cos t, ϭ− sin t⟩ on [Ϭ, Ϯπ]

Ϯϭ. r⃗(t) = ⟨ϭϮt, ϱ cos t, ϱ sin t⟩ on [Ϭ, ϰπ]

ϮϮ. r⃗(t) =
⟨

tϮ − t, tϮ + t, t
⟩

on [Ϭ, ϭ]

Ϯϯ. r⃗(t) =
⟨

t, tϮ,
√
ϭ− tϮ

⟩

on [−ϭ, ϭ]

Ϯϰ. ProjecƟleMoƟon: r⃗(t) =
⟨

(vϬ cos θ)t,−
ϭ
Ϯ
gtϮ + (vϬ sin θ)t

⟩

on
[

Ϭ,
ϮvϬ sin θ

g

]

In Exercises Ϯϱ – Ϯϴ , posiƟon funcƟons r⃗ϭ(t) and r⃗Ϯ(s) for two
objects are given that follow the same path on the respecƟve
intervals.

(a) Show that the posiƟons are the same at the indicated
tϬ and sϬ values; i.e., show r⃗ϭ(tϬ) = r⃗Ϯ(sϬ).

(b) Find the velocity, speed and acceleraƟon of the two
objects at tϬ and sϬ, respecƟvely.

Ϯϱ. r⃗ϭ(t) =
⟨

t, tϮ
⟩

on [Ϭ, ϭ]; tϬ = ϭ
r⃗Ϯ(s) =

⟨

sϮ, sϰ
⟩

on [Ϭ, ϭ]; sϬ = ϭ

Ϯϲ. r⃗ϭ(t) = ⟨ϯ cos t, ϯ sin t⟩ on [Ϭ, Ϯπ]; tϬ = π/Ϯ
r⃗Ϯ(s) = ⟨ϯ cos(ϰs), ϯ sin(ϰs)⟩ on [Ϭ, π/Ϯ]; sϬ = π/ϴ

Ϯϳ. r⃗ϭ(t) = ⟨ϯt, Ϯt⟩ on [Ϭ, Ϯ]; tϬ = Ϯ
r⃗Ϯ(s) = ⟨ϲt− ϲ, ϰt− ϰ⟩ on [ϭ, Ϯ]; sϬ = Ϯ

Ϯϴ. r⃗ϭ(t) =
⟨

t,
√
t
⟩

on [Ϭ, ϭ]; tϬ = ϭ
r⃗Ϯ(s) =

⟨

sin t,
√
sin t

⟩

on [Ϭ, π/Ϯ]; sϬ = π/Ϯ

In Exercises Ϯϵ – ϯϮ , find the posiƟon funcƟon of an object
given its acceleraƟon and iniƟal velocity and posiƟon.

Ϯϵ. a⃗(t) = ⟨Ϯ, ϯ⟩; v⃗(Ϭ) = ⟨ϭ, Ϯ⟩, r⃗(Ϭ) = ⟨ϱ,−Ϯ⟩

ϯϬ. a⃗(t) = ⟨Ϯ, ϯ⟩; v⃗(ϭ) = ⟨ϭ, Ϯ⟩, r⃗(ϭ) = ⟨ϱ,−Ϯ⟩

ϯϭ. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(Ϭ) = ⟨Ϭ, ϭ⟩, r⃗(Ϭ) = ⟨Ϭ, Ϭ⟩

ϯϮ. a⃗(t) = ⟨Ϭ,−ϯϮ⟩; v⃗(Ϭ) = ⟨ϭϬ, ϱϬ⟩, r⃗(Ϭ) = ⟨Ϭ, Ϭ⟩

In Exercises ϯϯ – ϯϲ , find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

ϯϯ. An object with posiƟon funcƟon r⃗(t) = ⟨Ϯ cos t, Ϯ sin t, ϯt⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [Ϭ, Ϯπ].

ϲϱϯ



ϯϰ. An object with posiƟon funcƟon r⃗(t) = ⟨ϱ cos t,−ϱ sin t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [Ϭ, π].

ϯϱ. An object with velocity funcƟon v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and Ɵme is in seconds, on
[Ϭ, Ϯπ].

ϯϲ. An object with velocity funcƟon v⃗(t) = ⟨ϭ, Ϯ,−ϭ⟩, where
distances are measured in feet and Ɵme is in seconds, on
[Ϭ, ϭϬ].

Exercises ϯϳ – ϰϮ ask you to solve a variety of problems based
on the principles of projecƟle moƟon.

ϯϳ. A boy whirls a ball, aƩached to a ϯŌ string, above his head
in a counter–clockwise circle. The ball makes Ϯ revoluƟons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing ϭϬŌ in front of
him?

ϯϴ. David faces Goliath with only a stone in a ϯŌ sling, which
he whirls above his head at ϰ revoluƟons per second. They
stand ϮϬŌ apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of ϲŌ
and Goliath’s forehead is ϵŌ above the ground. What
angle of elevaƟonmustDavid apply to the stone to hit
Goliath’s head?

ϯϵ. A hunter aims at a deer which is ϰϬ yards away. Her cross-
bow is at a height of ϱŌ, and she aims for a spot on the
deer ϰŌ above the ground. The crossbow fires her arrows
at ϯϬϬŌ/s.

(a) At what angle of elevaƟon should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of ϮϬmph, by approximately howmuch
should she lead the deer in order to hit it in the de-
sired locaƟon?

ϰϬ. A baseball player hits a ball at ϭϬϬmph, with an iniƟal height
of ϯŌ and an angle of elevaƟon of ϮϬ◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall ϯϳŌ high located ϯϭϬŌ from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevaƟon is Ϯϭ◦, the ball
clears the Green Monster.

ϰϭ. A Cessna flies at ϭϬϬϬŌ at ϭϱϬmph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

ϰϮ. A football quarterback throws a pass from a height of ϲŌ,
intending to hit his receiver ϮϬyds away at a height of ϱŌ.

(a) If the ball is thrown at a rate of ϱϬmph, what angle of
elevaƟon is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevaƟon of
ϴ◦, what iniƟal ball speed is needed to hit his target?

ϲϱϰ



Figure ϭϭ.ϮϬ: Ploƫng unit tangent vec-
tors in Example ϯϳϴ.

ϭϭ.ϰ Unit Tangent and Normal Vectors

ϭϭ.ϰ Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector–valued funcƟon r⃗(t), we defined in DefiniƟon ϳϭ that
any vector parallel to r⃗ ′(tϬ) is tangent to the graph of r⃗(t) at t = tϬ. It is oŌen
useful to consider just the direcƟon of r⃗ ′(t) and not its magnitude. Therefore
we are interested in the unit vector in the direcƟon of r⃗ ′(t). This leads to a
definiƟon.

DefiniƟon ϳϰ Unit Tangent Vector

Let r⃗(t) be a smooth funcƟon on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
ϭ

|| r⃗ ′(t) ||
r⃗ ′(t).

Example ϯϳϴ CompuƟng the unit tangent vector
Let r⃗(t) = ⟨ϯ cos t, ϯ sin t, ϰt⟩. Find T⃗(t) and compute T⃗(Ϭ) and T⃗(ϭ).

SÊ½çã®ÊÄ We apply DefiniƟon ϳϰ to find T⃗(t).

T⃗(t) =
ϭ

|| r⃗ ′(t) ||
r⃗ ′(t)

=
ϭ

√
(
− ϯ sin t

)Ϯ
+
(
ϯ cos t

)Ϯ
+ ϰϮ

⟨−ϯ sin t, ϯ cos t, ϰ⟩

=

⟨

−ϯ
ϱ
sin t,

ϯ
ϱ
cos t,

ϰ
ϱ

⟩

.

We can now easily compute T⃗(Ϭ) and T⃗(ϭ):

T⃗(Ϭ) =
⟨

Ϭ,
ϯ
ϱ
,
ϰ
ϱ

⟩

; T⃗(ϭ) =
⟨

−ϯ
ϱ
sin ϭ,

ϯ
ϱ
cos ϭ,

ϰ
ϱ

⟩

≈ ⟨−Ϭ.ϱϬϱ, Ϭ.ϯϮϰ, Ϭ.ϴ⟩ .

These are ploƩed in Figure ϭϭ.ϮϬwith their iniƟal points at r⃗(Ϭ) and r⃗(ϭ), respec-
Ɵvely. (They look rather “short” since they are only length ϭ.)

The unit tangent vector T⃗(t) always has a magnitude of ϭ, though it is some-
Ɵmes easy to doubt that is true. We can help solidify this thought in our minds
by compuƟng || T⃗(ϭ) ||:

|| T⃗(ϭ) || ≈
√

(−Ϭ.ϱϬϱ)Ϯ + Ϭ.ϯϮϰϮ + Ϭ.ϴϮ = ϭ.ϬϬϬϬϬϭ.

Notes:

ϲϱϱ
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Figure ϭϭ.Ϯϭ: Ploƫng unit tangent vec-
tors in Example ϯϳϵ.
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Figure ϭϭ.ϮϮ: Given a direcƟon in the
plane, there are always two direcƟons or-
thogonal to it.

Note: T⃗(t) is a unit vector, by definiƟon.
This does not imply that T⃗ ′(t) is also a unit
vector.

Chapter ϭϭ Vector Valued FuncƟons

We have rounded in our computaƟon of T⃗(ϭ), so we don’t get ϭ exactly. We
leave it to the reader to use the exact representaƟon of T⃗(ϭ) to verify it has
length ϭ.

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length ϱ. In the next example the length of r⃗ ′(t) is variable, leav-
ing us with a formula that is not as clean.

Example ϯϳϵ CompuƟng the unit tangent vector
Let r⃗(t) =

⟨
tϮ − t, tϮ + t

⟩
. Find T⃗(t) and compute T⃗(Ϭ) and T⃗(ϭ).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨Ϯt− ϭ, Ϯt+ ϭ⟩, and

|| r⃗ ′(t) || =
√

(Ϯt− ϭ)Ϯ + (Ϯt+ ϭ)Ϯ =
√

ϴtϮ + Ϯ.

Therefore

T⃗(t) =
ϭ√

ϴtϮ + Ϯ
⟨Ϯt− ϭ, Ϯt+ ϭ⟩ =

⟨
Ϯt− ϭ√
ϴtϮ + Ϯ

,
Ϯt+ ϭ√
ϴtϮ + Ϯ

⟩

.

When t = Ϭ, we have T⃗(Ϭ) =
⟨
−ϭ/

√
Ϯ, ϭ/

√
Ϯ
⟩
; when t = ϭ, we have T⃗(ϭ) =

⟨
ϭ/

√
ϭϬ, ϯ/

√
ϭϬ
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are ploƩed in Figure ϭϭ.Ϯϭ

Unit Normal Vector

Just as knowing the direcƟon tangent to a path is important, knowing a direc-
Ɵon orthogonal to a path is important. When dealingwith real-valued funcƟons,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued funcƟons. Given r⃗(t) inRϮ, we have Ϯ direcƟons perpendic-
ular to the tangent vector, as shown in Figure ϭϭ.ϮϮ. It is good to wonder “Is one
of these two direcƟons preferable over the other?”

Given r⃗(t) in Rϯ, there are infinite vectors orthogonal to the tangent vec-
tor at a given point. Again, we might wonder “Is one of these infinite choices
preferable over the others? Is one of these the ‘right’ choice?”

The answer in both RϮ and Rϯ is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem ϵϯ, which states that
if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direcƟon, we define this newly found vector to be a unit vector.

Notes:

ϲϱϲ



Figure ϭϭ.Ϯϯ: Ploƫng unit tangent and
normal vectors in Example ϭϭ.Ϯϯ.

ϭϭ.ϰ Unit Tangent and Normal Vectors

DefiniƟon ϳϱ Unit Normal Vector

Let r⃗(t) be a vector–valued funcƟon where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
ϭ

|| T⃗ ′(t) ||
T⃗ ′(t).

Example ϯϴϬ CompuƟng the unit normal vector
Let r⃗(t) = ⟨ϯ cos t, ϯ sin t, ϰt⟩ as in Example ϯϳϴ. Sketch both T⃗(π/Ϯ) and N⃗(π/Ϯ)
with iniƟal points at r⃗(π/Ϯ).

SÊ½çã®ÊÄ In Example ϯϳϴ, we found T⃗(t) =
⟨

(−ϯ/ϱ) sin t, (ϯ/ϱ) cos t, ϰ/ϱ
⟩

.
Therefore

T⃗ ′(t) =
⟨

−ϯ
ϱ
cos t,−ϯ

ϱ
sin t, Ϭ

⟩

and || T⃗ ′(t) || = ϯ
ϱ
.

Thus

N⃗(t) =
T⃗ ′(t)
ϯ/ϱ

= ⟨− cos t,− sin t, Ϭ⟩ .

We compute T⃗(π/Ϯ) = ⟨−ϯ/ϱ, Ϭ, ϰ/ϱ⟩ and N⃗(π/Ϯ) = ⟨Ϭ,−ϭ, Ϭ⟩. These are
sketched in Figure ϭϭ.Ϯϯ.

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fracƟons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

Example ϯϴϭ CompuƟng the unit normal vector
Let r⃗(t) =

⟨
tϮ − t, tϮ + t

⟩
as in Example ϯϳϵ. Find N⃗(t) and sketch r⃗(t) with the

unit tangent and normal vectors at t = −ϭ, Ϭ and ϭ.

SÊ½çã®ÊÄ In Example ϯϳϵ, we found

T⃗(t) =
⟨

Ϯt− ϭ√
ϴtϮ + Ϯ

,
Ϯt+ ϭ√
ϴtϮ + Ϯ

⟩

.

Finding T⃗ ′(t) requires two applicaƟons of the QuoƟent Rule:

Notes:

ϲϱϳ
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Figure ϭϭ.Ϯϰ: Ploƫng unit tangent and
normal vectors in Example ϯϴϭ.

Chapter ϭϭ Vector Valued FuncƟons

T ′(t) =

⟨√
ϴtϮ + Ϯ(Ϯ)− (Ϯt− ϭ)

( ϭ
Ϯ (ϴt

Ϯ + Ϯ)−ϭ/Ϯ(ϭϲt)
)

ϴtϮ + Ϯ
,

√
ϴtϮ + Ϯ(Ϯ)− (Ϯt+ ϭ)

( ϭ
Ϯ (ϴt

Ϯ + Ϯ)−ϭ/Ϯ(ϭϲt)
)

ϴtϮ + Ϯ

⟩

=

⟨

ϰ(Ϯt+ ϭ)

(ϴtϮ + Ϯ)ϯ/Ϯ
,

ϰ(ϭ− Ϯt)
(ϴtϮ + Ϯ)ϯ/Ϯ

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

|| T⃗ ′(t) || =
√

ϭϲ(Ϯt+ ϭ)Ϯ

(ϴtϮ + Ϯ)ϯ
+

ϭϲ(ϭ− Ϯt)Ϯ

(ϴtϮ + Ϯ)ϯ

=

√

ϭϲ(ϴtϮ + Ϯ)
(ϴtϮ + Ϯ)ϯ

=
ϰ

ϴtϮ + Ϯ
.

Finally,

N⃗(t) =
ϭ

ϰ/(ϴtϮ + Ϯ)

⟨

ϰ(Ϯt+ ϭ)

(ϴtϮ + Ϯ)ϯ/Ϯ
,

ϰ(ϭ− Ϯt)
(ϴtϮ + Ϯ)ϯ/Ϯ

⟩

=

⟨
Ϯt+ ϭ√
ϴtϮ + Ϯ

,− Ϯt− ϭ√
ϴtϮ + Ϯ

⟩

.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −ϭ, Ϭ and ϭ and sketch them in Figure ϭϭ.Ϯϰ.

The final result for N⃗(t) in Example ϯϴϭ is suspiciously similar to T⃗(t). There
is a clear reason for this. If u⃗ = ⟨uϭ, uϮ⟩ is a unit vector in RϮ, then the only unit
vectors orthogonal to u⃗ are ⟨−uϮ, uϭ⟩ and ⟨uϮ,−uϭ⟩. Given T⃗(t), we can quickly
determine N⃗(t) if we know which term to mulƟply by (−ϭ).

Consider again Figure ϭϭ.Ϯϰ, where we have ploƩed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direcƟon that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:

ϲϱϴ



Note: Keep in mind that both aT and
aN are funcƟons of t; that is, the scalar
changes depending on t. It is convenƟon
to drop the “(t)” notaƟon from aT(t) and
simply write aT.

ϭϭ.ϰ Unit Tangent and Normal Vectors

Theorem ϵϳ Unit Normal Vectors in RϮ

Let r⃗(t) be a vector–valued funcƟon in RϮ where T⃗ ′(t) is smooth on an
open interval I. Let tϬ be in I and T⃗(tϬ) = ⟨tϭ, tϮ⟩ Then N⃗(tϬ) is either

N⃗(tϬ) = ⟨−tϮ, tϭ⟩ or N⃗(tϬ) = ⟨tϮ,−tϭ⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

ApplicaƟon to AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon. It is a fact (stated later in Theorem ϵϴ) that
acceleraƟon, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are scalars
aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

The scalar aT measures “howmuch” acceleraƟon is in the direcƟon of travel, that
is, it measures the component of acceleraƟon that affects the speed. The scalar
aNmeasures “howmuch” acceleraƟon is perpendicular to the direcƟon of travel,
that is, it measures the component of acceleraƟon that affects the direcƟon of
travel.

We can find aT using the orthogonal projecƟon of a⃗(t) onto T⃗(t) (review Def-
iniƟon ϱϵ in SecƟon ϭϬ.ϯ if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = ϭ, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(
a⃗(t) · T⃗(t)

)

︸ ︷︷ ︸

aT

T⃗(t).

Thus the amount of a⃗(t) in the direcƟon of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compuƟng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Notes:

ϲϱϵ
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Theorem ϵϴ AcceleraƟon in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a posiƟon funcƟon with acceleraƟon a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(

|| v⃗(t) ||
)

aN = a⃗(t) · N⃗(t) =
√

|| a⃗(t) ||Ϯ − aϮT =
|| a⃗(t)× v⃗(t) ||

|| v⃗(t) || = || v⃗(t) || || T⃗ ′(t) ||

Note the second formula for aT:
d
dt

(

|| v⃗(t) ||
)

. This measures the rate of
change of speed, which again is the amount of acceleraƟon in the direcƟon of
travel.

Example ϯϴϮ CompuƟng aT and aN
Let r⃗(t) = ⟨ϯ cos t, ϯ sin t, ϰt⟩ as in Examples ϯϳϴ and ϯϴϬ. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−ϯ cos t,−ϯ sin t, Ϭ⟩
and

T⃗(t) =
⟨

−ϯ
ϱ
sin t,

ϯ
ϱ
cos t,

ϰ
ϱ

⟩

and N⃗(t) = ⟨− cos t,− sin t, Ϭ⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = ϵ
ϱ
cos t sin t− ϵ

ϱ
cos t sin t+ Ϭ = Ϭ.

aN = a⃗(t) · N⃗(t) = ϯ cosϮ t+ ϯ sinϮ t+ Ϭ = ϯ.

Thus a⃗(t) = Ϭ⃗T(t) + ϯN⃗(t) = ϯN⃗(t), which is clearly the case.
What is the pracƟcal interpretaƟon of these numbers? aT = Ϭ means the

object is moving at a constant speed, and hence all acceleraƟon comes in the
form of direcƟon change.

Example ϯϴϯ CompuƟng aT and aN
Let r⃗(t) =

⟨
tϮ − t, tϮ + t

⟩
as in Examples ϯϳϵ and ϯϴϭ. Find aT and aN.

Notes:
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Figure ϭϭ.Ϯϱ: Graphing r⃗(t) in Example
ϯϴϯ.
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Figure ϭϭ.Ϯϲ: Ploƫng the posiƟon of a
thrown ball, with ϭs increments shown.

ϭϭ.ϰ Unit Tangent and Normal Vectors

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨Ϯ, Ϯ⟩ and

T⃗(t) =
⟨

Ϯt− ϭ√
ϴtϮ + Ϯ

,
Ϯt+ ϭ√
ϴtϮ + Ϯ

⟩

and N⃗(t) =
⟨

Ϯt+ ϭ√
ϴtϮ + Ϯ

,− Ϯt− ϭ√
ϴtϮ + Ϯ

⟩

.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem ϵϴ.

aT = a⃗(t) · T⃗(t) = ϰt− Ϯ√
ϴtϮ + Ϯ

+
ϰt+ Ϯ√
ϴtϮ + Ϯ

=
ϴt√

ϴtϮ + Ϯ
.

aN =
√

|| a⃗(t) ||Ϯ − aϮT =

√

ϴ−
(

ϴt√
ϴtϮ + Ϯ

)Ϯ

=
ϰ√

ϴtϮ + Ϯ
.

When t = Ϯ, aT =
ϭϲ√
ϯϰ

≈ Ϯ.ϳϰ and aN =
ϰ√
ϯϰ

≈ Ϭ.ϲϵ. We interpret this to

mean that at t = Ϯ, the parƟcle is accleraƟng mostly by increasing speed, not
by changing direcƟon. As the path near t = Ϯ is relaƟvely straight, this should
make intuiƟve sense. Figure ϭϭ.Ϯϱ gives a graph of the path for reference.

Contrast this with t = Ϭ, where aT = Ϭ and aN = ϰ/
√
Ϯ ≈ Ϯ.ϴϮ. Here the

parƟcle’s speed is not changing and all acceleraƟon is in the form of direcƟon
change.

Example ϯϴϰ Analyzing projecƟle moƟon
A ball is thrown from a height of ϮϰϬŌwith an iniƟal speed of ϲϰŌ/s and an angle
of elevaƟon of ϯϬ◦. Find the posiƟon funcƟon r⃗(t) of the ball and analyze aT and
aN.

SÊ½çã®ÊÄ Using Key Idea ϱϯ of SecƟon ϭϭ.ϯ we form the posiƟon func-
Ɵon of the ball:

r⃗(t) =
⟨(
ϲϰ cos ϯϬ◦

)
t,−ϭϲtϮ +

(
ϲϰ sin ϯϬ◦

)
t+ ϮϰϬ

⟩
,

which we plot in Figure ϭϭ.Ϯϲ.
From thiswefind v⃗(t) = ⟨ϲϰ cos ϯϬ◦,−ϯϮt+ ϲϰ sin ϯϬ◦⟩ and a⃗(t) = ⟨Ϭ,−ϯϮ⟩.

CompuƟng T⃗(t) is not difficult, and with some simplificaƟon we find

T⃗(t) =
⟨ √

ϯ√
tϮ − Ϯt+ ϰ

,
ϭ− t√

tϮ − Ϯt+ ϰ

⟩

.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = ϯϮt− ϯϮ√
tϮ − Ϯt+ ϰ

.

Notes:

ϲϲϭ



t aT aN
Ϭ −ϭϲ Ϯϳ.ϳ
ϭ Ϭ ϯϮ
Ϯ ϭϲ Ϯϳ.ϳ
ϯ Ϯϰ.Ϯ ϮϬ.ϵ
ϰ Ϯϳ.ϳ ϭϲ
ϱ Ϯϵ.ϰ ϭϮ.ϳ

Figure ϭϭ.Ϯϳ: A table of values of aT and
aN in Example ϯϴϰ.

Chapter ϭϭ Vector Valued FuncƟons

Wechoose to not find N⃗(t) andfindaN through the formulaaN =
√

|| a⃗(t) ||Ϯ − aϮT :

aN =

√

ϯϮϮ −
(

ϯϮt− ϯϮ√
tϮ − Ϯt+ ϰ

)Ϯ

=
ϯϮ

√
ϯ√

tϮ − Ϯt+ ϰ
.

Figure ϭϭ.Ϯϳ gives a table of values of aT and aN. When t = Ϭ, we see the
ball’s speed is decreasing; when t = ϭ the speed of the ball is unchanged. This
corresponds to the fact that at t = ϭ the ball reaches its highest point.

AŌer t = ϭ we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleraƟon is in the form of
speeding up the ball, and not in changing its direcƟon.

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of moƟon. The work in Example ϯϴϰ gave quanƟtaƟve analysis of
what we intuiƟvely knew.

The next secƟon provides two more important steps towards this analysis.
We currently describe posiƟon only in terms of Ɵme. In everyday life, though,
we oŌen describe posiƟon in terms of distance (“The gas staƟon is about Ϯmiles
ahead, on the leŌ.”). The arc length parameter allows us to reference posiƟon
in terms of distance traveled.

We also intuiƟvely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quanƟtaƟve
measurement of how curvy a curve is.

Notes:

ϲϲϮ



Exercises ϭϭ.ϰ
Terms and Concepts
ϭ. If T⃗(t) is a unit tangent vector, what is || T⃗(t) ||?

Ϯ. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

ϯ. The acceleraƟon vector a⃗(t) lies in the plane defined by
what two vectors?

ϰ. aT measures how much the acceleraƟon is affecƟng the
of an object.

Problems
In Exercises ϱ – ϴ , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

ϱ. r⃗(t) =
⟨

ϮtϮ, tϮ − t
⟩

, t = ϭ

ϲ. r⃗(t) = ⟨t, cos t⟩, t = π/ϰ

ϳ. r⃗(t) =
⟨

cosϯ t, sinϯ t
⟩

, t = π/ϰ

ϴ. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises ϵ – ϭϮ , find the equaƟon of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises ϱ –
ϴ.

ϵ. r⃗(t) =
⟨

ϮtϮ, tϮ − t
⟩

, t = ϭ

ϭϬ. r⃗(t) = ⟨t, cos t⟩, t = π/ϰ

ϭϭ. r⃗(t) =
⟨

cosϯ t, sinϯ t
⟩

, t = π/ϰ

ϭϮ. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises ϭϯ – ϭϲ , find N⃗(t) using DefiniƟon ϳϱ. Confirm
the result using Theorem ϵϳ.

ϭϯ. r⃗(t) = ⟨ϯ cos t, ϯ sin t⟩

ϭϰ. r⃗(t) =
⟨

t, tϮ
⟩

ϭϱ. r⃗(t) = ⟨cos t, Ϯ sin t⟩

ϭϲ. r⃗(t) =
⟨

et, e−t⟩

In Exercises ϭϳ – ϮϬ , a posiƟon funcƟon r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.

(b) Using a graph of r⃗(t) and Theorem ϵϳ, find N⃗(a).

ϭϳ. r⃗(t) = ⟨ϯ cos t, ϱ sin t⟩; T⃗(π/ϰ) =
⟨

− ϯ√
ϯϰ

,
ϱ√
ϯϰ

⟩

.

ϭϴ. r⃗(t) =
⟨

t,
ϭ

tϮ + ϭ

⟩

; T⃗(ϭ) =
⟨

Ϯ√
ϱ
,− ϭ√

ϱ

⟩

.

ϭϵ. r⃗(t) = (ϭ+ Ϯ sin t) ⟨cos t, sin t⟩; T⃗(Ϭ) =
⟨

Ϯ√
ϱ
,

ϭ√
ϱ

⟩

.

ϮϬ. r⃗(t) =
⟨

cosϯ t, sinϯ t
⟩

; T⃗(π/ϰ) =
⟨

− ϭ√
Ϯ
,

ϭ√
Ϯ

⟩

.

In Exercises Ϯϭ – Ϯϰ , find N⃗(t).

Ϯϭ. r⃗(t) = ⟨ϰt, Ϯ sin t, Ϯ cos t⟩

ϮϮ. r⃗(t) = ⟨ϱ cos t, ϯ sin t, ϰ sin t⟩

Ϯϯ. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > Ϭ

Ϯϰ. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises Ϯϱ – ϯϬ , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the relaƟve sizes of
aT and aN at the indicated t values.

Ϯϱ. r⃗(t) =
⟨

t, tϮ
⟩

on [−ϭ, ϭ]; consider t = Ϭ and t = ϭ.

Ϯϲ. r⃗(t) = ⟨t, ϭ/t⟩ on (Ϭ, ϰ]; consider t = ϭ and t = Ϯ.

Ϯϳ. r⃗(t) = ⟨Ϯ cos t, Ϯ sin t⟩ on [Ϭ, Ϯπ]; consider t = Ϭ and
t = π/Ϯ.

Ϯϴ. r⃗(t) =
⟨

cos(tϮ), sin(tϮ)
⟩

on (Ϭ, Ϯπ]; consider t =
√

π/Ϯ
and t =

√
π.

Ϯϵ. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [Ϭ, Ϯπ], where a, b > Ϭ; con-
sider t = Ϭ and t = π/Ϯ.

ϯϬ. r⃗(t) = ⟨ϱ cos t, ϰ sin t, ϯ sin t⟩ on [Ϭ, Ϯπ]; consider t = Ϭ
and t = π/Ϯ.

ϲϲϯ



.....−Ϯ. Ϯ. 4. 6.

Ϯ

.

4

.

6

.

t = Ϭ

.

t = ϭ

.

t = Ϯ

.

r⃗(t)

.
x

.

y

(a)

.....−Ϯ. Ϯ. ϰ. ϲ.

Ϯ

.

ϰ

.

ϲ

.

s = Ϭ

.

s = ϭ

.

s = Ϯ

.

s = ϯ

.

s = ϰ

.

s = ϱ

.

s = ϲ

.

r⃗(s)

.
x

.

y

(b)

Figure ϭϭ.Ϯϴ: Introducing the arc length
parameter.

Chapter ϭϭ Vector Valued FuncƟons

ϭϭ.ϱ The Arc Length Parameter and Curvature

In normal conversaƟon we describe posiƟon in terms of both Ɵme and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am ϮϬ minutes from your house,” or you might say “I
am ϭϬ miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued funcƟons have defined pointswith a parameter
t, whichwe oŌen take to represent Ɵme. Consider Figure ϭϭ.Ϯϴ(a), where r⃗(t) =
⟨
tϮ − t, tϮ + t

⟩
is graphed and the points corresponding to t = Ϭ, ϭ and Ϯ are

shown. Note how the arc length between t = Ϭ and t = ϭ is smaller than the
arc length between t = ϭ and t = Ϯ; if the parameter t is Ɵme and r⃗ is posiƟon,
we can say that the parƟcle traveled faster on [ϭ, Ϯ] than on [Ϭ, ϭ].

Now consider Figure ϭϭ.Ϯϴ(b), where the same graph is parametrized by a
different variable s. Points corresponding to s = Ϭ through s = ϲ are ploƩed.
The arc length of the graph between each adjacent pair of points is ϭ. We can
view this parameter s as distance; that is, the arc length of the graph from s = Ϭ
to s = ϯ is ϯ, the arc length from s = Ϯ to s = ϲ is ϰ, etc. If one wants to find the
point Ϯ.ϱ units from an iniƟal locaƟon (i.e., s = Ϭ), one would compute r⃗(Ϯ.ϱ).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrizaƟon of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [Ϭ, t] with

arc length =

∫ t

Ϭ
|| r⃗ ′(u) || du.

We can turn this into a funcƟon: as t varies, we find the arc length s from Ϭ to t.
This funcƟon is

s(t) =
∫ t

Ϭ
|| r⃗ ′(u) || du. (ϭϭ.ϭ)

This establishes a relaƟonship between s and t. Knowing this relaƟonship
explicitly, we can rewrite r⃗(t) as a funcƟon of s: r⃗(s). We demonstrate this in an
example.

Example ϯϴϱ Finding the arc length parameter
Let r⃗(t) = ⟨ϯt− ϭ, ϰt+ Ϯ⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using EquaƟon (ϭϭ.ϭ), we write

s(t) =
∫ t

Ϭ
|| r⃗ ′(u) || du.

Notes:
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Figure ϭϭ.Ϯϵ: Graphing r⃗ in Example ϯϴϱ
with parameters t and s.

ϭϭ.ϱ The Arc Length Parameter and Curvature

We can integrate this, explicitly finding a relaƟonship between s and t:

s(t) =
∫ t

Ϭ
|| r⃗ ′(u) || du

=

∫ t

Ϭ

√

ϯϮ + ϰϮ du

=

∫ t

Ϭ
ϱ du

= ϱt.

Since s = ϱt, we can write t = s/ϱ and replace t in r⃗(t) with s/ϱ:

r⃗(s) = ⟨ϯ(s/ϱ)− ϭ, ϰ(s/ϱ) + Ϯ⟩ =
⟨
ϯ
ϱ
s− ϭ,

ϰ
ϱ
s+ Ϯ

⟩

.

Clearly, as shown in Figure ϭϭ.Ϯϵ, the graph of r⃗ is a line, where t = Ϭ corre-
sponds to the point (−ϭ, Ϯ). What point on the line is Ϯ units away from this
iniƟal point? We find it with s(Ϯ) = ⟨ϭ/ϱ, ϭϴ/ϱ⟩.

Is the point (ϭ/ϱ, ϭϴ/ϱ) really Ϯ units away from (−ϭ, Ϯ)? We use the Dis-
tance Formula to check:

d =

√
(
ϭ
ϱ
− (−ϭ)

)Ϯ

+

(
ϭϴ
ϱ

− Ϯ
)Ϯ

=

√

ϯϲ
Ϯϱ

+
ϲϰ
Ϯϱ

=
√
ϰ = Ϯ.

Yes, s(Ϯ) is indeed Ϯ units away, in the direcƟon of travel, from the iniƟal point.

Things worked out very nicely in Example ϯϴϱ; we were able to establish
directly that s = ϱt. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integraƟng a square–root. There are a number
of things that we can learn about the arc length parameter from EquaƟon (ϭϭ.ϭ),
though, that are incredibly useful.

First, take the derivaƟve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem ϯϵ) states that

ds
dt

= s ′(t) = || r⃗ ′(t) ||. (ϭϭ.Ϯ)

Leƫng t represent Ɵme and r⃗(t) represent posiƟon, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuiƟon.

The Chain Rule states that
d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · || r⃗ ′(t) ||.

Notes:
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Figure ϭϭ.ϯϬ: Establishing the concept of
curvature.
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Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

|| r⃗ ′(t) || = T⃗(t), (ϭϭ.ϯ)

where T⃗(t) is the unit tangent vector. EquaƟon ϭϭ.ϯ is oŌen misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

Theorem ϵϵ Arc Length Parameter

Let r⃗(s) be a vector–valued funcƟon. The parameter s is the arc length
parameter if, and only if, || r⃗ ′(s) || = ϭ.

Curvature

Consider points A and B on the curve graphed in Figure ϭϭ.ϯϬ(a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure ϭϭ.ϯϬ(b), where
unit tangent vectors are graphed around points A and B. NoƟce how the direc-
Ɵon of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

DefiniƟon ϳϲ Curvature

Let r⃗(s) be a vector–valued funcƟon where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

d⃗T
ds

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=
∣
∣
∣
∣ T⃗ ′(s)

∣
∣
∣
∣ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

|| r⃗ ′(s) || and N⃗(s) =
T⃗ ′(s)

|| T⃗ ′(s) ||
.

Notes:
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ϭϭ.ϱ The Arc Length Parameter and Curvature

Having defined || T⃗ ′(s) || = κ, we can rewrite the second equaƟon as

T⃗ ′(s) = κN⃗(s). (ϭϭ.ϰ)

We already knew that T⃗ ′(s) is in the same direcƟon as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direcƟon of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direcƟon of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direcƟon is not changing rapidly.

We use DefiniƟon ϳϲ to find the curvature of the line in Example ϯϴϱ.

Example ϯϴϲ Finding the curvature of a line
Use DefiniƟon ϳϲ to find the curvature of r⃗(t) = ⟨ϯt− ϭ, ϰt+ Ϯ⟩.

SÊ½çã®ÊÄ In Example ϯϴϱ, we found that the arc length parameter was
defined by s = ϱt, so r⃗(s) = ⟨ϯt/ϱ− ϭ, ϰt/ϱ+ Ϯ⟩ parametrized r⃗ with the arc
length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨ϯ/ϱ, ϰ/ϱ⟩ .

Therefore

T⃗ ′(s) = ⟨Ϭ, Ϭ⟩

and

κ =
∣
∣
∣
∣ T⃗ ′(s)

∣
∣
∣
∣ = Ϭ.

It probably comes as no surprise that the curvature of a line is Ϭ. (How “curvy”
is a line? It is not curvy at all.)

While the definiƟon of curvature is a beauƟful mathemaƟcal concept, it is
nearly impossible to use most of the Ɵme; wriƟng r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culaƟng this value that are much easier. There is a tradeoff: the definiƟon is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though it may be hard to understand why they work.

Notes:
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Theorem ϭϬϬ Formulas for Curvature

Let C be a smooth curve on an open interval I in the plane or in space.

ϭ. If C is defined by y = f(x), then

κ =
|f ′′(x)|

(

ϭ+
(
f ′(x)

)Ϯ
)ϯ/Ϯ .

Ϯ. If C is defined as a vector–valued funcƟon in the plane, r⃗(t) =
⟨x(t), y(t)⟩, then

κ =
|x ′y ′′ − x ′′y ′|

(
(x ′)Ϯ + (y ′)Ϯ

)ϯ/Ϯ .

ϯ. If C is defined in space by a vector–valued funcƟon r⃗(t), then

κ =
|| T⃗ ′(t) ||
|| r⃗ ′(t) || =

|| r⃗ ′(t)× r⃗ ′′(t) ||
|| r⃗ ′(t) ||ϯ =

a⃗(t) · N⃗(t)
|| v⃗(t) ||Ϯ .

We pracƟce using these formulas.

Example ϯϴϳ Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by c⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem ϭϬϬ.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|

(
(−r sin t)Ϯ + (r cos t)Ϯ

)ϯ/Ϯ

=
rϮ(sinϮ t+ cosϮ t)

(
rϮ(sinϮ t+ cosϮ t)

)ϯ/Ϯ

=
rϮ

rϯ
=

ϭ
r
.

We have found that a circle with radius r has curvature κ = ϭ/r.

Notes:
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ϭϭ.ϱ The Arc Length Parameter and Curvature

Example ϯϴϳ gives a great result. Before this example, if we were told “The
curve has a curvature of ϱ at point A,” we would have no idea what this re-
ally meant. Is ϱ “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of ϱ in terms of a circle with radius ϭ/ϱ. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = ϭ/κ (hence has curvature κ)

is the osculaƟng circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure ϭϭ.ϯϭ shows the graph of the curve seen earlier in Figure ϭϭ.ϯϬ
and its osculaƟng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculaƟng” comes from a LaƟn word related to kissing; an osculaƟng cir-
cle “kisses” the graph at a parƟcular point. Many beauƟful ideas inmathemaƟcs
have come from studying the osculaƟng circles to a curve.)

Example ϯϴϴ Finding curvature
Find the curvature of the parabola defined by y = xϮ at the vertex and at x = ϭ.

SÊ½çã®ÊÄ We use the first formula found in Theorem ϭϬϬ.

κ(x) =
|Ϯ|

(
ϭ+ (Ϯx)Ϯ

)ϯ/Ϯ

=
Ϯ

(
ϭ+ ϰxϮ

)ϯ/Ϯ .

At the vertex (x = Ϭ), the curvature is κ = Ϯ. At x = ϭ, the curvature
is κ = Ϯ/(ϱ)ϯ/Ϯ ≈ Ϭ.ϭϳϵ. So at x = Ϭ, the curvature of y = xϮ is that of
a circle of radius ϭ/Ϯ; at x = ϭ, the curvature is that of a circle with radius
≈ ϭ/Ϭ.ϭϳϵ ≈ ϱ.ϱϵ. This is illustrated in Figure ϭϭ.ϯϮ. At x = ϯ, the curvature is
Ϭ.ϬϬϵ; the graph is nearly straight as the curvature is very close to Ϭ.

Notes:
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Figure ϭϭ.ϯϯ: Understanding the curva-
ture of a curve in space.
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Example ϯϴϵ Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, tϮ, Ϯtϯ

⟩
is maximized.

SÊ½çã®ÊÄ We use the third formula in Theorem ϭϬϬ as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
ϭ, Ϯt, ϲtϮ

⟩
, r⃗ ′′(t) = ⟨Ϭ, Ϯ, ϭϮt⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
ϭϮtϮ,−ϭϮt, Ϯ

⟩
.

Thus

κ(t) =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||ϯ

=
||
⟨
ϭϮtϮ,−ϭϮt, Ϯ

⟩
||

|| ⟨ϭ, Ϯt, ϲtϮ⟩ ||ϯ

=

√

ϭϰϰtϰ + ϭϰϰtϮ + ϰ
(√

ϭ+ ϰtϮ + ϯϲtϰ
)ϯ

While this is not a parƟcularly “nice” formula, it does explictly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = Ϭ for
t. This is doable, but very Ɵme consuming. Instead, consider the graph of κ(t)
as given in Figure ϭϭ.ϯϯ(a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±Ϭ.ϭϴϵ. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized.

Curvature and MoƟon

Let r⃗(t) be a posiƟon funcƟon of an object, with velocity v⃗(t) = r⃗ ′(t) and
acceleraƟon a⃗(t) = r⃗ ′′(t). In SecƟon ϭϭ.ϰ we established that acceleraƟon is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem ϵϴ gives formulas for aT and aN:

aT =
d
dt

(

|| v⃗(t) ||
)

and aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) || .

We understood that the amount of acceleraƟon in the direcƟon of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleraƟon
in the direcƟon of N⃗ relates to how the direcƟon of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = Ϭ; if the object travels
in a constant direcƟon, aN = Ϭ.)

Notes:
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Figure ϭϭ.ϯϰ: OperaƟng speed and mini-
mum radius in highway cloverleaf design.

ϭϭ.ϱ The Arc Length Parameter and Curvature

In EquaƟon (ϭϭ.Ϯ) at the beginning of this secƟon, we found s ′(t) = || v⃗(t) ||.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(

|| v⃗(t) ||
)

=
d
dt
(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
Ɵme. We see once more that the component of acceleraƟon in the direcƟon of
travel relates only to speed, not to a change in direcƟon.

Now compare the formula for aN above to the formula for curvature in The-
orem ϭϬϬ:

aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) || and κ =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||ϯ =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||ϯ .

Thus

aN = κ|| v⃗(t) ||Ϯ (ϭϭ.ϱ)

= κ
(

s ′(t)
)Ϯ

This last equaƟon shows that the component of acceleraƟon that changes
the object’s direcƟon is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up (i.e., increasing s ′(t)), the door pushes harder
against you (aN has increased). If you keep your speed constant but Ɵghten the
turn (i.e., increase κ), once again the door will push harder against you.

Puƫng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ|| v⃗(t) ||ϮN⃗(t).

This is not a parƟcularly pracƟcal way of finding aT and aN, but it reveals some
great concepts about how acceleraƟon interacts with speed and the shape of a
curve.

Example ϯϵϬ Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
operaƟng speed, as given in the table in Figure ϭϭ.ϯϰ. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using EquaƟon (ϭϭ.ϱ), we can compute the acceleraƟon
normal to the curve in each case. We start by converƟng each speed from “miles
per hour” to “feet per second” by mulƟplying by ϱϮϴϬ/ϯϲϬϬ.

Notes:
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ϯϱmph, ϯϭϬŌ ⇒ ϱϭ.ϯϯŌ/s, κ = ϭ/ϯϭϬ

aN = κ || v⃗(t) ||Ϯ

=
ϭ

ϯϭϬ
(
ϱϭ.ϯϯ

)Ϯ

= ϴ.ϱϬŌ/sϮ.

ϰϬmph, ϰϯϬŌ ⇒ ϱϴ.ϲϳŌ/s, κ = ϭ/ϰϯϬ

aN =
ϭ

ϰϯϬ
(
ϱϴ.ϲϳ

)Ϯ

= ϴ.ϬϬŌ/sϮ.

ϰϱmph,ϱϰϬŌ ⇒ ϲϲŌ/s, κ = ϭ/ϱϰϬ

aN =
ϭ

ϱϰϬ
(
ϲϲ
)Ϯ

= ϴ.ϬϳŌ/sϮ.

Note that each acceleraƟon is similar; this is by design. Considering the classic
“Force=mass× acceleraƟon” formula, this acceleraƟon must be kept small in
order for the Ɵres of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius ϯϭϬŌ at a rate of ϱϬmph, the acceleraƟon is double, at ϭϳ.ϯϱŌ/sϮ.
If the acceleraƟon is too high, the fricƟonal force created by the Ɵresmay not be
enough to keep the car from sliding. Civil engineers rouƟnely compute a “safe”
design speed, then subtract ϱ-ϭϬmph to create the posted speed limit for addi-
Ɵonal safety.

We end this chapter with a reflecƟon on what we’ve covered. We started
with vector–valued funcƟons, which may have seemed at the Ɵme to be just
another way of wriƟng parametric equaƟons. However, we have seen that the
vector perspecƟve has given us great insight into the behavior of funcƟons and
the study of moƟon. Vector–valued posiƟon funcƟons convey displacement,
distance traveled, speed, velocity, acceleraƟon and curvature informaƟon, each
of which has great importance in science and engineering.

Notes:
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Exercises ϭϭ.ϱ
Terms and Concepts

ϭ. It is common to describe posiƟon in terms of both
and/or .

Ϯ. A measure of the “curviness” of a curve is .

ϯ. Give two shapes with constant curvature.

ϰ. Describe in your own words what an “osculaƟng circle” is.

ϱ. Complete the idenƟty: T⃗ ′(s) = N⃗(s).

ϲ. Given a posiƟon funcƟon r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises ϳ – ϭϬ , a posiƟon funcƟon r⃗(t) is given, where
t = Ϭ corresponds to the iniƟal posiƟon. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

ϳ. r⃗(t) = ⟨Ϯt, t,−Ϯt⟩

ϴ. r⃗(t) = ⟨ϳ cos t, ϳ sin t⟩

ϵ. r⃗(t) = ⟨ϯ cos t, ϯ sin t, Ϯt⟩

ϭϬ. r⃗(t) = ⟨ϱ cos t, ϭϯ sin t, ϭϮ cos t⟩

In Exercises ϭϭ – ϮϮ , a curve C is described alongwith Ϯ points
on C.

(a) Using a sketch, determine at which of these points the
curvature is greater.

(b) Find the curvature κ of C, and evaluate κ at each of the
Ϯ given points.

ϭϭ. C is defined by y = xϯ − x; points given at x = Ϭ and
x = ϭ/Ϯ.

ϭϮ. C is defined by y =
ϭ

xϮ + ϭ
; points given at x = Ϭ and

x = Ϯ.

ϭϯ. C is defined by y = cos x; points given at x = Ϭ and
x = π/Ϯ.

ϭϰ. C is defined by y =
√
ϭ− xϮ on (−ϭ, ϭ); points given at

x = Ϭ and x = ϭ/Ϯ.

ϭϱ. C is defined by r⃗(t) = ⟨cos t, sin(Ϯt)⟩; points given at t = Ϭ
and t = π/ϰ.

ϭϲ. C is defined by r⃗(t) =
⟨

cosϮ t, sin t cos t
⟩

; points given at
t = Ϭ and t = π/ϯ.

ϭϳ. C is defined by r⃗(t) =
⟨

tϮ − ϭ, tϯ − t
⟩

; points given at t = Ϭ
and t = ϱ.

ϭϴ. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = Ϭ
and t = π/ϲ.

ϭϵ. C is defined by r⃗(t) = ⟨ϰt+ Ϯ, ϯt− ϭ, Ϯt+ ϱ⟩; points given
at t = Ϭ and t = ϭ.

ϮϬ. C is defined by r⃗(t) =
⟨

tϯ − t, tϯ − ϰ, tϮ − ϭ
⟩

; points given
at t = Ϭ and t = ϭ.

Ϯϭ. C is defined by r⃗(t) = ⟨ϯ cos t, ϯ sin t, Ϯt⟩; points given at
t = Ϭ and t = π/Ϯ.

ϮϮ. C is defined by r⃗(t) = ⟨ϱ cos t, ϭϯ sin t, ϭϮ cos t⟩; points
given at t = Ϭ and t = π/Ϯ.

In Exercises Ϯϯ – Ϯϲ , find the value of x or t where curvature
is maximized.

Ϯϯ. y =
ϭ
ϲ
xϯ

Ϯϰ. y = sin x

Ϯϱ. r⃗(t) =
⟨

tϮ + Ϯt, ϯt− tϮ
⟩

Ϯϲ. r⃗(t) = ⟨t, ϰ/t, ϯ/t⟩

In Exercises Ϯϳ – ϯϬ , find the radius of curvature at the indi-
cated value.

Ϯϳ. y = tan x, at x = π/ϰ

Ϯϴ. y = xϮ + x− ϯ, at x = π/ϰ

Ϯϵ. r⃗(t) = ⟨cos t, sin(ϯt)⟩, at t = Ϭ

ϯϬ. r⃗(t) = ⟨ϱ cos(ϯt), t⟩, at t = Ϭ

In Exercises ϯϭ – ϯϰ , find the equaƟon of the osculaƟng circle
to the curve at the indicated t-value.

ϯϭ. r⃗(t) =
⟨

t, tϮ
⟩

, at t = Ϭ

ϯϮ. r⃗(t) = ⟨ϯ cos t, sin t⟩, at t = Ϭ

ϯϯ. r⃗(t) = ⟨ϯ cos t, sin t⟩, at t = π/Ϯ

ϯϰ. r⃗(t) =
⟨

tϮ − t, tϮ + t
⟩

, at t = Ϭ

ϲϳϯ
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A funcƟon of the form y = f(x) is a funcƟon of a single variable; given a value
of x, we can find a value y. Even the vector–valued funcƟons of Chapter ϭϭ are
single–variable funcƟons; the input is a single variable though the output is a
vector.

There are many situaƟons where a desired quanƟty is a funcƟon of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s baƫng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mulƟvariable funcƟons, that is, funcƟons with more
than one input.

ϭϮ.ϭ IntroducƟon to MulƟvariable FuncƟons

DefiniƟon ϳϳ FuncƟon of Two Variables

LetD be a subset ofRϮ. A funcƟon f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

Example ϯϵϭ Understanding a funcƟon of two variables
Let z = f(x, y) = xϮ − y. Evaluate f(ϭ, Ϯ), f(Ϯ, ϭ), and f(−Ϯ, ϰ); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definiƟon f(x, y) = xϮ − y, we have:

f(ϭ, Ϯ) = ϭϮ − Ϯ = −ϭ

f(Ϯ, ϭ) = ϮϮ − ϭ = ϯ

f(−Ϯ, ϰ) = (−Ϯ)Ϯ − ϰ = Ϭ

The domain is not specified, so we take it to be all possible pairs in RϮ for which
f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is RϮ.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(Ϭ,−r) = r.) So the range
R of f is R.
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Figure ϭϮ.Ϯ: Graphing a funcƟon of two
variables.

Chapter ϭϮ FuncƟons of Several Variables

Example ϯϵϮ Understanding a funcƟon of two variables

Let f(x, y) =

√

ϭ− xϮ

ϵ
− yϮ

ϰ
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that Ϭ ≤ ϭ− xϮ

ϵ − yϮ
ϰ :

Ϭ ≤ ϭ− xϮ

ϵ
− yϮ

ϰ
xϮ

ϵ
+

yϮ

ϰ
≤ ϭ

The above equaƟon describes the interior of an ellipse as shown in Figure ϭϮ.ϭ.
We can represent the domain D graphically with the figure; in set notaƟon, we
can write D = {(x, y)| xϮ

ϵ + yϮ
ϰ ≤ ϭ}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ Ϭ. Since the x and y terms are squared, then subtracted, in-
side the square–root, the largest output value comes at x = Ϭ, y = Ϭ: f(Ϭ, Ϭ) =
ϭ. Thus the range R is the interval [Ϭ, ϭ].

Graphing FuncƟons of Two Variables

The graph of a funcƟon f of two variables is the set of all points
(
x, y, f(x, y)

)

where (x, y) is in the domain of f. This creates a surface in space.
One can begin sketching a graph by ploƫng points, but this has limitaƟons.

Consider Figure ϭϮ.Ϯ(a)where Ϯϱpoints havebeenploƩedof f(x, y) =
ϭ

xϮ + yϮ + ϭ
.

More points have been ploƩed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the funcƟon looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure ϭϮ.Ϯb which does a far beƩer job of illustraƟng the
behavior of f.

While technology is readily available to help us graph funcƟons of two vari-
ables, there is sƟll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a funcƟon. This technique is known as sketching level curves.

Level Curves

It may be surprising to find that the problem of represenƟng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure ϭϮ.ϯ, represent the surface
of Earth by indicaƟng points with the same elevaƟon with contour lines. The

Notes:

ϲϳϲ



Figure ϭϮ.ϯ: A topographicalmap displays
elevaƟon by drawing contour lines, along
with the elevaƟon is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

ϭϮ.ϭ IntroducƟon to MulƟvariable FuncƟons

elevaƟons marked are equally spaced; in this example, each thin line indicates
an elevaƟon change in ϱϬŌ increments and each thick line indicates a change
of ϮϬϬŌ. When lines are drawn close together, elevaƟon changes rapidly (as
one does not have to travel far to rise ϱϬŌ). When lines are far apart, such as
near “Aspen Campground,” elevaƟon changesmore gradually as one has to walk
farther to rise ϱϬŌ.

Given a funcƟon z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevaƟon” is changing.
Examples will help one understand this concept.

Example ϯϵϯ Drawing Level Curves

Let f(x, y) =

√

ϭ− xϮ

ϵ
− yϮ

ϰ
. Find the level curves of f for c = Ϭ, Ϭ.Ϯ, Ϭ.ϰ, Ϭ.ϲ,

Ϭ.ϴ and ϭ.

SÊ½çã®ÊÄ Consider first c = Ϭ. The level curve for c = Ϭ is the set of
all points (x, y) such that Ϭ =

√

ϭ− xϮ
ϵ − yϮ

ϰ . Squaring both sides gives us

xϮ

ϵ
+

yϮ

ϰ
= ϭ,

an ellipse centered at (Ϭ, Ϭ)with horizontal major axis of length ϲ andminor axis
of length ϰ. Thus for any point (x, y) on this curve, f(x, y) = Ϭ.

Now consider the level curve for c = Ϭ.Ϯ

Ϭ.Ϯ =

√

ϭ− xϮ

ϵ
− yϮ

ϰ

Ϭ.Ϭϰ = ϭ− xϮ

ϵ
− yϮ

ϰ
xϮ

ϵ
+

yϮ

ϰ
= Ϭ.ϵϲ

xϮ

ϴ.ϲϰ
+

yϮ

ϯ.ϴϰ
= ϭ.

This is also an ellipse, where a =
√
ϴ.ϲϰ ≈ Ϯ.ϵϰ and b =

√
ϯ.ϴϰ ≈ ϭ.ϵϲ.

Notes:
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Example ϯϵϯ.
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In general, for z = c, the level curve is:

c =

√

ϭ− xϮ

ϵ
− yϮ

ϰ

cϮ = ϭ− xϮ

ϵ
− yϮ

ϰ
xϮ

ϵ
+

yϮ

ϰ
= ϭ− cϮ

xϮ

ϵ(ϭ− cϮ)
+

yϮ

ϰ(ϭ− cϮ)
= ϭ,

ellipses that are decreasing in size as c increases. A special case is when c = ϭ;
there the ellipse is just the point (Ϭ, Ϭ).

The level curves are shown in Figure ϭϮ.ϰ(a). Note how the level curves for
c = Ϭ and c = Ϭ.Ϯ are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure ϭϮ.ϰ(b), the curves are drawn on a graph of f in space. Note how
the elevaƟons are evenly spaced. Near the level curves of c = Ϭ and c = Ϭ.Ϯ we
can see that f indeed is growing quickly.

Example ϯϵϰ Analyzing Level Curves
Let f(x, y) =

x+ y
xϮ + yϮ + ϭ

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by seƫng f(x, y) = c for an arbitrary c and seeing
if algebraic manipulaƟon of the equaƟon reveals anything significant.

x+ y
xϮ + yϮ + ϭ

= c

x+ y = c(xϮ + yϮ + ϭ).

We recognize this as a circle, though the center and radius are not yet clear. By
compleƟng the square, we can obtain:

(

x− ϭ
Ϯc

)Ϯ

+

(

y− ϭ
Ϯc

)Ϯ

=
ϭ
ϮcϮ

− ϭ,

a circle centered at
(
ϭ/(Ϯc), ϭ/(Ϯc)

)
with radius

√

ϭ/(ϮcϮ)− ϭ, where |c| <

ϭ/
√
Ϯ. The level curves for c = ±Ϭ.Ϯ, ±Ϭ.ϰ and ±Ϭ.ϲ are sketched in Figure

ϭϮ.ϱ(a). To help illustrate “elevaƟon,” we use thicker lines for c values near Ϭ,
and dashed lines indicate where c < Ϭ.

There is one special level curve, when c = Ϭ. The level curve in this situaƟon
is x+ y = Ϭ, the line y = −x.

Notes:

ϲϳϴ
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In Figure ϭϮ.ϱ(b) we see a graph of the surface. Note how the y-axis is point-
ing away from the viewer to more closely resemble the orientaƟon of the level
curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevaƟon change, though the level curve does.

FuncƟons of Three Variables

We extend our study of mulƟvariable funcƟons to funcƟons of three vari-
ables. (One can make a funcƟon of as many variables as one likes; we limit our
study to three variables.)

DefiniƟon ϳϴ FuncƟon of Three Variables

Let D be a subset of Rϯ. A funcƟon f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definiƟon closely resembles that of DefiniƟon ϳϳ.

Example ϯϵϱ Understanding a funcƟon of three variables

Let f(x, y, z) =
xϮ + z+ ϯ sin y
x+ Ϯy− z

. Evaluate f at the point (ϯ, Ϭ, Ϯ) and find the

domain and range of f.

SÊ½çã®ÊÄ f(ϯ, Ϭ, Ϯ) =
ϯϮ + Ϯ+ ϯ sin Ϭ
ϯ+ Ϯ(Ϭ)− Ϯ

= ϭϭ.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by Ϭ, we find the domain D is

D = {(x, y, z) | x+ Ϯy− z ̸= Ϭ}.

We recognize that the set of all points in Rϯ that are not in D form a plane in
space that passes through the origin (with normal vector ⟨ϭ, Ϯ,−ϭ⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near Ϭ we
can let y = Ϭ and choose z ≈ −xϮ. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ Ϯy.

Notes:
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ϭϲ. Ϭ.Ϯϱ
ϴ. Ϭ.ϯϱ
ϰ. Ϭ.ϱ
Ϯ. Ϭ.ϳϭ
ϭ. ϭ.
Ϭ.ϱ ϭ.ϰϭ
Ϭ.Ϯϱ Ϯ.
Ϭ.ϭϮϱ Ϯ.ϴϯ
Ϭ.ϬϲϮϱ ϰ.

Figure ϭϮ.ϲ: A table of c values and the
corresponding radius r of the spheres of
constant value in Example ϯϵϲ.
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Level Surfaces

It is very difficult to produce a meaningful graph of a funcƟon of three vari-
ables. A funcƟon of one variable is a curve drawn in Ϯ dimensions; a funcƟon of
two variables is a surface drawn in ϯ dimensions; a funcƟon of three variables is
a hypersurface drawn in ϰ dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

Example ϯϵϲ Finding level surfaces
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (Ϭ, Ϭ, Ϭ), I(x, y, z) =
k

xϮ + yϮ + zϮ
for some constant k.

Let k = ϭ; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this quesƟonusing “common sense.”
If energy (say, in the form of light) is emanaƟng from the origin, its intensity will
be the same at all points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathemaƟcally. The level surface at I = c is defined by

c =
ϭ

xϮ + yϮ + zϮ
.

A small amount of algebra reveals

xϮ + yϮ + zϮ =
ϭ
c
.

Given an intensity c, the level surface I = c is a sphere of radius ϭ/
√
c, centered

at the origin.
Figure ϭϮ.ϲ gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of Ϭ.Ϯϱ from the point source, the intensity is ϭϲ; to
move to a point of half that intensity, one just moves out Ϭ.ϭ to Ϭ.ϯϱ – not much
at all. To again halve the intensity, one moves Ϭ.ϭϱ, a liƩle more than before.

Note how each Ɵme the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes.

In the next secƟon we apply the concepts of limits to funcƟons of two or
more variables.

Notes:
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Exercises ϭϮ.ϭ
Terms and Concepts
ϭ. Give two examples (other than those given in the text) of

“real world” funcƟons that require more than one input.

Ϯ. The graph of a funcƟon of two variables is a .

ϯ. Most people are familiar with the concept of level curves in
the context of maps.

ϰ. T/F: Along a level curve, the output of a funcƟon does not
change.

ϱ. The analogue of a level curve for funcƟons of three vari-
ables is a level .

ϲ. What does it mean when level curves are close together?
Far apart?

Problems
In Exercises ϳ – ϭϰ, give the domain and range of the mulƟ-
variable funcƟon.

ϳ. f(x, y) = xϮ + yϮ + Ϯ

ϴ. f(x, y) = x+ Ϯy

ϵ. f(x, y) = x− Ϯy

ϭϬ. f(x, y) =
ϭ

x+ Ϯy

ϭϭ. f(x, y) =
ϭ

xϮ + yϮ + ϭ

ϭϮ. f(x, y) = sin x cos y

ϭϯ. f(x, y) =
√

ϵ− xϮ − yϮ

ϭϰ. f(x, y) =
ϭ√

xϮ + yϮ − ϵ

In Exercises ϭϱ – ϮϮ, describe in words and sketch the level
curves for the funcƟon and given c values.

ϭϱ. f(x, y) = ϯx− Ϯy; c = −Ϯ, Ϭ, Ϯ

ϭϲ. f(x, y) = xϮ − yϮ; c = −ϭ, Ϭ, ϭ

ϭϳ. f(x, y) = x− yϮ; c = −Ϯ, Ϭ, Ϯ

ϭϴ. f(x, y) =
ϭ− xϮ − yϮ

Ϯy− Ϯx
; c = −Ϯ, Ϭ, Ϯ

ϭϵ. f(x, y) =
Ϯx− Ϯy

xϮ + yϮ + ϭ
; c = −ϭ, Ϭ, ϭ

ϮϬ. f(x, y) =
y− xϯ − ϭ

x
; c = −ϯ,−ϭ, Ϭ, ϭ, ϯ

Ϯϭ. f(x, y) =
√

xϮ + ϰyϮ; c = ϭ, Ϯ, ϯ, ϰ

ϮϮ. f(x, y) = xϮ + ϰyϮ; c = ϭ, Ϯ, ϯ, ϰ

In Exercises Ϯϯ – Ϯϲ, give the domain and range of the func-
Ɵons of three variables.

Ϯϯ. f(x, y, z) =
x

x+ Ϯy− ϰz

Ϯϰ. f(x, y, z) =
ϭ

ϭ− xϮ − yϮ − zϮ

Ϯϱ. f(x, y, z) =
√

z− xϮ + yϮ

Ϯϲ. f(x, y, z) = zϮ sin x cos y

In Exercises Ϯϳ – ϯϬ, describe the level surfaces of the given
funcƟons of three variables.

Ϯϳ. f(x, y, z) = xϮ + yϮ + zϮ

Ϯϴ. f(x, y, z) = z− xϮ + yϮ

Ϯϵ. f(x, y, z) =
xϮ + yϮ

z

ϯϬ. f(x, y, z) =
z

x− y

ϯϭ. Compare the level curves of Exercises Ϯϭ and ϮϮ. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.

ϲϴϭ
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Figure ϭϮ.ϳ: IllustraƟng open and closed
sets in the x-y plane.
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ϭϮ.Ϯ Limits andConƟnuity ofMulƟvariable FuncƟons
We conƟnue with the paƩern we have established in this text: aŌer defining a
new kind of funcƟon, we apply calculus ideas to it. The previous secƟon defined
funcƟons of two and three variables; this secƟon invesƟgates what it means for
these funcƟons to be “conƟnuous.”

We begin with a series of definiƟons. We are used to “open intervals” such
as (ϭ, ϯ), which represents the set of all x such that ϭ < x < ϯ, and “closed
intervals” such as [ϭ, ϯ], which represents the set of all x such that ϭ ≤ x ≤ ϯ.
We need analogous definiƟons for open and closed sets in the x-y plane.

DefiniƟonϳϵ Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets

An open disk B in RϮ centered at (xϬ, yϬ) with radius r is the set of all
points (x, y) such that

√

(x− xϬ)Ϯ + (y− yϬ)Ϯ < r.

Let S be a set of points in RϮ. A point P in RϮ is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > Ϭ such that the open disk, cen-
tered at the origin with radius M, contains S. A set that is not bounded
is unbounded.

Figure ϭϮ.ϳ shows several sets in the x-y plane. In each set, point Pϭ lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point PϮ is an interior point for there is an open
disk centered there that lies enƟrely within the set.

The set depicted in Figure ϭϮ.ϳ(a) is a closed set as it contains all of its bound-
ary points. The set in (b) is open, for all of its points are interior points (or, equiv-
alently, it does not contain any of its boundary points). The set in (c) is neither
open nor closed as it contains some of its boundary points.

Notes:
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Figure ϭϮ.ϴ: Sketching the domain of the
funcƟon in Example ϯϵϴ.

ϭϮ.Ϯ Limits and ConƟnuity of MulƟvariable FuncƟons

Example ϯϵϳ Determining open/closed, bounded/unbounded
Determine if the domain of the funcƟon f(x, y) =

√

ϭ− xϮ
ϵ − yϮ

ϰ is open, closed,
or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this funcƟonwas found in Example ϯϵϮ to be
D = {(x, y) | xϮ

ϵ + yϮ
ϰ ≤ ϭ}, the region bounded by the ellipse xϮ

ϵ + yϮ
ϰ = ϭ. Since

the region includes the boundary (indicated by the use of “≤”), the set contains
all of its boundary points and hence is closed. The region is bounded as a disk
of radius ϰ, centered at the origin, contains D.

Example ϯϵϴ Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = ϭ

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by Ϭ, we find the domain to be D =
{(x, y) | x− y ̸= Ϭ}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure ϭϮ.ϴ. Note how we can draw an open disk
around any point in the domain that lies enƟrely inside the domain, and also
note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded.

Limits

Recall a pseudo–definiƟonof the limit of a funcƟonof one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definiƟon holds for funcƟons of two variables. We’ll say that

“ lim
(x,y)→(xϬ,yϬ)

f(x, y) = L”

means “if the point (x, y) is really close to the point (xϬ, yϬ), then f(x, y) is really
close to L.” The formal definiƟon is given below.

DefiniƟon ϴϬ Limit of a FuncƟon of Two Variables

Let S be an open set containing (xϬ, yϬ), and let f be a funcƟon of two
variables defined on S, except possibly at (xϬ, yϬ). The limit of f(x, y) as
(x, y) approaches (xϬ, yϬ) is L, denoted

lim
(x,y)→(xϬ,yϬ)

f(x, y) = L,

means that given any ε > Ϭ, there exists δ > Ϭ such that for all (x, y) ̸=
(xϬ, yϬ), if (x, y) is in the open disk centered at (xϬ, yϬ)with radius δ, then
|f(x, y)− L| < ε.

Notes:
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Figure ϭϮ.ϵ: IllustraƟng the definiƟon of
a limit. The open disk in the x-y plane has
radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.

Chapter ϭϮ FuncƟons of Several Variables

The concept behind DefiniƟon ϴϬ is sketched in Figure ϭϮ.ϵ. Given ε > Ϭ,
find δ > Ϭ such that if (x, y) is any point in the open disk centered at (xϬ, yϬ) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.

CompuƟng limits using this definiƟon is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

Theorem ϭϬϭ Basic Limit ProperƟes of FuncƟons of Two Variables

Let b, xϬ, yϬ, L and K be real numbers, let n be a posiƟve integer, and let
f and g be funcƟons with the following limits:

lim
(x,y)→(xϬ,yϬ)

f(x, y) = L and lim
(x,y)→(xϬ,yϬ)

g(x, y) = K.

The following limits hold.

ϭ. Constants: lim
(x,y)→(xϬ,yϬ)

b = b

Ϯ. IdenƟty lim
(x,y)→(xϬ,yϬ)

x = xϬ; lim
(x,y)→(xϬ,yϬ)

y = yϬ

ϯ. Sums/Differences: lim
(x,y)→(xϬ,yϬ)

(
f(x, y)± g(x, y)

)
= L± K

ϰ. Scalar MulƟples: lim
(x,y)→(xϬ,yϬ)

b · f(x, y) = bL

ϱ. Products: lim
(x,y)→(xϬ,yϬ)

f(x, y) · g(x, y) = LK

ϲ. QuoƟents: lim
(x,y)→(xϬ,yϬ)

f(x, y)/g(x, y) = L/K, (K ̸= Ϭ)

ϳ. Powers: lim
(x,y)→(xϬ,yϬ)

f(x, y)n = Ln

This theorem, combined with Theorems Ϯ and ϯ of SecƟon ϭ.ϯ, allows us to
evaluate many limits.

Example ϯϵϵ EvaluaƟng a limit
Evaluate the following limits:

ϭ. lim
(x,y)→(ϭ,π)

y
x
+ cos(xy) Ϯ. lim

(x,y)→(Ϭ,Ϭ)

ϯxy
xϮ + yϮ

Notes:

ϲϴϰ



ϭϮ.Ϯ Limits and ConƟnuity of MulƟvariable FuncƟons

SÊ½çã®ÊÄ

ϭ. The aforemenƟoned theorems allow us to simply evaluate y/x+ cos(xy)
when x = ϭ and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(ϭ,π)

y
x
+ cos(xy) =

π

ϭ
+ cos π

= π − ϭ.

Ϯ. We aƩempt to evaluate the limit by subsƟtuƟng Ϭ in for x and y, but the
result is the indeterminate form “Ϭ/Ϭ.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit.

When dealing with funcƟons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direcƟon, the leŌ or the right.

In the plane, there are infinite direcƟons from which (x, y) might approach
(xϬ, yϬ). In fact, we do not have to restrict ourselves to approaching (xϬ, yϬ) from
a parƟcular direcƟon, but rather we can approach that point along a path that is
not a straight line. It is possible to arrive at different limiƟng values by approach-
ing (xϬ, yϬ) along different paths. If this happens, we say that lim

(x,y)→(xϬ,yϬ)
f(x, y)

does not exist (this is analogous to the leŌ and right hand limits of single variable
funcƟons not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiƟng value is obtained regardless of the path chosen. The case where
the limit does not exist is oŌen easier to deal with, for we can oŌen pick two
paths along which the limit is different.

Example ϰϬϬ Showing limits do not exist

ϭ. Show lim
(x,y)→(Ϭ,Ϭ)

ϯxy
xϮ + yϮ

does not exist by finding the limits along the lines
y = mx.

Notes:
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Chapter ϭϮ FuncƟons of Several Variables

Ϯ. Show lim
(x,y)→(Ϭ,Ϭ)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

SÊ½çã®ÊÄ

ϭ. EvaluaƟng lim
(x,y)→(Ϭ,Ϭ)

ϯxy
xϮ + yϮ

along the lines y = mxmeans replace all y’s

withmx and evaluaƟng the resulƟng limit:

lim
(x,mx)→(Ϭ,Ϭ)

ϯx(mx)
xϮ + (mx)Ϯ

= lim
x→Ϭ

ϯmxϮ

xϮ(mϮ + ϭ)

= lim
x→Ϭ

ϯm
mϮ + ϭ

=
ϯm

mϮ + ϭ
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiƟng values,
meaning the limit does not exist.

Ϯ. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(Ϭ,Ϭ)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(Ϭ,Ϭ)

sin
(
x(mx)

)

x+mx
= lim

x→Ϭ

sin(mxϮ)
x(m+ ϭ)

= lim
x→Ϭ

sin(mxϮ)
x

· ϭ
m+ ϭ

.

By applying L’Hôpital’s Rule, we can show this limit is Ϭ except whenm =
−ϭ, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(Ϭ,Ϭ)
f(x, y) = Ϭ.

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(Ϭ,Ϭ)

sin
(
− x sin x

)

x− sin x
= lim

x→Ϭ

sin
(
− x sin x

)

x− sin x
Now apply L’Hôpital’s Rule twice:

= lim
x→Ϭ

cos
(

− x sin x
)

(− sin x− x cos x)
ϭ− cos x

(“ = Ϭ/Ϭ”)

= lim
x→Ϭ

− sin
(

− x sin x
)

(− sin x− x cos x)Ϯ + cos
(

− x sin x
)

(−Ϯ cos x+ x sin x)
sin x

= “Ϯ/Ϭ” ⇒ the limit does not exist.

Notes:

ϲϴϲ



ϭϮ.Ϯ Limits and ConƟnuity of MulƟvariable FuncƟons

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is Ϭ. However, along the path
y = − sin x, which lies in the domain of f(x, y) for all x ̸= Ϭ, the limit does
not exist. Since the limit is not the same along every path to (Ϭ, Ϭ), we say

lim
(x,y)→(Ϭ,Ϭ)

sin(xy)
x+ y

does not exist.

Example ϰϬϭ Finding a limit

Let f(x, y) =
ϱxϮyϮ

xϮ + yϮ
. Find lim

(x,y)→(Ϭ,Ϭ)
f(x, y).

SÊ½çã®ÊÄ It is relaƟvely easy to show that along any line y = mx, the
limit is Ϭ. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be Ϭ.

To prove the limit is Ϭ, we apply DefiniƟon ϴϬ. Let ε > Ϭ be given. We want
to find δ > Ϭ such that if

√

(x− Ϭ)Ϯ + (y− Ϭ)Ϯ < δ, then |f(x, y)− Ϭ| < ε.

Set δ <
√

ε/ϱ. Note that
∣
∣
∣
∣

ϱyϮ

xϮ + yϮ

∣
∣
∣
∣
< ϱ for all (x, y) ̸= (Ϭ, Ϭ), and that if

√

xϮ + yϮ < δ, then xϮ < δϮ.
Let
√

(x− Ϭ)Ϯ + (y− Ϭ)Ϯ =
√

xϮ + yϮ < δ. Consider |f(x, y)− Ϭ|:

|f(x, y)− Ϭ| =
∣
∣
∣
∣

ϱxϮyϮ

xϮ + yϮ
− Ϭ
∣
∣
∣
∣

=

∣
∣
∣
∣
xϮ · ϱyϮ

xϮ + yϮ

∣
∣
∣
∣

< δϮ · ϱ

<
ε

ϱ
· ϱ

= ε.

Thus if
√

(x− Ϭ)Ϯ + (y− Ϭ)Ϯ < δ then |f(x, y) − Ϭ| < ε, which is what we

wanted to show. Thus lim
(x,y)→(Ϭ,Ϭ)

ϱxϮyϮ

xϮ + yϮ
= Ϭ.

ConƟnuity

DefiniƟon ϯ defines what it means for a funcƟon of one variable to be con-
Ɵnuous. In brief, it meant that the graph of the funcƟon did not have breaks,
holes, jumps, etc. We define conƟnuity for funcƟons of two variables in a similar
way as we did for funcƟons of one variable.

Notes:

ϲϴϳ



Chapter ϭϮ FuncƟons of Several Variables

DefiniƟon ϴϭ ConƟnuous

Let a funcƟon f(x, y) be defined on an open disk B containing the point
(xϬ, yϬ).

ϭ. f is conƟnuous at (xϬ, yϬ) if lim
(x,y)→(xϬ,yϬ)

f(x, y) = f(xϬ, yϬ).

Ϯ. f is conƟnuous on B if f is conƟnuous at all points in B. If f is conƟn-
uous at all points in RϮ, we say that f is conƟnuous everywhere.

Example ϰϬϮ ConƟnuity of a funcƟon of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= Ϭ
cos y x = Ϭ . Is f conƟnuous at (Ϭ, Ϭ)? Is f conƟnuous

everywhere?

SÊ½çã®ÊÄ To determine if f is conƟnuous at (Ϭ, Ϭ), we need to compare
lim

(x,y)→(Ϭ,Ϭ)
f(x, y) to f(Ϭ, Ϭ).

Applying the definiƟon of f, we see that f(Ϭ, Ϭ) = cos Ϭ = ϭ.
We now consider the limit lim

(x,y)→(Ϭ,Ϭ)
f(x, y). SubsƟtuƟng Ϭ for x and y in

(cos y sin x)/x returns the indeterminate form “Ϭ/Ϭ”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(Ϭ,Ϭ)

cos y and lim
(x,y)→(Ϭ,Ϭ)

sin x
x

. The first

limit does not contain x, and since cos y is conƟnuous,

lim
(x,y)→(Ϭ,Ϭ)

cos y = lim
y→Ϭ

cos y = cos Ϭ = ϭ.

The second limit does not contain y. By Theorem ϱ we can say

lim
(x,y)→(Ϭ,Ϭ)

sin x
x

= lim
x→Ϭ

sin x
x

= ϭ.

Finally, Theorem ϭϬϭ of this secƟon states that we can combine these two limits
as follows:

lim
(x,y)→(Ϭ,Ϭ)

cos y sin x
x

= lim
(x,y)→(Ϭ,Ϭ)

(cos y)
(
sin x
x

)

=

(

lim
(x,y)→(Ϭ,Ϭ)

cos y
)(

lim
(x,y)→(Ϭ,Ϭ)

sin x
x

)

= (ϭ)(ϭ)
= ϭ.

Notes:

ϲϴϴ



Figure ϭϮ.ϭϬ: A graph of f(x, y) in Example
ϰϬϮ.

ϭϮ.Ϯ Limits and ConƟnuity of MulƟvariable FuncƟons

We have found that lim
(x,y)→(Ϭ,Ϭ)

cos y sin x
x

= f(Ϭ, Ϭ), so f is conƟnuous at

(Ϭ, Ϭ).
A similar analysis shows that f is conƟnuous at all points in RϮ. As long as

x ̸= Ϭ, we can evaluate the limit directly; when x = Ϭ, a similar analysis shows
that the limit is cos y. Thus we can say that f is conƟnuous everywhere. A graph
of f is given in Figure ϭϮ.ϭϬ. NoƟce how it has no breaks, jumps, etc.

The following theorem is very similar to Theorem ϴ, giving us ways to com-
bine conƟnuous funcƟons to create other conƟnuous funcƟons.

Theorem ϭϬϮ ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous on an open disk B, let c be a real number, and
let n be a posiƟve integer. The following funcƟons are conƟnuous on B.

ϭ. Sums/Differences: f± g

Ϯ. Constant MulƟples: c · f

ϯ. Products: f · g

ϰ. QuoƟents: f/g (as longs as g ̸= Ϭ on B)

ϱ. Powers: f n

ϲ. Roots: n
√
f (if n is even then f ≥ Ϭ on B; if n is odd,

then true for all values of f on B.)

ϳ. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on B, where the range of f on B is
J, and let g be a single variable funcƟon that is
conƟnuous on J. Then g ◦ f, i.e., g(f(x, y)), is
conƟnuous on B.

Example ϰϬϯ Establishing conƟnuity of a funcƟon
Let f(x, y) = sin(xϮ cos y). Show f is conƟnuous everywhere.

SÊ½çã®ÊÄ We will apply both Theorems ϴ and ϭϬϮ. Let fϭ(x, y) = xϮ.
Since y is not actually used in the funcƟon, and polynomials are conƟnuous (by
Theorem ϴ), we conclude fϭ is conƟnuous everywhere. A similar statement can
be made about fϮ(x, y) = cos y. Part ϯ of Theorem ϭϬϮ states that fϯ = fϭ · fϮ
is conƟnuous everywhere, and Part ϳ of the theorem states the composiƟon of
sine with fϯ is conƟnuous: that is, sin(fϯ) = sin(xϮ cos y) is conƟnuous every-
where.

Notes:

ϲϴϵ



Chapter ϭϮ FuncƟons of Several Variables

FuncƟons of Three Variables

The definiƟons and theorems given in this secƟon can be extended in a natu-
ral way to definiƟons and theorems about funcƟons of three (ormore) variables.
We cover the key concepts here; some terms from DefiniƟons ϳϵ and ϴϭ are not
redefined but their analogous meanings should be clear to the reader.

DefiniƟon ϴϮ Open Balls, Limit, ConƟnuous

ϭ. An open ball in Rϯ centered at (xϬ, yϬ, zϬ) with radius r is the set of all
points (x, y, z) such that

√

(x− xϬ)Ϯ + (y− yϬ)Ϯ + (z− zϬ)Ϯ = r.

Ϯ. Let D be an open set in Rϯ containing (xϬ, yϬ, zϬ), and let f(x, y, z) be a
funcƟon of three variables defined on D, except possibly at (xϬ, yϬ, zϬ).
The limit of f(x, y, z) as (x, y, z) approaches (xϬ, yϬ, zϬ) is L, denoted

lim
(x,y,z)→(xϬ,yϬ,zϬ)

f(x, y, z) = L,

means that given any ε > Ϭ, there is a δ > Ϭ such that for all
(x, y, z) ̸= (xϬ, yϬ, zϬ), if (x, y, z) is in the open ball centered at
(xϬ, yϬ, zϬ) with radius δ, then |f(x, y, z)− L| < ε.

ϯ. Let f(x, y, z) be defined on an open ball B containing (xϬ, yϬ, zϬ). f is
conƟnuous at (xϬ, yϬ, zϬ) if lim

(x,y,z)→(xϬ,yϬ,zϬ)
f(x, y, z) = f(xϬ, yϬ, zϬ).

These definiƟons can also be extended naturally to apply to funcƟons of four
or more variables. Theorem ϭϬϮ also applies to funcƟon of three or more vari-
ables, allowing us to say that the funcƟon

f(x, y, z) =
ex

Ϯ+y
√

yϮ + zϮ + ϯ
sin(xyz) + ϱ

is conƟnuous everywhere.
When considering single variable funcƟons, we studied limits, then conƟnu-

ity, then the derivaƟve. In our current study of mulƟvariable funcƟons, we have
studied limits and conƟnuity. In the next secƟon we study derivaƟon, which
takes on a slight twist as we are in a mulƟvarible context.

Notes:
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Exercises ϭϮ.Ϯ
Terms and Concepts

ϭ. Describe in your ownwords the difference between bound-
ary and interior point of a set.

Ϯ. Use your own words to describe (informally) what
lim

(x,y)→(ϭ,Ϯ)
f(x, y) = ϭϳ means.

ϯ. Give an example of a closed, bounded set.

ϰ. Give an example of a closed, unbounded set.

ϱ. Give an example of a open, bounded set.

ϲ. Give an example of a open, unbounded set.

Problems
In Exercises ϳ – ϭϬ, a set S is given.

(a) Give one boundary point and one interior point, when
possible, of S.

(b) State whether S is open, closed, or neither.

(c) State whether S is bounded or unbounded.

ϳ. S =
{

(x, y)
∣

∣

∣

∣

(x− ϭ)Ϯ

ϰ
+

(y− ϯ)Ϯ

ϵ
≤ ϭ

}

ϴ. S =
{

(x, y) | y ̸= xϮ
}

ϵ. S =
{

(x, y) | xϮ + yϮ = ϭ
}

ϭϬ. S = {(x, y)|y > sin x}

In Exercises ϭϭ – ϭϰ:

(a) Find the domain D of the given funcƟon.

(b) State whether D is an open or closed set.

(c) State whether D is bounded or unbounded.

ϭϭ. f(x, y) =
√

ϵ− xϮ − yϮ

ϭϮ. f(x, y) =
√

y− xϮ

ϭϯ. f(x, y) =
ϭ√

y− xϮ

ϭϰ. f(x, y) =
xϮ − yϮ

xϮ + yϮ

In Exercises ϭϱ – ϮϬ, a limit is given. Evaluate the limit along
the paths given, then state why these results show the given
limit does not exist.

ϭϱ. lim
(x,y)→(Ϭ,Ϭ)

xϮ − yϮ

xϮ + yϮ

(a) Along the path y = Ϭ.

(b) Along the path x = Ϭ.

ϭϲ. lim
(x,y)→(Ϭ,Ϭ)

x+ y
x− y

(a) Along the path y = mx.

ϭϳ. lim
(x,y)→(Ϭ,Ϭ)

xy− yϮ

yϮ + x

(a) Along the path y = mx.

(b) Along the path x = Ϭ.

ϭϴ. lim
(x,y)→(Ϭ,Ϭ)

sin(xϮ)
y

(a) Along the path y = mx.

(b) Along the path y = xϮ.

ϭϵ. lim
(x,y)→(ϭ,Ϯ)

x+ y− ϯ
xϮ − ϭ

(a) Along the path y = Ϯ.

(b) Along the path y = x+ ϭ.

ϮϬ. lim
(x,y)→(π,π/Ϯ)

sin x
cos y

(a) Along the path x = π.

(b) Along the path y = x− π/Ϯ.
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(a)

(b)

Figure ϭϮ.ϭϭ: By fixing y = Ϯ, the surface
f(x, y) = xϮ + ϮyϮ is a curve in space.

Alternate notaƟons for fx(x, y) include:

∂

∂x
f(x, y),

∂f
∂x

,
∂z
∂x

, and zx,

with similar notaƟons for fy(x, y). For
ease of notaƟon, fx(x, y) is oŌen abbre-
viated fx.

Chapter ϭϮ FuncƟons of Several Variables

ϭϮ.ϯ ParƟal DerivaƟves

Let y be a funcƟon of x. We have studied in great detail the derivaƟve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This secƟon begins our invesƟgaƟon into these rates
of change.

Consider the funcƟon z = f(x, y) = xϮ + ϮyϮ, as graphed in Figure ϭϮ.ϭϭ(a).
By fixing y = Ϯ, we focus our aƩenƟon to all points on the surface where the
y-value is Ϯ, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, Ϯ) = xϮ + ϴ which is a funcƟon of just one variable. We
can take the derivaƟve of zwith respect to x along this curve and find equaƟons
of tangent lines, etc.

The key noƟon to extract from this example is: by treaƟng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of parƟal derivaƟves. We state the formal,
limit–based definiƟon first, then show how to compute these parƟal derivaƟves
without directly taking limits.

DefiniƟon ϴϯ ParƟal DerivaƟve

Let z = f(x, y) be a conƟnuous funcƟon on an open set S in RϮ.

ϭ. The parƟal derivaƟve of f with respect to x is:

fx(x, y) = lim
h→Ϭ

f(x+ h, y)− f(x, y)
h

.

Ϯ. The parƟal derivaƟve of f with respect to y is:

fy(x, y) = lim
h→Ϭ

f(x, y+ h)− f(x, y)
h

.

Example ϰϬϰ CompuƟng parƟal derivaƟves with the limit definiƟon
Let f(x, y) = xϮy+ Ϯx+ yϯ. Find fx(x, y) using the limit definiƟon.

Notes:
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ϭϮ.ϯ ParƟal DerivaƟves

SÊ½çã®ÊÄ Using DefiniƟon ϴϯ, we have:

fx(x, y) = lim
h→Ϭ

f(x+ h, y)− f(x, y)
h

= lim
h→Ϭ

(x+ h)Ϯy+ Ϯ(x+ h) + yϯ − (xϮy+ Ϯx+ yϯ)
h

= lim
h→Ϭ

(xϮy+ Ϯxhy+ hϮy+ Ϯx+ Ϯh+ yϯ − (xϮy+ Ϯx+ yϯ)
h

= lim
h→Ϭ

Ϯxhy+ hϮy+ Ϯh
h

= lim
h→Ϭ

Ϯxy+ hy+ Ϯ

= Ϯxy+ Ϯ.

We have found fx(x, y) = Ϯxy+ Ϯ.

Example ϰϬϰ found a parƟal derivaƟve using the formal, limit–based defi-
niƟon. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivaƟves to compute parƟal derivaƟves easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivaƟve with respect to x by treaƟng y as a constant or coefficient.

Just as d
dx

(
ϱxϮ
)
= ϭϬx, we compute ∂

∂x

(
xϮy
)
= Ϯxy. Here we are treaƟng y

as a coefficient.
Just as d

dx

(
ϱϯ
)
= Ϭ, we compute ∂

∂x

(
yϯ
)
= Ϭ. Here we are treaƟng y as a

constant. More examples will help make this clear.

Example ϰϬϱ Finding parƟal derivaƟves
Find fx(x, y) and fy(x, y) in each of the following.

ϭ. f(x, y) = xϯyϮ + ϱyϮ − x+ ϳ

Ϯ. f(x, y) = cos(xyϮ) + sin x

ϯ. f(x, y) = ex
Ϯyϯ
√
xϮ + ϭ

SÊ½çã®ÊÄ

ϭ. We have f(x, y) = xϯyϮ + ϱyϮ − x+ ϳ.
Begin with fx(x, y). Keep y fixed, treaƟng it as a constant or coefficient, as
appropriate:

fx(x, y) = ϯxϮyϮ − ϭ.

Note how the ϱyϮ and ϳ terms go to zero.

Notes:
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Chapter ϭϮ FuncƟons of Several Variables

To compute fy(x, y), we hold x fixed:

fy(x, y) = Ϯxϯy+ ϭϬy.

Note how the−x and ϳ terms go to zero.

Ϯ. We have f(x, y) = cos(xyϮ) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
yϮ is the coefficient of the x-term inside the cosine funcƟon.

fx(x, y) = − sin(xyϮ)(yϮ) + cos x = −yϮ sin(xyϮ) + cos x.

To find fy(x, y), note that x is the coefficient of the yϮ term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xyϮ)(Ϯxy) = −Ϯxy sin(xyϮ).

ϯ. We have f(x, y) = ex
Ϯyϯ
√
xϮ + ϭ.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
Ϯyϯ(Ϯxyϯ)

√

xϮ + ϭ+ ex
Ϯyϯ ϭ

Ϯ
(
xϮ + ϭ

)−ϭ/Ϯ

= Ϯxyϯex
Ϯyϯ +

ex
Ϯyϯ

Ϯ
√
xϮ + ϭ

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
xϮ + ϭ does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex
Ϯyϯ term.

fy(x, y) = ex
Ϯyϯ(ϯxϮyϮ)

√

xϮ + ϭ = ϯxϮyϮex
Ϯyϯ
√

xϮ + ϭ.

We have shown how to compute a parƟal derivaƟve, but it may sƟll not be
clear what a parƟal derivaƟve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your locaƟon, you might walk up, sharply down, or perhaps not
change elevaƟon at all. This is similar to measuring zx: you are moving only east
(in the “x”-direcƟon) and not north/south at all. Going back to your original lo-
caƟon, imagine now walking due north (in the “y”-direcƟon). Perhaps walking
due north does not change your elevaƟon at all. This is analogous to zy = Ϭ: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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(a)

(b)

Figure ϭϮ.ϭϮ: IllustraƟng the meaning of
parƟal derivaƟves.

ϭϮ.ϯ ParƟal DerivaƟves

The following example helps us visualize this more.

Example ϰϬϲ EvaluaƟng parƟal derivaƟves
Let z = f(x, y) = −xϮ − ϭ

Ϯy
Ϯ + xy + ϭϬ. Find fx(Ϯ, ϭ) and fy(Ϯ, ϭ) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by compuƟng fx(x, y) = −Ϯx + y and fy(x, y) =
−y+ x. Thus

fx(Ϯ, ϭ) = −ϯ and fy(Ϯ, ϭ) = ϭ.

It is also useful to note that f(Ϯ, ϭ) = ϳ.ϱ. What does each of these numbers
mean?

Consider fx(Ϯ, ϭ) = −ϯ, along with Figure ϭϮ.ϭϮ(a). If one “stands” on the
surface at the point (Ϯ, ϭ, ϳ.ϱ) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −ϯ.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(Ϯ, ϭ) = ϭ, illustrated in Figure ϭϮ.ϭϮ(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of ϭ. Increasing the y-
value by ϭ would increase the z-value by approximately ϭ.

Since the magnitude of fx is greater than the magnitude of fy at (Ϯ, ϭ), it is
“steeper” in the x-direcƟon than in the y-direcƟon.

Second ParƟal DerivaƟves

Let z = f(x, y). We have learned to find the parƟal derivaƟves fx(x, y) and
fy(x, y), which are each funcƟons of x and y. Thereforewe can take parƟal deriva-
Ɵves of them, each with respect to x and y. We define these “second parƟals”
along with the notaƟon, give examples, then discuss their meaning.

Notes:

ϲϵϱ



Note: The terms in DefiniƟon ϴϰ all de-
pend on limits, so each definiƟon comes
with the caveat “where the limit exists.”

Chapter ϭϮ FuncƟons of Several Variables

DefiniƟon ϴϰ Second ParƟal DerivaƟve, Mixed ParƟal DerivaƟve

Let z = f(x, y) be conƟnuous on an open set S.

ϭ. The second parƟal derivaƟve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)

=
∂Ϯf
∂xϮ

=
(
fx
)

x = fxx

Ϯ. The second parƟal derivaƟve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)

=
∂Ϯf
∂y∂x

=
(
fx
)

y = fxy

Similar definiƟons hold for
∂Ϯf
∂yϮ

= fyy and
∂Ϯf
∂x∂y

= fyx.

The second parƟal derivaƟves fxy and fyx aremixed parƟal derivaƟves.

The notaƟon of second parƟal derivaƟves gives some insight into the nota-
Ɵon of the second derivaƟve of a funcƟon of a single variable. If y = f(x), then

f ′′(x) =
dϮy
dxϮ

. The “dϮy” porƟon means “take the derivaƟve of y twice,” while
“dxϮ” means “with respect to x both Ɵmes.” When we only know of funcƟons of
a single variable, this laƩer phrase seems silly: there is only one variable to take
the derivaƟve with respect to. Now that we understand funcƟons of mulƟple
variables, we see the importance of specifying which variables we are referring
to.

Example ϰϬϳ Second parƟal derivaƟves
For each of the following, find all six first and second parƟal derivaƟves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

ϭ. f(x, y) = xϯyϮ + Ϯxyϯ + cos x

Ϯ. f(x, y) =
xϯ

yϮ

ϯ. f(x, y) = ex sin(xϮy)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend Ɵme de-
riving the second parƟal derivaƟves.

Notes:
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ϭϮ.ϯ ParƟal DerivaƟves

ϭ. f(x, y) = xϯyϮ + Ϯxyϯ + cos x
fx(x, y) = ϯxϮyϮ + Ϯyϯ − sin x
fy(x, y) = Ϯxϯy+ ϲxyϮ

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
ϯxϮyϮ + Ϯyϯ − sin x

)
= ϲxyϮ − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
Ϯxϯy+ ϲxyϮ

)
= Ϯxϯ + ϭϮxy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
ϯxϮyϮ + Ϯyϯ − sin x

)
= ϲxϮy+ ϲyϮ

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
Ϯxϯy+ ϲxyϮ

)
= ϲxϮy+ ϲyϮ

Ϯ. f(x, y) =
xϯ

yϮ
= xϯy−Ϯ

fx(x, y) =
ϯxϮ

yϮ

fy(x, y) = −Ϯxϯ

yϯ

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(ϯxϮ

yϮ
)
=

ϲx
yϮ

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− Ϯxϯ

yϯ
)
=

ϲxϯ

yϰ

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(ϯxϮ

yϮ
)
= −ϲxϮ

yϯ

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
− Ϯxϯ

yϯ
)
= −ϲxϮ

yϯ

ϯ. f(x, y) = ex sin(xϮy)
Because the following parƟal derivaƟves get rather long, weomit the extra
notaƟon and just give the results. In several cases, mulƟple applicaƟons
of the Product and Chain Rules will be necessary, followed by some basic
combinaƟon of like terms.

fx(x, y) = ex sin(xϮy) + Ϯxyex cos(xϮy)
fy(x, y) = xϮex cos(xϮy)
fxx(x, y) = ex sin(xϮy)+ ϰxyex cos(xϮy)+ Ϯyex cos(xϮy)− ϰxϮyϮex sin(xϮy)
fyy(x, y) = −xϰex sin(xϮy)
fxy(x, y) = xϮex cos(xϮy) + Ϯxex cos(xϮy)− Ϯxϯyex sin(xϮy)
fyx(x, y) = xϮex cos(xϮy) + Ϯxex cos(xϮy)− Ϯxϯyex sin(xϮy)

Notes:
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Chapter ϭϮ FuncƟons of Several Variables

NoƟce how in each of the three funcƟons in Example ϰϬϳ, fxy = fyx. Due to
the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

Theorem ϭϬϯ Mixed ParƟal DerivaƟves

Let f be defined such that fxy and fyx are conƟnuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second ParƟal DerivaƟves

Now that we know how to find second parƟals, we invesƟgatewhat they tell
us.

Again we refer back to a funcƟon y = f(x) of a single variable. The second
derivaƟve of f is “the derivaƟve of the derivaƟve,” or “the rate of change of the
rate of change.” The second derivaƟve measures how much the derivaƟve is
changing. If f ′′(x) < Ϭ, then the derivaƟve is geƫng smaller (so the graph of f is
concave down); if f ′′(x) > Ϭ, then the derivaƟve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivaƟves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < Ϭ,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direcƟon. Using the analogy of standing in the rolling meadow
used earlier in this secƟon, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direcƟon. If fyy(x, y) > Ϭ, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direcƟon. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed parƟals fxy and fyx. The mixed parƟal fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east geƫng steeper? If so,
fxy > Ϭ. Is the path towards the east not changing in steepness? If so, then
fxy = Ϭ. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:
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(a)

(b)

Figure ϭϮ.ϭϯ: Understanding the second
parƟal derivaƟves in Example ϰϬϴ.

ϭϮ.ϯ ParƟal DerivaƟves

graphs.

Example ϰϬϴ Understanding second parƟal derivaƟves
Let z = xϮ − yϮ + xy. Evaluate the ϲ first and second parƟal derivaƟves at
(−ϭ/Ϯ, ϭ/Ϯ) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = Ϯx+ y, fy(x, y) = −Ϯy+ x, fxx(x, y) = Ϯ, fyy(x, y) = −Ϯ and

fxy(x, y) = fyx(x, y) = ϭ. Thus at (−ϭ/Ϯ, ϭ/Ϯ) we have

fx(−ϭ/Ϯ, ϭ/Ϯ) = −ϭ/Ϯ, fy(−ϭ/Ϯ, ϭ/Ϯ) = −ϯ/Ϯ.

The slope of the tangent line at (−ϭ/Ϯ, ϭ/Ϯ,−ϭ/ϰ) in the direcƟon of x is−ϭ/Ϯ:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−ϭ/Ϯ. The slope of the tangent line at this point in the direcƟon
of y is−ϯ/Ϯ: if onemoves from this point parallel to the y-axis, the instantaneous
rate of change will be−ϯ/Ϯ. These tangents lines are graphed in Figure ϭϮ.ϭϯ(a)
and (b), respecƟvely, where the tangent lines are drawn in a solid line.

Now consider only Figure ϭϮ.ϭϯ(a). Three directed tangent lines are drawn
(two are dashed), each in the direcƟon of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to Ϭ. Since the
slopes are all negaƟve, geƫng closer to Ϭ means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posiƟve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
ϭϮ.ϭϯ(b) where again three directed tangent lines are drawn, this Ɵme each in
the direcƟon of y with slopes determined by fy. As x increases, the slopes be-
come less steep (closer to Ϭ). Since these are negaƟve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now inter-
pret fxx and fyy. In Figure ϭϮ.ϭϯ(a), we see a curve drawnwhere x is held constant
at x = −ϭ/Ϯ: only y varies. This curve is clearly concave down, corresponding
to the fact that fyy < Ϭ. In part (b) of the figure, we see a similar curve where y
is constant and only x varies. This curve is concave up, corresponding to the fact
that fxx > Ϭ.

ParƟal DerivaƟves and FuncƟons of Three Variables

The concepts underlying parƟal derivaƟves can be easily extend to more
than two variables. We give some definiƟons and examples in the case of three
variables and trust the reader can extend these definiƟons to more variables if
needed.

Notes:
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DefiniƟon ϴϱ ParƟal DerivaƟves with Three Variables

Let w = f(x, y, z) be a conƟnuous funcƟon on an open set S in Rϯ.
The parƟal derivaƟve of f with respect to x is:

fx(x, y, z) = lim
h→Ϭ

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definiƟons hold for fy(x, y, z) and fz(x, y, z).

By taking parƟal derivaƟves of parƟal derivaƟves, we can find second parƟal
derivaƟves of f with respect to z then y, for instance, just as before.

Example ϰϬϵ ParƟal derivaƟves of funcƟons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

ϭ. f(x, y, z) = xϮyϯzϰ + xϮyϮ + xϯzϯ + yϰzϰ

Ϯ. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

ϭ. fx = Ϯxyϯzϰ + ϮxyϮ + ϯxϮzϯ; fy = ϯxϮyϮzϰ + ϮxϮy+ ϰyϯzϰ;
fz = ϰxϮyϯzϯ + ϯxϯzϮ + ϰyϰzϯ; fxz = ϴxyϯzϯ + ϵxϮzϮ;
fyz = ϭϮxϮyϮzϯ + ϭϲyϯzϯ; fzz = ϭϮxϮyϯzϮ + ϲxϯz+ ϭϮyϰzϮ

Ϯ. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xyϮ sin(xy)

Higher Order ParƟal DerivaƟves

We can conƟnue taking parƟal derivaƟves of parƟal derivaƟves of parƟal
derivaƟves of …; we do not have to stop with second parƟal derivaƟves. These
higher order parƟal derivaƟves do not have a Ɵdy graphical interpretaƟon; nev-
ertheless they are not hard to compute and worthy of some pracƟce.

We do not formally define each higher order derivaƟve, but rather give just
a few examples of the notaƟon.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))

and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))

.

Notes:
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Example ϰϭϬ Higher order parƟal derivaƟves

ϭ. Let f(x, y) = xϮyϮ + sin(xy). Find fxxy and fyxx.

Ϯ. Let f(x, y, z) = xϯexy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

ϭ. To find fxxy, we first find fx, then fxx, then fxxy:

fx = ϮxyϮ + y cos(xy) fxx = ϮyϮ − yϮ sin(xy)

fxxy = ϰy− Ϯy sin(xy)− xyϮ cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = ϮxϮy+ x cos(xy) fyx = ϰxy+ cos(xy)− xy sin(xy)

fyxx = ϰy− y sin(xy)−
(
y sin(xy) + xyϮ cos(xy)

)

= ϰy− Ϯy sin(xy)− xyϮ cos(xy).

Note how fxxy = fyxx.

Ϯ. To find fxyz, we find fx, then fxy, then fxyz:

fx = ϯxϮexy + xϯyexy fxy = ϯxϯexy + xϯexy + xϰyexy = ϰxϯexy + xϰyexy

fxyz = Ϭ.

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each parƟal derivaƟve
is conƟnuous, it does not maƩer the order in which the parƟal derivaƟves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at Ɵmes. Had we known this, the second part of Exam-
ple ϰϭϬ would have been much simpler to compute. Instead of compuƟng fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly Ϭ as fz
does not contain an x or y.

Notes:
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A brief review of this secƟon: parƟal derivaƟves measure the instantaneous
rate of change of a mulƟvariable funcƟon with respect to one variable. With
z = f(x, y), the parƟal derivaƟves fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respecƟvely. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direcƟon given by the vector ⟨Ϯ, ϭ⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of SecƟon ϭϮ.ϲ. First, we need to define what it means for a funcƟon
of two variables to be differenƟable.

Notes:
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Exercises ϭϮ.ϯ
Terms and Concepts
ϭ. What is the difference between a constant and a coeffi-

cient?

Ϯ. Given a funcƟon z = f(x, y), explain in your ownwords how
to compute fx.

ϯ. In the mixed parƟal fracƟon fxy, which is computed first, fx
or fy?

ϰ. In the mixed parƟal fracƟon
∂Ϯf
∂x∂y

, which is computed first,

fx or fy?

Problems
In Exercises ϱ – ϴ, evaluate fx(x, y) and fy(x, y) at the indicated
point.

ϱ. f(x, y) = xϮy− x+ Ϯy+ ϯ at (ϭ, Ϯ)

ϲ. f(x, y) = xϯ − ϯx+ yϮ − ϲy at (−ϭ, ϯ)

ϳ. f(x, y) = sin y cos x at (π/ϯ, π/ϯ)

ϴ. f(x, y) = ln(xy) at (−Ϯ,−ϯ)

In Exercises ϵ – Ϯϲ, find fx, fy, fxx, fyy, fxy and fyx.

ϵ. f(x, y) = xϮy+ ϯxϮ + ϰy− ϱ

ϭϬ. f(x, y) = yϯ + ϯxyϮ + ϯxϮy+ xϯ

ϭϭ. f(x, y) =
x
y

ϭϮ. f(x, y) =
ϰ
xy

ϭϯ. f(x, y) = ex
Ϯ+yϮ

ϭϰ. f(x, y) = ex+Ϯy

ϭϱ. f(x, y) = sin x cos y

ϭϲ. f(x, y) = (x+ y)ϯ

ϭϳ. f(x, y) = cos(ϱxyϯ)

ϭϴ. f(x, y) = sin(ϱxϮ + Ϯyϯ)

ϭϵ. f(x, y) =
√

ϰxyϮ + ϭ

ϮϬ. f(x, y) = (Ϯx+ ϱy)
√
y

Ϯϭ. f(x, y) =
ϭ

xϮ + yϮ + ϭ

ϮϮ. f(x, y) = ϱx− ϭϳy

Ϯϯ. f(x, y) = ϯxϮ + ϭ

Ϯϰ. f(x, y) = ln(xϮ + y)

Ϯϱ. f(x, y) =
ln x
ϰy

Ϯϲ. f(x, y) = ϱex sin y+ ϵ

In Exercises Ϯϳ – ϯϬ, form a funcƟon z = f(x, y) such that fx
and fy match those given.

Ϯϳ. fx = sin y+ ϭ, fy = x cos y

Ϯϴ. fx = x+ y, fy = x+ y

Ϯϵ. fx = ϲxy− ϰyϮ, fy = ϯxϮ − ϴxy+ Ϯ

ϯϬ. fx =
Ϯx

xϮ + yϮ
, fy =

Ϯy
xϮ + yϮ

In Exercises ϯϭ – ϯϰ, find fx, fy, fz, fyz and fzy.

ϯϭ. f(x, y, z) = xϮeϮy−ϯz

ϯϮ. f(x, y, z) = xϯyϮ + xϯz+ yϮz

ϯϯ. f(x, y, z) =
ϯx
ϳyϮz

ϯϰ. f(x, y, z) = ln(xyz)

ϳϬϯ



Chapter ϭϮ FuncƟons of Several Variables

ϭϮ.ϰ DifferenƟability and the Total DifferenƟal
WestudieddifferenƟals in SecƟon ϰ.ϰ, whereDefiniƟon ϭϴ states that if y = f(x)
and f is differenƟable, thendy = f ′(x)dx. One important use of this differenƟal is
in IntegraƟon by SubsƟtuƟon. Another important applicaƟon is approximaƟon.
Let ∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the change
in y resulƟng from the change in x. Fundamental in this understanding is this:
as dx gets small, the difference between ∆y and dy goes to Ϭ. Another way of
staƟng this: as dx goes to Ϭ, the error in approximaƟng∆y with dy goes to Ϭ.

We extend this idea to funcƟons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respecƟvely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direcƟons,
respecƟvely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indicaƟon of whether or not this
approximaƟon is any good. First we give a name to dz.

DefiniƟon ϴϲ Total DifferenƟal

Let z = f(x, y) be conƟnuous on an open set S. Let dx and dy represent
changes in x and y, respecƟvely. Where the parƟal derivaƟves fx and fy
exist, the total differenƟal of z is

dz = fx(x, y)dx+ fy(x, y)dy.

Example ϰϭϭ Finding the total differenƟal
Let z = xϰeϯy. Find dz.

SÊ½çã®ÊÄ We compute the parƟal derivaƟves: fx = ϰxϯeϯy and fy =
ϯxϰeϯy. Following DefiniƟon ϴϲ, we have

dz = ϰxϯeϯydx+ ϯxϰeϯydy.

We can approximate ∆z with dz, but as with all approximaƟons, there is
error involved. A good approximaƟon is one in which the error is small. At a
given point (xϬ, yϬ), let Ex and Ey be funcƟons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(xϬ, yϬ)dx+ fy(xϬ, yϬ)dy+ Exdx+ Eydy.

Notes:
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ϭϮ.ϰ DifferenƟability and the Total DifferenƟal

If the approximaƟon of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximaƟon of∆z by dz is even beƩer if, as dx and dy go to
Ϭ, so do Ex and Ey. This leads us to our definiƟon of differenƟability.

DefiniƟon ϴϳ MulƟvariable DifferenƟability

Let z = f(x, y) be defined on an open set S containing (xϬ, yϬ) where
fx(xϬ, yϬ) and fy(xϬ, yϬ) exist. Let dzbe the total differenƟal of z at (xϬ, yϬ),
let∆z = f(xϬ + dx, yϬ + dy)− f(xϬ, yϬ), and let Ex and Ey be funcƟons of
dx and dy such that

∆z = dz+ Exdx+ Eydy.

ϭ. f is differenƟable at (xϬ, yϬ) if, given ε > Ϭ, there is a δ > Ϭ such
that if || ⟨dx, dy⟩ || < δ, then || ⟨Ex, Ey⟩ || < ε. That is, as dx and dy
go to Ϭ, so do Ex and Ey.

Ϯ. f is differenƟable on S if f is differenƟable at every point in S. If f is
differenƟable on RϮ, we say that f is differenƟable everywhere.

Example ϰϭϮ Showing a funcƟon is differenƟable
Show f(x, y) = xy+ ϯyϮ is differenƟable using DefiniƟon ϴϳ.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + ϯ(y+ dy)Ϯ

= xy+ xdy+ ydx+ dxdy+ ϯyϮ + ϲydy+ ϯdyϮ.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ ϲydy+ ϯdyϮ.

It is straighƞorward to compute fx = y and fy = x+ϲy. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ ϲydy+ ϯdyϮ (now reorder)

= ydx+ xdy+ ϲydy+ dxdy+ ϯdyϮ

= (y)
︸︷︷︸

fx

dx+ (x+ ϲy)
︸ ︷︷ ︸

fy

dy+ (dy)
︸︷︷︸

Ex

dx+ (ϯdy)
︸ ︷︷ ︸

Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = ϯdy, it is clear that as dx and dy go to Ϭ, Ex and Ey also go
to Ϭ. Since this did not depend on a specific point (xϬ, yϬ), we can say that f(x, y)

Notes:
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is differenƟable for all pairs (x, y) in RϮ, or, equivalently, that f is differenƟable
everywhere.

Our intuiƟve understanding of differenƟability of funcƟons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuiƟve understand-
ing of funcƟons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differenƟable funcƟons are conƟnuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of funcƟons are differenƟable or not.

Theorem ϭϬϰ ConƟnuity and DifferenƟability of MulƟvariable
FuncƟons

Let z = f(x, y) be defined on an open set S containing (xϬ, yϬ). If f is
differenƟable at (xϬ, yϬ), then f is conƟnuous at (xϬ, yϬ).

Theorem ϭϬϱ DifferenƟability of MulƟvariable FuncƟons

Let z = f(x, y) be defined on an open set S containing (xϬ, yϬ). If fx and
fy are both conƟnuous on S, then f is differenƟable on S.

The theorems assure us that essenƟally all funcƟons thatwe see in the course
of our studies here are differenƟable (and hence conƟnuous) on their natural do-
mains. There is a difference between DefiniƟon ϴϳ and Theorem ϭϬϱ, though: it
is possible for a funcƟon f to be differenƟable yet fx and/or fy is not conƟnuous.
Such strange behavior of funcƟons is a source of delight for many mathemaƟ-
cians.

When fx and fy exist at a point but are not conƟnuous at that point, we need
to use other methods to determine whether or not f is differenƟable at that
point.

For instance, consider the funcƟon

f(x, y) =
{ xy

xϮ+yϮ (x, y) ̸= (Ϭ, Ϭ)
Ϭ (x, y) = (Ϭ, Ϭ)

Notes:
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We can find fx(Ϭ, Ϭ) and fy(Ϭ, Ϭ) using DefiniƟon ϴϯ:

fx(Ϭ, Ϭ) = lim
h→Ϭ

f(Ϭ+ h, Ϭ)− f(Ϭ, Ϭ)
h

= lim
h→Ϭ

Ϭ
hϮ

= Ϭ;

fy(Ϭ, Ϭ) = lim
h→Ϭ

f(Ϭ, Ϭ+ h)− f(Ϭ, Ϭ)
h

= lim
h→Ϭ

Ϭ
hϮ

= Ϭ.

Both fx and fy exist at (Ϭ, Ϭ), but they are not conƟnuous at (Ϭ, Ϭ), as

fx(x, y) =
y(yϮ − xϮ)
(xϮ + yϮ)Ϯ

and fy(x, y) =
x(xϮ − yϮ)
(xϮ + yϮ)Ϯ

are not conƟnuous at (Ϭ, Ϭ). (Take the limit of fx as (x, y) → (Ϭ, Ϭ) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not conƟnuous. Therefore it is possible, by
Theorem ϭϬϱ, for f to not be differenƟable.

Indeed, it is not. One can show that f is not conƟnuous at (Ϭ, Ϭ) (see Exam-
ple ϰϬϬ), and by Theorem ϭϬϰ, this means f is not differenƟable at (Ϭ, Ϭ).

ApproximaƟng with the Total DifferenƟal

By the definiƟon, when f is differenƟable dz is a good approximaƟon for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

Example ϰϭϯ ApproximaƟng with the total differenƟal
Let z =

√
x sin y. Approximate f(ϰ.ϭ, Ϭ.ϴ).

SÊ½çã®ÊÄ Recognizing that π/ϰ ≈ Ϭ.ϳϴϱ ≈ Ϭ.ϴ, we can approximate
f(ϰ.ϭ, Ϭ.ϴ) using f(ϰ, π/ϰ). We can easily compute f(ϰ, π/ϰ) =

√
ϰ sin(π/ϰ) =

Ϯ
(√

Ϯ
Ϯ

)

=
√
Ϯ ≈ ϭ.ϰϭϰ. Without calculus, this is the best approximaƟon we

could reasonably come up with. The total differenƟal gives us a way of adjusƟng
this iniƟal approximaƟon to hopefully get a more accurate answer.

We let∆z = f(ϰ.ϭ, Ϭ.ϴ)−f(ϰ, π/ϰ). The total differenƟal dz is approximately
equal to∆z, so

f(ϰ.ϭ, Ϭ.ϴ)− f(ϰ, π/ϰ) ≈ dz ⇒ f(ϰ.ϭ, Ϭ.ϴ) ≈ dz+ f(ϰ, π/ϰ). (ϭϮ.ϭ)

To find dz, we need fx and fy.

Notes:
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fx(x, y) =
sin y
Ϯ
√
x

⇒ fx(ϰ, π/ϰ) =
sin π/ϰ
Ϯ
√
ϰ

=

√
Ϯ/Ϯ
ϰ

=
√
Ϯ/ϴ.

fy(x, y) =
√
x cos y ⇒ fy(ϰ, π/ϰ) =

√
ϰ
√
Ϯ
Ϯ

=
√
Ϯ.

ApproximaƟng ϰ.ϭ with ϰ gives dx = Ϭ.ϭ; approximaƟng Ϭ.ϴ with π/ϰ gives
dy ≈ Ϭ.Ϭϭϱ. Thus

dz(ϰ, π/ϰ) = fx(ϰ, π/ϰ)(Ϭ.ϭ) + fy(ϰ, π/ϰ)(Ϭ.Ϭϭϱ)

=

√
Ϯ
ϴ

(Ϭ.ϭ) +
√
Ϯ(Ϭ.Ϭϭϱ)

≈ Ϭ.Ϭϯϵ.

Returning to EquaƟon (ϭϮ.ϭ), we have

f(ϰ.ϭ, Ϭ.ϴ) ≈ Ϭ.Ϭϯϵ+ ϭ.ϰϭϰ = ϭ.ϰϱϯϭ.

We, of course, can compute the actual value of f(ϰ.ϭ, Ϭ.ϴ)with a calculator; the
actual value, accurate to ϱ places aŌer the decimal, is ϭ.ϰϱϮϱϰ. Obviously our
approximaƟon is quite good.

The point of the previous example was not to develop an approximaƟon
method for known funcƟons. AŌer all, we can very easily compute f(ϰ.ϭ, Ϭ.ϴ)
using readily available technology. Rather, it serves to illustrate how well this
method of approximaƟon works, and to reinforce the following concept:

“New posiƟon = old posiƟon+ amount of change,” so
“New posiƟon≈ old posiƟon + approximate amount of change.”

In the previous example, we could easily compute f(ϰ, π/ϰ) and could ap-
proximate the amount of z-change when compuƟng f(ϰ.ϭ, Ϭ.ϴ), leƫng us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of f,
fx and fy at a parƟcular point without actually knowing the funcƟon f. The total
differenƟal gives a good method of approximaƟng f at nearby points.

Example ϰϭϰ ApproximaƟng an unknown funcƟon
Given that f(Ϯ,−ϯ) = ϲ, fx(Ϯ,−ϯ) = ϭ.ϯ and fy(Ϯ,−ϯ) = −Ϭ.ϲ, approximate
f(Ϯ.ϭ,−ϯ.Ϭϯ).

Notes:
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SÊ½çã®ÊÄ The total differenƟal approximates howmuch f changes from
the point (Ϯ,−ϯ) to the point (Ϯ.ϭ,−ϯ.Ϭϯ). With dx = Ϭ.ϭ and dy = −Ϭ.Ϭϯ, we
have

dz = fx(Ϯ,−ϯ)dx+ fy(Ϯ,−ϯ)dy
= ϭ.ϯ(Ϭ.ϭ) + (−Ϭ.ϲ)(−Ϭ.Ϭϯ)
= Ϭ.ϭϰϴ.

The change in z is approximately Ϭ.ϭϰϴ, so we approximate f(Ϯ.ϭ,−ϯ.Ϭϯ) ≈
ϲ.ϭϰϴ.

Error/SensiƟvity Analysis

The total differenƟal gives an approximaƟon of the change in z given small
changes in x and y. We can use this to approximate error propagaƟon; that is,
if the input is a liƩle off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

Example ϰϭϱ SensiƟvity analysis
A cylindrical steel storage tank is to be built that is ϭϬŌ tall and ϰŌ across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensiƟve to changes in the diameter or in
the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πrϮh. We can view V as a funcƟon of two variables, r and h. We can compute
parƟal derivaƟves of V:

∂V
∂r

= Vr(r, h) = Ϯπrh and
∂V
∂h

= Vh(r, h) = πrϮ.

The total differenƟal is dV = (Ϯπrh)dr + (πrϮ)dh.When h = ϭϬ and r = Ϯ, we
have dV = ϰϬπdr + ϰπdh. Note that the coefficient of dr is ϰϬπ ≈ ϭϮϱ.ϳ; the
coefficient of dh is a tenth of that, approximately ϭϮ.ϱϳ. A small change in radius
will be mulƟplied by ϭϮϱ.ϳ, whereas a small change in height will be mulƟplied
by ϭϮ.ϱϳ. Thus the volume of the tank is more sensiƟve to changes in radius
than in height.

The previous example showed that the volume of a parƟcular tank wasmore
sensiƟve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of ϭŌ and radius of
ϱŌ would be more sensiƟve to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differenƟal.

DifferenƟability of FuncƟons of Three Variables

The definiƟon of differenƟability for funcƟons of three variables is very simi-
lar to that of funcƟons of two variables. We again start with the total differenƟal.

DefiniƟon ϴϴ Total DifferenƟal

Let w = f(x, y, z) be conƟnuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respecƟvely. Where the parƟal derivaƟves
fx, fy and fz exist, the total differenƟal of w is

dz = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differenƟal can be a good approximaƟon of the change in w when w =
f(x, y, z) is differenƟable.

DefiniƟon ϴϵ MulƟvariable DifferenƟability

Let w = f(x, y, z) be defined on an open ball B containing (xϬ, yϬ, zϬ)
where fx(xϬ, yϬ, zϬ), fy(xϬ, yϬ, zϬ) and fz(xϬ, yϬ, zϬ) exist. Let dw be the
total differenƟal of w at (xϬ, yϬ, zϬ), let ∆w = f(xϬ + dx, yϬ + dy, zϬ +
dz)− f(xϬ, yϬ, zϬ), and let Ex, Ey and Ez be funcƟons of dx, dy and dz such
that

∆w = dw+ Exdx+ Eydy+ Ezdz.

ϭ. f is differenƟable at (xϬ, yϬ, zϬ) if, given ε > Ϭ, there is a δ > Ϭ
such that if || ⟨dx, dy, dz⟩ || < δ, then || ⟨Ex, Ey, Ez⟩ || < ε.

Ϯ. f is differenƟable on B if f is differenƟable at every point in B. If f
is differenƟable onRϯ, we say that f is differenƟable everywhere.

Just as before, this definiƟon gives a rigorous statement about what it means
to be differenƟable that is not very intuiƟve. We follow it with a theorem similar
to Theorem ϭϬϱ.

Notes:
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Theorem ϭϬϲ ConƟnuity andDifferenƟability of FuncƟons of Three
Variables

Let w = f(x, y, z) be defined on an open ball B containing (xϬ, yϬ, zϬ).

ϭ. If f is differenƟable at (xϬ, yϬ, zϬ), then f is conƟnuous at (xϬ, yϬ, zϬ).

Ϯ. If fx, fy and fz are conƟnuous on B, then f is differenƟable on B.

This set of definiƟon and theorem extends to funcƟons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
Ɵons that we enounter are differenƟable on their natural domains.

This secƟon has given us a formal definiƟon of what it means for a funcƟons
to be “differenƟable,” along with a theorem that gives a more accessible un-
derstanding. The following secƟons return to noƟons prompted by our study of
parƟal derivaƟves that make use of the fact that most funcƟons we encounter
are differenƟable.

Notes:
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Exercises ϭϮ.ϰ
Terms and Concepts
ϭ. T/F: If f(x, y) is differenƟable on S, the f is conƟnuous on S.

Ϯ. T/F: If fx and fy are conƟnuous on S, then f is differenƟable
on S.

ϯ. T/F: If z = f(x, y) is differenƟable, then the change in z over
small changes dx and dy in x and y is approximately dz.

ϰ. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
In Exercises ϱ – ϴ, find the total differenƟal dz.

ϱ. z = x sin y+ xϮ

ϲ. z = (ϮxϮ + ϯy)Ϯ

ϳ. z = ϱx− ϳy

ϴ. z = xex+y

In Exercises ϵ – ϭϮ, a funcƟon z = f(x, y) is given. Give the
indicated approximaƟon using the total differenƟal.

ϵ. f(x, y) =
√
xϮ + y. Approximate f(Ϯ.ϵϱ, ϳ.ϭ) knowing

f(ϯ, ϳ) = ϰ.

ϭϬ. f(x, y) = sin x cos y. Approximate f(Ϭ.ϭ,−Ϭ.ϭ) knowing
f(Ϭ, Ϭ) = Ϭ.

ϭϭ. f(x, y) = xϮy − xyϮ. Approximate f(Ϯ.Ϭϰ, ϯ.Ϭϲ) knowing
f(Ϯ, ϯ) = −ϲ.

ϭϮ. f(x, y) = ln(x − y). Approximate f(ϱ.ϭ, ϯ.ϵϴ) knowing
f(ϱ, ϰ) = Ϭ.

Exercises ϭϯ – ϭϲ ask a variety of quesƟons dealing with ap-
proximaƟng error and sensiƟvity analysis.

ϭϯ. A cylindrical storage tank is to be ϮŌ tall with a radius of ϭŌ.
Is the volume of the tank more sensiƟve to changes in the
radius or the height?

ϭϰ. ProjecƟle MoƟon: The x-value of an object moving un-
der the principles of projecƟle moƟon is x(θ, vϬ, t) =
(vϬ cos θ)t. A parƟcular projecƟle is fired with an iniƟal ve-
locity of vϬ = ϮϱϬŌ/s and an angle of elevaƟon of θ = ϲϬ◦.
It travels a distance of ϯϳϱŌ in ϯ seconds.

Is the projecƟle more sensiƟve to errors in iniƟal speed or
angle of elevaƟon?

ϭϱ. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be ϴϱ◦, and the distance x is measured to be ϯϬ’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensiƟve to er-
rors in the measurement of x or in θ?

ℓ =?

θ

x

ϭϲ. It is “common sense” that it is far beƩer to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape Ɵmes the number
n of Ɵmes it was used. For instance, using a ϯ’ tape ϭϬ
Ɵmes gives a length of ϯϬ’. To measure the same distance
with a ϭϮ’ tape, we would use the tape Ϯ.ϱ Ɵmes. (I.e.,
ϯϬ = ϭϮ× Ϯ.ϱ.) Thus D = nℓ.

Suppose each Ɵme a measurement is taken with the tape,
the recorded distance is within ϭ/ϭϲ” of the actual distance.
(I.e., dℓ = ϭ/ϭϲ′′ ≈ Ϭ.ϬϬϱŌ). Using differenƟals, show
why common sense proves correct in that it is beƩer to use
a long tape to measure long distances.

In Exercises ϭϳ – ϭϴ, find the total differenƟal dw.

ϭϳ. w = xϮyzϯ

ϭϴ. w = ex sin y ln z

In Exercises ϭϵ – ϮϮ, use the informaƟon provided and the
total differenƟal to make the given approximaƟon.

ϭϵ. f(ϯ, ϭ) = ϳ, fx(ϯ, ϭ) = ϵ, fy(ϯ, ϭ) = −Ϯ. Approximate
f(ϯ.Ϭϱ, Ϭ.ϵ).

ϮϬ. f(−ϰ, Ϯ) = ϭϯ, fx(−ϰ, Ϯ) = Ϯ.ϲ, fy(−ϰ, Ϯ) = ϱ.ϭ. Ap-
proximate f(−ϰ.ϭϮ, Ϯ.Ϭϳ).

Ϯϭ. f(Ϯ, ϰ, ϱ) = −ϭ, fx(Ϯ, ϰ, ϱ) = Ϯ, fy(Ϯ, ϰ, ϱ) = −ϯ,
fz(Ϯ, ϰ, ϱ) = ϯ.ϳ. Approximate f(Ϯ.ϱ, ϰ.ϭ, ϰ.ϴ).

ϮϮ. f(ϯ, ϯ, ϯ) = ϱ, fx(ϯ, ϯ, ϯ) = Ϯ, fy(ϯ, ϯ, ϯ) = Ϭ, fz(ϯ, ϯ, ϯ) =
−Ϯ. Approximate f(ϯ.ϭ, ϯ.ϭ, ϯ.ϭ).

ϳϭϮ



Figure ϭϮ.ϭϰ: Understanding the applica-
Ɵon of the MulƟvariable Chain Rule.

ϭϮ.ϱ The MulƟvariable Chain Rule

ϭϮ.ϱ The MulƟvariable Chain Rule

TheChain Rule, as learned in SecƟon Ϯ.ϱ, states that
d
dx

(

f
(
g(x)

))

= f ′
(
g(x)

)
g ′(x).

If t = g(x), we can express the Chain Rule as

df
dx

=
df
dt

dt
dx

.

In this secƟon we extend the Chain Rule to funcƟons of more than one variable.

Theorem ϭϬϳ MulƟvariable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differenƟable
funcƟons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a funcƟon of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

.

It is good to understand what the situaƟon of z = f(x, y), x = g(t) and
y = h(t) describes. We know that z = f(x, y) describes a surface; we also
recognize that x = g(t) and y = h(t) are parametric equaƟons for a curve in
the x-y plane. Combining these together, we are describing a curve that lies on
the surface described by f. The parametric equaƟons for this curve are x = g(t),
y = h(t) and z = f

(
g(t), h(t)

)
.

Consider Figure ϭϮ.ϭϰ in which a surface is drawn, along with a dashed curve
in the x-y plane. RestricƟng f to just the points on this circle gives the curve
shown on the surface. The derivaƟve df

dt gives the instantaneous rate of change
of f with respect to t. If we consider an object traveling along this path, df

dt gives
the rate at which the object rises/falls.

We now pracƟce applying the MulƟvariable Chain Rule.

Example ϰϭϲ Using the MulƟvariable Chain Rule

Let z = xϮy+ x, where x = sin t and y = eϱt. Find
dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem ϭϬϳ, we find

fx(x, y) = Ϯxy+ ϭ, fy(x, y) = xϮ,
dx
dt

= cos t,
dy
dt

= ϱeϱt.

Notes:
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Chapter ϭϮ FuncƟons of Several Variables

Applying the theorem, we have

dz
dt

= (Ϯxy+ ϭ) cos t+ ϱxϮeϱt.

This may look odd, as it seems that dz
dt is a funcƟon of x, y and t. Since x and y

are funcƟons of t, dz
dt is really just a funcƟon of t, and we can replace x with sin t

and y with eϱt:

dz
dt

= (Ϯxy+ ϭ) cos t+ ϱxϮeϱt = (Ϯ sin(t)eϱt + ϭ) cos t+ ϱeϱt sinϮ t.

The previous example can make us wonder: if we subsƟtuted for x and y at
the end to show that dz

dt is really just a funcƟon of t, why not subsƟtute before
differenƟaƟng, showing clearly that z is a funcƟon of t?

That is, z = xϮy + x = (sin t)Ϯeϱt + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= Ϯ sin t cos t eϱt + ϱ sinϮ t eϱt + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivaƟve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but oŌen in “the real world” we know rate–of–change informaƟon
(i.e., informaƟon about derivaƟves) without explicitly knowing the underlying
funcƟons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also has theoreƟc use, giving us insight
into the behavior of certain construcƟons (as we’ll see in the next secƟon).

We demonstrate this in the next example.

Example ϰϭϳ Applying the MulƟvarible Chain Rule
An object travels along a path on a surface. The exact path and surface are not
known, but at Ɵme t = tϬ it is known that :

∂z
∂x

= ϱ,
∂z
∂y

= −Ϯ,
dx
dt

= ϯ and
dy
dt

= ϳ.

Find dz
dt at Ɵme tϬ.

Notes:
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Figure ϭϮ.ϭϱ: Ploƫng the path of a parƟ-
cle on a surface in Example ϰϭϴ.

ϭϮ.ϱ The MulƟvariable Chain Rule

SÊ½çã®ÊÄ The MulƟvariable Chain Rule states that

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= ϱ(ϯ) + (−Ϯ)(ϳ)
= ϭ.

By knowing certain rates–of–change informaƟon about the surface and about
the path of the parƟcle in the x-y plane, we can determine how quickly the ob-
ject is rising/falling.

We next apply the Chain Rule to solve a max/min problem.

Example ϰϭϴ Applying the MulƟvariable Chain Rule
Consider the surface z = xϮ + yϮ − xy, a paraboloid, on which a parƟcle moves
with x and y coordinates given by x = cos t and y = sin t. Find dz

dt when t = Ϭ,
and find where the parƟcle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straighƞorward to compute

fx(x, y) = Ϯx− y, fy(x, y) = Ϯy− x,
dx
dt

= − sin t,
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(Ϯx− y) sin t+ (Ϯy− x) cos t.

When t = Ϭ, x = ϭ and y = Ϭ. Thus
dz
dt

= −(Ϯ)(Ϭ) + (−ϭ)(ϭ) = −ϭ. When
t = Ϭ, the parƟcle is moving down, as shown in Figure ϭϮ.ϭϱ.

To find where z-value is maximized/minimized on the parƟcle’s path, we set
dz
dt = Ϭ and solve for t:

dz
dt

= Ϭ = −(Ϯx− y) sin t+ (Ϯy− x) cos t

Ϭ = −(Ϯ cos t− sin t) sin t+ (Ϯ sin t− cos t) cos t

Ϭ = sinϮ t− cosϮ t

cosϮ t = sinϮ t

t = n
π

ϰ
(for odd n)

We can use the First DerivaƟve Test to find that on [Ϭ, Ϯπ], z has reaches its
absolute minimum at t = π/ϰ and ϱπ/ϰ; it reaches its absolute maximum at

Notes:

ϳϭϱ



Chapter ϭϮ FuncƟons of Several Variables

t = ϯπ/ϰ and ϳπ/ϰ, as shown in Figure ϭϮ.ϭϱ.

We can extend the Chain Rule to include the situaƟon where z is a funcƟon
of more than one variable, and each of these variables is also a funcƟon of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
funcƟons of two variables, say s and t.

Theorem ϭϬϴ MulƟvariable Chain Rule, Part II

ϭ. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differenƟable funcƟons. Then z is a funcƟon of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

Ϯ. Let z = f(xϭ, xϮ, . . . , xm)be a differenƟable funcƟonofm variables,
where each of the xi is a differenƟable funcƟon of the variables
tϭ, tϮ, . . . , tn. Then z is a funcƟon of the ti, and

∂z
∂ti

=
∂f
∂xϭ

∂xϭ
∂ti

+
∂f
∂xϮ

∂xϮ
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Example ϰϭϵ Using the MulƟvarible Chain Rule, Part II
Let z = xϮy+ x, x = sϮ + ϯt and y = Ϯs− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = ϭ and t = Ϯ.

SÊ½çã®ÊÄ Following Theorem ϭϬϴ, we compute the following parƟal
derivaƟves:

∂f
∂x

= Ϯxy+ ϭ
∂f
∂y

= xϮ,

∂x
∂s

= Ϯs
∂x
∂t

= ϯ
∂y
∂s

= Ϯ
∂y
∂t

= −ϭ.

Thus
∂z
∂s

= (Ϯxy+ ϭ)(Ϯs) + (xϮ)(Ϯ) = ϰxys+ Ϯs+ ϮxϮ, and

∂z
∂t

= (Ϯxy+ ϭ)(ϯ) + (xϮ)(−ϭ) = ϲxy− xϮ + ϯ.

Notes:
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ϭϮ.ϱ The MulƟvariable Chain Rule

When s = ϭ and t = Ϯ, x = ϳ and y = Ϭ, so

∂z
∂s

= ϭϬϬ and
∂z
∂t

= −ϰϲ.

Example ϰϮϬ Using the MulƟvarible Chain Rule, Part II
Letw = xy+ zϮ, where x = tϮes, y = t cos s, and z = s sin t. Find ∂w

∂t when s = Ϭ
and t = π.

SÊ½çã®ÊÄ Following Theorem ϭϬϴ, we compute the following parƟal
derivaƟves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= Ϯz,

∂x
∂t

= Ϯtes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(Ϯtes) + x(cos s) + Ϯz(s cos t).

When s = Ϭ and t = π, we have x = πϮ, y = π and z = Ϭ. Thus

∂w
∂t

= π(Ϯπ) + πϮ = ϯπϮ.

Implicit DifferenƟaƟon

We studied finding dy
dx when y is given as an implicit funcƟon of x in detail

in SecƟon Ϯ.ϲ. We find here that the MulƟvariable Chain Rule gives a simpler
method of finding dy

dx .
For instance, consider the implicit funcƟon xϮy−xyϯ = ϯ.We learned to use

the following steps to find dy
dx :

d
dx

(

xϮy− xyϯ
)
=

d
dx

(

ϯ
)

Ϯxy+ xϮ
dy
dx

− yϯ − ϯxyϮ
dy
dx

= Ϭ

dy
dx

= − Ϯxy− yϯ

xϮ − ϯxyϮ
. (ϭϮ.Ϯ)

Instead of using this method, consider z = xϮy − xyϯ. The implicit funcƟon
above describes the level curve z = ϯ. Considering x and y as funcƟons of x, the
MulƟvariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (ϭϮ.ϯ)

Notes:
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Chapter ϭϮ FuncƟons of Several Variables

Since z is constant (in our example, z = ϯ), dz
dx = Ϭ. We also know dx

dx = ϭ.
EquaƟon (ϭϮ.ϯ) becomes

Ϭ =
∂z
∂x

(ϭ) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our soluƟon for dy
dx in EquaƟon (ϭϮ.Ϯ) is just the parƟal derivaƟve

of z with respect to x, divided by the parƟal derivaƟve of z with respect to y.
We state the above as a theorem.

Theorem ϭϬϵ Implicit DifferenƟaƟon

Let f be a differenƟable funcƟon of x and y, where f(x, y) = c defines y
as an implicit funcƟon of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

WepracƟce using Theorem ϭϬϵ by applying it to a problem from SecƟon Ϯ.ϲ.

Example ϰϮϭ Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(xϮyϮ) + yϯ = x+ y, find y ′. Note: this
is the same problem as given in Example ϳϬ of SecƟon Ϯ.ϲ, where the soluƟon
took about a full page to find.

SÊ½çã®ÊÄ Let f(x, y) = sin(xϮyϮ) + yϯ − x − y; the implicitly defined
funcƟon above is equivalent to f(x, y) = Ϭ. We find dy

dx by applying Theorem ϭϬϵ.
We find

fx(x, y) = ϮxyϮ cos(xϮyϮ)− ϭ and fy(x, y) = ϮxϮy cos(xϮyϮ)− ϭ,

so
dy
dx

= −ϮxyϮ cos(xϮyϮ)− ϭ
ϮxϮy cos(xϮyϮ)− ϭ

,

which matches our soluƟon from Example ϳϬ.

Notes:
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Exercises ϭϮ.ϱ
Terms and Concepts
ϭ. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = Ϭ.

Ϯ. Fill in the blank: The single variable Chain Rule states
d
dx

(

f
(

g(x)
)

)

= f ′
(

g(x)
)

· .

ϯ. Fill in the blank: The MulƟvariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

ϰ. If z = f(x, y), where x = g(t) and y = h(t), we can subsƟ-
tute and write z as an explicit funcƟon of t.
T/F: Using the MulƟvariable Chain Rule to find dz

dt is some-
Ɵmes easier than first subsƟtuƟng and then taking the
derivaƟve.

ϱ. T/F: TheMulƟvariable Chain Rule is only useful when all the
related funcƟons are known explicitly.

ϲ. The MulƟvariable Chain Rule allows us to compute implicit
derivaƟves easily by just compuƟng two deriva-
Ɵves.

Problems
In Exercises ϳ – ϭϮ, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the MulƟvariable Chain Rule to compute
dz
dt

.

(b) Evaluate
dz
dt

at the indicated t-value.

ϳ. z = ϯx+ ϰy, x = tϮ, y = Ϯt; t = ϭ

ϴ. z = xϮ − yϮ, x = t, y = tϮ − ϭ; t = ϭ

ϵ. z = ϱx + Ϯy, x = Ϯ cos t + ϭ, y = sin t − ϯ;
t = π/ϰ

ϭϬ. z =
x

yϮ + ϭ
, x = cos t, y = sin t; t = π/Ϯ

ϭϭ. z = xϮ + ϮyϮ, x = sin t, y = ϯ sin t; t = π/ϰ

ϭϮ. z = cos x sin y, x = πt, y = Ϯπt+ π/Ϯ; t = ϯ

In Exercises ϭϯ – ϭϴ, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = Ϭ. Note:
these are the same surfaces/curves as found in Exercises ϳ –
ϭϮ.

ϭϯ. z = ϯx+ ϰy, x = tϮ, y = Ϯt

ϭϰ. z = xϮ − yϮ, x = t, y = tϮ − ϭ

ϭϱ. z = ϱx+ Ϯy, x = Ϯ cos t+ ϭ, y = sin t− ϯ

ϭϲ. z =
x

yϮ + ϭ
, x = cos t, y = sin t

ϭϳ. z = xϮ + ϮyϮ, x = sin t, y = ϯ sin t

ϭϴ. z = cos x sin y, x = πt, y = Ϯπt+ π/Ϯ

In Exercises ϭϵ – ϮϮ, funcƟons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the MulƟvariable Chain Rule to compute
∂z
∂s

and
∂z
∂t

.

(b) Evaluate
∂z
∂s

and
∂z
∂t

at the indicated s and t values.

ϭϵ. z = xϮy, x = s− t, y = Ϯs+ ϰt; s = ϭ, t = Ϭ

ϮϬ. z = cos
(

πx+
π

Ϯ
y
)

, x = stϮ, y = sϮt; s = ϭ, t = ϭ

Ϯϭ. z = xϮ + yϮ, x = s cos t, y = s sin t; s = Ϯ, t = π/ϰ

ϮϮ. z = e−(xϮ+yϮ), x = t, y = stϮ; s = ϭ, t = ϭ

In Exercises Ϯϯ – Ϯϲ, find
dy
dx

using Implicit DifferenƟaƟon and
Theorem ϭϬϵ.

Ϯϯ. xϮ tan y = ϱϬ

Ϯϰ. (ϯxϮ + Ϯyϯ)ϰ = Ϯ

Ϯϱ.
xϮ + y
x+ yϮ

= ϭϳ

Ϯϲ. ln(xϮ + xy+ yϮ) = ϭ

In Exercises Ϯϳ – ϯϬ, find
dz
dt

, or
∂z
∂s

and
∂z
∂t

, using the supplied
informaƟon.

Ϯϳ.
∂z
∂x

= Ϯ,
∂z
∂y

= ϭ,
dx
dt

= ϰ,
dy
dt

= −ϱ

Ϯϴ.
∂z
∂x

= ϭ,
∂z
∂y

= −ϯ,
dx
dt

= ϲ,
dy
dt

= Ϯ

Ϯϵ.
∂z
∂x

= −ϰ,
∂z
∂y

= ϵ,

∂x
∂s

= ϱ,
∂x
∂t

= ϳ,
∂y
∂s

= −Ϯ,
∂y
∂t

= ϲ

ϯϬ.
∂z
∂x

= Ϯ,
∂z
∂y

= ϭ,

∂x
∂s

= −Ϯ,
∂x
∂t

= ϯ,
∂y
∂s

= Ϯ,
∂y
∂t

= −ϭ

ϳϭϵ
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ϭϮ.ϲ DirecƟonal DerivaƟves
ParƟal derivaƟves give us an understanding of how a surface changes when we
move in the x and y direcƟons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? ParƟal derivaƟves
alone cannot measure this. This secƟon invesƟgates direcƟonal derivaƟves,
which do measure this rate of change.

We begin with a definiƟon.

DefiniƟon ϵϬ DirecƟonal DerivaƟves

Let z = f(x, y) be conƟnuous on an open set S and let u⃗ = ⟨uϭ, uϮ⟩ be a
unit vector. For all points (x, y), the direcƟonal derivaƟve of f at (x, y) in
the direcƟon of u⃗ is

Du⃗ f(x, y) = lim
h→Ϭ

f(x+ huϭ, y+ huϮ)− f(x, y)
h

.

The parƟal derivaƟves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a parƟcular unit vector u⃗. This may look a bit inƟmidaƟng but in reality it is
not too difficult to deal with; it oŌen just requires extra algebra. However, the
following theorem reduces this algebraic load.

Theorem ϭϭϬ DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S containing (xϬ, yϬ), and
let u⃗ = ⟨uϭ, uϮ⟩ be a unit vector. The direcƟonal derivaƟve of f at (xϬ, yϬ)
in the direcƟon of u⃗ is

Du⃗ f(xϬ, yϬ) = fx(xϬ, yϬ)uϭ + fy(xϬ, yϬ)uϮ.

Example ϰϮϮ CompuƟng direcƟonal derivaƟves
Let z = ϭϰ− xϮ − yϮ and let P = (ϭ, Ϯ). Find the direcƟonal derivaƟve of f, at P,
in the following direcƟons:

ϭ. toward the point Q = (ϯ, ϰ),

Ϯ. in the direcƟon of ⟨Ϯ,−ϭ⟩, and

Notes:
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Figure ϭϮ.ϭϲ: Understanding the direc-
Ɵonal derivaƟve in Example ϰϮϮ.

ϭϮ.ϲ DirecƟonal DerivaƟves

ϯ. toward the origin.

SÊ½çã®ÊÄ The surface is ploƩed in Figure ϭϮ.ϭϲ, where the point P =
(ϭ, Ϯ) is indicated in the x, y-plane as well as the point (ϭ, Ϯ, ϵ)which lies on the
surface of f. We find that fx(x, y) = −Ϯx and fx(ϭ, Ϯ) = −Ϯ; fy(x, y) = −Ϯy and
fy(ϭ, Ϯ) = −ϰ.

ϭ. Let u⃗ϭ be the unit vector that points from the point (ϭ, Ϯ) to the point
Q = (ϯ, ϰ), as shown in the figure. The vector #  ‰PQ = ⟨Ϯ, Ϯ⟩; the unit vector
in this direcƟon is u⃗ϭ =

⟨
ϭ/

√
Ϯ, ϭ/

√
Ϯ
⟩
. Thus the direcƟonal derivaƟve of

f at (ϭ, Ϯ) in the direcƟon of u⃗ϭ is

Du⃗ϭ f(ϭ, Ϯ) = −Ϯ(ϭ/
√
Ϯ) + (−ϰ)(ϭ/

√
Ϯ) = −ϲ/

√
Ϯ ≈ −ϰ.Ϯϰ.

Thus the instantaneous rate of change in moving from the point (ϭ, Ϯ, ϵ)
on the surface in the direcƟon of u⃗ϭ (which points toward the point Q) is
about−ϰ.Ϯϰ. Moving in this direcƟon moves one steeply downward.

Ϯ. We seek the direcƟonal derivaƟve in the direcƟon of ⟨Ϯ,−ϭ⟩. The unit
vector in this direcƟon is u⃗Ϯ =

⟨
Ϯ/

√
ϱ,−ϭ/

√
ϱ
⟩
. Thus the direcƟonal

derivaƟve of f at (ϭ, Ϯ) in the direcƟon of u⃗Ϯ is

Du⃗Ϯ f(ϭ, Ϯ) = −Ϯ(Ϯ/
√
ϱ) + (−ϰ)(−ϭ/

√
ϱ) = Ϭ.

StarƟng on the surface of f at (ϭ, Ϯ) andmoving in the direcƟon of ⟨Ϯ,−ϭ⟩
(or u⃗Ϯ) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direcƟon towalk that does not
change the elevaƟon. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direcƟons of “no elevaƟon change” is important.

ϯ. At P = (ϭ, Ϯ), the direcƟon towards the origin is given by the vector
⟨−ϭ,−Ϯ⟩; the unit vector in this direcƟon is u⃗ϯ =

⟨
−ϭ/

√
ϱ,−Ϯ/

√
ϱ
⟩
.

The direcƟonal derivaƟve of f at P in the direcƟon of the origin is

Du⃗ϯ f(ϭ, Ϯ) = −Ϯ(−ϭ/
√
ϱ) + (−ϰ)(−Ϯ/

√
ϱ) = ϭϬ/

√
ϱ ≈ ϰ.ϰϳ.

Moving towards the origin means “walking uphill” quite steeply, with an
iniƟal slope of about ϰ.ϰϳ.

As we study direcƟonal derivaƟves, it will help to make an important con-
necƟon between the unit vector u⃗ = ⟨uϭ, uϮ⟩ that describes the direcƟon and
the parƟal derivaƟves fx and fy. We start with a definiƟon and follow this with a
Key Idea.

Notes:
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Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathemaƟcs the
expression∇f is pronounced “del f.”

Chapter ϭϮ FuncƟons of Several Variables

DefiniƟon ϵϭ Gradient

Let z = f(x, y) be differenƟable on an open set S that contains the point
(xϬ, yϬ).

ϭ. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

Ϯ. The gradient of f at (xϬ, yϬ) is∇f(xϬ, yϬ) = ⟨fx(xϬ, yϬ), fy(xϬ, yϬ)⟩.

To simplify notaƟon, we oŌen express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute direcƟonal derivaƟves in terms of a dot product.

Key Idea ϱϱ The Gradient and DirecƟonal DerivaƟves

The direcƟonal derivaƟve of z = f(x, y) in the direcƟon of u⃗ is

Du⃗ f = ∇f · u⃗.

The properƟes of the dot product previously studied allow us to invesƟgate
the properƟes of the direcƟonal derivaƟve. Given that the direcƟonal derivaƟve
gives the instantaneous rate of change of z when moving in the direcƟon of u⃗,
three quesƟons naturally arise:

ϭ. In what direcƟon(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

Ϯ. In what direcƟon(s) is the change in z the least (i.e., the “steepest down-
hill”)?

ϯ. In what direcƟon(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = || ∇f || || u⃗ || cos θ = || ∇f || cos θ, (ϭϮ.ϰ)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, || u⃗ || =
ϭ.) This equaƟon allows us to answer the three quesƟons stated previously.

ϭ. EquaƟon ϭϮ.ϰ is maximized when cos θ = ϭ, i.e., when the gradient and u⃗
have the same direcƟon. We conclude the gradient points in the direcƟon
of greatest z change.

Notes:
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Ϯ. EquaƟon ϭϮ.ϰ is minimized when cos θ = −ϭ, i.e., when the gradient and
u⃗ have opposite direcƟons. We conclude the gradient points in the oppo-
site direcƟon of the least z change.

ϯ. EquaƟon ϭϮ.ϰ is Ϭ when cos θ = Ϭ, i.e., when the gradient and u⃗ are or-
thogonal to each other. We conclude the gradient is orthogonal to direc-
Ɵons of no z change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direcƟon that leads you steepest uphill. Then the direcƟon that
leads steepest downhill is directly behind you, and side–stepping either leŌ or
right (i.e., moving perpendicularly to the direcƟon you face) does not change
your elevaƟon at all.

Recall that a level curve is defined as a curve in the x-y plane along which the
z-values of a funcƟon do not change. Let a surface z = f(x, y) be given, and let’s
represent one such level curve as a vector–valued funcƟon, r⃗(t) = ⟨x(t), y(t)⟩.
As the output of f does not change along this curve, f

(
x(t), y(t)

)
= c for all t, for

some constant c.
Since f is constant for all t, df

dt = Ϭ. By the MulƟvariable Chain Rule, we also
know

df
dt

= fx(x, y)x ′(t) + fy(x, y)y ′(t)

= ⟨fx(x, y), fy(x, y)⟩ · ⟨x ′(t), y ′(t)⟩
= ∇f · r⃗ ′(t)
= Ϭ.

This last equality states ∇f · r⃗ ′(t) = Ϭ: the gradient is orthogonal to the
derivaƟve of r⃗, meaning the gradient is orthogonal to r⃗ itself. Our conclusion: at
any point on a surface, the gradient at that point is orthogonal to the level curve
that passes through that point.

We restate these ideas in a theorem, then use them in an example.

Theorem ϭϭϭ The Gradient and DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S with gradient ∇f, let
P = (xϬ, yϬ) be a point in S and let u⃗ be a unit vector.

ϭ. The maximum value of Du⃗ f(xϬ, yϬ) is || ∇f(xϬ, yϬ) ||; the direcƟon
of maximal z increase is∇f(xϬ, yϬ).

Ϯ. Theminimum value of Du⃗ f(xϬ, yϬ) is−|| ∇f(xϬ, yϬ) ||; the direcƟon
of minimal z increase is−∇f(xϬ, yϬ).

ϯ. At P, ∇f(xϬ, yϬ) is orthogonal to the level curve passing through
(
xϬ, yϬ, f(xϬ, yϬ)

)
.

Notes:
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(a)

(b)

Figure ϭϮ.ϭϳ: Graphing the surface and
important direcƟons in Example ϰϮϯ.

Figure ϭϮ.ϭϴ: At the top of a paraboloid,
all direcƟonal derivaƟves are Ϭ.

Chapter ϭϮ FuncƟons of Several Variables

Example ϰϮϯ Finding direcƟons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/ϯ, π/ϯ). Find the direcƟons of max-
imal/minimal increase, and find a direcƟon where the instantaneous rate of z
change is Ϭ.

SÊ½çã®ÊÄ We begin by finding the gradient. fx = cos x cos y and fy =
− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π

ϯ
,
π

ϯ

)

=

⟨
ϭ
ϰ
,−ϯ

ϰ

⟩

.

Thus the direcƟon of maximal increase is ⟨ϭ/ϰ,−ϯ/ϰ⟩. In this direcƟon, the
instantaneous rate of z change is || ⟨ϭ/ϰ,−ϯ/ϰ⟩ || =

√
ϭϬ/ϰ ≈ Ϭ.ϳϵ.

Figure ϭϮ.ϭϳ shows the surface ploƩed from two different perspecƟves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨uϭ, uϮ⟩ be the
unit vector in the direcƟon of ∇f at P. Each graph of the figure also contains
the vector ⟨uϭ, uϮ, ||∇f ||⟩. This vector has a “run” of ϭ (because in the x-y plane
it moves ϭ unit) and a “rise” of ||∇f ||, hence we can think of it as a vector with
slope of ||∇f || in the direcƟonof∇f, helping us visualize how “steep” the surface
is in its steepest direcƟon.

The direcƟon ofminimal increase is ⟨−ϭ/ϰ, ϯ/ϰ⟩; in this direcƟon the instan-
taneous rate of z change is−

√
ϭϬ/ϰ ≈ −Ϭ.ϳϵ.

Any direcƟon orthogonal to ∇f is a direcƟon of no z change. We have two
choices: the direcƟon of ⟨ϯ, ϭ⟩ and the direcƟon of ⟨−ϯ,−ϭ⟩. The unit vector
in the direcƟon of ⟨ϯ, ϭ⟩ is shown in each graph of the figure as well. The level
curve at z =

√
ϯ/ϰ is drawn: recall that along this curve the z-values do not

change. Since ⟨ϯ, ϭ⟩ is a direcƟon of no z-change, this vector is tangent to the
level curve at P.

Example ϰϮϰ Understanding when∇f = Ϭ⃗
Let f(x, y) = −xϮ + Ϯx− yϮ + Ϯy+ ϭ. Find the direcƟonal derivaƟve of f in any
direcƟon at P = (ϭ, ϭ).

SÊ½çã®ÊÄ Wefind∇f = ⟨−Ϯx+ Ϯ,−Ϯy+ Ϯ⟩. AtP, wehave∇f(ϭ, ϭ) =
⟨Ϭ, Ϭ⟩. According to Theorem ϭϭϭ, this is the direcƟon of maximal increase.
However, ⟨Ϭ, Ϭ⟩ is direcƟonless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = Ϭ.

Figure ϭϮ.ϭϴ helps us understand what this means. We can see that P lies at
the top of a paraboloid. In all direcƟons, the instantaneous rate of change is Ϭ.

So what is the direcƟon of maximal increase? It is fine to give an answer of
Ϭ⃗ = ⟨Ϭ, Ϭ⟩, as this indicates that all direcƟonal derivaƟves are Ϭ.

Notes:
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The fact that the gradient of a surface always points in the direcƟon of steep-
est increase/decrease is very useful, as illustrated in the following example.

Example ϰϮϱ The flow of water downhill
Consider the surface given by f(x, y) = ϮϬ − xϮ − ϮyϮ. Water is poured on the
surface at (ϭ, ϭ/ϰ). What path does it take as it flows downhill?

SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued funcƟon de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direcƟon; therefore, at any
point on its path, it will be moving in the direcƟon of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x ′(t), y ′(t)⟩.

We find∇f = ⟨−Ϯx,−ϰy⟩ and write x ′(t) as dx
dt and y ′(t) as dy

dt . Then

c∇f = ⟨x ′(t), y ′(t)⟩

⟨−Ϯcx,−ϰcy⟩ =
⟨
dx
dt

,
dy
dt

⟩

.

This implies

−Ϯcx =
dx
dt

and − ϰcy =
dy
dt

, i.e.,

c = − ϭ
Ϯx

dx
dt

and c = − ϭ
ϰy

dy
dt

.

As c equals both expressions, we have

ϭ
Ϯx

dx
dt

=
ϭ
ϰy

dy
dt

.

To find an explicit relaƟonship between x and y, we can integrate both sides with

respect to t. Recall from our study of differenƟals that
dx
dt

dt = dx. Thus:

∫
ϭ
Ϯx

dx
dt

dt =
∫

ϭ
ϰy

dy
dt

dt
∫

ϭ
Ϯx

dx =
∫

ϭ
ϰy

dy

ϭ
Ϯ
ln |x| = ϭ

ϰ
ln |y|+ Cϭ

Ϯ ln |x| = ln |y|+ Cϭ
ln |xϮ| = ln |y|+ Cϭ

Notes:
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Figure ϭϮ.ϭϵ: A graph of the surface de-
scribed in Example ϰϮϱ along with the
path in the x-y planewith the level curves.
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Now raise both sides as a power of e:

xϮ = eln |y|+Cϭ

xϮ = eln |y|eCϭ (Note that eCϭ is just a constant.)

xϮ = yCϮ
ϭ
CϮ

xϮ = y (Note that ϭ/CϮ is just a constant.)

CxϮ = y.

As the water started at the point (ϭ, ϭ/ϰ), we can solve for C:

C(ϭ)Ϯ =
ϭ
ϰ

⇒ C =
ϭ
ϰ
.

Thus the water follows the curve y = xϮ/ϰ in the x-y plane. The surface and
the path of the water is graphed in Figure ϭϮ.ϭϵ(a). In part (b) of the figure,
the level curves of the surface are ploƩed in the x-y plane, along with the curve
y = xϮ/ϰ. NoƟce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves.

FuncƟons of Three Variables

The concepts of direcƟonal derivaƟves and the gradient are easily extended
to three (and more) variables. We combine the concepts behind DefiniƟons ϵϬ
and ϵϭ and Theorem ϭϭϬ into one set of definiƟons.

DefiniƟon ϵϮ DirecƟonal DerivaƟves and Gradient with Three
Variables

Let w = F(x, y, z) be differenƟable on an open ball B and let u⃗ be a unit
vector in Rϯ.

ϭ. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

Ϯ. The direcƟonal derivaƟve of F in the direcƟon of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properƟes of the gradient given in Theorem ϭϭϭ, when f is a func-

Notes:
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Ɵon of two variables, hold for F, a funcƟon of three variables.

TheoremϭϭϮ The Gradient and DirecƟonal DerivaƟves with Three
Variables

Let w = F(x, y, z) be differenƟable on an open ball B, let∇F be the gra-
dient of F, and let u⃗ be a unit vector.

ϭ. The maximum value of Du⃗ F is || ∇F ||, obtained when the angle
between ∇F and u⃗ is Ϭ, i.e., the direcƟon of maximal increase is
∇F.

Ϯ. The minimum value of Du⃗ F is −|| ∇F ||, obtained when the angle
between ∇F and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇F.

ϯ. Du⃗ F = Ϭ when∇F and u⃗ are orthogonal.

We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

Example ϰϮϲ Finding direcƟonal derivaƟves with funcƟons of three
variables

If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (Ϭ, Ϭ, Ϭ), I(x, y, z) =
k

xϮ + yϮ + zϮ
for some constant k.

Let k = ϭ, let u⃗ = ⟨Ϯ/ϯ, Ϯ/ϯ, ϭ/ϯ⟩ be a unit vector, and let P = (Ϯ, ϱ, ϯ).
Measure distances in inches. Find the direcƟonal derivaƟve of I at P in the di-
recƟon of u⃗, and find the direcƟon of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
parƟal derivaƟve requires a simple applicaƟon of the QuoƟent Rule, giving

∇I =
⟨ −Ϯx
(xϮ + yϮ + zϮ)Ϯ

,
−Ϯy

(xϮ + yϮ + zϮ)Ϯ
,

−Ϯz
(xϮ + yϮ + zϮ)Ϯ

⟩

∇I(Ϯ, ϱ, ϯ) =
⟨ −ϰ
ϭϰϰϰ

,
−ϭϬ
ϭϰϰϰ

,
−ϲ
ϭϰϰϰ

⟩

≈ ⟨−Ϭ.ϬϬϯ,−Ϭ.ϬϬϳ,−Ϭ.ϬϬϰ⟩

Du⃗ I = ∇I(Ϯ, ϱ, ϯ) · u⃗

= − ϭϳ
Ϯϭϲϲ

≈ −Ϭ.ϬϬϳϴ.

The direcƟonal derivaƟve tells us that moving in the direcƟon of u⃗ from P re-
sults in a decrease in intensity of about −Ϭ.ϬϬϴ units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

Notes:
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The gradient gives the direcƟon of greatest intensity increase. NoƟce that

∇I(Ϯ, ϱ, ϯ) =
⟨ −ϰ
ϭϰϰϰ

,
−ϭϬ
ϭϰϰϰ

,
−ϲ
ϭϰϰϰ

⟩

=
Ϯ

ϭϰϰϰ
⟨−Ϯ,−ϱ,−ϯ⟩ .

That is, the gradient at (Ϯ, ϱ, ϯ) is poinƟng in the direcƟon of ⟨−Ϯ,−ϱ,−ϯ⟩, that
is, towards the origin. That should make intuiƟve sense: the greatest increase
in intensity is found by moving towards to source of the energy.

The direcƟonal derivaƟve allows us to find the instantaneous rate of z change
in any direcƟon at a point. We can use these instantaneous rates of change to
define lines and planes that are tangent to a surface at a point, which is the topic
of the next secƟon.

Notes:
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Exercises ϭϮ.ϲ
Terms and Concepts

ϭ. What is the difference between a direcƟonal derivaƟve and
a parƟal derivaƟve?

Ϯ. For what u⃗ is D⃗u f = fx?

ϯ. For what u⃗ is D⃗u f = fy?

ϰ. The gradient is to level curves.

ϱ. The gradient points in the direcƟon of increase.

ϲ. It is generally more informaƟve to view the direcƟonal
derivaƟve not as the result of a limit, but rather as the result
of a product.

Problems
In Exercises ϳ – ϭϮ, a funcƟon z = f(x, y) is given. Find∇f.

ϳ. f(x, y) = −xϮy+ xyϮ + xy

ϴ. f(x, y) = sin x cos y

ϵ. f(x, y) =
ϭ

xϮ + yϮ + ϭ

ϭϬ. f(x, y) = −ϰx+ ϯy

ϭϭ. f(x, y) = xϮ + ϮyϮ − xy− ϳx

ϭϮ. f(x, y) = xϮyϯ − Ϯx

In Exercises ϭϯ – ϭϴ, a funcƟon z = f(x, y) and a point P are
given. Find the direcƟonal derivaƟve of f in the indicated di-
recƟons. Note: these are the same funcƟons as in Exercises
ϳ through ϭϮ.

ϭϯ. f(x, y) = −xϮy+ xyϮ + xy, P = (Ϯ, ϭ)

(a) In the direcƟon of v⃗ = ⟨ϯ, ϰ⟩
(b) In the direcƟon toward the point Q = (ϭ,−ϭ).

ϭϰ. f(x, y) = sin x cos y, P =
(π

ϰ
,
π

ϯ

)

(a) In the direcƟon of v⃗ = ⟨ϭ, ϭ⟩.
(b) In the direcƟon toward the point Q = (Ϭ, Ϭ).

ϭϱ. f(x, y) =
ϭ

xϮ + yϮ + ϭ
, P = (ϭ, ϭ).

(a) In the direcƟon of v⃗ = ⟨ϭ,−ϭ⟩.

(b) In the direcƟon toward the point Q = (−Ϯ,−Ϯ).

ϭϲ. f(x, y) = −ϰx+ ϯy, P = (ϱ, Ϯ)

(a) In the direcƟon of v⃗ = ⟨ϯ, ϭ⟩ .
(b) In the direcƟon toward the point Q = (Ϯ, ϳ).

ϭϳ. f(x, y) = xϮ + ϮyϮ − xy− ϳx, P = (ϰ, ϭ)

(a) In the direcƟon of v⃗ = ⟨−Ϯ, ϱ⟩
(b) In the direcƟon toward the point Q = (ϰ, Ϭ).

ϭϴ. f(x, y) = xϮyϯ − Ϯx, P = (ϭ, ϭ)

(a) In the direcƟon of v⃗ = ⟨ϯ, ϯ⟩
(b) In the direcƟon toward the point Q = (ϭ, Ϯ).

In Exercises ϭϵ – Ϯϰ, a funcƟon z = f(x, y) and a point P are
given.

(a) Find the direcƟon of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direcƟon of minimal increase of f at P.

(d) Give a direcƟon u⃗ such that D⃗u f = Ϭ at P.

Note: these are the same funcƟons and points as in Exercises
ϭϯ through ϭϴ.

ϭϵ. f(x, y) = −xϮy+ xyϮ + xy, P = (Ϯ, ϭ)

ϮϬ. f(x, y) = sin x cos y, P =
(π

ϰ
,
π

ϯ

)

Ϯϭ. f(x, y) =
ϭ

xϮ + yϮ + ϭ
, P = (ϭ, ϭ).

ϮϮ. f(x, y) = −ϰx+ ϯy, P = (ϱ, ϰ).

Ϯϯ. f(x, y) = xϮ + ϮyϮ − xy− ϳx, P = (ϰ, ϭ)

Ϯϰ. f(x, y) = xϮyϯ − Ϯx, P = (ϭ, ϭ)

In Exercises Ϯϱ – Ϯϴ, a funcƟon w = F(x, y, z), a vector v⃗ and
a point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P.

Ϯϱ. F(x, y, z) = ϯxϮzϯ + ϰxy− ϯzϮ, v⃗ = ⟨ϭ, ϭ, ϭ⟩, P = (ϯ, Ϯ, ϭ)

Ϯϲ. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨Ϯ, Ϯ, ϭ⟩, P = (Ϭ, Ϭ, Ϭ)

Ϯϳ. F(x, y, z) = xϮyϮ − yϮzϮ, v⃗ = ⟨−ϭ, ϳ, ϯ⟩, P = (ϭ, Ϭ,−ϭ)

Ϯϴ. F(x, y, z) =
Ϯ

xϮ + yϮ + zϮ
, v⃗ = ⟨ϭ, ϭ,−Ϯ⟩, P = (ϭ, ϭ, ϭ)

ϳϮϵ



Figure ϭϮ.ϮϬ: Showing various lines tan-
gent to a surface.
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ϭϮ.ϳ Tangent Lines, Normal Lines, andTangent Planes
DerivaƟves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = xϬ is the line through

(
xϬ, f(xϬ)

)
with slope f ′(xϬ); that

is, the slope of the tangent line is the instantaneous rate of change of f at xϬ.
When dealing with funcƟons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuiƟon of being “tangent” to the surface.

In Figures ϭϮ.ϮϬ we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definiƟon formally defines what it means to be “tangent
to a surface.”

DefiniƟon ϵϯ DirecƟonal Tangent Line

Let z = f(x, y) be differenƟable on an open set S containing (xϬ, yϬ) and let
u⃗ = ⟨uϭ, uϮ⟩ be a unit vector.

ϭ. The line ℓx through
(
xϬ, yϬ, f(xϬ, yϬ)

)
parallel to ⟨ϭ, Ϭ, fx(xϬ, yϬ)⟩ is the

tangent line to f in the direcƟon of x at (xϬ, yϬ).

Ϯ. The line ℓy through
(
xϬ, yϬ, f(xϬ, yϬ)

)
parallel to ⟨Ϭ, ϭ, fy(xϬ, yϬ)⟩ is the

tangent line to f in the direcƟon of y at (xϬ, yϬ).

ϯ. The line ℓ⃗u through
(
xϬ, yϬ, f(xϬ, yϬ)

)
parallel to ⟨uϭ, uϮ,Du⃗ f(xϬ, yϬ)⟩

is the tangent line to f in the direcƟon of u⃗ at (xϬ, yϬ).

It is instrucƟve to consider each of three direcƟons given in the definiƟon in
terms of “slope.” The direcƟon of ℓx is ⟨ϭ, Ϭ, fx(xϬ, yϬ)⟩; that is, the “run” is one
unit in the x-direcƟon and the “rise” is fx(xϬ, yϬ) units in the z-direcƟon. Note
how the slope is just the parƟal derivaƟve with respect to x. A similar statement
can be made for ℓy. The direcƟon of ℓ⃗u is ⟨uϭ, uϮ,Du⃗ f(xϬ, yϬ)⟩; the “run” is one
unit in the u⃗ direcƟon (where u⃗ is a unit vector) and the “rise” is the direcƟonal
derivaƟve of z in that direcƟon.

DefiniƟon ϵϯ leads to the following parametric equaƟons of direcƟonal tan-
gent lines:

ℓx(t) =







x = xϬ + t
y = yϬ
z = zϬ + fx(xϬ, yϬ)t

, ℓy(t) =







x = xϬ
y = yϬ + t
z = zϬ + fy(xϬ, yϬ)t

and ℓ⃗u(t) =







x = xϬ + uϭt
y = yϬ + uϮt
z = zϬ + Du⃗ f(xϬ, yϬ)t

.

Notes:

ϳϯϬ



(a)

(b)

Figure ϭϮ.Ϯϭ: A surface and direcƟonal
tangent lines in Example ϰϮϳ.

ϭϮ.ϳ Tangent Lines, Normal Lines, and Tangent Planes

Example ϰϮϳ Finding direcƟonal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/Ϯ, π/Ϯ) in the x and y
direcƟons and also in the direcƟon of v⃗ = ⟨−ϭ, ϭ⟩ .

SÊ½çã®ÊÄ The parƟal derivaƟves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/Ϯ, π/Ϯ) = Ϭ
fy(x, y) = − sin x sin y ⇒ fy(π/Ϯ, π/Ϯ) = −ϭ.

At (π/Ϯ, π/Ϯ), the z-value is Ϭ.
Thus the parametric equaƟons of the line tangent to f at (π/Ϯ, π/Ϯ) in the

direcƟons of x and y are:

ℓx(t) =







x = π/Ϯ+ t
y = π/Ϯ
z = Ϭ

and ℓy(t) =







x = π/Ϯ
y = π/Ϯ+ t
z = −t

.

The two lines are shown with the surface in Figure ϭϮ.Ϯϭ(a). To find the equa-
Ɵon of the tangent line in the direcƟon of v⃗, we first find the unit vector in the
direcƟon of v⃗: u⃗ =

⟨
−ϭ/

√
Ϯ, ϭ/

√
Ϯ
⟩
. The direcƟonal derivaƟve at (π/Ϯ, π, Ϯ) in

the direcƟon of u⃗ is

Du⃗ f(π/Ϯ, π, Ϯ) = ⟨Ϭ,−ϭ⟩ ·
⟨

−ϭ/
√
Ϯ, ϭ/

√
Ϯ
⟩

= −ϭ/
√
Ϯ.

Thus the direcƟonal tangent line is

ℓ⃗u(t) =







x = π/Ϯ− t/
√
Ϯ

y = π/Ϯ+ t/
√
Ϯ

z = −t/
√
Ϯ

.

The curve through (π/Ϯ, π/Ϯ, Ϭ) in the direcƟon of v⃗ is shown in Figure ϭϮ.Ϯϭ(b)
along with ℓ⃗u(t).

Example ϰϮϴ Finding direcƟonal tangent lines
Let f(x, y) = ϰxy− xϰ − yϰ. Find the equaƟons of all direcƟonal tangent lines to
f at (ϭ, ϭ).

SÊ½çã®ÊÄ First note that f(ϭ, ϭ) = Ϯ. We need to compute direcƟonal
derivaƟves, so we need∇f. We begin by compuƟng parƟal derivaƟves.

fx = ϰy− ϰxϯ ⇒ fx(ϭ, ϭ) = Ϭ; fy = ϰx− ϰyϯ ⇒ fy(ϭ, ϭ) = Ϭ.

Thus ∇f(ϭ, ϭ) = ⟨Ϭ, Ϭ⟩. Let u⃗ = ⟨uϭ, uϮ⟩ be any unit vector. The direcƟonal
derivaƟve of f at (ϭ, ϭ)will beDu⃗ f(ϭ, ϭ) = ⟨Ϭ, Ϭ⟩·⟨uϭ, uϮ⟩ = Ϭ. It does notmaƩer

Notes:
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Figure ϭϮ.ϮϮ: Graphing f in Example ϰϮϴ.
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what direcƟon we choose; the direcƟonal derivaƟve is always Ϭ. Therefore

ℓ⃗u(t) =







x = ϭ+ uϭt
y = ϭ+ uϮt
z = Ϯ

.

Figure ϭϮ.ϮϮ shows a graph of f and the point (ϭ, ϭ, Ϯ). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of Ϭ.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relaƟve maximum at this point, hence its tangent line will have
a slope of Ϭ. The following secƟon invesƟgates the points on surfaces where all
tangent lines have a slope of Ϭ.

Normal Lines

When dealing with a funcƟon y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −ϭ/f ′(c). We extend the
concept of normal, or orthogonal, to funcƟons of two variables.

Let z = f(x, y) be a differenƟable funcƟon of two variables. By DefiniƟon ϵϯ,
at (xϬ, yϬ), ℓx(t) is a line parallel to the vector d⃗x = ⟨ϭ, Ϭ, fx(xϬ, yϬ)⟩ and ℓy(t) is
a line parallel to d⃗y = ⟨Ϭ, ϭ, fy(xϬ, yϬ)⟩. Since lines in these direcƟons through
(
xϬ, yϬ, f(xϬ, yϬ)

)
are tangent to the surface, a line through this point and orthog-

onal to these direcƟons would be orthogonal, or normal, to the surface. We can
use this direcƟon to create a normal line.

The direcƟon of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
Ɵon is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨ϭ, Ϭ, fx⟩ × ⟨Ϭ, ϭ, fy⟩ = ⟨−fx,−fy, ϭ⟩ .

It is oŌen more convenient to refer to the opposite of this direcƟon, namely
⟨fx, fy,−ϭ⟩. This leads to a definiƟon.

Notes:

ϳϯϮ



Figure ϭϮ.Ϯϯ: Graphing a surface with a
normal line from Example ϰϮϵ.

ϭϮ.ϳ Tangent Lines, Normal Lines, and Tangent Planes

DefiniƟon ϵϰ Normal Line

Let z = f(x, y) be differenƟable on an open set S containing (xϬ, yϬ)
where

a = fx(xϬ, yϬ) and b = fy(xϬ, yϬ)

are defined.

ϭ. A nonzero vector parallel to n⃗ = ⟨a, b,−ϭ⟩ is orthogonal to f at
P =

(
xϬ, yϬ, f(xϬ, yϬ)

)
.

Ϯ. The line ℓn through Pwith direcƟon parallel to n⃗ is the normal line
to f at P.

Thus theparametric equaƟons of the normal line to a surface f at
(
xϬ, yϬ, f(xϬ, yϬ)

)

is:

ℓn(t) =







x = xϬ + at
y = yϬ + bt
z = f(xϬ, yϬ)− t

.

Example ϰϮϵ Finding a normal line
Find the equaƟon of the normal line to z = −xϮ − yϮ + Ϯ at (Ϭ, ϭ).

SÊ½çã®ÊÄ We find zx(x, y) = −Ϯx and zy(x, y) = −Ϯy; at (Ϭ, ϭ), we
have zx = Ϭ and zy = −Ϯ. We take the direcƟon of the normal line, following
DefiniƟon ϵϰ, to be n⃗ = ⟨Ϭ,−Ϯ,−ϭ⟩. The line with this direcƟon going through
the point (Ϭ, ϭ, ϭ) is

ℓn(t) =







x = Ϭ
y = −Ϯt+ ϭ
z = −t+ ϭ

or ℓn(t) = ⟨Ϭ,−Ϯ,−ϭ⟩ t+ ⟨Ϭ, ϭ, ϭ⟩ .

The surface z = −xϮ + yϮ, along with the found normal line, is graphed in
Figure ϭϮ.Ϯϯ.

The direcƟon of the normal line has many uses, one of which is the defini-
Ɵon of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is general geo-
metric concept to define the distance from Q to the surface as being the length
of the shortest line segment PQ over all points P on the surface. This, in turn,
implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can mea-
sure the distance fromQ to the surface f by finding a point P on the surface such

Notes:
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that #  ‰PQ is parallel to the normal line to f at P.

Example ϰϯϬ Finding the distance from a point to a surface
Let f(x, y) = Ϯ − xϮ − yϮ and let Q = (Ϯ, Ϯ, Ϯ). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface is used in Example ϰϮϴ, so we know that at
(x, y), the direcƟon of the normal line will be d⃗n = ⟨−Ϯx,−Ϯy,−ϭ⟩. A point P on
the surfacewill have coordinates (x, y, Ϯ−xϮ−yϮ), so #  ‰PQ =

⟨
Ϯ− x, Ϯ− y, xϮ + yϮ

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c
#  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
Ϯ− x, Ϯ− y, xϮ + yϮ

⟩
= ⟨−Ϯx,−Ϯy,−ϭ⟩ .

This implies

c(Ϯ− x) = −Ϯx
c(Ϯ− y) = −Ϯy

c(xϮ + yϮ) = −ϭ

In each equaƟon, we can solve for c:

c =
−Ϯx
Ϯ− x

=
−Ϯy
Ϯ− y

=
−ϭ

xϮ + yϮ
.

The first two fracƟons imply x = y, and so the last fracƟon can be rewriƩen as
c = −ϭ/(ϮxϮ). Then

−Ϯx
Ϯ− x

=
−ϭ
ϮxϮ

−Ϯx(ϮxϮ) = −ϭ(Ϯ− x)

ϰxϯ = Ϯ− x

ϰxϯ + x− Ϯ = Ϭ.

This last equaƟon is a cubic, which is not difficult to solve with a numeric solver.
We find that x = Ϭ.ϲϴϵ, hence P = (Ϭ.ϲϴϵ, Ϭ.ϲϴϵ, ϭ.Ϭϱϭ). We find the distance
from Q to the surface of f is

|| #  ‰PQ || =
√

(Ϯ− Ϭ.ϲϴϵ)Ϯ + (Ϯ− Ϭ.ϲϴϵ)Ϯ + (Ϯ− ϭ.Ϭϱϭ)Ϯ = Ϯ.Ϭϴϯ.

We can take the concept of measuring the distance from a point to a surface
to find a point Q a parƟcular distance from a surface at a given point P on the

Notes:
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Figure ϭϮ.Ϯϰ: Graphing the surface in Ex-
ample ϰϯϭ along with points ϰ units from
the surface.

ϭϮ.ϳ Tangent Lines, Normal Lines, and Tangent Planes

surface.

Example ϰϯϭ Finding a point a set distance from a surface
Let f(x, y) = x−yϮ+ϯ. Let P =

(
Ϯ, ϭ, f(Ϯ, ϭ)

)
= (Ϯ, ϭ, ϰ). Find pointsQ in space

that are ϰ units from the surface of f at P. That is, find Q such that || #  ‰PQ || = ϰ
and #  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding parƟal derivaƟves:

fx(x, y) = ϭ ⇒ fx(Ϯ, ϭ) = ϭ
fy(x, y) = −Ϯy ⇒ fy(Ϯ, ϭ) = −Ϯ

The vector n⃗ = ⟨ϭ,−Ϯ,−ϭ⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direcƟon of n⃗:

u⃗ =
n⃗

|| n⃗ || =
⟨

ϭ/
√
ϲ,−Ϯ/

√
ϲ,−ϭ/

√
ϲ
⟩

≈ ⟨Ϭ.ϰϬϴ,−Ϭ.ϴϭϲ,−Ϭ.ϰϬϴ⟩ .

Thus a the normal line to f at P can be wriƩen as

ℓn(t) = ⟨Ϯ, ϭ, ϰ⟩+ t ⟨Ϭ.ϰϬϴ,−Ϭ.ϴϭϲ,−Ϭ.ϰϬϴ⟩ .

An advantage of this parametrizaƟon of the line is that leƫng t = tϬ gives a
point on the line that is |tϬ| units from P. (This is because the direcƟon of the
line is given in terms of a unit vector.) There are thus two points in space ϰ units
from P:

Qϭ = ℓn(ϰ) QϮ = ℓn(−ϰ)
≈ ⟨ϯ.ϲϯ,−Ϯ.Ϯϳ, Ϯ.ϯϳ⟩ ≈ ⟨Ϭ.ϯϳ, ϰ.Ϯϳ, ϱ.ϲϯ⟩

The surface is graphed along with points P, Qϭ, QϮ and a porƟon of the normal
line to f at P.

Tangent Planes

We can use the direcƟon of the normal line to define a plane. With a =
fx(xϬ, yϬ), b = fy(xϬ, yϬ) and P =

(
xϬ, yϬ, f(xϬ, yϬ)

)
, the vector n⃗ = ⟨a, b,−ϭ⟩

is orthogonal to f at P. The plane through P with normal vector n⃗ is therefore
tangent to f at P.

Notes:
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Figure ϭϮ.Ϯϱ: Graphing a surfacewith tan-
gent plane from Example ϰϯϮ.
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DefiniƟon ϵϱ Tangent Plane

Let z = f(x, y) be differenƟable on an open set S containing
(xϬ, yϬ), where a = fx(xϬ, yϬ), b = fy(xϬ, yϬ), n⃗ = ⟨a, b,−ϭ⟩ and
P =

(
xϬ, yϬ, f(xϬ, yϬ)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− xϬ) + b(y− yϬ)−
(
z− f(xϬ, yϬ)

)
= Ϭ.

Example ϰϯϮ Finding tangent planes
Find the equaƟon tangent plane to z = −xϮ − yϮ + Ϯ at (Ϭ, ϭ).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Example
ϰϮϵ. There we found n⃗ = ⟨Ϭ,−Ϯ,−ϭ⟩ and P = (Ϭ, ϭ, ϭ). Therefore the equaƟon
of the tangent plane is

−Ϯ(y− ϭ)− (z− ϭ) = Ϭ.

The surface z = −xϮ + yϮ and tangent plane are graphed in Figure ϭϮ.Ϯϱ.

Example ϰϯϯ Using the tangent plane to approximate funcƟon values
The point (ϯ,−ϭ, ϰ) lies on the surface of an unknown differenƟable funcƟon f
where fx(ϯ,−ϭ) = Ϯ and fy(ϯ,−ϭ) = −ϭ/Ϯ. Find the equaƟon of the tangent
plane to f at P, and use this to approximate the value of f(Ϯ.ϵ,−Ϭ.ϴ).

SÊ½çã®ÊÄ Knowing the parƟal derivaƟves at (ϯ,−ϭ) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨Ϯ,−ϭ/Ϯ,−ϭ⟩. Thus the equaƟon
of the tangent line to f at P is:

Ϯ(x−ϯ)−ϭ/Ϯ(y+ϭ)−(z−ϰ) = Ϭ ⇒ z = Ϯ(x−ϯ)−ϭ/Ϯ(y+ϭ)+ϰ. (ϭϮ.ϱ)

Just as tangent lines provide excellent approximaƟons of curves near their point
of intersecƟon, tangent planes provide excellent approximaƟons of surfaces near
their point of intersecƟon. So f(Ϯ.ϵ,−Ϭ.ϴ) ≈ z(Ϯ.ϵ,−Ϭ.ϴ) = ϯ.ϳ.

This is not a newmethod of approximaƟon. Compare the right hand expres-
sion for z in EquaƟon (ϭϮ.ϱ) to the total differenƟal:

dz = fxdx+ fydy and z = Ϯ
︸︷︷︸

fx

(x− ϯ)
︸ ︷︷ ︸

dx

+−ϭ/Ϯ
︸ ︷︷ ︸

fy

(y+ ϭ)
︸ ︷︷ ︸

dy
︸ ︷︷ ︸

dz

+ϰ.

Notes:
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (ϰ). AsmenƟonedwhen studying the total differenƟal, it is not uncommon
to know parƟal derivaƟve informaƟon about a unknown funcƟon, and tangent
planes are used to give accurate approximaƟons of the funcƟon.

The Gradient and Normal Lines, Tangent Planes

The methods developed in this secƟon so far give a straighƞorward method
of finding equaƟons of normal lines and tangent planes for surfaces with explicit
equaƟons of the form z = f(x, y). However, they do not handle implicit equa-
Ɵons well, such as xϮ + yϮ + zϮ = ϭ. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

DefiniƟon ϵϲ Gradient

Let w = F(x, y, z) be differenƟable on an open ball B that contains the
point (xϬ, yϬ, zϬ).

ϭ. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

Ϯ. The gradient of F at (xϬ, yϬ, zϬ) is

∇F(xϬ, yϬ, zϬ) = ⟨fx(xϬ, yϬ, zϬ), fy(xϬ, yϬ, zϬ), fz(xϬ, yϬ, zϬ)⟩ .

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (xϬ, yϬ, zϬ), let c = F(xϬ, yϬ, zϬ). Then F(x, y, z) =
c is a level surface that contains the point (xϬ, yϬ, zϬ). The following theorem
states that∇F(xϬ, yϬ, zϬ) is orthogonal to this level surface.

Theorem ϭϭϯ The Gradient and Level Surfaces

Let w = F(x, y, z) be differenƟable on an open ball B containing
(xϬ, yϬ, zϬ) with gradient∇F, where F(xϬ, yϬ, zϬ) = c.

The vector∇F(xϬ, yϬ, zϬ) is orthogonal to the level surface F(x, y, z) = c
at (xϬ, yϬ, zϬ).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direcƟon can be used to find tangent planes and normal lines.

Notes:

ϳϯϳ



Figure ϭϮ.Ϯϲ: An ellipsoid and its tangent
plane at a point.

Chapter ϭϮ FuncƟons of Several Variables

Example ϰϯϰ Using the gradient to find a tangent plane

Find the equaƟon of the plane tangent to the ellipsoid
xϮ

ϭϮ
+

yϮ

ϲ
+

zϮ

ϰ
= ϭ at

P = (ϭ, Ϯ, ϭ).

SÊ½çã®ÊÄ We consider the equaƟon of the ellipsoid as a level surface
of a funcƟon F of three variables, where F(x, y, z) = xϮ

ϭϮ +
yϮ
ϲ + zϮ

ϰ . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
ϲ
,
y
ϯ
,
z
Ϯ

⟩

.

At P, the gradient is ∇F(ϭ, Ϯ, ϭ) = ⟨ϭ/ϲ, Ϯ/ϯ, ϭ/Ϯ⟩. Thus the equaƟon of the
plane tangent to the ellipsoid at P is

ϭ
ϲ
(x− ϭ) +

Ϯ
ϯ
(y− Ϯ) +

ϭ
Ϯ
(z− ϭ) = Ϭ.

The ellipsoid and tangent plane are graphed in Figure ϭϮ.Ϯϲ.

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximaƟons. Normal lines also
have many uses. In this secƟon we focused on using them to measure distances
from a surface. Another interesƟng applicaƟon is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next secƟon invesƟgates another use of parƟal derivaƟves: determining
relaƟve extrema. When dealing with funcƟons of the form y = f(x), we found
relaƟve extrema by finding x where f ′(x) = Ϭ. We can start finding relaƟve
extrema of z = f(x, y) by seƫng fx and fy to Ϭ, but it turns out that there is more
to consider.

Notes:
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Exercises ϭϮ.ϳ
Terms and Concepts

ϭ. Explain how the vector v⃗ = ⟨ϭ, Ϭ, ϯ⟩ can be thought of as
having a “slope” of ϯ.

Ϯ. Explain how the vector v⃗ = ⟨Ϭ.ϲ, Ϭ.ϴ,−Ϯ⟩ can be thought
of as having a “slope” of−Ϯ.

ϯ. T/F: Let z = f(x, y) be differenƟable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to fx and fy at P.

ϰ. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direcƟonal
tangent lines to a surface at a point.

Problems
In Exercises ϱ – ϴ, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equaƟons of the following
direcƟonal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direcƟon of v⃗.

ϱ. f(x, y) = ϮxϮy− ϰxyϮ, v⃗ = ⟨ϭ, ϯ⟩, P = (Ϯ, ϯ).

ϲ. f(x, y) = ϯ cos x sin y, v⃗ = ⟨ϭ, Ϯ⟩, P = (π/ϯ, π/ϲ).

ϳ. f(x, y) = ϯx− ϱy, v⃗ = ⟨ϭ, ϭ⟩, P = (ϰ, Ϯ).

ϴ. f(x, y) = xϮ − Ϯx− yϮ + ϰy, v⃗ = ⟨ϭ, ϭ⟩, P = (ϭ, Ϯ).

In Exercises ϵ – ϭϮ, a funcƟon z = f(x, y) and a point P are
given. Find the equaƟon of the normal line to f at P. Note:
these are the same funcƟons as in Exercises ϱ – ϴ.

ϵ. f(x, y) = ϮxϮy− ϰxyϮ, P = (Ϯ, ϯ).

ϭϬ. f(x, y) = ϯ cos x sin y, P = (π/ϯ, π/ϲ).

ϭϭ. f(x, y) = ϯx− ϱy, P = (ϰ, Ϯ).

ϭϮ. f(x, y) = xϮ − Ϯx− yϮ + ϰy, P = (ϭ, Ϯ).

In Exercises ϭϯ – ϭϲ, a funcƟon z = f(x, y) and a point P are
given. Find the two points that are Ϯ units from the surface
f at P. Note: these are the same funcƟons as in Exercises ϱ –
ϴ.

ϭϯ. f(x, y) = ϮxϮy− ϰxyϮ, P = (Ϯ, ϯ).

ϭϰ. f(x, y) = ϯ cos x sin y, P = (π/ϯ, π/ϲ).

ϭϱ. f(x, y) = ϯx− ϱy, P = (ϰ, Ϯ).

ϭϲ. f(x, y) = xϮ − Ϯx− yϮ + ϰy, P = (ϭ, Ϯ).

In Exercises ϭϳ – ϮϬ, a funcƟon z = f(x, y) and a point P are
given. Find the equaƟon of the tangent plane to f at P. Note:
these are the same funcƟons as in Exercises ϱ – ϴ.

ϭϳ. f(x, y) = ϮxϮy− ϰxyϮ, P = (Ϯ, ϯ).

ϭϴ. f(x, y) = ϯ cos x sin y, P = (π/ϯ, π/ϲ).

ϭϵ. f(x, y) = ϯx− ϱy, P = (ϰ, Ϯ).

ϮϬ. f(x, y) = xϮ − Ϯx− yϮ + ϰy, P = (ϭ, Ϯ).

In Exercises Ϯϭ – Ϯϰ, an implicitly defined funcƟon of x, y and
z is given along with a point P that lies on the surface. Use
the gradient∇F to:

(a) find the equaƟon of the normal line to the surface at
P, and

(b) find the equaƟon of the plane tangent to the surface
at P.

Ϯϭ.
xϮ

ϴ
+

yϮ

ϰ
+

zϮ

ϭϲ
= ϭ, at P = (ϭ,

√
Ϯ,
√
ϲ)

ϮϮ. zϮ − xϮ

ϰ
− yϮ

ϵ
= Ϭ, at P = (ϰ,−ϯ,

√
ϱ)

Ϯϯ. xyϮ − xzϮ = Ϭ, at P = (Ϯ, ϭ,−ϭ)

Ϯϰ. sin(xy) + cos(yz) = Ϭ, at P = (Ϯ, π/ϭϮ, ϰ)

ϳϯϵ



Chapter ϭϮ FuncƟons of Several Variables

ϭϮ.ϴ Extreme Values

Given a funcƟon z = f(x, y), we are oŌen interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost funcƟon, we
would likely want to know what (x, y) values minimize the cost. If z represents
the raƟo of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definiƟon.

DefiniƟon ϵϳ RelaƟve and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (xϬ, yϬ).

ϭ. If there is an open disk D containing P such that f(xϬ, yϬ) ≥ f(x, y)
for all (x, y) in D, then f has a relaƟve maximum at P; if f(xϬ, yϬ) ≤
f(x, y) for all (x, y) in D, then f has a relaƟve minimum at P.

Ϯ. If f(xϬ, yϬ) ≥ f(x, y) for all (x, y) in S, then f has an absolute max-
imum at P; if f(xϬ, yϬ) ≤ f(x, y) for all (x, y) in S, then f has an
absolute minimum at P.

ϯ. If f has a relaƟve maximum or minimum at P, then f has a relaƟve
extrema at P; if f has an absolutemaximum orminimum at P, then
f has a absolute extrema at P.

If f has a relaƟve or absolute maximum at P = (xϬ, yϬ), it means every curve
on the surface of f through Pwill also have a relaƟve or absolute maximum at P.
Recalling what we learned in SecƟon ϯ.ϭ, the slopes of the tangent lines to these
curves at Pmust be Ϭ or undefined. Since direcƟonal derivaƟves are computed
using fx and fy, we are led to the following definiƟon and theorem.

DefiniƟon ϵϴ CriƟcal Point

Let z = f(x, y) be conƟnuous on an open set S. A criƟcal point P =
(xϬ, yϬ) of f is a point in S such that

• fx(xϬ, yϬ) = Ϭ and fy(xϬ, yϬ) = Ϭ, or

• fx(xϬ, yϬ) and/or fy(xϬ, yϬ) is undefined.

Notes:
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Figure ϭϮ.Ϯϳ: The surface in Example ϰϯϱ
with its absolute minimum indicated.

Figure ϭϮ.Ϯϴ: The surface in Example ϰϯϲ
with its absolute maximum indicated.

ϭϮ.ϴ Extreme Values

Theorem ϭϭϰ CriƟcal Points and RelaƟve Extrema

Let z = f(x, y) be defined on an open set S containing P = (xϬ, yϬ). If f
has a relaƟve extrema at P, then P is a criƟcal point of f.

Therefore, to find relaƟve extrema, we find the criƟcal points of f and de-
termine which correspond to relaƟve maxima, relaƟve minima, or neither. The
following examples demonstrate this process.

Example ϰϯϱ Finding criƟcal points and relaƟve extrema
Let f(x, y) = xϮ + yϮ − xy− x− Ϯ. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) = Ϯx− y− ϭ and fy(x, y) = Ϯy− x.

Each is never undefined. A criƟcal point occurswhen fx and fy are simultaneously
Ϭ, leading us to solve the following system of linear equaƟons:

Ϯx− y− ϭ = Ϭ and − x+ Ϯy = Ϭ.

This soluƟon to this system is x = Ϯ/ϯ, y = ϭ/ϯ. (Check that at (Ϯ/ϯ, ϭ/ϯ), both
fx and fy are Ϭ.)

The graph in Figure ϭϮ.Ϯϳ shows f alongwith this criƟcal point. It is clear from
the graph that this is a relaƟve minimum; further consideraƟon of the funcƟon
shows that this is actually the absolute minimum.

Example ϰϯϲ Finding criƟcal points and relaƟve extrema
Let f(x, y) = −

√

xϮ + yϮ + Ϯ. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) =
−x

√

xϮ + yϮ
and fy(x, y) =

−y
√

xϮ + yϮ
.

It is clear that fx = Ϭ when x = Ϭ & y ̸= Ϭ, and that fy = Ϭ when y = Ϭ & x ̸= Ϭ.
At (Ϭ, Ϭ), both fx and fy are not Ϭ, but rather undefined. The point (Ϭ, Ϭ) is sƟll a
criƟcal point, though, because the parƟal derivaƟves are undefined. This is the
only criƟcal point of f.

The surface of f is graphed in Figure ϭϮ.Ϯϴ along with the point (Ϭ, Ϭ, Ϯ). The
graph shows that this point is the absolute maximum of f.

Notes:
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Figure ϭϮ.Ϯϵ: The surface in Example ϰϯϳ
with both criƟcal points marked.

Chapter ϭϮ FuncƟons of Several Variables

In each of the previous two examples, we found a criƟcal point of f and then
determinedwhether or not it was a relaƟve (or absolute)maximumorminimum
by graphing. It would be nice to be able to determine whether a criƟcal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

Example ϰϯϳ Finding criƟcal points and relaƟve extrema
Let f(x, y) = xϯ − ϯx− yϮ + ϰy. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the parƟal derivaƟves of f:

fx(x, y) = ϯxϮ − ϯ and fy(x, y) = −Ϯy+ ϰ.

Each is always defined. Seƫng each equal to Ϭ and solving for x and y, we find

fx(x, y) = Ϭ ⇒ x = ±ϭ
fy(x, y) = Ϭ ⇒ y = Ϯ.

We have two criƟcal points: (−ϭ, Ϯ) and (ϭ, Ϯ). To determine if they correspond
to a relaƟve maximum or minimum, we consider the graph of f in Figure ϭϮ.Ϯϵ.

The criƟcal point (−ϭ, Ϯ) clearly corresponds to a relaƟve maximum. How-
ever, the criƟcal point at (ϭ, Ϯ) is neither a maximum nor a minimum, displaying
a different, interesƟng characterisƟc.

If one walks parallel to the y-axis towards this criƟcal point, then this point
becomes a relaƟvemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relaƟve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definiƟon follows.

DefiniƟon ϵϵ Saddle Point

Let P = (xϬ, yϬ) be in the domain of f where fx = Ϭ and fy = Ϭ at
P. P is a saddle point of f if, for every open disk D containing P, there
are points (xϭ, yϭ) and (xϮ, yϮ) in D such that f(xϬ, yϬ) > f(xϭ, yϭ) and
f(xϬ, yϬ) < f(xϮ, yϮ).

At a saddle point, the instantaneous rate of change in all direcƟons is Ϭ and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Notes:
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ϭϮ.ϴ Extreme Values

Before Example ϰϯϳ we menƟoned the need for a test to differenƟate be-
tween relaƟve maxima and minima. We now recognize that our test also needs
to account for saddle points. To do so, we consider the second parƟal derivaƟves
of f.

Recall that with single variable funcƟons, such as y = f(x), if f ′′(c) > Ϭ, then
f is concave up at c, and if f ′(c) = Ϭ, then f has a relaƟveminimum at x = c. (We
called this the Second DerivaƟve Test.) Note that at a saddle point, it seems the
graph is “both” concave up and concave down, depending on which direcƟon
you are considering.

It would be nice if the following were true:

fxx and fyy > Ϭ ⇒ relaƟve minimum
fxx and fyy < Ϭ ⇒ relaƟve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. FuncƟons f exist where fxx and fyy are both
posiƟve but a saddle point sƟll exists. In such a case, while the concavity in the
x-direcƟon is up (i.e., fxx > Ϭ) and the concavity in the y-direcƟon is also up (i.e.,
fyy > Ϭ), the concavity switches somewhere in between the x- and y-direcƟons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when conƟnuous (refer back to TheoremϭϬϯ), we can rewrite this asD = fxxfyy−
f Ϯxy. D can be used to test whether the concavity at a point changes depending on
direcƟon. If D > Ϭ, the concavity does not switch (i.e., at that point, the graph
is concave up or down in all direcƟons). If D < Ϭ, the concavity does switch. If
D = Ϭ, our test fails to determine whether concavity switches or not. We state
the use of D in the following theorem.

Theorem ϭϭϱ Second DerivaƟve Test

Let z = f(x, y) be differenƟable on an open set containing P = (xϬ, yϬ),
and let

D = fxx(xϬ, yϬ)fyy(xϬ, yϬ)− f Ϯxy(xϬ, yϬ).

ϭ. If D > Ϭ and fxx(xϬ, yϬ) > Ϭ, then P is a relaƟve minimum of f.

Ϯ. If D > Ϭ and fxx(xϬ, yϬ) < Ϭ, then P is a relaƟve maximum of f.

ϯ. If D < Ϭ, then P is a saddle point of f.

ϰ. If D = Ϭ, the test is inconclusive.

We first pracƟce using this test with the funcƟon in the previous example,
where we visually determined we had a relaƟve maximum and a saddle point.

Notes:
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Example ϰϯϴ Using the Second DerivaƟve Test
Let f(x, y) = xϯ−ϯx−yϮ+ϰy as in Example ϰϯϳ. Determinewhether the funcƟon
has a relaƟve minimum, maximum, or saddle point at each criƟcal point.

SÊ½çã®ÊÄ We determined previously that the criƟcal points of f are
(−ϭ, Ϯ) and (ϭ, Ϯ). To use the Second DerivaƟve Test, we must find the second
parƟal derivaƟves of f:

fxx = ϲx; fyy = −Ϯ; fxy = Ϭ.

Thus D(x, y) = −ϭϮx.
At (−ϭ, Ϯ): D(−ϭ, Ϯ) = ϭϮ > Ϭ, and fxx(−ϭ, Ϯ) = −ϲ. By the Second Deriva-

Ɵve Test, f has a relaƟve maximum at (−ϭ, Ϯ).
At (ϭ, Ϯ): D(ϭ, Ϯ) = −ϭϮ < Ϭ. The Second DerivaƟve Test states that f has a

saddle point at (ϭ, Ϯ).
The Second DerivaƟve Test confirmed what we determined visually.

Example ϰϯϵ Using the Second DerivaƟve Test
Find the relaƟve extrema of f(x, y) = xϮy+ yϮ + xy.

SÊ½çã®ÊÄ We start by finding the first and second parƟal derivaƟves of
f:

fx = Ϯxy+ y fy = xϮ + Ϯy+ x
fxx = Ϯy fyy = Ϯ

fxy = Ϯx+ ϭ fyx = Ϯx+ ϭ.

We find the criƟcal points by finding where fx and fy are simultaneously Ϭ (they
are both never undefined). Seƫng fx = Ϭ, we have:

fx = Ϭ ⇒ Ϯxy+ y = Ϭ ⇒ y(Ϯx+ ϭ) = Ϭ.

This implies that for fx = Ϭ, either y = Ϭ or Ϯx+ ϭ = Ϭ.
Assume y = Ϭ then consider fy = Ϭ:

fy = Ϭ

xϮ + Ϯy+ x = Ϭ, and since y = Ϭ, we have

xϮ + x = Ϭ
x(x+ ϭ) = Ϭ.

Thus if y = Ϭ, we have either x = Ϭ or x = −ϭ, giving two criƟcal points: (−ϭ, Ϭ)
and (Ϭ, Ϭ).

Notes:
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Figure ϭϮ.ϯϬ: Graphing f from Example
ϰϯϵ and its relaƟve extrema.

ϭϮ.ϴ Extreme Values

Going back to fx, now assume Ϯx+ϭ = Ϭ, i.e., that x = −ϭ/Ϯ, then consider
fy = Ϭ:

fy = Ϭ

xϮ + Ϯy+ x = Ϭ, and since x = −ϭ/Ϯ, we have
ϭ/ϰ+ Ϯy− ϭ/Ϯ = Ϭ

y = ϭ/ϴ.

Thus if x = −ϭ/Ϯ, y = ϭ/ϴ giving the criƟcal point (−ϭ/Ϯ, ϭ/ϴ).
With D = ϰy−(Ϯx+ϭ)Ϯ, we apply the Second DerivaƟve Test to each criƟcal

point.
At (−ϭ, Ϭ), D < Ϭ, so (−ϭ, Ϭ) is a saddle point.
At (Ϭ, Ϭ), D < Ϭ, so (Ϭ, Ϭ) is also a saddle point.
At (−ϭ/Ϯ, ϭ/ϴ), D > Ϭ and fxx > Ϭ, so (−ϭ/Ϯ, ϭ/ϴ) is a relaƟve minimum.
Figure ϭϮ.ϯϬ shows a graph of f and the three criƟcal points. Note how this

funcƟon does not vary much near the criƟcal points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or relaƟveminimum (or even
a criƟcal point at all!). This is one reason why the Second DerivaƟve Test is so
important to have.

Constrained OpƟmizaƟon

When opƟmizing funcƟons of one variable such as y = f(x), we made use
of Theorem Ϯϱ, the Extreme Value Theorem, that said that over a closed inter-
val I, a conƟnuous funcƟon has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all criƟcal points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to funcƟons of two variables. A
conƟnuous funcƟon over a closed set also aƩains a maximum and minimum
value (see the following theorem). We can find these values by evaluaƟng the
funcƟon at the criƟcal values in the set and over the boundary of the set. AŌer
formally staƟng this extreme value theorem, we give examples.

Theorem ϭϭϲ Extreme Value Theorem

Let z = f(x, y) be a conƟnuous funcƟon on a closed, bounded set S. Then
f has a maximum and minimum value on S.

Example ϰϰϬ Finding extrema on a closed set
Let f(x, y) = xϮ − yϮ + ϱ and let S be the triangle with verƟces (−ϭ,−Ϯ), (Ϭ, ϭ)
and (Ϯ,−Ϯ). Find the maximum and minimum values of f on S.

Notes:
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Figure ϭϮ.ϯϭ: Ploƫng the surface of f
along with the restricted domain S.

Chapter ϭϮ FuncƟons of Several Variables

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Figure
ϭϮ.ϯϭ(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the porƟon of f enclosed by the
“triangle” on its surface.

We begin by finding the criƟcal points of f. With fx = Ϯx and fy = −Ϯy, we
find only one criƟcal point, at (Ϭ, Ϭ).

We now find the maximum and minimum values that f aƩains along the
boundary of S, that is, along the edges of the triangle. In Figure ϭϮ.ϯϭ(b) we
see the triangle sketched in the plane with the equaƟons of the lines forming its
edges labeled.

Start with the boƩom edge, along the line y = −Ϯ. If y is −Ϯ, then on
the surface, we are considering points f(x,−Ϯ); that is, our funcƟon reduces to
f(x,−Ϯ) = xϮ − (−Ϯ)Ϯ + ϱ = xϮ + ϭ = fϭ(x). We want to maximize/minimize
fϭ(x) = xϮ + ϭ on the interval [−ϭ, Ϯ]. To do so, we evaluate fϭ(x) at its criƟcal
points and at the endpoints.

The criƟcal points of fϭ are found by seƫng its derivaƟve equal to Ϭ:

f ′ϭ(x) = Ϭ ⇒ x = Ϭ.

EvaluaƟng fϭ at this criƟcal point, and at the endpoints of [−ϭ, ϭ] gives:

fϭ(−ϭ) = Ϯ ⇒ f(−ϭ,−Ϯ) = Ϯ
fϭ(Ϭ) = ϭ ⇒ f(Ϭ,−Ϯ) = ϭ
fϭ(Ϯ) = ϱ ⇒ f(Ϯ,−Ϯ) = ϱ.

NoƟce how evaluaƟng fϭ at a point is the same as evaluaƟng f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the leŌ edge, along the line y = ϯx+ ϭ, we subsƟtute ϯx+ ϭ in for y
in f(x, y):

f(x, y) = f(x, ϯx+ ϭ) = xϮ − (ϯx+ ϭ)Ϯ + ϱ = −ϴxϮ − ϲx+ ϰ = fϮ(x).

We want the maximum and minimum values of fϮ on the interval [−ϭ, Ϭ], so we
evaluate fϮ at its criƟcal points and the endpoints of the interval. We find the
criƟcal points:

f ′Ϯ(x) = −ϭϲx− ϲ = Ϭ ⇒ x = −ϯ/ϴ.

Evaluate fϮ at its criƟcal point and the endpoints of [−ϭ, Ϭ]:

fϮ(−ϭ) = Ϯ ⇒ f(−ϭ,−Ϯ) = Ϯ
fϮ(−ϯ/ϴ) = ϰϭ/ϴ = ϱ.ϭϮϱ ⇒ f(−ϯ/ϴ,−Ϭ.ϭϮϱ) = ϱ.ϭϮϱ

fϮ(Ϭ) = ϭ ⇒ f(Ϭ, ϭ) = ϰ.

Notes:

ϳϰϲ



Figure ϭϮ.ϯϮ: The surface of f along with
important points along the boundary of S
and the interior.

ϭϮ.ϴ Extreme Values

Finally, we evaluate f along the right edgeof the triangle, where y = −ϯ/Ϯx+
ϭ.

f(x, y) = f(x,−ϯ/Ϯx+ ϭ) = xϮ − (−ϯ/Ϯx+ ϭ)Ϯ + ϱ = −ϱ
ϰ
xϮ + ϯx+ ϰ = fϯ(x).

The criƟcal points of fϯ(x) are:

f ′ϯ(x) = Ϭ ⇒ x = ϲ/ϱ = ϭ.Ϯ.

We evaluate fϯ at this criƟcal point and at the endpoints of the interval [Ϭ, Ϯ]:

fϯ(Ϭ) = ϰ ⇒ f(Ϭ, ϭ) = ϰ
fϯ(ϭ.Ϯ) = ϱ.ϴ ⇒ f(ϭ.Ϯ,−Ϭ.ϴ) = ϱ.ϴ

fϯ(Ϯ) = ϱ ⇒ f(Ϯ,−Ϯ) = ϱ.

One last point to test: the criƟcal point of f, (Ϭ, Ϭ). We find f(Ϭ, Ϭ) = ϱ.
We have evaluated f at a total of ϳ different places, all shown in Figure ϭϮ.ϯϮ.

We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is ϱ.ϴ, found
at (ϭ.Ϯ,−Ϭ.ϴ); the minimum is ϭ, found at (Ϭ,−Ϯ).

This porƟon of the text is enƟtled “Constrained OpƟmizaƟon” because we
want to opƟmize a funcƟon (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the funcƟon can aƩain. In
the previous example, we constrained ourselves by considering a funcƟon only
within the boundary of a triangle. This was largely arbitrary; the funcƟon and
the boundary were chosen just as an example, with no real “meaning” behind
the funcƟon or the chosen constraint.

However, solving constrainedopƟmizaƟonproblems is a very important topic
in appliedmathemaƟcs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

Example ϰϰϭ Constrained OpƟmizaƟon
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed ϭϯϬ”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then Ϯ(w+ h) = ϰw. The

Notes:

ϳϰϳ



Figure ϭϮ.ϯϯ: Graphing the volume of a
box with girth ϰw and length ℓ, subject to
a size constraint.
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volume of the box is V(w, ℓ) = whℓ = wϮℓ. We wish to maximize this volume
subject to the constraint ϰw+ ℓ ≤ ϭϯϬ, or ℓ ≤ ϭϯϬ− ϰw. (Common sense also
indicates that ℓ > Ϭ,w > Ϭ.)

We begin by finding the criƟcal values of V. We find that Vw = Ϯwℓ and
Vℓ = wϮ; these are simultaneously Ϭ only at (Ϭ, Ϭ). This gives a volume of Ϭ, so
we can ignore this criƟcal point.

We now consider the volume along the constraint ℓ = ϭϯϬ− ϰw. Along this
line, we have:

V(wℓ) = V(w, ϭϯϬ− ϰw) = wϮ(ϭϯϬ− ϰw) = ϭϯϬwϮ − ϰwϯ = Vϭ(w).

The constraint is applicable on the w-interval [Ϭ, ϯϮ.ϱ] as indicated in the figure.
Thus we want to maximize Vϭ on [Ϭ, ϯϮ.ϱ].

Finding the criƟcal values of Vϭ, we take the derivaƟve and set it equal to Ϭ:

V ′
ϭ(w) = ϮϲϬw−ϭϮwϮ = Ϭ ⇒ w(ϮϲϬ−ϭϮw) = Ϭ ⇒ w = Ϭ,

ϮϲϬ
ϭϮ

≈ Ϯϭ.ϲϳ.

We found two criƟcal values: when w = Ϭ and when w = Ϯϭ.ϲϳ. We again
ignore the w = Ϭ soluƟon; the maximum volume, subject to the constraint,
comes at w = h = Ϯϭ.ϲϳ, ℓ = ϭϯϬ − ϰ(Ϯϭ.ϲ) = ϰϯ.ϯϯ. This gives a volume of
V(Ϯϭ.ϲϳ, ϰϯ.ϯϯ) ≈ ϭϵ, ϰϬϴinϯ.

The volume funcƟon V(w, ℓ) is shown in Figure ϭϮ.ϯϯ along with the con-
straint ℓ = ϭϯϬ − ϰw. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the funcƟon. The point where the
volume is maximized is indicated.

It is hard to overemphasize the importance of opƟmizaƟon. In “the real
world,” we rouƟnely seek to make something beƩer. By expressing the some-
thing as a mathemaƟcal funcƟon, “making something beƩer” means “opƟmize
some funcƟon.”

The techniques shownhere are only the beginning of an incredibly important
field. Many funcƟons that we seek to opƟmize are incredibly complex, making
the step of “find the gradient and set it equal to Ϭ⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

Notes:
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Exercises ϭϮ.ϴ
Terms and Concepts
ϭ. T/F: Theorem ϭϭϰ states that if f has a criƟcal point at P,

then f has a relaƟve extrema at P.

Ϯ. T/F: A point P is a criƟcal point of f if fx and fy are both Ϭ at
P.

ϯ. T/F: A point P is a criƟcal point of f if fx or fy are undefined
at P.

ϰ. Explain what it means to “solve a constrained opƟmizaƟon”
problem.

Problems
In Exercises ϱ – ϭϰ, find the criƟcal points of the given func-
Ɵon. Use the Second DerivaƟve Test to determine if each crit-
ical point corresponds to a relaƟve maximum, minimum, or
saddle point.

ϱ. f(x, y) = ϭ
Ϯ x

Ϯ + ϮyϮ − ϴy+ ϰx

ϲ. f(x, y) = xϮ + ϰx+ yϮ − ϵy+ ϯxy

ϳ. f(x, y) = xϮ + ϯyϮ − ϲy+ ϰxy

ϴ. f(x, y) =
ϭ

xϮ + yϮ + ϭ

ϵ. f(x, y) = xϮ + yϯ − ϯy+ ϭ

ϭϬ. f(x, y) =
ϭ
ϯ
xϯ − x+

ϭ
ϯ
yϯ − ϰy

ϭϭ. f(x, y) = xϮyϮ

ϭϮ. f(x, y) = xϰ − ϮxϮ + yϯ − Ϯϳy− ϭϱ

ϭϯ. f(x, y) =
√

ϭϲ− (x− ϯ)Ϯ − yϮ

ϭϰ. f(x, y) =
√

xϮ + yϮ

In Exercises ϭϱ – ϭϴ, find the absolute maximum and mini-
mum of the funcƟon subject to the given constraint.

ϭϱ. f(x, y) = xϮ + yϮ + y + ϭ, constrained to the triangle with
verƟces (Ϭ, ϭ), (−ϭ,−ϭ) and (ϭ,−ϭ).

ϭϲ. f(x, y) = ϱx − ϳy, constrained to the region bounded by
y = xϮ and y = ϭ.

ϭϳ. f(x, y) = xϮ + Ϯx + yϮ + Ϯy, constrained to the region
bounded by the circle xϮ + yϮ = ϰ.

ϭϴ. f(x, y) = ϯy − ϮxϮ, constrained to the region bounded by
the parabola y = xϮ + x− ϭ and the line y = x.

ϳϰϵ





ϭϯ: Mç½ã®Ö½� IÄã�¦Ù�ã®ÊÄ
The previous chapter introduced mulƟvariable funcƟons and we applied con-
cepts of differenƟal calculus to these funcƟons. We learned how we can view a
funcƟon of two variables as a surface in space, and learned how parƟal deriva-
Ɵves convey informaƟon about how the surface is changing in any direcƟon.

In this chapterwe apply techniques of integral calculus tomulƟvariable func-
Ɵons. In Chapter ϱ we learned how the definite integral of a single variable func-
Ɵon gave us “area under the curve.” In this chapter we will see that integraƟon
applied to a mulƟvariable funcƟon gives us “volume under a surface.” And just
as we learned applicaƟons of integraƟon beyond finding areas, we will find ap-
plicaƟons of integraƟon in this chapter beyond finding volume.

ϭϯ.ϭ Iterated Integrals and Area

In Chapter ϭϮ we found that it was useful to differenƟate funcƟons of several
variables with respect to one variable, while treaƟng all the other variables as
constants or coefficients. We can integrate funcƟons of several variables in a
similar way. For instance, if we are told that fx(x, y) = Ϯxy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
∫

fx(x, y) dx

=

∫

Ϯxy dx

= xϮy+ C.

Make a careful note about the constant of integraƟon, C. This “constant” is
something with a derivaƟve of Ϭ with respect to x, so it could be any expres-
sion that contains only constants and funcƟons of y. For instance, if f(x, y) =
xϮy+ sin y+ yϯ + ϭϳ, then fx(x, y) = Ϯxy. To signify that C is actually a funcƟon
of y, we write:

f(x, y) =
∫

fx(x, y) dx = xϮy+ C(y).

Using this process we can even evaluate definite integrals.

Example ϰϰϮ IntegraƟng funcƟons of more than one variable

Evaluate the integral
∫ Ϯy

ϭ
Ϯxy dx.

SÊ½çã®ÊÄ Wefind the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:

∫ Ϯy

ϭ
Ϯxy dx = xϮy

∣
∣
∣

Ϯy

ϭ

= (Ϯy)Ϯy− (ϭ)Ϯy

= ϰyϯ − y.
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We can also integrate with respect to y. In general,

∫ hϮ(y)

hϭ(y)
fx(x, y) dx = f(x, y)

∣
∣
∣

hϮ(y)

hϭ(y)
= f
(
hϮ(y), y

)
− f
(
hϭ(y), y

)
,

and
∫ gϮ(x)

gϭ(x)
fy(x, y) dy = f(x, y)

∣
∣
∣

gϮ(x)

gϭ(x)
= f
(
x, gϮ(x)

)
− f
(
x, gϭ(x)

)
.

Note that when integraƟng with respect to x, the bounds are funcƟons of y
(of the form x = hϭ(y) and x = hϮ(y)) and the final result is also a funcƟon of y.
When integraƟng with respect to y, the bounds are funcƟons of x (of the form
y = gϭ(x) and y = gϮ(x)) and the final result is a funcƟon of x. Another example
will help us understand this.

Example ϰϰϯ IntegraƟng funcƟons of more than one variable

Evaluate
∫ x

ϭ

(
ϱxϯy−ϯ + ϲyϮ

)
dy.

SÊ½çã®ÊÄ We consider x as staying constant and integratewith respect
to y:

∫ x

ϭ

(
ϱxϯy−ϯ + ϲyϮ

)
dy =

(
ϱxϯy−Ϯ

−Ϯ
+

ϲyϯ

ϯ

)
∣
∣
∣
∣
∣

x

ϭ

=

(

−ϱ
Ϯ
xϯx−Ϯ + Ϯxϯ

)

−
(

−ϱ
Ϯ
xϯ + Ϯ

)

=
ϵ
Ϯ
xϯ − ϱ

Ϯ
x− Ϯ.

Note how the bounds of the integral are from y = ϭ to y = x and that the final
answer is a funcƟon of x.

In the previous example, we integrated a funcƟon with respect to y and
ended up with a funcƟon of x. We can integrate this as well. This process is
known as iterated integraƟon, ormulƟple integraƟon.

Example ϰϰϰ IntegraƟng an integral

Evaluate
∫ Ϯ

ϭ

(∫ x

ϭ

(
ϱxϯy−ϯ + ϲyϮ

)
dy
)

dx.

SÊ½çã®ÊÄ We follow a standard “order of operaƟons” and perform the
operaƟons inside parentheses first (which is the integral evaluated in Example

Notes:
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ϰϰϯ.)

∫ Ϯ

ϭ

(∫ x

ϭ

(
ϱxϯy−ϯ + ϲyϮ

)
dy
)

dx =
∫ Ϯ

ϭ

([
ϱxϯy−Ϯ

−Ϯ
+

ϲyϯ

ϯ

]
∣
∣
∣
∣
∣

x

ϭ

)

dx

=

∫ Ϯ

ϭ

(
ϵ
Ϯ
xϯ − ϱ

Ϯ
x− Ϯ

)

dx

=

(
ϵ
ϴ
xϰ − ϱ

ϰ
xϮ − Ϯx

)
∣
∣
∣
∣
∣

Ϯ

ϭ

=
ϴϵ
ϴ
.

Note how the bounds of x were x = ϭ to x = Ϯ and the final result was a num-
ber.

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number ϴϵ/ϴ, means. Before we invesƟgate
these quesƟons, we offer some definiƟons.

DefiniƟon ϭϬϬ Iterated IntegraƟon

Iterated integraƟon is the process of repeatedly integraƟng the results
of previous integraƟons. IntegraƟng one integral is denoted as follows.

Let a, b, c and d be numbers and let gϭ(x), gϮ(x), hϭ(y) and hϮ(y) be
funcƟons of x and y, respecƟvely. Then:

ϭ.
∫ d

c

∫ hϮ(y)

hϭ(y)
f(x, y) dx dy =

∫ d

c

(
∫ hϮ(y)

hϭ(y)
f(x, y) dx

)

dy.

Ϯ.
∫ b

a

∫ gϮ(x)

gϭ(x)
f(x, y) dy dx =

∫ b

a

(
∫ gϮ(x)

gϭ(x)
f(x, y) dy

)

dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ hϮ(y)

hϭ(y)
f(x, y) dx dy, x varies from hϭ(y) to hϮ(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = hϭ(y) and x = hϮ(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remember
that when seƫng up and evaluaƟng such iterated integrals, we integrate “from

Notes:
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Figure ϭϯ.ϭ: CalculaƟng the area of a
plane region R with an iterated integral.
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Figure ϭϯ.Ϯ: CalculaƟng the area of a
plane region R with an iterated integral.
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curve to curve, then from point to point.”

We now begin to invesƟgate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a ≤ x ≤ b and gϭ(x) ≤ y ≤ gϮ(x),
shown in Figure ϭϯ.ϭ. We learned in SecƟon ϳ.ϭ that the area of R is given by

∫ b

a

(
gϮ(x)− gϭ(x)

)
dx.

We can view the expression
(
gϮ(x)− gϭ(x)

)
as

(
gϮ(x)− gϭ(x)

)
=

∫ gϮ(x)

gϭ(x)
ϭ dy =

∫ gϮ(x)

gϭ(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

∫ b

a

(
gϮ(x)− gϭ(x)

)
dx =

∫ b

a

(
∫ gϮ(x)

gϭ(x)
dy

)

dx =
∫ b

a

∫ gϮ(x)

gϭ(x)
dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and hϭ(y) ≤ x ≤ hϮ(y), as
shown in Figure ϭϯ.Ϯ. Using a process similar to that above, we have

the area of R =

∫ d

c

∫ hϮ(y)

hϭ(y)
dx dy.

We state this formally in a theorem.

Notes:
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Figure ϭϯ.ϯ: CalculaƟng the area of a rect-
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Figure ϭϯ.ϰ: CalculaƟng the area of a tri-
angle with iterated integrals in Example
ϰϰϲ.

ϭϯ.ϭ Iterated Integrals and Area

Theorem ϭϭϳ Area of a plane region

ϭ. Let R be a plane region bounded by a ≤ x ≤ b and gϭ(x) ≤ y ≤
gϮ(x), where gϭ and gϮ are conƟnuous funcƟons on [a, b]. The area
A of R is

A =

∫ b

a

∫ gϮ(x)

gϭ(x)
dy dx.

Ϯ. Let R be a plane region bounded by c ≤ y ≤ d and hϭ(y) ≤ x ≤
hϮ(y), where hϭ and hϮ are conƟnuous funcƟons on [c, d]. The area
A of R is

A =

∫ d

c

∫ hϮ(y)

hϭ(y)
dx dy.

The following examples should help us understand this theorem.

Example ϰϰϱ Area of a rectangle
Find the area A of the rectangle with corners (−ϭ, ϭ) and (ϯ, ϯ), as shown in
Figure ϭϯ.ϯ.

SÊ½çã®ÊÄ MulƟple integraƟon is obviously overkill in this situaƟon, but
we proceed to establish its use.

The region R is bounded by x = −ϭ, x = ϯ, y = ϭ and y = ϯ. Choosing to
integrate with respect to y first, we have

A =

∫ ϯ

−ϭ

∫ ϯ

ϭ
ϭ dy dx =

∫ ϯ

−ϭ

(

y
∣
∣
∣

ϯ

ϭ

)

dx =
∫ ϯ

−ϭ
Ϯ dx = Ϯx

∣
∣
∣

ϯ

−ϭ
= ϴ.

We could also integrate with respect to x first, giving:

A =

∫ ϯ

ϭ

∫ ϯ

−ϭ
ϭ dx dy =

∫ ϯ

ϭ

(

x
∣
∣
∣

ϯ

−ϭ

)

dy =
∫ ϯ

ϭ
ϰ dy = ϰy

∣
∣
∣

ϯ

ϭ
= ϴ.

Clearly there are simpler ways to find this area, but it is interesƟng to note
that this method works.

Example ϰϰϲ Area of a triangle
Find the area A of the triangle with verƟces at (ϭ, ϭ), (ϯ, ϭ) and (ϱ, ϱ), as shown
in Figure ϭϯ.ϰ.

SÊ½çã®ÊÄ The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y

Notes:
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to x = y+ϱ
Ϯ , while y is bounded by y = ϭ to y = ϱ. (Recall that since x-values

increase from leŌ to right, the leŌmost curve, x = y, is the lower bound and the
rightmost curve, x = (y+ ϱ)/Ϯ, is the upper bound.) The area is

A =

∫ ϱ

ϭ

∫ y+ϱ
Ϯ

y
dx dy

=

∫ ϱ

ϭ

(

x
∣
∣
∣

y+ϱ
Ϯ

y

)

dy

=

∫ ϱ

ϭ

(

−ϭ
Ϯ
y+

ϱ
Ϯ

)

dy

=

(

−ϭ
ϰ
yϮ +

ϱ
Ϯ
y
) ∣
∣
∣

ϱ

ϭ

= ϰ.

We can also find the area by integraƟng with respect to y first. In this situa-
Ɵon, though, we have two funcƟons that act as the lower bound for the region
R, y = ϭ and y = Ϯx − ϱ. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

∫ ϯ

ϭ

∫ x

ϭ
ϭ dy dx +

∫ ϱ

ϯ

∫ x

Ϯx−ϱ
ϭ dy dx

=

∫ ϯ

ϭ

(
y
)
∣
∣
∣

x

ϭ
dx +

∫ ϱ

ϯ

(
y
)
∣
∣
∣

x

Ϯx−ϱ
dx

=

∫ ϯ

ϭ

(
x− ϭ

)
dx +

∫ ϱ

ϯ

(
− x+ ϱ

)
dx

= Ϯ + Ϯ
= ϰ.

As expected, we get the same answer both ways.

Example ϰϰϳ Area of a plane region
Find the area of the region enclosed by y = Ϯx and y = xϮ, as shown in Figure
ϭϯ.ϱ.

SÊ½çã®ÊÄ Once again we’ll find the area of the region using both or-
ders of integraƟon.

Using dy dx:
∫ Ϯ

Ϭ

∫ Ϯx

xϮ
ϭ dy dx =

∫ Ϯ

Ϭ
(Ϯx− xϮ) dx =

(
xϮ − ϭ

ϯ
xϯ
)
∣
∣
∣

Ϯ

Ϭ
=

ϰ
ϯ
.

Notes:

ϳϱϲ
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Figure ϭϯ.ϲ: Sketching the region R de-
scribed by the iterated integral in Exam-
ple ϰϰϴ.

ϭϯ.ϭ Iterated Integrals and Area

Using dx dy:
∫ ϰ

Ϭ

∫ √
y

y/Ϯ
ϭ dx dy =

∫ ϰ

Ϭ
(
√
y− y/Ϯ) dy =

(
Ϯ
ϯ
yϯ/Ϯ − ϭ

ϰ
yϮ
) ∣
∣
∣

ϰ

Ϭ
=

ϰ
ϯ
.

Changing Order of IntegraƟon

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integraƟon. We
integrated using both orders of integraƟon to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
graƟon from a different perspecƟve. Instead of starƟng with a region and cre-
aƟng iterated integrals, we will start with an iterated integral and rewrite it in
the other integraƟon order. To do so, we’ll need to understand the region over
which we are integraƟng.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example ϰϰϱ), and so:

∫ b

a

∫ d

c
ϭ dy dx =

∫ d

c

∫ b

a
ϭ dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integraƟng over looks
like. From the sketch we can then rewrite the integral with the other order of
integraƟon.

Examples will help us develop this skill.

Example ϰϰϴ Changing the order of integraƟon

Rewrite the iterated integral
∫ ϲ

Ϭ

∫ x/ϯ

Ϭ
ϭ dy dxwith the order of integraƟon dx dy.

SÊ½çã®ÊÄ We need to use the bounds of integraƟon to determine the
region we are integraƟng over.

The bounds tell us that y is bounded by Ϭ and x/ϯ; x is bounded by Ϭ and ϲ.
We plot these four curves: y = Ϭ, y = x/ϯ, x = Ϭ and x = ϲ to find the region
described by the bounds. Figure ϭϯ.ϲ shows these curves, indicaƟng that R is a
triangle.

To change the order of integraƟon, we need to consider the curves that
bound the x-values. We see that the lower bound is x = ϯy and the upper
bound is x = ϲ. The bounds on y are Ϭ to Ϯ. Thus we can rewrite the integral as
∫ Ϯ

Ϭ

∫ ϲ

ϯy
ϭ dx dy.

Notes:

ϳϱϳ
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Figure ϭϯ.ϳ: Drawing the region deter-
mined by the bounds of integraƟon in Ex-
ample ϰϰϵ.
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Example ϰϰϵ Changing the order of integraƟon

Change the order of integraƟon of
∫ ϰ

Ϭ

∫ (y+ϰ)/Ϯ

yϮ/ϰ
ϭ dx dy.

SÊ½çã®ÊÄ We sketch the region described by the bounds to help us
change the integraƟon order. x is bounded below and above (i.e., to the leŌ and
right) by x = yϮ/ϰ and x = (y+ ϰ)/Ϯ respecƟvely, and y is bounded between Ϭ
and ϰ. Graphing the previous curves, we find the region R to be that shown in
Figure ϭϯ.ϳ.

To change the order of integraƟon, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = Ϭ on
Ϭ ≤ x ≤ Ϯ, and y = Ϯx − ϰ on Ϯ ≤ x ≤ ϰ. Thus we need two double integrals.
The upper bound for each is y = Ϯ

√
x. Thus we have

∫ ϰ

Ϭ

∫ (y+ϰ)/Ϯ

yϮ/ϰ
ϭ dx dy =

∫ Ϯ

Ϭ

∫ Ϯ
√
x

Ϭ
ϭ dy dx+

∫ ϰ

Ϯ

∫ Ϯ
√
x

Ϯx−ϰ
ϭ dy dx.

This secƟon has introduced a new concept, the iterated integral. We devel-
oped one applicaƟon for iterated integraƟon: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next secƟon we apply iterated integraƟon to solve problems we cur-
rently do not know how to handle. The “real” goal of this secƟon was not to
learn a new way of compuƟng area. Rather, our goal was to learn how to define
a region in the plane using the bounds of an iterated integral. That skill is very
important in the following secƟons.

Notes:

ϳϱϴ



Exercises ϭϯ.ϭ
Terms and Concepts

ϭ. When integraƟng fx(x, y) with respect to x, the constant of
integraƟon C is really which: C(x) or C(y)? What does this
mean?

Ϯ. IntegraƟng an integral is called .

ϯ. When evaluaƟng an iterated integral, we integrate from
to , then from to .

ϰ. One understanding of an iterated integral is that
∫ b

a

∫ gϮ(x)

gϭ(x)
dy dx gives the of a plane region.

Problems

In Exercises ϱ – ϭϬ, evaluate the integral and subsequent it-
erated integral.

ϱ. (a)
∫ ϱ

Ϯ

(

ϲxϮ + ϰxy− ϯyϮ
)

dy

(b)
∫ −Ϯ

−ϯ

∫ ϱ

Ϯ

(

ϲxϮ + ϰxy− ϯyϮ
)

dy dx

ϲ. (a)
∫ π

Ϭ

(

Ϯx cos y+ sin x
)

dx

(b)
∫ π/Ϯ

Ϭ

∫ π

Ϭ

(

Ϯx cos y+ sin x
)

dx dy

ϳ. (a)
∫ x

ϭ

(

xϮy− y+ Ϯ
)

dy

(b)
∫ Ϯ

Ϭ

∫ x

ϭ

(

xϮy− y+ Ϯ
)

dy dx

ϴ. (a)
∫ yϮ

y

(

x− y
)

dx

(b)
∫ ϭ

−ϭ

∫ yϮ

y

(

x− y
)

dx dy

ϵ. (a)
∫ y

Ϭ

(

cos x sin y
)

dx

(b)
∫ π

Ϭ

∫ y

Ϭ

(

cos x sin y
)

dx dy

ϭϬ. (a)
∫ x

Ϭ

(

ϭ
ϭ+ xϮ

)

dy

(b)
∫ Ϯ

ϭ

∫ x

Ϭ

(

ϭ
ϭ+ xϮ

)

dy dx

In Exercises ϭϭ – ϭϲ, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integraƟon dy dx
and dx dy, that give the area of R. Evaluate one of the iter-
ated integrals to find the area.
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In Exercises ϭϳ – ϮϮ, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integraƟon.

ϭϳ.
∫ Ϯ

−Ϯ

∫ ϰ−xϮ

Ϭ
dy dx

ϭϴ.
∫ ϭ

Ϭ

∫ ϱ−ϱxϮ

ϱ−ϱx
dy dx

ϭϵ.
∫ Ϯ

−Ϯ

∫ Ϯ
√

ϰ−yϮ

Ϭ
dx dy

ϮϬ.
∫ ϯ

−ϯ

∫

√
ϵ−xϮ

−
√

ϵ−xϮ
dy dx

Ϯϭ.
∫ ϭ

Ϭ

∫

√
y

−√
y
dx dy+

∫ ϰ

ϭ

∫

√
y

y−Ϯ
dx dy

ϮϮ.
∫ ϭ

−ϭ

∫ (ϭ−x)/Ϯ

(x−ϭ)/Ϯ
dy dx

ϳϲϬ
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Figure ϭϯ.ϴ: Developing a method for
finding signed volume under a surface.

ϭϯ.Ϯ Double IntegraƟon and Volume

ϭϯ.Ϯ Double IntegraƟon and Volume

The definite integral of f over [a, b],
∫ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and leƫng
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the region under the curve with width∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing all the rectangle’s areas gave an approximaƟon of the
definite integral, and Theorem ϯϴ stated that

∫ b

a
f(x) dx = lim

∥∆x∥→Ϭ

∑

f(ci)∆xi,

connecƟng the area under the curve with sums of the areas of rectangles.

We use a similar approach in this secƟon to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a posiƟve volume; space above f and
under the x-y planewill have a “negaƟve” volume, similar to the noƟon of signed
area used before.)

We start by parƟƟoning R into n rectangular subregions as shown in Figure
ϭϯ.ϴ(a). For simplicity’s sake, we let all widths be ∆x and all heights be ∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximaƟon. Arbitrarily number the rectangles ϭ through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Figure
ϭϯ.ϴ(b). Note how this rectangular solid only approximates the true volume un-
der the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑

i=ϭ

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a beƩer approximaƟon we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a

Notes:

ϳϲϭ



Note: Recall that the integraƟon symbol
“
∫

” is an “elongated S,” represenƟng the
word “sum.” We interpreted

∫ b
a f(x) dx as

“take the sum of the areas of rectangles
over the interval [a, b].” The double inte-
gral uses two integraƟon symbols to rep-
resent a “double sum.” When adding up
the volumes of rectangular solids over a
parƟƟon of a region R, as done in Figure
ϭϯ.ϴ, one could first add up the volumes
across each row (one type of sum), then
add these totals together (another sum),
as in

n
∑

j=ϭ

m
∑

i=ϭ

f(xi, yj)∆xi∆yj.

One can rewrite this as
n
∑

j=ϭ

(

m
∑

i=ϭ

f(xi, yj)∆xi

)

∆yj.

The summaƟon inside the parenthesis
indicates the sum of heights × widths,
which gives an area; mulƟplying these ar-
eas by the thickness ∆yj gives a volume.
The illustraƟon in Figure ϭϯ.ϵ relates to
this understanding.

Chapter ϭϯ MulƟple IntegraƟon

volume of f(xi, yi)∆Ai. Let ||∆A|| denote the length of the longest diagonal of all
rectangles in the subdivision of R; ||∆A|| → Ϭmeans each rectangle’s width and
height are both approaching Ϭ. If f is a conƟnuous funcƟon, as ||∆A|| shrinks

(and hence n → ∞) the summaƟon
n∑

i=ϭ

f(xi, yi)∆Ai approximates the signed

volume beƩer and beƩer. This leads to a definiƟon.

DefiniƟon ϭϬϭ Double Integral, Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The signed volume V under f over R is denoted by the
double integral

V =

∫∫

R
f(x, y) dA.

Alternate notaƟons for the double integral are
∫∫

R
f(x, y) dA =

∫∫

R
f(x, y) dx dy =

∫∫

R
f(x, y) dy dx.

The definiƟon above does not state how to find the signed volume, though
the notaƟon offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

Theorem ϭϭϴ Double Integrals and Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. Then the signed volume V under f over R is

V =

∫∫

R
f(x, y) dA = lim

||∆A||→Ϭ

n∑

i=ϭ

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The parƟƟon of the region R is not specified, so any parƟƟoning where
the diagonal of each rectangle shrinks to Ϭ results in the same answer.

This does not offer a very saƟsfying way of compuƟng area, though. Our
experience has shown that evaluaƟng the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem ϱϰ in SecƟon ϳ.Ϯ. This stated that if A(x) gives the cross-
secƟonal area of a solid at x, then

∫ b
a A(x) dx gave the volume of that solid over

Notes:

ϳϲϮ



Figure ϭϯ.ϵ: Finding volume under a sur-
face by sweeping out a cross–secƟonal
area.

ϭϯ.Ϯ Double IntegraƟon and Volume

[a, b].
Consider Figure ϭϯ.ϵ, where a surface z = f(x, y) is drawn over a region R.

Fixing a parƟcular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
∫ gϮ(x)

gϭ(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integraƟon are funcƟons of x: the bounds depend
on the value of x.

As A(x) is a cross-secƟonal area funcƟon, we can find the signed volume V
under f by integraƟng it:

V =

∫ b

a
A(x) dx =

∫ b

a

(
∫ gϮ(x)

gϭ(x)
f(x, y) dy

)

dx =
∫ b

a

∫ gϮ(x)

gϭ(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedurewherewe startedwith y fixed, resulƟng in a iterated
integral with the order of integraƟon dx dy. The following theorem states that
both methods give the same result, which is the value of the double integral. It
is such an important theorem it has a name associated with it.

Theorem ϭϭϵ Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon on R.

ϭ. If R is bounded by a ≤ x ≤ b and gϭ(x) ≤ y ≤ gϮ(x), where gϭ
and gϮ are conƟnuous funcƟons on [a, b], then

∫∫

R
f(x, y) dA =

∫ b

a

∫ gϮ(x)

gϭ(x)
f(x, y) dy dx.

Ϯ. If R is bounded by c ≤ y ≤ d and hϭ(y) ≤ x ≤ hϮ(y), where hϭ
and hϮ are conƟnuous funcƟons on [c, d], then

∫∫

R
f(x, y) dA =

∫ d

c

∫ hϮ(y)

hϭ(y)
f(x, y) dx dy.

Notes:

ϳϲϯ



Figure ϭϯ.ϭϬ: Finding the signed volume
under a surface in Example ϰϱϬ.
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Note that once again the bounds of integraƟon follow the “curve to curve,
point to point” paƩern discussed in the previous secƟon. In fact, one of the
main points of the previous secƟon is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quanƟƟes, not just signed volume under
a surface.

Example ϰϱϬ EvaluaƟng a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (ϯ, ϭ) and (ϰ, Ϯ) pictured in Figure ϭϯ.ϭϬ, using Fubini’s
Theorem and both orders of integraƟon.

SÊ½çã®ÊÄ We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as ϯ ≤ x ≤ ϰ and ϭ ≤ y ≤ Ϯ.

Using the order dy dx:
∫∫

R

(
xy+ ey

)
dA =

∫ ϰ

ϯ

∫ Ϯ

ϭ

(
xy+ ey

)
dy dx

=

∫ ϰ

ϯ

([
ϭ
Ϯ
xyϮ + ey

]∣
∣
∣
∣

Ϯ

ϭ

)

dx

=

∫ ϰ

ϯ

(
ϯ
Ϯ
x+ eϮ − e

)

dx

=

(
ϯ
ϰ
xϮ +

(
eϮ − e

)
x
)∣
∣
∣
∣

ϰ

ϯ

=
Ϯϭ
ϰ

+ eϮ − e ≈ ϵ.ϵϮ.

Now we check the validity of Fubini’s Theorem by using the order dx dy:
∫∫

R

(
xy+ ey

)
dA =

∫ Ϯ

ϭ

∫ ϰ

ϯ

(
xy+ ey

)
dx dy

=

∫ Ϯ

ϭ

([
ϭ
Ϯ
xϮy+ xey

]∣
∣
∣
∣

ϰ

ϯ

)

dy

=

∫ Ϯ

ϭ

(
ϳ
Ϯ
y+ ey

)

dy

=

(
ϳ
ϰ
yϮ + ey

)∣
∣
∣
∣

Ϯ

ϭ

=
Ϯϭ
ϰ

+ eϮ − e ≈ ϵ.ϵϮ.

Both orders of integraƟon return the same result, as expected.

Notes:
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Figure ϭϯ.ϭϭ: Finding the signed volume
under the surface in Example ϰϱϭ.

ϭϯ.Ϯ Double IntegraƟon and Volume

Example ϰϱϭ EvaluaƟng a double integral
Evaluate

∫∫

R

(
ϯxy− xϮ − yϮ + ϲ

)
dA, where R is the triangle bounded by x = Ϭ,

y = Ϭ and x/Ϯ+ y = ϭ, as shown in Figure ϭϯ.ϭϭ.

SÊ½çã®ÊÄ While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not maƩer which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., Ϭ ≤
y ≤ ϭ− x/Ϯ, and the bounds on x go from “point to point,” i.e., Ϭ ≤ x ≤ Ϯ.

∫∫

R
(ϯxy− xϮ − yϮ + ϲ

)
dA =

∫ Ϯ

Ϭ

∫ − x
Ϯ+ϭ

Ϭ
(ϯxy− xϮ − yϮ + ϲ

)
dy dx

=

∫ Ϯ

Ϭ

(
ϯ
Ϯ
xyϮ − xϮy− ϭ

ϯ
yϯ + ϲy

)∣
∣
∣
∣

− x
Ϯ+ϭ

Ϭ
dx

=

∫ Ϯ

Ϭ

(
ϭϭ
ϭϮ

xϯ − ϭϭ
ϰ
xϮ − x− ϭϳ

ϯ

)

dx

=

(
ϭϭ
ϰϴ

xϰ − ϭϭ
ϭϮ

xϯ − ϭ
Ϯ
xϮ − ϭϳ

ϯ
x
)∣
∣
∣
∣

Ϯ

Ϭ

=
ϭϳ
ϯ

= ϱ.ϲ.

Now lets consider the order dx dy. Here x goes from “curve to curve,” Ϭ ≤
x ≤ Ϯ− Ϯy, and y goes from “point to point,” Ϭ ≤ y ≤ ϭ:

∫∫

R
(ϯxy− xϮ − yϮ + ϲ

)
dA =

∫ ϭ

Ϭ

∫ Ϯ−Ϯy

Ϭ
(ϯxy− xϮ − yϮ + ϲ

)
dx dy

=

∫ ϭ

Ϭ

(
ϯ
Ϯ
xϮy− ϭ

ϯ
xϯ − xyϮ + ϲx

)∣
∣
∣
∣

Ϯ−Ϯy

Ϭ
dy

=

∫ ϭ

Ϭ

(
ϯϮ
ϯ
yϯ − ϮϮyϮ + Ϯy+

Ϯϴ
ϯ

)

dy

=

(
ϴ
ϯ
yϰ − ϮϮ

ϯ
yϯ + yϮ +

Ϯϴ
ϯ
y
)∣
∣
∣
∣

ϭ

Ϭ

=
ϭϳ
ϯ

= ϱ.ϲ.

We obtained the same result using both orders of integraƟon.

Note how in these two examples that the bounds of integraƟon depend only
on R; the bounds of integraƟon have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Notes:

ϳϲϱ
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Figure ϭϯ.ϭϮ: R is the union of two
nonoverlapping regions, Rϭ and RϮ.

Figure ϭϯ.ϭϯ: Finding the signed volume
under a surface in Example ϰϱϮ.
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Key Idea ϱϲ Double IntegraƟon Bounds

When evaluaƟng
∫∫

R f(x, y) dA using an iterated integral, the bounds of
integraƟon depend only on R. The surface f does not determine the
bounds of integraƟon.

Before doing another example, we give some properƟes of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

Theorem ϭϮϬ ProperƟes of Double Integrals

Let f and g be conƟnuous funcƟons over a closed, bounded plane region
R, and let c be a constant.

ϭ.
∫∫

R
c f(x, y) dA = c

∫∫

R
f(x, y) dA.

Ϯ.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫

R
f(x, y) dA±

∫∫

R
g(x, y) dA

ϯ. If f(x, y) ≥ Ϭ on R, then
∫∫

R
f(x, y) dA ≥ Ϭ.

ϰ. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫

R
g(x, y) dA.

ϱ. Let R be the union of two nonoverlapping regions, R = Rϭ
∪

RϮ
(see Figure ϭϯ.ϭϮ). Then

∫∫

R
f(x, y) dA =

∫∫

Rϭ
f(x, y) dA+

∫∫

RϮ
f(x, y) dA.

Example ϰϱϮ EvaluaƟng a double integral
Let f(x, y) = sin x cos y and R be the triangle with verƟces (−ϭ, Ϭ), (ϭ, Ϭ) and
(Ϭ, ϭ) (see Figure ϭϯ.ϭϯ). Evaluate the double integral

∫∫

R f(x, y) dA.

SÊ½çã®ÊÄ If we aƩempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We would need to split the triangle into two regions

Notes:

ϳϲϲ



Figure ϭϯ.ϭϰ: Finding the volume under
the surface in Example ϰϱϯ.

ϭϯ.Ϯ Double IntegraƟon and Volume

along the y-axis, then use Theorem ϭϮϬ, part ϱ.
Instead, let’s use the order dx dy. The curves bounding x are y − ϭ ≤ x ≤

ϭ− y; the bounds on y are Ϭ ≤ y ≤ ϭ. This gives us:
∫∫

R
f(x, y) dA =

∫ ϭ

Ϭ

∫ ϭ−y

y−ϭ
sin x cos y dx dy

=

∫ ϭ

Ϭ

(

− cos x cos y
)∣
∣
∣

ϭ−y

y−ϭ
dy

=

∫ ϭ

Ϭ
cos y

(

− cos(ϭ− y) + cos(y− ϭ)
)

dy.

Recall that the cosine funcƟon is an even funcƟon; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− ϭ) = cos(ϭ− y). Thus
the integrand simplifies to Ϭ, and we have

∫∫

R
f(x, y) dA =

∫ ϭ

Ϭ
Ϭ dy

= Ϭ.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure ϭϯ.ϭϯ), giving a final signed volume of Ϭ.

Example ϰϱϯ EvaluaƟng a double integral
Evaluate

∫∫

R(ϰ−y) dA, where R is the region bounded by the parabolas yϮ = ϰx
and xϮ = ϰy, graphed in Figure ϭϯ.ϭϰ.

SÊ½çã®ÊÄ Graphing each curve can help us find their points of inter-
secƟon. Solving analyƟcally, the second equaƟon tells us that y = xϮ/ϰ. Sub-
sƟtuƟng this value in for y in the first equaƟon gives us xϰ/ϭϲ = ϰx. Solving for
x:

xϰ

ϭϲ
= ϰx

xϰ − ϲϰx = Ϭ

x(xϯ − ϲϰ) = Ϭ
x = Ϭ, ϰ.

Thus we’ve found analyƟcally what was easy to approximate graphically: the
regions intersect at (Ϭ, Ϭ) and (ϰ, ϰ), as shown in Figure ϭϯ.ϭϰ.

We now choose an order of integraƟon: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.

Notes:

ϳϲϳ
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Figure ϭϯ.ϭϱ: Determining the region R
determined by the bounds of integraƟon
in Example ϰϱϰ.
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Thus we have the following “curve to curve, point to point” bounds: yϮ/ϰ ≤
x ≤ Ϯ

√
y, and Ϭ ≤ y ≤ ϰ.

∫∫

R
(ϰ− y) dA =

∫ ϰ

Ϭ

∫ Ϯ
√
y

yϮ/ϰ
(ϰ− y) dx dy

=

∫ ϰ

Ϭ

(
x(ϰ− y)

)
∣
∣
∣

Ϯ
√
y

yϮ/ϰ
dy

=

∫ ϰ

Ϭ

((
Ϯ
√
y− yϮ

ϰ
)(
ϰ− y)

)

dy =
∫ ϰ

Ϭ

(yϯ

ϰ
− yϮ − Ϯyϯ/Ϯ + ϴyϭ/Ϯ

)

dy

=

(
yϰ

ϭϲ
− yϯ

ϯ
− ϰyϱ/Ϯ

ϱ
+

ϭϲyϯ/Ϯ

ϯ

)∣
∣
∣
∣

ϰ

Ϭ

=
ϭϳϲ
ϭϱ

= ϭϭ.ϳϯ.

The signed volume under the surface f is about ϭϭ.ϳ cubic units.

In the previous secƟon we pracƟced changing the order of integraƟon of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integraƟng in one order is really hard, if not impossible,
whereas integraƟng with the other order is feasible.

Example ϰϱϰ Changing the order of integraƟon

Rewrite the iterated integral
∫ ϯ

Ϭ

∫ ϯ

y
e−xϮ dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

SÊ½çã®ÊÄ Once again we make a sketch of the region over which we
are integraƟng to facilitate changing the order. The bounds on x are from x = y
to x = ϯ; the bounds on y are from y = Ϭ to y = ϯ. These curves are sketched
in Figure ϭϯ.ϭϱ, enclosing the region R.

To change the bounds, note that the curves bounding y are y = Ϭ up to
y = x; the triangle is enclosed between x = Ϭ and x = ϯ. Thus the new
bounds of integraƟon are Ϭ ≤ y ≤ x and Ϭ ≤ x ≤ ϯ, giving the iterated in-

tegral
∫ ϯ

Ϭ

∫ x

Ϭ
e−xϮ dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegraƟng dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

∫
e−xϮ dx; we have stated before (see SecƟon ϱ.ϱ) that this

integral cannot be evaluated in terms of elementary funcƟons. We are stuck.
Changing the order of integraƟonmakes a big difference here. In the second

Notes:
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Figure ϭϯ.ϭϲ: Showing the surface f de-
fined in Example ϰϱϰ over its region R.

ϭϯ.Ϯ Double IntegraƟon and Volume

iterated integral, we are faced with
∫
e−xϮ dy; integraƟng with respect to y gives

us ye−xϮ + C, and the first definite integral evaluates to
∫ x

Ϭ
e−xϮ dy = xe−xϮ .

Thus ∫ ϯ

Ϭ

∫ x

Ϭ
e−xϮ dy dx =

∫ ϯ

Ϭ

(

xe−xϮ
)

dx.

This last integral is easy to evaluate with subsƟtuƟon, giving a final answer of
ϭ
Ϯ (ϭ− e−ϵ) ≈ Ϭ.ϱ. Figure ϭϯ.ϭϲ shows the surface over R.

In short, evaluaƟng one iterated integral is impossible; the other iterated in-
tegral is relaƟvely simple.

DefiniƟon ϮϮ defines the average value of a single–variable funcƟon f(x) on
the interval [a, b] as

average value of f(x) on [a, b] =
ϭ

b− a

∫ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

DefiniƟon ϭϬϮ The Average Value of f on R

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The average value of f on R is

average value of f on R =

∫∫

R
f(x, y) dA
∫∫

R
dA

.

Example ϰϱϱ Finding average value of a funcƟon over a region R
Find the average value of f(x, y) = ϰ− y over the region R, which is bounded by
the parabolas yϮ = ϰx and xϮ = ϰy. Note: this is the same funcƟon and region
as used in Example ϰϱϯ.

SÊ½çã®ÊÄ In Example ϰϱϯ we found
∫∫

R
f(x, y) dA =

∫ ϰ

Ϭ

∫ Ϯ
√
y

yϮ/ϰ
(ϰ− y) dx dy =

ϭϳϲ
ϭϱ

.

Notes:

ϳϲϵ



Figure ϭϯ.ϭϳ: Finding the average value of
f in Example ϰϱϱ.

Figure ϭϯ.ϭϴ: Showing how an iterated in-
tegral used to find area also finds a certain
volume.

Chapter ϭϯ MulƟple IntegraƟon

We find the area of R by compuƟng
∫∫

R dA:

∫∫

R
dA =

∫ ϰ

Ϭ

∫ Ϯ
√
y

yϮ/ϰ
dx dy =

ϭϲ
ϯ
.

Dividing the volume under the surface by the area gives the average value:

average value of f on R =
ϭϳϲ/ϭϱ
ϭϲ/ϯ

=
ϭϭ
ϱ

= Ϯ.Ϯ.

While the surface, as shown in Figure ϭϯ.ϭϳ, covers z-values from z = Ϭ to z = ϰ,
the “average” z-value on R is Ϯ.Ϯ.

The previous secƟon introduced the iterated integral in the context of find-
ing the area of plane regions. This secƟon has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
Ɵon. Given a region R in the plane, we computed

∫∫

R ϭ dA; again, our under-
standing at the Ɵme was that we were finding the area of R. However, we can
now view the funcƟon z = ϭ as a surface, a flat surface with constant z-value of
ϭ. The double integral

∫∫

R ϭ dA finds the volume, under z = ϭ, over R, as shown
in Figure ϭϯ.ϭϴ. Basic geometry tells us that if the base of a general right cylinder
has area A, its volume is A · h, where h is the height. In our case, the height is
ϭ. We were “actually” compuƟng the volume of a solid, though we interpreted
the number as an area.

The next secƟon extends our abiliƟes to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integraƟng over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converƟng
everything into polar coordinates.

Notes:

ϳϳϬ



Exercises ϭϯ.Ϯ
Terms and Concepts

ϭ. An integral can be interpreted as giving the signed area over
an interval; a double integral can be interpreted as giving
the signed over a region.

Ϯ. Explain why the following statement is false: “Fu-

bini’s Theorem states that
∫ b

a

∫ gϮ(x)

gϭ(x)
f(x, y) dy dx =

∫ b

a

∫ gϮ(y)

gϭ(y)
f(x, y) dx dy.”

ϯ. Explain why if f(x, y) > Ϭ over a region R, then
∫∫

R f(x, y) dA > Ϭ.

ϰ. If
∫∫

R f(x, y) dA =
∫∫

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems
In Exercises ϱ – ϭϬ,

(a) Evaluate the given iterated integral, and

(b) rewrite the integral using the other order of integra-
Ɵon.

ϱ.
∫ Ϯ

ϭ

∫ ϭ

−ϭ

(

x
y
+ ϯ
)

dx dy

ϲ.
∫ π/Ϯ

−π/Ϯ

∫ π

Ϭ
(sin x cos y) dx dy

ϳ.
∫ ϰ

Ϭ

∫ −x/Ϯ+Ϯ

Ϭ

(

ϯxϮ − y+ Ϯ
)

dy dx

ϴ.
∫ ϯ

ϭ

∫ ϯ

y

(

xϮy− xyϮ
)

dx dy

ϵ.
∫ ϭ

Ϭ

∫

√
ϭ−y

−√
ϭ−y

(x+ y+ Ϯ) dx dy

ϭϬ.
∫ ϵ

Ϭ

∫

√
y

y/ϯ

(

xyϮ
)

dx dy

In Exercises ϭϭ – ϭϴ:

(a) Sketch the region R given by the problem.

(b) Set up the iterated integrals, in both orders, that eval-
uate the given double integral for the described region
R.

(c) Evaluate one of the iterated integrals to find the signed
volume under the surface z = f(x, y) over the region
R.

ϭϭ.
∫∫

R
xϮy dA, where R is bounded by y =

√
x and y = xϮ.

ϭϮ.
∫∫

R
xϮy dA, where R is bounded by y = ϯ

√
x and y = xϯ.

ϭϯ.
∫∫

R
xϮ − yϮ dA, where R is the rectangle with corners

(−ϭ,−ϭ), (ϭ,−ϭ), (ϭ, ϭ) and (−ϭ, ϭ).

ϭϰ.
∫∫

R
yex dA, where R is bounded by x = Ϭ, x = yϮ and

y = ϭ.

ϭϱ.
∫∫

R

(

ϲ− ϯx− Ϯy
)

dA, where R is bounded by x = Ϭ, y = Ϭ

and ϯx+ Ϯy = ϲ.

ϭϲ.
∫∫

R
ey dA, where R is bounded by y = ln x and

y =
ϭ

e− ϭ
(x− ϭ).

ϭϳ.
∫∫

R

(

xϯy−x
)

dA, whereR is the half of the circle xϮ+yϮ = ϵ

in the first and second quadrants.

ϭϴ.
∫∫

R

(

ϰ − ϯy
)

dA, where R is bounded by y = Ϭ, y = x/e

and y = ln x.

In Exercises ϭϵ – ϮϮ, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integraƟon.
Change the order of integraƟon and evaluate the new iter-
ated integral.

ϭϵ.
∫ ϰ

Ϭ

∫ Ϯ

y/Ϯ
ex

Ϯ
dx dy

ϮϬ.
∫

√
π/Ϯ

Ϭ

∫

√
π/Ϯ

x
cos
(

yϮ
)

dy dx

Ϯϭ.
∫ ϭ

Ϭ

∫ ϭ

y

Ϯy
xϮ + yϮ

dx dy

ϮϮ.
∫ ϭ

−ϭ

∫ Ϯ

ϭ

x tanϮ y
ϭ+ ln y

dy dx

In Exercises Ϯϯ – Ϯϲ, find the average value of f over the re-
gion R. NoƟce how these funcƟons and regions are related to
the iterated integrals given in Exercises ϱ – ϴ.

Ϯϯ. f(x, y) =
x
y
+ ϯ; R is the rectangle with opposite corners

(−ϭ, ϭ) and (ϭ, Ϯ).

Ϯϰ. f(x, y) = sin x cos y; R is bounded by x = Ϭ, x = π,
y = −π/Ϯ and y = π/Ϯ.

Ϯϱ. f(x, y) = ϯxϮ − y + Ϯ; R is bounded by the lines y = Ϭ,
y = Ϯ− x/Ϯ and x = Ϭ.

Ϯϲ. f(x, y) = xϮy − xyϮ; R is bounded by y = x, y = ϭ and
x = ϯ.

ϳϳϭ
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Figure ϭϯ.ϭϵ: ApproximaƟng a region R
with porƟons of sectors of circles.
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ϭϯ.ϯ Double IntegraƟon with Polar Coordinates
We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates – that is,
with equaƟons of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equaƟons of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
∫∫

R f(x, y) dA. We interpret this in-
tegral as follows: over the region R, sum up lots of products of heights (given by
f(xi, yi)) and areas (given by∆Ai). That is, dA represents “a liƩle bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx – the area of a rectangle is simply length×width – a small change in x
Ɵmes a small change in y. Thus we replace dA in the double integral with dx dy
or dy dx.

Now consider represenƟng a region R with polar coordinates. Consider Fig-
ure ϭϯ.ϭϵ(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
porƟons of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = ϭ

Ϯ r
Ϯθ, we can find the area of the shaded region. The whole sector has area

ϭ
Ϯ r

Ϯ
Ϯ∆θ, whereas the smaller, unshaded sector has area ϭ

Ϯ r
Ϯ
ϭ∆θ. The area of the

shaded region is the difference of these areas:

∆Ai =
ϭ
Ϯ
rϮϮ∆θ − ϭ

Ϯ
rϮϭ∆θ =

ϭ
Ϯ
(
rϮϮ − rϮϭ

)(
∆θ
)
=

rϮ + rϭ
Ϯ

(
rϮ − rϭ

)
∆θ.

Note that (rϮ + rϭ)/Ϯ is just the average of the two radii.
To approximate the region R, we usemany such subregions; doing so shrinks

the difference rϮ− rϭ between radii to Ϭ and shrinks the change in angle∆θ also
to Ϭ. We represent these infinitesimal changes in radius and angle as dr and dθ,
respecƟvely. Finally, as dr is small, rϮ ≈ rϭ, and so (rϮ + rϭ)/Ϯ ≈ rϭ. Thus, when
dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
rϮ − rϭ and∆θ go to Ϭ, we get

dA = r dr dθ.

So to evaluate
∫∫

R f(x, y) dA, replace dA with r dr dθ. Convert the funcƟon
z = f(x, y) to a funcƟonwith polar coordinateswith the subsƟtuƟons x = r cos θ,

Notes:

ϳϳϮ



Figure ϭϯ.ϮϬ: EvaluaƟng a double integral
with polar coordinates in Example ϰϱϲ.

ϭϯ.ϯ Double IntegraƟon with Polar Coordinates

y = r sin θ. Finally, find bounds gϭ(θ) ≤ r ≤ gϮ(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this secƟon, so we restate it here as a Key Idea.

Key Idea ϱϳ EvaluaƟng Double Integrals with Polar Coordinates

Let R be a plane region bounded by the polar equaƟons α ≤ θ ≤ β and
gϭ(θ) ≤ r ≤ gϮ(θ). Then

∫∫

R
f(x, y) dA =

∫ β

α

∫ gϮ(θ)

gϭ(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.

Examples will help us understand this Key Idea.

Example ϰϱϲ EvaluaƟng a double integral with polar coordinates
Find the signed volume under the plane z = ϰ − x − Ϯy over the circle with
equaƟon xϮ + yϮ = ϭ.

SÊ½çã®ÊÄ The bounds of the integral are determined solely by the re-
gion R over which we are integraƟng. In this case, it is a circle with equaƟon
xϮ+ yϮ = ϭ. We need to find polar bounds for this region. It may help to review
SecƟon ϵ.ϰ; bounds for this circle are Ϭ ≤ r ≤ ϭ and Ϭ ≤ θ ≤ Ϯπ.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
subsƟtuƟons:

ϰ− x− Ϯy ⇒ ϰ− r cos θ − Ϯr sin θ.

Finally, we replace dA in the double integral with r dr dθ. This gives the final
iterated integral, which we evaluate:

∫∫

R
f(x, y) dA =

∫ Ϯπ

Ϭ

∫ ϭ

Ϭ

(
ϰ− r cos θ − Ϯr sin θ

)
r dr dθ

=

∫ Ϯπ

Ϭ

∫ ϭ

Ϭ

(
ϰr− rϮ(cos θ − Ϯ sin θ)

)
dr dθ

=

∫ Ϯπ

Ϭ

(

ϮrϮ − ϭ
ϯ
rϯ(cos θ − Ϯ sin θ)

)∣
∣
∣
∣

ϭ

Ϭ
dθ

=

∫ Ϯπ

Ϭ

(

Ϯ− ϭ
ϯ
(
cos θ − Ϯ sin θ

)
)

dθ

=

(

Ϯθ − ϭ
ϯ
(
sin θ + Ϯ cos θ

)
)∣
∣
∣
∣

Ϯπ

Ϭ

= ϰπ ≈ ϭϮ.ϱϲϲ.

The surface and region R are shown in Figure ϭϯ.ϮϬ.

Notes:
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Figure ϭϯ.Ϯϭ: Showing the region R and
surface used in Example ϰϱϳ.

Chapter ϭϯ MulƟple IntegraƟon

Example ϰϱϳ EvaluaƟng a double integral with polar coordinates
Find the volume under the paraboloid z = ϰ − (x − Ϯ)Ϯ − yϮ over the region
bounded by the circles (x− ϭ)Ϯ + yϮ = ϭ and (x− Ϯ)Ϯ + yϮ = ϰ.

SÊ½çã®ÊÄ At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure ϭϯ.Ϯϭ(a)) has a hole in it, cuƫng out a
strange porƟon of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equaƟons, the volume is not very difficult to com-
pute. It is straighƞorward to show that the circle (x − ϭ)Ϯ + yϮ = ϭ has polar
equaƟon r = Ϯ cos θ, and that the circle (x − Ϯ)Ϯ + yϮ = ϰ has polar equaƟon
r = ϰ cos θ. Each of these circles is traced out on the interval Ϭ ≤ θ ≤ π. The
bounds on r are Ϯ cos θ ≤ r ≤ ϰ cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

∫∫

R f(x, y) dA:

∫∫

R
f(x, y) dA =

∫ π

Ϭ

∫ ϰ cos θ

Ϯ cos θ

(

ϰ−
(
r cos θ − Ϯ

)Ϯ −
(
r sin θ

)Ϯ
)

r dr dθ

=

∫ π

Ϭ

∫ ϰ cos θ

Ϯ cos θ

(
− rϯ + ϰrϮ cos θ

)
dr dθ

=

∫ π

Ϭ

(

−ϭ
ϰ
rϰ +

ϰ
ϯ
rϯ cos θ

)∣
∣
∣
∣

ϰ cos θ

Ϯ cos θ
dθ

=

∫ π

Ϭ

([

−ϭ
ϰ
(Ϯϱϲ cosϰ θ) +

ϰ
ϯ
(ϲϰ cosϰ θ)

]

−
[

−ϭ
ϰ
(ϭϲ cosϰ θ) +

ϰ
ϯ
(ϴ cosϰ θ)

])

dθ

=

∫ π

Ϭ

ϰϰ
ϯ

cosϰ θ dθ.

To integrate cosϰ θ, rewrite it as cosϮ θ cosϮ θ and employ the power-reducing
formula twice:

cosϰ θ = cosϮ θ cosϮ θ

=
ϭ
Ϯ
(
ϭ+ cos(Ϯθ)

)ϭ
Ϯ
(
ϭ+ cos(Ϯθ)

)

=
ϭ
ϰ
(
ϭ+ Ϯ cos(Ϯθ) + cosϮ(Ϯθ)

)

=
ϭ
ϰ

(

ϭ+ Ϯ cos(Ϯθ) +
ϭ
Ϯ
(
ϭ+ cos(ϰθ)

))

=
ϯ
ϴ
+

ϭ
Ϯ
cos(Ϯθ) +

ϭ
ϴ
cos(ϰθ).

Notes:

ϳϳϰ



Figure ϭϯ.ϮϮ: The surface and region R
used in Example ϰϱϴ.

Note: Previous work has shown that
there is finite area under ϭ

xϮ+ϭ over the
enƟre x-axis. However, Example ϰϱϴ
shows that there is infinite volume under

ϭ
xϮ+yϮ+ϭ over the enƟre x-y plane.

ϭϯ.ϯ Double IntegraƟon with Polar Coordinates

Picking up from where we leŌ off above, we have

=

∫ π

Ϭ

ϰϰ
ϯ

cosϰ θ dθ

=

∫ π

Ϭ

ϰϰ
ϯ

(
ϯ
ϴ
+

ϭ
Ϯ
cos(Ϯθ) +

ϭ
ϴ
cos(ϰθ)

)

dθ

=
ϰϰ
ϯ

(
ϯ
ϴ
θ +

ϭ
ϰ
sin(Ϯθ) +

ϭ
ϯϮ

sin(ϰθ)
)∣
∣
∣
∣

π

Ϭ

=
ϭϭ
Ϯ
π ≈ ϭϳ.Ϯϳϵ.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates.

Example ϰϱϴ EvaluaƟng a double integral with polar coordinates
Find the volume under the surface f(x, y) =

ϭ
xϮ + yϮ + ϭ

over the sector of the

circlewith radius a centered at the origin in the first quadrant, as shown in Figure
ϭϯ.ϮϮ.

SÊ½çã®ÊÄ The region R we are integraƟng over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are Ϭ ≤ r ≤ a,
Ϭ ≤ θ ≤ π/Ϯ. The integrand is rewriƩen in polar as

ϭ
xϮ + yϮ + ϭ

⇒ ϭ
rϮ cosϮ θ + rϮ sinϮ θ + ϭ

=
ϭ

rϮ + ϭ
.

We find the volume as follows:
∫∫

R
f(x, y) dA =

∫ π/Ϯ

Ϭ

∫ a

Ϭ

r
rϮ + ϭ

dr dθ

=

∫ π/Ϯ

Ϭ

ϭ
Ϯ
(
ln |rϮ + ϭ|

)
∣
∣
∣

a

Ϭ
dθ

=

∫ π/Ϯ

Ϭ

ϭ
Ϯ
ln(aϮ + ϭ) dθ

=

(
ϭ
Ϯ
ln(aϮ + ϭ)θ

)∣
∣
∣
∣

π/Ϯ

Ϭ

=
π

ϰ
ln(aϮ + ϭ).

Figure ϭϯ.ϮϮ shows that f shrinks to near Ϭ very quickly. Regardless, as a grows,
so does the volume, without bound.

Notes:
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Figure ϭϯ.Ϯϯ: Visualizing the solid used in
Example ϰϲϬ.

Chapter ϭϯ MulƟple IntegraƟon

Example ϰϱϵ Finding the volume of a sphere
Find the volume of a sphere with radius a.

SÊ½çã®ÊÄ The sphere of radius a, centered at the origin, has equaƟon
xϮ+yϮ+zϮ = aϮ; solving for z, we have z =

√

aϮ − xϮ − yϮ. This gives the upper
half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the circle of radius a, centered at the
origin. Polar bounds for this equaƟon are Ϭ ≤ r ≤ a, Ϭ ≤ θ ≤ Ϯπ.

All together, the volume of a sphere with radius a is:

Ϯ
∫∫

R

√

aϮ − xϮ − yϮ dA = Ϯ
∫ Ϯπ

Ϭ

∫ a

Ϭ

√

aϮ − (r cos θ)Ϯ − (r sin θ)Ϯr dr dθ

= Ϯ
∫ Ϯπ

Ϭ

∫ a

Ϭ
r
√

aϮ − rϮ dr dθ.

We can evaluate this inner integral with subsƟtuƟon. With u = aϮ − rϮ, du =
−Ϯr dr. The new bounds of integraƟon are u(Ϭ) = aϮ to u(a) = Ϭ. Thus we
have:

=

∫ Ϯπ

Ϭ

∫ Ϭ

aϮ

(
− uϭ/Ϯ

)
du dθ

=

∫ Ϯπ

Ϭ

(

−Ϯ
ϯ
uϯ/Ϯ

)∣
∣
∣
∣

Ϭ

aϮ
dθ

=

∫ Ϯπ

Ϭ

(
Ϯ
ϯ
aϯ
)

dθ

=

(
Ϯ
ϯ
aϯθ
)∣
∣
∣
∣

Ϯπ

Ϭ

=
ϰ
ϯ
πaϯ.

Generally, the formula for the volumeof a spherewith radius r is given as ϰ/ϯπrϯ;
we have jusƟfied this formula with our calculaƟon.

Example ϰϲϬ Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure ϭϯ.Ϯϯ,
where the base of the solid has boundary, in polar coordinates, r = cos(ϯθ),
and the top is defined by the plane z = ϭ − x + Ϭ.ϭy. Find the volume of the
solid.

SÊ½çã®ÊÄ From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute

Notes:
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ϭϯ.ϯ Double IntegraƟon with Polar Coordinates

the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integraƟng over is bound by Ϭ ≤ r ≤ cos(ϯθ),
for Ϭ ≤ θ ≤ π (note that this rose curve is traced out on the interval [Ϭ, π], not
[Ϭ, Ϯπ]). This gives us our bounds of integraƟon. The integrand is z = ϭ−x+Ϭ.ϭy;
converƟng to polar, we have that the volume V is:

V =

∫∫

R
f(x, y) dA =

∫ π

Ϭ

∫ cos(ϯθ)

Ϭ

(
ϭ− r cos θ + Ϭ.ϭr sin θ

)
r dr dθ.

DistribuƟng the r, the inner integral is easy to evaluate, leading to
∫ π

Ϭ

(
ϭ
Ϯ
cosϮ(ϯθ)− ϭ

ϯ
cosϯ(ϯθ) cos θ +

Ϭ.ϭ
ϯ

cosϯ(ϯθ) sin θ
)

dθ.

This integral takes Ɵme to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(ϯθ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

We rewrite ϭ
Ϯ cos

Ϯ(ϯθ) as ϭ
ϰ (ϭ+cos(ϲθ)). We can also rewrite ϭ

ϯ cos
ϯ(ϯθ) cos θ

as:

ϭ
ϯ
cosϯ(ϯθ) cos θ =

ϭ
ϯ
cosϮ(ϯθ) cos(ϯθ) cos θ =

ϭ
ϯ
ϭ+ cos(ϲθ)

Ϯ
(
cos(ϰθ)+cos(Ϯθ)

)
.

This last expression sƟll needs simplificaƟon, but eventually all terms can be re-
duced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:

∫ π

Ϭ

∫ cos(ϯθ)

Ϭ

(
ϭ− r cos θ + Ϭ.ϭr sin θ

)
r dr dθ =

π

ϰ
≈ Ϭ.ϳϴϱuϯ.

Since the units were not specified, we leave the result as almost Ϭ.ϴ cubic units
(meters, feet, etc.) Should the arƟst want to scale the piece uniformly, so that
each rose petal had a length other than ϭ, she should keep in mind that scaling
by a factor of k scales the volume by a factor of kϯ.

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two secƟons show two, among many,
applicaƟons of iterated integrals.

Notes:
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Exercises ϭϯ.ϯ
Terms and Concepts

ϭ. When evaluaƟng
∫∫

R f(x, y) dA using polar coordinates,
f(x, y) is replaced with and dA is replaced with

.

Ϯ. Why would one be interested in evaluaƟng a double inte-
gral with polar coordinates?

Problems

In Exercises ϯ – ϭϬ, a funcƟon f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

∫∫

R f(x, y) dA
using polar coordinates.

ϯ. f(x, y) = ϯx − y + ϰ; R is the region enclosed by the circle
xϮ + yϮ = ϭ.

ϰ. f(x, y) = ϰx + ϰy; R is the region enclosed by the circle
xϮ + yϮ = ϰ.

ϱ. f(x, y) = ϴ− y; R is the region enclosed by the circles with
polar equaƟons r = cos θ and r = ϯ cos θ.

ϲ. f(x, y) = ϰ; R is the region enclosed by the petal of the rose
curve r = sin(Ϯθ) in the first quadrant.

ϳ. f(x, y) = ln
(

xϮ + yϮ); R is the annulus enclosed by the cir-
cles xϮ + yϮ = ϭ and xϮ + yϮ = ϰ.

ϴ. f(x, y) = ϭ− xϮ − yϮ; R is the region enclosed by the circle
xϮ + yϮ = ϭ.

ϵ. f(x, y) = xϮ − yϮ; R is the region enclosed by the circle
xϮ + yϮ = ϯϲ in the first and fourth quadrants.

ϭϬ. f(x, y) = (x − y)/(x + y); R is the region enclosed by the
lines y = x, y = Ϭ and the circle xϮ + yϮ = ϭ in the first
quadrant.

In Exercises ϭϭ – ϭϰ, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates
and evaluate the new double integral.

ϭϭ.
∫ ϱ

Ϭ

∫

√
Ϯϱ−xϮ

−
√

Ϯϱ−xϮ

√

xϮ + yϮ dy dx

ϭϮ.
∫ ϰ

−ϰ

∫ Ϭ

−
√

ϭϲ−yϮ

(

Ϯy− x
)

dx dy

ϭϯ.
∫ Ϯ

Ϭ

∫

√
ϴ−yϮ

y

(

x+ y
)

dx dy

ϭϰ.
∫ −ϭ

−Ϯ

∫

√
ϰ−xϮ

Ϭ

(

x+ϱ
)

dy dx+
∫ ϭ

−ϭ

∫

√
ϰ−xϮ

√
ϭ−xϮ

(

x+ϱ
)

dy dx+

∫ Ϯ

ϭ

∫

√
ϰ−xϮ

Ϭ

(

x+ ϱ
)

dy dx

Hint: draw the region of each integral carefully and see how
they all connect.

In Exercises ϭϱ – ϭϲ, special double integrals are presented
that are especially well suited for evaluaƟon in polar coordi-
nates.

ϭϱ. Consider
∫∫

R
e−(xϮ+yϮ) dA.

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(xϮ+yϮ) over the enƟre x-y plane?

ϭϲ. The surface of a right circular cone with height h and
base radius a can be described by the equaƟon f(x, y) =

h− h
√

xϮ

aϮ
+

yϮ

aϮ
, where the Ɵp of the cone lies at (Ϭ, Ϭ, h)

and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

ϭ
ϯ
πaϮh by evaluaƟng

∫∫

R
f(x, y) dA in polar coordinates.

ϳϳϴ
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Figure ϭϯ.Ϯϰ: IllustraƟng the concept of a
lamina.

Note: Mass and weight are different
measures. Since they are scalar mulƟ-
ples of each other, it is oŌen easy to
treat them as the same measure. In this
secƟon we effecƟvely treat them as the
same, as our technique for findingmass is
the same as for finding weight. The den-
sity funcƟons used will simply have differ-
ent units.

ϭϯ.ϰ Center of Mass

ϭϯ.ϰ Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this secƟon as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R dA.
That is, summing up the areas of lots of liƩle subregions of R gave us the total
area. Informally, we think of

∫∫

R dA as meaning “sum up lots of liƩle areas over
R.”

To find the signed volume under a surface, we evaluated the double integral
∫∫

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is mulƟplied by f(x, y). We regard f(x, y) as giving a height, and
dA sƟll giving an area: f(x, y) dA gives a volume. Thus, informally,

∫∫

R f(x, y) dA
means “sum up lots of liƩle volumes over R.”

We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
MathemaƟcians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure ϭϯ.Ϯϰ(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

∫∫

R dm, where “dm” means “a liƩle mass.” That is, the double integral
states the total mass of the lamina can be found by “summing up lots of liƩle
masses over R.”

To evaluate this double integral, parƟƟon R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by mulƟplying a small amount of area by the density.

If density is variable, with density funcƟon δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by mulƟplying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=ϭ

∆mi =

n∑

i=ϭ

δ(xi, yi)∆Ai.

Notes:
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Figure ϭϯ.Ϯϱ: A region R represenƟng a
lamina in Example ϰϲϭ.

Chapter ϭϯ MulƟple IntegraƟon

Taking the limit as the size of the subregions shrinks to Ϭ gives us the actual
mass; that is, integraƟng δ(x, y) over R gives the mass of the lamina.

DefiniƟon ϭϬϯ Mass of a Lamina with Vairable Density

Let δ(x, y) be a conƟnuous density funcƟon of a lamina corresponding to
a plane region R. The massM of the lamina is

massM =

∫∫

R
dm =

∫∫

R
δ(x, y) dA.

Example ϰϲϭ Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length ϭ, with a density of δ =
ϯgm/cmϮ.

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure ϭϯ.Ϯϱ. As the density is constant, it does not maƩer where
we place the square.

Following DefiniƟon ϭϬϯ, the massM of the lamina is

M =

∫∫

R
ϯ dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
ϯ dx dy = ϯ

∫ ϭ

Ϭ

∫ ϭ

Ϭ
dx dy = ϯgm.

This is all very straighƞorward; note that all we really did was find the area
of the lamina and mulƟply it by the constant density of ϯgm/cmϮ.

Example ϰϲϮ Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
leŌhand corner at the origin (see Figure ϭϯ.Ϯϱ), with variable density δ(x, y) =
(x+ y+ Ϯ)gm/cmϮ.

SÊ½çã®ÊÄ The variable density δ, in this example, is very uniform, giv-
ing a density of ϯ in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure ϭϯ.Ϯϲ; noƟce how “same amount” of density is
above z = ϯ as below. We’ll comment on the significance of this momentarily.

The mass M is found by integraƟng δ(x, y) over R. The order of integraƟon

Notes:
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Figure ϭϯ.Ϯϲ: Graphing the density func-
Ɵons in Examples ϰϲϭ and ϰϲϮ.

ϭϯ.ϰ Center of Mass

is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫

R
(x+ y+ Ϯ) dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
(x+ y+ Ϯ) dx dy

=

∫ ϭ

Ϭ

(
ϭ
Ϯ
xϮ + x(y+ Ϯ)

)∣
∣
∣
∣

ϭ

Ϭ
dy

=

∫ ϭ

Ϭ

(
ϱ
Ϯ
+ y
)

dy

=

(
ϱ
Ϯ
y+

ϭ
Ϯ
yϮ
)∣
∣
∣
∣

ϭ

Ϭ

= ϯgm.

It turns out that since since the density of the lamina is so uniformly distributed
“above and below” z = ϯ that the mass of the lamina is the same as if it had
a constant density of ϯ. The density funcƟons in Examples ϰϲϭ and ϰϲϮ are
graphed in Figure ϭϯ.Ϯϲ, which illustrates this concept.

Example ϰϲϯ Finding the weight of a lamina with variable density
Find the weight of the lamina represented by the circle with radius ϮŌ, centered
at the origin, with density funcƟon δ(x, y) = (xϮ + yϮ + ϭ)lb/ŌϮ. Compare this
to the weight of the same lamina with density δ(x, y) = (Ϯ

√

xϮ + yϮ + ϭ)lb/ŌϮ.

SÊ½çã®ÊÄ A direct applicaƟon of DefiniƟon ϭϬϯ states that the weight
of the lamina is

∫∫

R δ(x, y) dA. Since our lamina is in the shape of a circle, it
makes sense to approach the double integral using polar coordinates.

The density funcƟon δ(x, y) = xϮ + yϮ + ϭ becomes δ(r, θ) = (r cos θ)Ϯ +
(r sin θ)Ϯ + ϭ = rϮ + ϭ. The circle is bounded by Ϭ ≤ r ≤ Ϯ and Ϭ ≤ θ ≤ Ϯπ.
Thus the weightW is:

W =

∫ Ϯπ

Ϭ

∫ Ϯ

Ϭ
(rϮ + ϭ)r dr dθ

=

∫ Ϯπ

Ϭ

(
ϭ
ϰ
rϰ +

ϭ
Ϯ
rϮ
)∣
∣
∣
∣

Ϯ

Ϭ
dθ

=

∫ Ϯπ

Ϭ
(ϲ) dθ

= ϭϮπ ≈ ϯϳ.ϳϬlb.

Now compare this with the density funcƟon δ(x, y) = Ϯ
√

xϮ + yϮ + ϭ. Con-
verƟng this to polar coordinates gives δ(r, θ) = Ϯ

√

(r cos θ)Ϯ + (r sin θ)Ϯ + ϭ =

Notes:

ϳϴϭ
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Ϯr+ ϭ. Thus the weightW is:

W =

∫ Ϯπ

Ϭ

∫ Ϯ

Ϭ
(Ϯr+ ϭ)r dr dθ

=

∫ Ϯπ

Ϭ
(
Ϯ
ϯ
rϯ +

ϭ
Ϯ
rϮ)
∣
∣
∣

Ϯ

Ϭ
dθ

=

∫ Ϯπ

Ϭ

(
ϮϮ
ϯ

)

dθ

=
ϰϰ
ϯ
π ≈ ϰϲ.Ϭϴlb.

One would expect different density funcƟons to return different weights, as we
have here. The density funcƟons were chosen, though, to be similar: each gives
a density of ϭ at the origin and a density of ϱ at the outside edge of the circle,
as seen in Figure ϭϯ.Ϯϳ.

(a) (b)

Figure ϭϯ.Ϯϳ: Graphing the density funcƟons in Example ϰϲϯ. In (a) is the density
funcƟon δ(x, y) = xϮ + yϮ + ϭ; in (b) is δ(x, y) = Ϯ

√
xϮ + yϮ + ϭ.

NoƟce how xϮ + yϮ + ϭ ≤ Ϯ
√

xϮ + yϮ + ϭ over the circle; this results in less
weight.

Ploƫng the density funcƟons can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫

R f(x, y) dA as giving the volume under f over R; we can understand
∫∫

R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass;

Notes:

ϳϴϮ



ϭϯ.ϰ Center of Mass

by compressing the “volume” under δ onto the x-y plane, we get “more mass”
in some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

Center of Mass

Consider a disk of radius ϭ with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the center of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should sƟll be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the center of mass, or center of
gravity. It is though all the mass is “centered” there. In fact, if the disk has a
mass of ϯkg, the disk will behave physically as though it were a point-mass of
ϯkg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
Ɵres of your car: if they are “out of balance”, their center of mass will be outside
of the axle and it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is ϵϬ%, your test av-
erage is ϳϯ%, and your final exam grade is an ϴϱ%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

Ϭ.ϵ+ Ϭ.ϳϯ+ Ϭ.ϴϱ
ϯ

≈ Ϭ.ϴϯϳ = ϴϯ.ϳ%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth ϭϬ% of the grade, tests are ϲϬ% and
the exam is ϯϬ%. Then your final grade is:

(Ϭ.ϭ)(Ϭ.ϵ) + (Ϭ.ϲ)(Ϭ.ϳϯ) + (Ϭ.ϯ)(Ϭ.ϴϱ) = Ϭ.ϳϴϯ = ϳϴ.ϯ%.

Each grade is mulƟplied by a weight.
In general, given values xϭ, xϮ, . . . , xn andweightswϭ,wϮ, . . . ,wn, theweighted

average of the n values is
n∑

i=ϭ

wixi

/
n∑

i=ϭ

wi.

In the grading example above, the sum of the weights Ϭ.ϭ, Ϭ.ϲ and Ϭ.ϯ is ϭ,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Notes:

ϳϴϯ
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Figure ϭϯ.Ϯϴ: IllustraƟng point masses
along a thin rod and the center of mass.
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Theorem ϭϮϭ Center of Mass of Discrete Linear System

Let point massesmϭ,mϮ, . . . ,mn be distributed along the x-axis at loca-
Ɵons xϭ, xϮ, . . . , xn, respecƟvely. The center of mass x of the system is
located at

x =
n∑

i=ϭ

mixi

/
n∑

i=ϭ

mi.

Example ϰϲϰ Finding the center of mass of a discrete linear system

ϭ. Point masses of Ϯgm are located at x = −ϭ, x = Ϯ and x = ϯ are con-
nected by a thin rod of negligible weight. Find the center of mass of the
system.

Ϯ. Point masses of ϭϬgm, Ϯgm and ϭgm are located at x = −ϭ, x = Ϯ and
x = ϯ, respecƟvely, are connected by a thin rod of negligible weight. Find
the center of mass of the system.

SÊ½çã®ÊÄ

ϭ. Following Theorem ϭϮϭ, we compute the center of mass as:

x =
Ϯ(−ϭ) + Ϯ(Ϯ) + Ϯ(ϯ)

Ϯ+ Ϯ+ Ϯ
=

ϰ
ϯ
= ϭ.ϯ.

So the system would balance on a point placed at x = ϰ/ϯ, as illustrated
in Figure ϭϯ.Ϯϴ(a).

Ϯ. Again following Theorem ϭϮϭ, we find:

x =
ϭϬ(−ϭ) + Ϯ(Ϯ) + ϭ(ϯ)

ϭϬ+ Ϯ+ ϭ
=

−ϯ
ϭϯ

≈ −Ϭ.Ϯϯ.

Placing a large weight at the leŌ hand side of the systemmoves the center
of mass leŌ, as shown in Figure ϭϯ.Ϯϴ(b).

In a discrete system (i.e., mass is located at individual points, not along a
conƟnuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
Ɵcular point or line. In the case described by Theorem ϭϮϭ, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Leƫng M be the total mass of the
system, we have x = My/M.

Notes:

ϳϴϰ
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mass of a discrete planar system in Exam-
ple ϰϲϱ.

ϭϯ.ϰ Center of Mass

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

DefiniƟon ϭϬϰ Moments about the x- and y- Axes.

Let point masses mϭ, mϮ, . . . ,mn be located at points (xϭ, yϭ),
(xϮ, yϮ) . . . , (xn, yn), respecƟvely, in the x-y plane.

ϭ. Themoment about the y-axis,My, isMy =
n∑

i=ϭ

mixi.

Ϯ. Themoment about the x-axis,Mx, isMx =
n∑

i=ϭ

miyi.

One can think that these definiƟons are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.

Theorem ϭϮϮ Center of Mass of Discrete Planar System

Let point masses mϭ, mϮ, . . . ,mn be located at points (xϭ, yϭ),

(xϮ, yϮ) . . . , (xn, yn), respecƟvely, in the x-y plane, and letM =

n∑

i=ϭ

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

Example ϰϲϱ Finding the center of mass of a discrete planar system
Let pointmasses of ϭkg, Ϯkg and ϱkg be located at points (Ϯ, Ϭ), (ϭ, ϭ) and (ϯ, ϭ),
respecƟvely, and are connected by thin rods of negligibleweight. Find the center
of mass of the system.

SÊ½çã®ÊÄ We follow Theorem ϭϮϮ and DefiniƟon ϭϬϰ to find M, Mx
andMy:

M = ϭ+ Ϯ+ ϱ = ϴkg.

Notes:

ϳϴϱ
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Mx =
n∑

i=ϭ

miyi

= ϭ(Ϭ) + Ϯ(ϭ) + ϱ(ϭ)
= ϳ.

My =
n∑

i=ϭ

mixi

= ϭ(Ϯ) + Ϯ(ϭ) + ϱ(ϯ)
= ϭϵ.

Thus the center ofmass is (x, y) =
(
My

M
,
Mx

M

)

=

(
ϭϵ
ϴ
,
ϳ
ϴ

)

= (Ϯ.ϯϳϱ, Ϭ.ϴϳϱ),

illustrated in Figure ϭϯ.Ϯϵ.

We finally arrive at our true goal of this secƟon: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesƟng, it does not directly answermore realisƟc situaƟonswhereweneed
to find the center of mass of a conƟguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximaƟon to an exact value.

We begin by represenƟng a planar lamina with a region R in the x-y plane
with density funcƟon δ(x, y). ParƟƟon R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by mulƟplying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=ϭ

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=ϭ

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=ϭ

xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to Ϭ in both the x and
y direcƟons, we arrive at the double integrals given in the following theorem.

Notes:

ϳϴϲ
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Figure ϭϯ.ϯϬ: A region R represenƟng a
lamina in Example ϰϲϭ.

ϭϯ.ϰ Center of Mass

Theorem ϭϮϯ Center of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a region R in the x-y plane with
density funcƟon δ(x, y).

ϭ. mass: M =

∫∫

R
δ(x, y) dA

Ϯ. moment about the x-axis: Mx =

∫∫

R
yδ(x, y) dA

ϯ. moment about the y-axis: My =

∫∫

R
xδ(x, y) dA

ϰ. The center of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)

.

We start our pracƟce of finding centers of mass by revisiƟng some of the
lamina used previously in this secƟon when finding mass. Wewill just set up the
integrals needed to computeM,Mx andMy and leave the details of the integra-
Ɵon to the reader.

Example ϰϲϲ Finding the center of mass of a lamina
Find the center mass of a square lamina, with side length ϭ, with a density of
δ = ϯgm/cmϮ. (Note: this is the lamina from Example ϰϲϭ.)

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure ϭϯ.ϯϬ as done previously.

Following Theorem ϭϮϯ, we findM,Mx andMy:

M =

∫∫

R
ϯ dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
ϯ dx dy = ϯgm.

Mx =

∫∫

R
ϯy dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
ϯy dx dy = ϯ/Ϯ = ϭ.ϱ.

My =

∫∫

R
ϯx dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
ϯx dx dy = ϯ/Ϯ = ϭ.ϱ.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)

= (ϭ.ϱ/ϯ, ϭ.ϱ/ϯ) = (Ϭ.ϱ, Ϭ.ϱ).

Notes:

ϳϴϳ
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This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square.

Example ϰϲϳ Finding the center of mass of a lamina
Find the center of mass of a square lamina, represented by the unit square
with lower leŌhand corner at the origin (see Figure ϭϯ.ϯϬ), with variable den-
sity δ(x, y) = (x+ y+ Ϯ)gm/cmϮ. (Note: this is the lamina from Example ϰϲϮ.)

SÊ½çã®ÊÄ We follow Theorem ϭϮϯ, to findM,Mx andMy:

M =

∫∫

R
(x+ y+ Ϯ) dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
(x+ y+ Ϯ) dx dy = ϯgm.

Mx =

∫∫

R
y(x+ y+ Ϯ) dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
y(x+ y+ Ϯ) dx dy =

ϭϵ
ϭϮ

.

My =

∫∫

R
x(x+ y+ Ϯ) dA =

∫ ϭ

Ϭ

∫ ϭ

Ϭ
x(x+ y+ Ϯ) dx dy =

ϭϵ
ϭϮ

.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)

=

(
ϭϵ
ϯϲ

,
ϭϵ
ϯϲ

)

≈ (Ϭ.ϱϮϴ, Ϭ.ϱϮϴ).

While themass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the center of mass
from the center slightly towards the upper righthand corner.

Example ϰϲϴ Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the circle with radius ϮŌ,
centered at the origin, with density funcƟon δ(x, y) = (xϮ+yϮ+ϭ)lb/ŌϮ. (Note:
this is one of the lamina used in Example ϰϲϯ.)

SÊ½çã®ÊÄ As done in Example ϰϲϯ, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(xϮ+
yϮ + ϭ), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
rϮ + ϭ

)
. We compute

M,Mx andMy:

M =

∫ Ϯπ

Ϭ

∫ Ϯ

Ϭ
(rϮ + ϭ)r dr dθ = ϭϮπ ≈ ϯϳ.ϳlb.

Mx =

∫ Ϯπ

Ϭ

∫ Ϯ

Ϭ
(r sin θ)(rϮ + ϭ)r dr dθ = Ϭ.

My =

∫ Ϯπ

Ϭ

∫ Ϯ

Ϭ
(r cos θ)(rϮ + ϭ)r dr dθ = Ϭ.

Notes:

ϳϴϴ
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Figure ϭϯ.ϯϭ: IllustraƟng the region R in
Example ϰϲϵ.

ϭϯ.ϰ Center of Mass

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is Ϭ. Thus the center
of mass is (x, y) = (Ϭ, Ϭ).

Example ϰϲϵ Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the region R shown in Fig-
ure ϭϯ.ϯϭ, half an annulus with outer radius ϲ and inner radius ϱ, with constant
density Ϯlb/ŌϮ.

SÊ½çã®ÊÄ Once again it will be useful to represent R in polar coor-
dinates. Using the descripƟon of R and/or the illustraƟon, we see that R is
bounded by ϱ ≤ r ≤ ϲ and Ϭ ≤ θ ≤ π. As the lamina is symmetric about
the y-axis, we should expectMy = Ϭ. We computeM,Mx andMy:

M =

∫ π

Ϭ

∫ ϲ

ϱ
(Ϯ)r dr dθ = ϭϭπlb.

Mx =

∫ π

Ϭ

∫ ϲ

ϱ
(r sin θ)(Ϯ)r dr dθ =

ϯϲϰ
ϯ

≈ ϭϮϭ.ϯϯ.

My =

∫ π

Ϭ

∫ ϲ

ϱ
(r cos θ)(Ϯ)r dr dθ = Ϭ.

Thus the center of mass is (x, y) =
(
Ϭ, ϯϲϰ

ϯϯπ

)
≈ (Ϭ, ϯ.ϱϭ). The center of mass is

indicated in Figure ϭϯ.ϯϭ; note how it lies outside of R!

This secƟon has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more applicaƟon in the following secƟon: compuƟng sur-
face area.

Notes:

ϳϴϵ



Exercises ϭϯ.ϰ
Terms and Concepts

ϭ. Why is it easy to use “mass” and “weight” interchangeably,
even though they are different measures?

Ϯ. Given a point (x, y), the value of x is a measure of distance
from the -axis.

ϯ. We can think of
∫∫

R dm as meaning “sum up lots of
”

ϰ. What is a “discrete planar system?”

ϱ. Why doesMx use
∫∫

R yδ(x, y) dA instead of
∫∫

R xδ(x, y) dA;
that is, why do we use “y” and not “x”?

ϲ. Describe a situaƟon where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems
In Exercises ϳ – ϭϬ, point masses are given along a line or in
the plane. Find the center of mass x or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

ϳ. mϭ = ϰ at x = ϭ; mϮ = ϯ at x = ϯ; mϯ = ϱ at x = ϭϬ

ϴ. mϭ = Ϯ at x = −ϯ; mϮ = Ϯ at x = −ϭ;
mϯ = ϯ at x = Ϭ; mϰ = ϯ at x = ϳ

ϵ. mϭ = Ϯ at (−Ϯ,−Ϯ); mϮ = Ϯ at (Ϯ,−Ϯ);
mϯ = ϮϬ at (Ϭ, ϰ)

ϭϬ. mϭ = ϭ at (−ϭ,−ϭ); mϮ = Ϯ at (−ϭ, ϭ);
mϯ = Ϯ at (ϭ, ϭ); mϰ = ϭ at (ϭ,−ϭ)

In Exercises ϭϭ – ϭϴ, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).

ϭϭ. R is the rectangle with corners (ϭ,−ϯ), (ϭ, Ϯ), (ϳ, Ϯ) and
(ϳ,−ϯ); δ(x, y) = ϱgm/cmϮ

ϭϮ. R is the rectangle with corners (ϭ,−ϯ), (ϭ, Ϯ), (ϳ, Ϯ) and
(ϳ,−ϯ); δ(x, y) = (x+ yϮ)gm/cmϮ

ϭϯ. R is the triangle with corners (−ϭ, Ϭ), (ϭ, Ϭ), and (Ϭ, ϭ);
δ(x, y) = Ϯlb/inϮ

ϭϰ. R is the triangle with corners (Ϭ, Ϭ), (ϭ, Ϭ), and (Ϭ, ϭ);
δ(x, y) = (xϮ + yϮ + ϭ)lb/inϮ

ϭϱ. R is the circle centered at the origin with radius Ϯ; δ(x, y) =
(x+ y+ ϰ)kg/mϮ

ϭϲ. R is the circle sector bounded by xϮ + yϮ = Ϯϱ in the first
quadrant; δ(x, y) = (

√
xϮ + yϮ + ϭ)kg/mϮ

ϭϳ. R is the annulus in the first and second quadrants bounded
by xϮ + yϮ = ϵ and xϮ + yϮ = ϯϲ; δ(x, y) = ϰlb/ŌϮ

ϭϴ. R is the annulus in the first and second quadrants bounded
by xϮ + yϮ = ϵ and xϮ + yϮ = ϯϲ; δ(x, y) =

√
xϮ + yϮlb/ŌϮ

In Exercises ϭϵ – Ϯϲ, find the center of mass of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).
Note: these are the same lamina as in Exercises ϭϭ – ϭϴ.

ϭϵ. R is the rectangle with corners (ϭ,−ϯ), (ϭ, Ϯ), (ϳ, Ϯ) and
(ϳ,−ϯ); δ(x, y) = ϱgm/cmϮ

ϮϬ. R is the rectangle with corners (ϭ,−ϯ), (ϭ, Ϯ), (ϳ, Ϯ) and
(ϳ,−ϯ); δ(x, y) = (x+ yϮ)gm/cmϮ

Ϯϭ. R is the triangle with corners (−ϭ, Ϭ), (ϭ, Ϭ), and (Ϭ, ϭ);
δ(x, y) = Ϯlb/inϮ

ϮϮ. R is the triangle with corners (Ϭ, Ϭ), (ϭ, Ϭ), and (Ϭ, ϭ);
δ(x, y) = (xϮ + yϮ + ϭ)lb/inϮ

Ϯϯ. R is the circle centered at the origin with radius Ϯ; δ(x, y) =
(x+ y+ ϰ)kg/mϮ

Ϯϰ. R is the circle sector bounded by xϮ + yϮ = Ϯϱ in the first
quadrant; δ(x, y) = (

√
xϮ + yϮ + ϭ)kg/mϮ

Ϯϱ. R is the annulus in the first and second quadrants bounded
by xϮ + yϮ = ϵ and xϮ + yϮ = ϯϲ; δ(x, y) = ϰlb/ŌϮ

Ϯϲ. R is the annulus in the first and second quadrants bounded
by xϮ + yϮ = ϵ and xϮ + yϮ = ϯϲ; δ(x, y) =

√
xϮ + yϮlb/ŌϮ

Themoment of inerƟa I is ameasure of the tendency of a lam-
ina to resist rotaƟng about an axis or conƟnue to rotate about
an axis. Ix is the moment of inerƟa about the x-axis, Ix is the
moment of inerƟa about the x-axis, and IO is the moment of
inerƟa about the origin. These are computed as follows:

• Ix =
∫∫

R
yϮ dm

• Iy =
∫∫

R
xϮ dm

• IO =

∫∫

R

(

xϮ + yϮ
)

dm

In Exercises Ϯϳ – ϯϬ, a lamina corresponding to a planar re-
gion R is given with a mass of ϭϲ units. For each, compute Ix,
Iy and IO.

Ϯϳ. R is the ϰ × ϰ square with corners at (−Ϯ,−Ϯ) and (Ϯ, Ϯ)
with density δ(x, y) = ϭ.

Ϯϴ. R is the ϴ×Ϯ rectangle with corners at (−ϰ,−ϭ) and (ϰ, ϭ)
with density δ(x, y) = ϭ.

Ϯϵ. R is the ϰ×Ϯ rectangle with corners at (−Ϯ,−ϭ) and (Ϯ, ϭ)
with density δ(x, y) = Ϯ.

ϯϬ. R is the circle with radius Ϯ centered at the origin with den-
sity δ(x, y) = ϰ/π.

ϳϵϬ
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Figure ϭϯ.ϯϮ: Developing a method of
compuƟng surface area.

ϭϯ.ϱ Surface Area

ϭϯ.ϱ Surface Area
In SecƟon ϳ.ϰ we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equaƟons.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure ϭϯ.ϯϮ(a). Because of the domed shapeof the surface, the surface areawill
be greater than that of the area of the region R. We can find this area using the
samebasic techniquewehaveusedover andover: we’llmake an approximaƟon,
then using limits, we’ll refine the approximaƟon to the exact value.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this porƟon of the surface. When∆xi
and∆yi are small, the funcƟon is approximated well by the tangent plane at any
point (xi, yi) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the funcƟon so well that in this figure, it is virtually indis-
Ɵnguishable from the surface itself! Therefore we can approximate the surface
area Si of this region of the surface with the area Ti of the corresponding porƟon
of the tangent plane.

This porƟon of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applicaƟons of the cross product from SecƟon ϭϬ.ϰ is
that the area of this parallelogram is || u⃗× v⃗ ||. Once we can determine u⃗ and v⃗,
we can determine the area.

u⃗ is tangent to the surface in the direcƟon of x, therefore, from SecƟon ϭϮ.ϳ,
u⃗ is parallel to ⟨ϭ, Ϭ, fx(xi, yi)⟩. The x-displacement of u⃗ is∆xi, so we know that
u⃗ = ∆xi ⟨ϭ, Ϭ, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨Ϭ, ϭ, fy(xi, yi)⟩. Thus:

surface area Si ≈ area of Ti
= || u⃗× v⃗ ||
=
∣
∣
∣
∣∆xi ⟨ϭ, Ϭ, fx(xi, yi)⟩ ×∆yi ⟨Ϭ, ϭ, fy(xi, yi)⟩

∣
∣
∣
∣

=
√

ϭ+ fx(xi, yi)Ϯ + fy(xi, yi)Ϯ∆xi∆yi.

Note that∆xi∆yi = ∆Ai, the area of the i th subregion.
Summing up all n of the approximaƟons to the surface area gives

surface area over R ≈
n∑

i=ϭ

√

ϭ+ fx(xi, yi)Ϯ + fy(xi, yi)Ϯ∆Ai.

Notes:
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Note: as done before, we think of
“
∫∫

R dS” as meaning “sum up lots of
liƩle surface areas over R.”

The concept of surface area is defined
here, for while we already have a noƟon
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.

Figure ϭϯ.ϯϯ: Finding the area of a trian-
gle in space in Example ϰϳϬ.

Chapter ϭϯ MulƟple IntegraƟon

Once again take a limit as all of the ∆xi and ∆yi shrink to Ϭ; this leads to a
double integral.

DefiniƟon ϭϬϱ Surface Area

Let z = f(x, y) where fx and fy are conƟnuous over a closed, bounded
region R. The surface area S over R is

S =
∫∫

R
dS

=

∫∫

R

√

ϭ+ fx(x, y)Ϯ + fy(x, y)Ϯ dA.

We test this definiƟon by using it to compute surface areas of known sur-
faces. We start with a triangle.

Example ϰϳϬ Finding the surface area of a plane over a triangle
Let f(x, y) = ϰ− x− Ϯy, and let R be the region in the plane bounded by x = Ϭ,
y = Ϭ and y = Ϯ− x/Ϯ, as shown in Figure ϭϯ.ϯϯ. Find the surface area of f over
R.

SÊ½çã®ÊÄ We follow DefiniƟon ϭϬϱ. We start by noƟng that fx(x, y) =
−ϭ and fy(x, y) = −Ϯ. To define R, we use bounds Ϭ ≤ y ≤ Ϯ − x/Ϯ and
Ϭ ≤ x ≤ ϰ. Therefore

S =
∫∫

R
dS

=

∫ ϰ

Ϭ

∫ Ϯ−x/Ϯ

Ϭ

√

ϭ+ (−ϭ)Ϯ + (−Ϯ)Ϯ dy dx

=

∫ ϰ

Ϭ

√
ϲ
(

Ϯ− x
Ϯ

)

dx

= ϰ
√
ϲ.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
ϮϬ. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then || u⃗ − proj v⃗ u⃗ || = ϰ

√

ϲ/ϱ. Geometry states that the area is
thus

ϭ
Ϯ
· ϰ
√

ϲ/ϱ ·
√
ϮϬ = ϰ

√
ϲ.

We affirm the validity of our formula.

Notes:
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Note: The inner integral in EquaƟon
(ϭϯ.ϭ) is an improper integral, as the

integrand of
∫ a

Ϭ
r
√

aϮ

aϮ − rϮ
dr is not de-

fined at r = a. To properly evaluate this
integral, one must use the techniques of
SecƟon ϲ.ϴ.

The reason this need arises is that the
funcƟon f(x, y) =

√
aϮ − xϮ − yϮ fails the

requirements of DefiniƟon ϭϬϱ, as fx and
fy are not conƟnuous on the boundary of
the circle xϮ + yϮ = aϮ.

The computaƟon of the surface area is
sƟll valid. The definiƟon makes stronger
requirements than necessary in part to
avoid the use of improper integraƟon, as
when fx and/or fy are not conƟnuous, the
resulƟng improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.

ϭϯ.ϱ Surface Area

It is “common knowledge” that the surface area of a sphere of radius r is
ϰπrϮ. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

Example ϰϳϭ The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose
top hemisphere has equaƟon f(x, y) =

√

aϮ − xϮ − yϮ.

SÊ½çã®ÊÄ We start by compuƟng parƟal derivaƟves and find

fx(x, y) =
−x

√

aϮ − xϮ − yϮ
and fy(x, y) =

−y
√

aϮ − xϮ − yϮ
.

As our funcƟon f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

S = Ϯ
∫∫

R

√

ϭ+ fx(x, y)Ϯ + fy(x, y)Ϯ dA

= Ϯ
∫∫

R

√

ϭ+
xϮ + yϮ

aϮ − xϮ − yϮ
dA.

The region R that we are integraƟng over is the circle, centered at the origin,
with radius a: xϮ+ yϮ = aϮ. Because of this region, we are likely to have greater
success with our integraƟon by converƟng to polar coordinates. Using the sub-
sƟtuƟons x = r cos θ, y = r sin θ, dA = r dr dθ and bounds Ϭ ≤ θ ≤ Ϯπ and
Ϭ ≤ r ≤ a, we have:

S = Ϯ
∫ Ϯπ

Ϭ

∫ a

Ϭ

√

ϭ+
rϮ cosϮ θ + rϮ sinϮ θ

aϮ − rϮ cosϮ θ − rϮ sinϮ θ
r dr dθ

= Ϯ
∫ Ϯπ

Ϭ

∫ a

Ϭ
r
√

ϭ+
rϮ

aϮ − rϮ
dr dθ

= Ϯ
∫ Ϯπ

Ϭ

∫ a

Ϭ
r
√

aϮ

aϮ − rϮ
dr dθ. (ϭϯ.ϭ)

Apply subsƟtuƟon u = aϮ − rϮ and integrate the inner integral, giving

= Ϯ
∫ Ϯπ

Ϭ
aϮ dθ

= ϰπaϮ.

Our work confirms our previous formula.

Notes:

ϳϵϯ



Figure ϭϯ.ϯϰ: Finding the surface area of
a cone in Example ϰϳϮ.

Note: Note that once again fx and fy are
not conƟnuous on the domain of f, as
both are undefined at (Ϭ, Ϭ). (A similar
problem occurred in the previous exam-
ple.) Once again the resulƟng improper
integral converges and the computaƟon
of the surface area is valid.

Figure ϭϯ.ϯϱ: Graphing the surface in Ex-
ample ϰϳϯ.

Chapter ϭϯ MulƟple IntegraƟon

Example ϰϳϮ Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

f(x, y) = h− h
a

√

xϮ + yϮ,

shown in Figure ϭϯ.ϯϰ. Find the surface area of this cone.

SÊ½çã®ÊÄ We begin by compuƟng parƟal derivaƟves.

fx(x, y) = − xh
a
√

xϮ + yϮ
and − yh

a
√

xϮ + yϮ
.

Since we are integraƟng over the circle xϮ + yϮ = aϮ, we again use polar
coordinates. Using the standard subsƟtuƟons, our integrand becomes

√

ϭ+
(
hr cos θ
a
√
rϮ

)Ϯ

+

(
hr sin θ
a
√
rϮ

)Ϯ

.

This may look inƟmidaƟng at first, but there are lots of simple simplificaƟons to
be done. It amazingly reduces to just

√

ϭ+
hϮ

aϮ
=

ϭ
a

√

aϮ + hϮ.

Our polar bounds are Ϭ ≤ θ ≤ Ϯπ and Ϭ ≤ r ≤ a. Thus

S =
∫ Ϯπ

Ϭ

∫ a

Ϭ
r
ϭ
a

√

aϮ + hϮ dr dθ

=

∫ Ϯπ

Ϭ

(
ϭ
Ϯ
rϮ
ϭ
a

√

aϮ + hϮ
)∣
∣
∣
∣

a

Ϭ
dθ

=

∫ Ϯπ

Ϭ

ϭ
Ϯ
a
√

aϮ + hϮ dθ

= πa
√

aϮ + hϮ.

This matches the formula found in the back of this text.

Example ϰϳϯ Finding surface area over a region
Find the area of the surface f(x, y) = xϮ − ϯy+ ϯ over the region R bounded by
−x ≤ y ≤ x, Ϭ ≤ x ≤ ϰ, as pictured in Figure ϭϯ.ϯϱ.

SÊ½çã®ÊÄ It is straighƞorward to compute fx(x, y) = Ϯx and fy(x, y) =
−ϯ. Thus the surface area is described by the double integral

∫∫

R

√

ϭ+ (Ϯx)Ϯ + (−ϯ)Ϯ dA =

∫∫

R

√

ϭϬ+ ϰxϮ dA.

Notes:

ϳϵϰ



ϭϯ.ϱ Surface Area

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This parƟc-
ular integral can be easily evaluated, though, with judicious choice of our order
of integraƟon.

IntegraƟngwith order dx dy requires us to evaluate
∫ √

ϭϬ+ ϰxϮ dx. This can
be done, though it involves IntegraƟon By Parts and sinh−ϭ x. IntegraƟng with
order dy dx has as its first integral

∫ √
ϭϬ+ ϰxϮ dy, which is easy to evaluate: it

is simply y
√
ϭϬ+ ϰxϮ + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.
∫∫

R

√

ϭϬ+ ϰxϮ dA =

∫ ϰ

Ϭ

∫ x

−x

√

ϭϬ+ ϰxϮ dy dx

=

∫ ϰ

Ϭ

(
y
√

ϭϬ+ ϰxϮ
)
∣
∣
∣

x

−x
dx

=

∫ ϰ

Ϭ

(
Ϯx
√

ϭϬ+ ϰxϮ
)
dx.

Apply subsƟtuƟon with u = ϭϬ+ ϰxϮ:

=

(
ϭ
ϲ
(
ϭϬ+ ϰxϮ

)ϯ/Ϯ
)∣
∣
∣
∣

ϰ

Ϭ

=
ϭ
ϯ
(
ϯϳ

√
ϳϰ− ϱ

√
ϭϬ
)
≈ ϭϬϬ.ϴϮϱuϮ.

So while the region R over which we integrate has an area of ϭϲuϮ, the surface
has a much greater area as its z-values change dramaƟcally over R.

In pracƟce, technology helps greatly in the evaluaƟon of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least Ɵme consuming, by hand, and can at the least produce very accurate ap-
proximaƟons with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

We have learned how to integrate integrals; that is, we have learned to eval-
uate double integrals. In the next secƟon, we learn how to integrate double in-
tegrals – that is, we learn to evaluate triple integrals, along with learning some
uses for this operaƟon.

Notes:

ϳϵϱ



Exercises ϭϯ.ϱ
Terms and Concepts

ϭ. “Surface area” is analogous to what previously studied con-
cept?

Ϯ. To approximate the area of a small porƟon of a surface, we
computed the area of its plane.

ϯ. We interpret
∫∫

R
dS as “sum up lots of liƩle

.”

ϰ. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulƟng integral
is hard to evaluate?

ϱ. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

ϲ. Let z = f(x, y) and z = g(x, y) = Ϯf(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises ϳ – ϭϬ, set up the iterated integral that computes
the surface area of the given surface over the region R.

ϳ. f(x, y) = sin x cos y; R is the rectangle with bounds Ϭ ≤
x ≤ Ϯπ, Ϭ ≤ y ≤ Ϯπ.

ϴ. f(x, y) =
ϭ

xϮ + yϮ + ϭ
; R is the circle xϮ + yϮ = ϵ.

ϵ. f(x, y) = xϮ− yϮ; R is the rectangle with opposite corners
(−ϭ,−ϭ) and (ϭ, ϭ).

ϭϬ. f(x, y) =
ϭ

exϮ + ϭ
; R is the rectangle bounded by

−ϱ ≤ x ≤ ϱ and Ϭ ≤ y ≤ ϭ.

In Exercises ϭϭ – ϭϵ, find the area of the given surface over
the region R.

ϭϭ. f(x, y) = ϯx− ϳy+ Ϯ; R is the rectangle with opposite cor-
ners (−ϭ, Ϭ) and (ϭ, ϯ).

ϭϮ. f(x, y) = Ϯx+ Ϯy+ Ϯ; R is the triangle with corners (Ϭ, Ϭ),
(ϭ, Ϭ) and (Ϭ, ϭ).

ϳϵϲ



ϭϯ. f(x, y) = xϮ + yϮ + ϭϬ; R is the circle xϮ + yϮ = ϭϲ.

ϭϰ. f(x, y) = −Ϯx + ϰyϮ + ϳ over R, the triangle bounded by
y = −x, y = x, Ϭ ≤ y ≤ ϭ.

ϭϱ. f(x, y) = xϮ + y over R, the triangle bounded by y = Ϯx,
y = Ϭ and x = Ϯ.

ϭϲ. f(x, y) = Ϯ
ϯ x

ϯ/Ϯ + Ϯyϯ/Ϯ over R, the rectangle with opposite
corners (Ϭ, Ϭ) and (ϭ, ϭ).

ϭϳ. f(x, y) = ϭϬ − Ϯ
√
xϮ + yϮ over R, the circle xϮ + yϮ = Ϯϱ.

(This is the cone with height ϭϬ and base radius ϱ; be sure

to compare you result with the known formula.)

ϭϴ. Find the surface area of the sphere with radius ϱ by dou-
bling the surface area of f(x, y) =

√
Ϯϱ− xϮ − yϮ over R,

the circle xϮ + yϮ = Ϯϱ. (Be sure to compare you result
with the known formula.)

ϭϵ. Find the surface area of the ellipse formed by restricƟng
the plane f(x, y) = cx + dy + h to the region R, the circle
xϮ + yϮ = ϭ, where c, d and h are some constants. Your
answer should be given in terms of c and d; why does the
value of h not maƩer?

ϳϵϳ



(a)

(b)

Figure ϭϯ.ϯϲ: Finding the volume be-
tween the planes given in Example ϰϳϰ.

Chapter ϭϯ MulƟple IntegraƟon

ϭϯ.ϲ VolumeBetweenSurfaces andTriple IntegraƟon
We learned in SecƟon ϭϯ.Ϯ how to compute the signed volumeV under a surface
z = f(x, y) over a region R: V =

∫∫

R f(x, y) dA. It follows naturally that if f(x, y) ≥
g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

∫∫

R
f(x, y) dA−

∫∫

R
g(x, y) dA =

∫∫

R

(
f(x, y)− g(x, y)

)
dA.

Theorem ϭϮϰ Volume Between Surfaces

Let f and g be conƟnuous funcƟons on a closed, bounded region R, where
f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g over R
is

V =

∫∫

R

(
f(x, y)− g(x, y)

)
dA.

Example ϰϳϰ Finding volume between surfaces
Find the volume of the space region bounded by the planes z = ϯx+ y− ϰ and
z = ϴ− ϯx− Ϯy in the ϭst octant. In Figure ϭϯ.ϯϲ(a) the planes are drawn; in (b),
only the defined region is given.

SÊ½çã®ÊÄ We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when ϯx+ y− ϰ = ϴ− ϯx− Ϯy. Applying a liƩle algebra, we
have:

ϯx+ y− ϰ = ϴ− ϯx− Ϯy
ϲx+ ϯy = ϭϮ
Ϯx+ y = ϰ

The planes intersect along the line Ϯx+y = ϰ. Therefore the region R is bounded
by x = Ϭ, y = Ϭ, and y = ϰ − Ϯx; we can convert these bounds to integraƟon
bounds of Ϭ ≤ x ≤ Ϯ, Ϭ ≤ y ≤ ϰ− Ϯx. Thus

V =

∫∫

R

(
ϴ− ϯx− Ϯy− (ϯx+ y− ϰ)

)
dA

=

∫ Ϯ

Ϭ

∫ ϰ−Ϯx

Ϭ

(
ϭϮ− ϲx− ϯy

)
dy dx

= ϭϲuϯ.

The volume between the surfaces is ϭϲ cubic units.

Notes:
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(a)

(b)

Figure ϭϯ.ϯϳ: ApproximaƟng the volume
of a region D in space.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

In the preceding example, we found the volume by evaluaƟng the integral
∫ Ϯ

Ϭ

∫ ϰ−Ϯx

Ϭ

(
ϴ− ϯx− Ϯy− (ϯx+ y− ϰ)

)
dy dx.

Note howwe can rewrite the integrand as an integral, much as we did in SecƟon
ϭϯ.ϭ:

ϴ− ϯx− Ϯy− (ϯx+ y− ϰ) =
∫ ϴ−ϯx−Ϯy

ϯx+y−ϰ
dz.

Thus we can rewrite the double integral that finds volume as
∫ Ϯ

Ϭ

∫ ϰ−Ϯx

Ϭ

(
ϴ−ϯx−Ϯy−(ϯx+y−ϰ)

)
dy dx =

∫ Ϯ

Ϭ

∫ ϰ−Ϯx

Ϭ

(∫ ϴ−ϯx−Ϯy

ϯx+y−ϰ
dz
)

dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introducƟon to double integrals was in the context of finding the
area of a plane region, our introducƟon into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure ϭϯ.ϯϳ(a), we start with an approximaƟon. Break D into
n rectangular solids; the solids near the boundary of Dmay possibly not include
porƟons of D and/or include extra space. In Figure ϭϯ.ϯϳ(b), we zoom in on a
porƟon of the boundary of D to show a rectangular solid that contains space not
in D; as this is an approximaƟon of the volume, this is acceptable and this error
will be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z direcƟons,
respecƟvely. By summing up the volumes of all n solids, we get an approximaƟon
of the volume V of D:

V ≈
n∑

i=ϭ

∆Vi =

n∑

i=ϭ

∆xi∆yi∆zi.

Let ||∆D|| represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As ||∆D|| → Ϭ, the volume of each solid goes to Ϭ, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as ||∆D|| → Ϭ turns our approximaƟon of V into an exact calculaƟon of
V. Before we state this result in a theorem, we use a definiƟon to define some
terms.

Notes:
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Chapter ϭϯ MulƟple IntegraƟon

DefiniƟon ϭϬϲ Triple Integrals, Iterated IntegraƟon (Part I)

Let D be a closed, bounded region in space. Let a and b be real numbers, let gϭ(x) and gϮ(x) be
conƟnuous funcƟons of x, and let fϭ(x, y) and fϮ(x, y) be conƟnuous funcƟons of x and y.

ϭ. The volume V of D is denoted by a triple integral,

V =

∫∫∫

D
dV.

Ϯ. The iterated integral
∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
dz dy dx is evaluated as

∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
dz dy dx =

∫ b

a

∫ gϮ(x)

gϭ(x)

(
∫ fϮ(x,y)

fϭ(x,y)
dz

)

dy dx.

EvaluaƟng the above iterated integral is triple integraƟon.

Our informal understanding of the notaƟon
∫∫∫

D dV is “sum up lots of liƩle
volumes over D,” analogous to our understanding of

∫∫

R dA and
∫∫

R dm.
We now state the major theorem of this secƟon.

Theorem ϭϮϱ Triple IntegraƟon (Part I)

Let D be a closed, bounded region in space and let∆D be any subdivision of D into n rectangular
solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

ϭ. The volume V of D is

V =

∫∫∫

D
dV = lim

||∆D||→Ϭ

n∑

i=ϭ

∆Vi = lim
||∆D||→Ϭ

n∑

i=ϭ

∆xi∆yi∆zi.

Ϯ. If D is defined as the region bounded by the planes x = a and x = b, the cylinders y = g(x)
and y = gϮ(x), and the surfaces z = fϭ(x, y) and z = fϮ(x, y), where a < b, gϭ(x) ≤ gϮ(x)
and fϭ(x, y) ≤ fϮ(x, y) on D, then

∫∫∫

D
dV =

∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
dz dy dx.

ϯ. V can be determined using iterated integraƟon with other orders of integraƟon (there are ϲ
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.

Notes:

ϴϬϬ



(a)

(b)

Figure ϭϯ.ϯϴ: The region D used in Exam-
ple ϰϳϱ in (a); in (b), the region found by
collapsing D onto the x-y plane.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

We evaluated the area of a plane region R by iterated integraƟon, where
the bounds were “from curve to curve, then from point to point.” Theorem ϭϮϱ
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and gϭ(x) ≤ y ≤ gϮ(x) define a region R in the x-y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = gϭ(x) is a cylinder. The combinaƟon
of these ϲ surfaces enclose, and define, D.

Examples will help us understand triple integraƟon, including integraƟng
with various orders of integraƟon.

Example ϰϳϱ Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region in the ϭ st octant bounded by the plane
z = Ϯ − y/ϯ − Ϯx/ϯ, shown in Figure ϭϯ.ϯϴ(a), using the order of integraƟon
dz dy dx. Set up the triple integrals that give the volume in the other ϱ orders of
integraƟon.

SÊ½çã®ÊÄ StarƟng with the order of integraƟon dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = Ϭ (be-
cause we are restricted to the first octant) and above by z = Ϯ − y/ϯ − Ϯx/ϯ;
Ϭ ≤ z ≤ Ϯ− y/ϯ− Ϯx/ϯ.

To find the bounds on y and x, we “collapse” the region onto the x-y plane,
giving the triangle shown in Figure ϭϯ.ϯϴ(b). (We know the equaƟon of the line
y = ϲ− Ϯx in two ways. First, by seƫng z = Ϭ, we have Ϭ = Ϯ− y/ϯ− Ϯx/ϯ ⇒
y = ϲ − Ϯx. Secondly, we know this is going to be a straight line between the
points (ϯ, Ϭ) and (Ϭ, ϲ) in the x-y plane.)

We define that region R, in the integraƟon order of dy dx, with bounds Ϭ ≤

Notes:

ϴϬϭ



Chapter ϭϯ MulƟple IntegraƟon

y ≤ ϲ− Ϯx and Ϭ ≤ x ≤ ϯ. Thus the volume V of the region D is:

V =

∫∫∫

D
dV

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

∫ Ϯ− ϭ
ϯ y− Ϯ

ϯ x

Ϭ
dz dy dz

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

(
∫ Ϯ− ϭ

ϯ y− Ϯ
ϯ x

Ϭ
dz

)

dy dz

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ
z
∣
∣
∣

Ϯ− ϭ
ϯ y− Ϯ

ϯ x

Ϭ
dy dz

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

(

Ϯ− ϭ
ϯ
y− Ϯ

ϯ
x
)

dy dz.

From this step on, we are evaluaƟng a double integral as done many Ɵmes be-
fore. We skip these steps and give the final volume,

= ϲuϯ.

The order dz dx dy:

Now consider the volumeusing the order of integraƟon dz dx dy. The bounds
on z are the same as before, Ϭ ≤ z ≤ Ϯ−y/ϯ−Ϯx/ϯ. Collapsing the space region
on the x-y plane as shown in Figure ϭϯ.ϯϴ(b), we now describe this triangle with
the order of integraƟon dx dy. This gives bounds Ϭ ≤ x ≤ ϯ−y/Ϯ and Ϭ ≤ y ≤ ϲ.
Thus the volume is given by the triple integral

V =

∫ ϲ

Ϭ

∫ ϯ− ϭ
Ϯ y

Ϭ

∫ Ϯ− ϭ
ϯ y− Ϯ

ϯ x

Ϭ
dz dx dy.

The order dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direcƟon of increasing x. The first surface we hit as we enter the
region is the y-z plane, defined by x = Ϭ. We come out of the region at the plane
z = Ϯ− y/ϯ−Ϯx/ϯ; solving for x, we have x = ϯ− y/Ϯ−ϯz/Ϯ. Thus the bounds
on x are: Ϭ ≤ x ≤ ϯ− y/Ϯ− ϯz/Ϯ.

Nowcollapse the space regiononto the y-zplane, as shown in Figure ϭϯ.ϯϵ(a).
(Again, we find the equaƟon of the line z = Ϯ−y/ϯ by seƫng x = Ϭ in the equa-
Ɵon x = ϯ− y/Ϯ− ϯz/Ϯ.) We need to find bounds on this region with the order

Notes:
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(a)

(b)

Figure ϭϯ.ϯϵ: The region D in Example
ϰϳϱ is collapsed onto the y-z plane in (a);
in (b), the region is collapsed onto the x-z
plane.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

dy dz. The curves that bound y are y = Ϭ and y = ϲ− ϯz; the points that bound
z are Ϭ and Ϯ. Thus the triple integral giving volume is:

Ϭ ≤ x ≤ ϯ− y/Ϯ− ϯz/Ϯ
Ϭ ≤ y ≤ ϲ− ϯz

Ϭ ≤ z ≤ Ϯ
⇒

∫ Ϯ

Ϭ

∫ ϲ−ϯz

Ϭ

∫ ϯ−y/Ϯ−ϯz/Ϯ

Ϭ
dx dy dz.

The order dx dz dy:

The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure ϭϯ.ϯϵ(a) and describe it with the order dz dy: Ϭ ≤ z ≤ Ϯ − y/ϯ and
Ϭ ≤ y ≤ ϲ. Thus the volume is given by:

Ϭ ≤ x ≤ ϯ− y/Ϯ− ϯz/Ϯ
Ϭ ≤ z ≤ Ϯ− y/ϯ

Ϭ ≤ y ≤ ϲ
⇒

∫ ϲ

Ϭ

∫ Ϯ−y/ϯ

Ϭ

∫ ϯ−y/Ϯ−ϯz/Ϯ

Ϭ
dx dz dy.

The order dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direcƟon of in-
creasing y, we first enter the region at y = Ϭ, and exit along the plane z =
Ϯ− y/ϯ− Ϯx/ϯ. Solving for y, this plane has equaƟon y = ϲ− Ϯx− ϯz. Thus y
has bounds Ϭ ≤ y ≤ ϲ− Ϯx− ϯz.

Now collapse the region onto the x-z plane, as shown in Figure ϭϯ.ϯϵ(b). The
curves bounding this triangle are z = Ϭ and z = Ϯ − Ϯx/ϯ; x is bounded by the
points x = Ϭ to x = ϯ. Thus the triple integral giving volume is:

Ϭ ≤ y ≤ ϲ− Ϯx− ϯz
Ϭ ≤ z ≤ Ϯ− Ϯx/ϯ

Ϭ ≤ x ≤ ϯ
⇒

∫ ϯ

Ϭ

∫ Ϯ−Ϯx/ϯ

Ϭ

∫ ϲ−Ϯx−ϯz

Ϭ
dy dz dx.

The order dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure ϭϯ.ϯϵ(b) using the order dy dx dz. x is bounded
by x = Ϭ and x = ϯ − ϯz/Ϯ; z is bounded between z = Ϭ and z = Ϯ. This leads
to the triple integral:

Ϭ ≤ y ≤ ϲ− Ϯx− ϯz
Ϭ ≤ x ≤ ϯ− ϯz/Ϯ

Ϭ ≤ z ≤ Ϯ
⇒

∫ Ϯ

Ϭ

∫ ϯ−ϯz/Ϯ

Ϭ

∫ ϲ−Ϯx−ϯz

Ϭ
dy dx dz.

Notes:
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(a)

(b)

Figure ϭϯ.ϰϬ: Finding the projecƟons of
the curve of intersecƟon in Example ϰϳϲ.

Chapter ϭϯ MulƟple IntegraƟon

This problem was long, but hopefully useful, demonstraƟng how to deter-
mine bounds with every order of integraƟon to describe the region D. In prac-
Ɵce, we only need ϭ, but being able to do them all gives us flexibility to choose
the order that suits us best.

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of inte-
graƟon. Since the surface was a triangular porƟon of a plane, this collapsing, or
projecƟng, was simple: the projecƟon of a straight line in space onto a coordi-
nate plane is a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

Example ϰϳϲ Finding the projecƟon of a curve in space onto the coordi-
nate planes
Consider the surfaces z = ϯ− xϮ − yϮ and z = Ϯy, as shown in Figure ϭϯ.ϰϬ(a).
The curve of their intersecƟon is shown, along with the projecƟon of this curve
into the coordinate planes, shown dashed. Find the equaƟons of the projecƟons
into the coordinate planes.

SÊ½çã®ÊÄ The two surfaces are z = ϯ − xϮ − yϮ and z = Ϯy. To find
where they intersect, it is natural to set them equal to each other: ϯ− xϮ− yϮ =
Ϯy. This is an implicit funcƟon of x and y that gives all points (x, y) in the x-y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit funcƟon by compleƟng the square:

ϯ− xϮ − yϮ = Ϯy ⇒ yϮ + Ϯy+ xϮ = ϯ ⇒ (y+ ϭ)Ϯ + xϮ = ϰ.

Thus in the x-y plane the projecƟon of the intersecƟon is a circle with radius Ϯ,
centered at (Ϭ,−ϭ).

To project onto the x-z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equaƟon of each surface for y. In this parƟcular case, it works well to actually
solve for yϮ:
z = ϯ− xϮ − yϮ ⇒ yϮ = ϯ− xϮ − z
z = Ϯy ⇒ yϮ = zϮ/ϰ.

Thus we have (aŌer again compleƟng the square):

ϯ− xϮ − z = zϮ/ϰ ⇒ (z+ Ϯ)Ϯ

ϭϲ
+

xϮ

ϰ
= ϭ,

and ellipse centered at (Ϭ,−Ϯ) in the x-z plane with a major axis of length ϴ and
a minor axis of length ϰ.

Notes:

ϴϬϰ



(a)

(b)

Figure ϭϯ.ϰϭ: The regionD in Example ϰϳϳ
is shown in (a); in (b), it is collapsed onto
the x-y plane.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

Finally, to project the curve of intersecƟon into the y-z plane, we solve equa-
Ɵon for x. Since z = Ϯy is a cylinder that lacks the variable x, it becomes our
equaƟon of the projecƟon in the y-z plane.

All three projecƟons are shown in Figure ϭϯ.ϰϬ(b).

Example ϰϳϳ Finding the volumeof a space regionwith triple integraƟon
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces xϮ + yϮ = ϭ, z = Ϭ and z = −y, as shown in Figure ϭϯ.ϰϭ(a),
with the orders of integraƟon dz dy dx, dy dx dz and dx dz dy.

SÊ½çã®ÊÄ The order dz dy dx:

The region D is bounded below by the plane z = Ϭ and above by the plane
z = −y. The cylinder xϮ + yϮ = ϭ does not offer any bounds in the z-direcƟon,
as that surface is parallel to the z-axis. Thus Ϭ ≤ z ≤ −y.

Collapsing the region into the x-y plane, we get part of the circle with equa-
Ɵon xϮ + yϮ = ϭ as shown in Figure ϭϯ.ϰϭ(b). As a funcƟon of x, this half circle
has equaƟon y = −

√
ϭ− xϮ. Thus y is bounded below by−

√
ϭ− xϮ and above

by y = Ϭ: −
√
ϭ− xϮ ≤ y ≤ Ϭ. The x bounds of the half circle are −ϭ ≤ x ≤ ϭ.

All together, the bounds of integraƟon and triple integral are as follows:

Ϭ ≤ z ≤ −y
−
√
ϭ− xϮ ≤ y ≤ Ϭ
−ϭ ≤ x ≤ ϭ

⇒
∫ ϭ

−ϭ

∫ Ϭ

−
√
ϭ−xϮ

∫ −y

Ϭ
dz dy dx.

We evaluate this triple integral:
∫ ϭ

−ϭ

∫ Ϭ

−
√
ϭ−xϮ

∫ −y

Ϭ
dz dy dx =

∫ ϭ

−ϭ

∫ Ϭ

−
√
ϭ−xϮ

(
− y
)
dy dx

=

∫ ϭ

−ϭ

(
− ϭ

Ϯ
yϮ
)
∣
∣
∣

Ϭ

−
√
ϭ−xϮ

dx

=

∫ ϭ

−ϭ

ϭ
Ϯ
(
ϭ− xϮ

)
dx

=

(
ϭ
Ϯ

(

x− ϭ
ϯ
xϯ
))∣
∣
∣
∣

ϭ

−ϭ

=
Ϯ
ϯ
unitsϯ.

Notes:
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(a)

(b)

Figure ϭϯ.ϰϮ: The region D in Example
ϰϳϳ is shown collapsed onto the x-z plane
in (a); in (b), it is collapsed onto the y-z
plane.

Chapter ϭϯ MulƟple IntegraƟon

With the order dy dx dz:

The region is bounded “below” in the y-direcƟon by the surface xϮ + yϮ =
ϭ ⇒ y = −

√
ϭ− xϮ and “above” by the surface y = −z. Thus the y bounds are

−
√
ϭ− xϮ ≤ y ≤ −z.

Collapsing the region onto the x-z plane gives the region shown in Figure
ϭϯ.ϰϮ(a); this half circle has equaƟon xϮ + zϮ = ϭ. (We find this curve by solving
each surface for yϮ, then seƫng them equal to each other. We have yϮ = ϭ− xϮ
and y = −z ⇒ yϮ = zϮ. Thus xϮ+zϮ = ϭ.) It is bounded belowby x = −

√
ϭ− zϮ

and above by x =
√
ϭ− zϮ, where z is bounded by Ϭ ≤ z ≤ ϭ. All together, we

have:

−
√
ϭ− xϮ ≤ y ≤ −z

−
√
ϭ− zϮ ≤ x ≤

√
ϭ− zϮ

Ϭ ≤ z ≤ ϭ
⇒

∫ ϭ

Ϭ

∫ √
ϭ−zϮ

−
√
ϭ−zϮ

∫ −z

−
√
ϭ−xϮ

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√

ϭ− yϮ and above by
√

ϭ− yϮ.
We then collapse the region onto the y-z plane and get the triangle shown in
Figure ϭϯ.ϰϮ(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z is
bounded by Ϭ ≤ z ≤ −y and y is bounded by−ϭ ≤ y ≤ Ϭ. This gives:

−
√

ϭ− yϮ ≤ x ≤
√

ϭ− yϮ
Ϭ ≤ z ≤ −y
−ϭ ≤ y ≤ Ϭ

⇒
∫ Ϭ

−ϭ

∫ −y

Ϭ

∫
√

ϭ−yϮ

−
√

ϭ−yϮ
dx dz dy.

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a posiƟve number; we are compuƟng volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Notes:

ϴϬϲ



(a)

(b)

Figure ϭϯ.ϰϯ: The regionD in Example ϰϳϴ
is shown in (a); in (b), it is collapsed onto
the x-y plane.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

Theorem ϭϮϲ ProperƟes of Triple Integrals

Let D be a closed, bounded region in space, and let Dϭ and DϮ be non-
overlapping regions such that D = Dϭ

∪
DϮ.

ϭ.
∫∫∫

D
dV ≥ Ϭ

Ϯ.
∫∫∫

D
dV =

∫∫∫

Dϭ

dV+

∫∫∫

DϮ

dV.

We use this laƩer property in the next example.

Example ϰϳϴ Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region D bounded by the coordinate planes, z =
ϭ− x/Ϯ and z = ϭ− y/ϰ, as shown in Figure ϭϯ.ϰϯ(a). Set up the triple integrals
that find the volume of D in all ϲ orders of integraƟon.

SÊ½çã®ÊÄ Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integraƟon are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direcƟon. So we start
by noƟng that we have

Ϭ ≤ z ≤ ϭ− ϭ
Ϯ
x and Ϭ ≤ z ≤ ϭ− ϭ

ϰ
y.

We now collapse the region D onto the x-y axis, as shown in Figure ϭϯ.ϰϯ(b).
The boundary of D, the line from (Ϭ, Ϭ, ϭ) to (Ϯ, ϰ, Ϭ), is shown in part (b) of the
figure as a dashed line; it has equaƟon y = Ϯx. (We can recognize this in two
ways: one, in collapsing the line from (Ϭ, Ϭ, ϭ) to (Ϯ, ϰ, Ϭ) onto the x-y plane,
we simply ignore the z-values, meaning the line now goes from (Ϭ, Ϭ) to (Ϯ, ϰ).
Secondly, the two surfaces meet where z = ϭ − x/Ϯ is equal to z = ϭ − y/ϰ:
thus ϭ− x/Ϯ = ϭ− y/ϰ ⇒ y = Ϯx.)

We use the second property of Theorem ϭϮϲ to state that
∫∫∫

D
dV =

∫∫∫

Dϭ

dV+

∫∫∫

DϮ

dV,

where Dϭ and DϮ are the space regions above the plane regions Rϭ and RϮ, re-
specƟvely. Thus we can say

∫∫∫

D
dV =

∫∫

Rϭ

(
∫ ϭ−x/Ϯ

Ϭ
dz

)

dA+

∫∫

RϮ

(
∫ ϭ−y/ϰ

Ϭ
dz

)

dA.

Notes:

ϴϬϳ



(a)

(b)

Figure ϭϯ.ϰϰ: The region D in Example
ϰϳϴ is shown collapsed onto the x-z plane
in (a); in (b), it is collapsed onto the y-z
plane.

Chapter ϭϯ MulƟple IntegraƟon

All that is leŌ is to determine bounds of Rϭ and RϮ, depending on whether we
are integraƟngwith order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:

Ϭ ≤ z ≤ ϭ− x/Ϯ
Ϭ ≤ y ≤ Ϯx
Ϭ ≤ x ≤ Ϯ

Ϭ ≤ z ≤ ϭ− y/ϰ
Ϯx ≤ y ≤ ϰ
Ϭ ≤ x ≤ Ϯ

∫∫∫

D
dV =

∫ Ϯ

Ϭ

∫ Ϯx

Ϭ

∫ ϭ−x/Ϯ

Ϭ
dz dy dx +

∫ Ϯ

Ϭ

∫ ϰ

Ϯx

∫ ϭ−y/ϰ

Ϭ
dz dy dx

dz dx dy:

Ϭ ≤ z ≤ ϭ− x/Ϯ
y/Ϯ ≤ x ≤ Ϯ
Ϭ ≤ y ≤ ϰ

Ϭ ≤ z ≤ ϭ− y/ϰ
Ϭ ≤ x ≤ y/Ϯ
Ϭ ≤ y ≤ ϰ

∫∫∫

D
dV =

∫ ϰ

Ϭ

∫ Ϯ

y/Ϯ

∫ ϭ−x/Ϯ

Ϭ
dz dx dy +

∫ ϰ

Ϭ

∫ y/Ϯ

Ϭ

∫ ϭ−y/ϰ

Ϭ
dz dx dy

The remaining four orders of integraƟon do not require a sum of triple in-
tegrals. In Figure ϭϯ.ϰϰ we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integraƟon here, again
leaving it to the reader to confirm these results.

dy dx dz:

Ϭ ≤ y ≤ ϰ− ϰz
Ϭ ≤ x ≤ Ϯ− Ϯz

Ϭ ≤ z ≤ ϭ
⇒
∫ ϭ

Ϭ

∫ Ϯ−Ϯz

Ϭ

∫ ϰ−ϰz

Ϭ
dy dx dz

dy dz dx:

Ϭ ≤ y ≤ ϰ− ϰz
Ϭ ≤ z ≤ ϭ− x/Ϯ

Ϭ ≤ x ≤ Ϯ
⇒
∫ Ϯ

Ϭ

∫ ϭ−x/Ϯ

Ϭ

∫ ϰ−ϰz

Ϭ
dy dx dz

Notes:
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(a)

(b)

(c)

Figure ϭϯ.ϰϱ: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

dx dy dz:

Ϭ ≤ x ≤ Ϯ− Ϯz
Ϭ ≤ y ≤ ϰ− ϰz

Ϭ ≤ z ≤ ϭ
⇒
∫ ϭ

Ϭ

∫ ϰ−ϰz

Ϭ

∫ Ϯ−Ϯz

Ϭ
dx dy dz

dx dz dy:

Ϭ ≤ x ≤ Ϯ− Ϯz
Ϭ ≤ z ≤ ϭ− y/ϰ

Ϭ ≤ y ≤ ϰ
⇒
∫ ϰ

Ϭ

∫ ϭ−y/ϰ

Ϭ

∫ Ϯ−Ϯz

Ϭ
dx dz dy

We give one more example of finding the volume of a space region.

Example ϰϳϵ Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = ϮxϮ + Ϯ and z = ϲ− ϮxϮ − yϮ. These surfaces are ploƩed in Figure ϭϯ.ϰϱ(a)
and (b), respecƟvely; the region D is shown in part (c) of the figure.

SÊ½çã®ÊÄ The main point of this example is this: integraƟng with re-
spect to z first is rather straighƞorward; integraƟng with respect to x first is not.

The order dz dy dx:

The bounds on z are clearly ϮxϮ+Ϯ ≤ z ≤ ϲ−ϮxϮ−yϮ. CollapsingD onto the
x-y plane gives the ellipse shown in Figure ϭϯ.ϰϱ(c). The equaƟon of this ellipse
is found by seƫng the two surfaces equal to each other:

ϮxϮ + Ϯ = ϲ− ϮxϮ − yϮ ⇒ ϰxϮ + yϮ = ϰ ⇒ xϮ +
yϮ

ϰ
= ϭ.

We can describe this ellipse with the bounds

−
√

ϰ− ϰxϮ ≤ y ≤
√

ϰ− ϰxϮ and − ϭ ≤ x ≤ ϭ.

Thus we find volume as

ϮxϮ + Ϯ ≤ z ≤ ϲ− ϮxϮ − yϮ

−
√
ϰ− ϰxϮ ≤ y ≤

√
ϰ− ϰxϮ

−ϭ ≤ x ≤ ϭ
⇒
∫ ϭ

−ϭ

∫ √
ϰ−ϰxϮ

−
√
ϰ−ϰxϮ

∫ ϲ−ϮxϮ−yϮ

ϮxϮ+Ϯ
dz dy dx .

The order dy dz dx:

Notes:

ϴϬϵ



(a)

(b)

Figure ϭϯ.ϰϲ: The regionD in Example ϰϳϵ
is collapsed onto the x-z plane in (a); in
(b), it is collapsed onto the y-z plane.

Chapter ϭϯ MulƟple IntegraƟon

IntegraƟngwith respect to y is not too difficult. Since the surface z = ϮxϮ+Ϯ
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = ϲ− ϮxϮ − yϮ does; solving for y, we get the bounds

−
√

ϲ− ϮxϮ − z ≤ y ≤
√

ϲ− ϮxϮ − z.

Collapsing D onto the x-z axes gives the region shown in Figure ϭϯ.ϰϲ(a); the
lower curve is from the cylinder, with equaƟon z = ϮxϮ + Ϯ. The upper curve is
from the paraboloid; with y = Ϭ, the curve is z = ϲ− ϮxϮ. Thus bounds on z are
ϮxϮ + Ϯ ≤ z ≤ ϲ− ϮxϮ; the bounds on x are−ϭ ≤ x ≤ ϭ. Thus we have:

−
√
ϲ− ϮxϮ − z ≤ y ≤

√
ϲ− ϮxϮ − z

ϮxϮ + Ϯ ≤ z ≤ ϲ− ϮxϮ

−ϭ ≤ x ≤ ϭ
⇒
∫ ϭ

−ϭ

∫ ϲ−ϮxϮ

ϮxϮ+Ϯ

∫ √
ϲ−ϮxϮ−z

−
√
ϲ−ϮxϮ−z

dy dz dx.

The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/Ϯ− ϭ ≤ x ≤
√

z/Ϯ− ϭ

for region Dϭ and the paraboloid creates bounds

−
√

ϯ− yϮ/Ϯ− zϮ/Ϯ ≤ x ≤
√

ϯ− yϮ/Ϯ− zϮ/Ϯ

for region DϮ.
Collapsing D onto the y-z axes gives the regions shown in Figure ϭϯ.ϰϲ(b).

We find the equaƟon of the curve z = ϰ − yϮ/Ϯ by noƟng that the equaƟon of
the ellipse seen in Figure ϭϯ.ϰϱ(c) has equaƟon

xϮ + yϮ/ϰ = ϭ ⇒ x =
√

ϭ− yϮ/ϰ.

SubsƟtute this expression for x in either surface equaƟon, z = ϲ − ϮxϮ − yϮ or
z = ϮxϮ + Ϯ. In both cases, we find

z = ϰ− ϭ
Ϯ
yϮ.

Region Rϭ, corresponding to Dϭ, has bounds

Ϯ ≤ z ≤ ϰ− yϮ/Ϯ, −Ϯ ≤ y ≤ Ϯ

and region RϮ, corresponding to DϮ, has bounds

ϰ− yϮ/Ϯ ≤ z ≤ ϲ− yϮ, −Ϯ ≤ y ≤ Ϯ.

Notes:
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Thus the volume of D is given by:

∫ Ϯ

−Ϯ

∫ ϰ−yϮ/Ϯ

Ϯ

∫
√

z/Ϯ−ϭ

−
√

z/Ϯ−ϭ
dx dz dy +

∫ Ϯ

−Ϯ

∫ ϲ−yϮ

ϰ−yϮ/Ϯ

∫
√

ϯ−yϮ/Ϯ−zϮ/Ϯ

−
√

ϯ−yϮ/Ϯ−zϮ/Ϯ
dx dz dy.

If all one wanted to do in Example ϰϳϵ was find the volume of the region D,
one would have likely stopped at the first integraƟon setup (with order dz dy dx)
and computed the volume from there. However, we included the other two
methods ϭ) to show that it could be done, “messy” or not, and Ϯ) because some-
Ɵmes we “have” to use a less desirable order of integraƟon in order to actually
integrate.

Triple IntegraƟon and FuncƟons of Three Variables

There are uses for triple integraƟon beyond merely finding volume, just as
there are uses for integraƟon beyond “area under the curve.” These uses start
with understanding how to integrate funcƟons of three variables, which is effec-
Ɵvely no different than integraƟng funcƟons of two variables. This leads us to a
definiƟon, followed by an example.

DefiniƟon ϭϬϳ Iterated IntegraƟon, (Part II)

Let D be a closed, bounded region in space, over which gϭ(x), gϮ(x),
fϭ(x, y), fϮ(x, y) and h(x, y, z) are all conƟnuous, and let a and b be real
numbers.

The iterated integral
∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
h(x, y, z) dz dy dx is evaluated as

∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
h(x, y, z)dz dy dx =

∫ b

a

∫ gϮ(x)

gϭ(x)

(

∫ fϮ(x,y)

fϭ(x,y)
h(x, y, z) dz

)

dy dx.

Example ϰϴϬ EvaluaƟng a triple integral of a funcƟon of three variables

Evaluate
∫ ϭ

Ϭ

∫ x

xϮ

∫ Ϯx+ϯy

xϮ−y

(
xy+ Ϯxz

)
dz dy dx.

SÊ½çã®ÊÄ We evaluate this integral according to DefiniƟon ϭϬϳ.

Notes:
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∫ ϭ

Ϭ

∫ x

xϮ

∫ Ϯx+ϯy

xϮ−y

(
xy+ Ϯxz

)
dz dy dx

=

∫ ϭ

Ϭ

∫ x

xϮ

(∫ Ϯx+ϯy

xϮ−y

(
xy+ Ϯxz

)
dz
)

dy dx

=

∫ ϭ

Ϭ

∫ x

xϮ

(
(
xyz+ xzϮ

)
∣
∣
∣

Ϯx+ϯy

xϮ−y

)

dy dx

=

∫ ϭ

Ϭ

∫ x

xϮ

(

xy(Ϯx+ ϯy) + x(Ϯx+ ϯy)Ϯ −
(

xy(xϮ − y) + x(xϮ − y)Ϯ
)
)

dy dx

=

∫ ϭ

Ϭ

∫ x

xϮ

(

− xϱ + xϯy+ ϰxϯ + ϭϰxϮy+ ϭϮxyϮ
)

dy dx.

We conƟnue as we have in the past, showing fewer steps.

=

∫ ϭ

Ϭ

(

− ϳ
Ϯ
xϳ − ϴxϲ − ϳ

Ϯ
xϱ + ϭϱxϰ

)

dx

=
Ϯϴϭ
ϯϯϲ

≈ Ϭ.ϴϯϲ.

We now know how to evaluate a triple integral of a funcƟon of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integraƟon and double inte-
graƟon.

Let h(x, y, z) a conƟnuous funcƟon of three variables, defined over some
space region D. We can parƟƟon D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
funcƟon value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object, for then h× volume = mass.

We can sum up all n products over D. Again leƫng ||∆D|| represent the
length of the longest diagonal of the n rectangular solids in the parƟƟon, we can
take the limit of the sums of products as ||∆D|| → Ϭ. That is, we can find

S = lim
||∆D||→Ϭ

n∑

i=ϭ

h(xi, yi, zi)∆Vi = lim
||∆D||→Ϭ

n∑

i=ϭ

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretaƟons depending on the funcƟon h, in
the case where h describes density, S is the total mass of the object described
by the region D.

Notes:
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Note: In the marginal note on page ϳϲϮ,
we showed how the summaƟon of rect-
angles over a region R in the plane could
be viewed as a double sum, leading to
the double integral. Likewise, we can

view the sum
n
∑

i=ϭ

h(xi, yi, zi)∆xi∆yi∆zi as

a triple sum,

p
∑

k=ϭ

n
∑

j=ϭ

m
∑

i=ϭ

h(xi, yj, zk)∆xi∆yj∆zk,

which we evaluate as
p
∑

k=ϭ

(

n
∑

j=ϭ

(

m
∑

i=ϭ

h(xi, yj, zk)∆xi

)

∆yj

)

∆zk.

Here we fix a k value, which establishes
the z-height of the rectangular solids on
one “level” of all the rectangular solids
in the space region D. The inner double
summaƟon adds up all the volumes of the
rectangular solids on this level, while the
outer summaƟon adds up the volumes of
each level.
This triple summaƟon understanding
leads to the

∫∫∫

D notaƟon of the triple
integral, as well as the method of
evaluaƟon shown in Theorem ϭϮϳ.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteraƟon, followed by the applicaƟon of triple
integrals to find the centers of mass of solid objects.

DefiniƟon ϭϬϴ Triple Integral

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume∆Vi. The triple integral of h over D is

∫∫∫

D
h(x, y, z) dV = lim

||∆D||→Ϭ

n∑

i=ϭ

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for conƟnuous
funcƟons h and gives us a method of evaluaƟng the limit.

Theorem ϭϮϳ Triple IntegraƟon (Part II)

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume Vi.

ϭ. The limit lim
||∆D||→Ϭ

n∑

i=ϭ

h(xi, yi, zi)∆Vi exists.

Ϯ. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = gϭ(x) and y = gϮ(x), and the surfaces
z = fϭ(x, y) and z = fϮ(x, y), where a < b, gϭ(x) ≤ gϮ(x) and
fϭ(x, y) ≤ fϮ(x, y) on D, then

∫∫∫

D
h(x, y, z) dV =

∫ b

a

∫ gϮ(x)

gϭ(x)

∫ fϮ(x,y)

fϭ(x,y)
h(x, y, z) dz dy dx.

We now apply triple integraƟon to find the centers of mass of solid objects.

Mass and Center of Mass
One may wish to review SecƟon ϭϯ.ϰ for a reminder of the relevant terms

and concepts.

Notes:
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Figure ϭϯ.ϰϳ: Finding the center of mass
of this solid in Example ϰϴϭ.

Chapter ϭϯ MulƟple IntegraƟon

DefiniƟon ϭϬϵ Mass, Center of Mass of Solids

Let a solid be represented by a region D in space with variable density
funcƟon δ(x, y, z).

ϭ. Themass of the object isM =

∫∫∫

D
dm =

∫∫∫

D
δ(x, y, z) dV.

Ϯ. Themoment about the x-y plane isMxy =

∫∫∫

D
zδ(x, y, z) dV.

ϯ. Themoment about the x-z plane isMxz =

∫∫∫

D
yδ(x, y, z) dV.

ϰ. Themoment about the y-z plane isMyz =

∫∫∫

D
xδ(x, y, z) dV.

ϱ. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)

.

Example ϰϴϭ Finding the center of mass of a solid
Find the mass and center of mass of the solid represented by the space region
bounded by the coordinate planes and z = Ϯ − y/ϯ − Ϯx/ϯ, shown in Figure
ϭϯ.ϰϳ, with constant density δ(x, y, z) = ϯgm/cmϯ. (Note: this space region was
used in Example ϰϳϱ.)

SÊ½çã®ÊÄ We apply DefiniƟon ϭϬϵ. In Example ϰϳϱ, we found bounds
for the order of integraƟon dz dy dx to be Ϭ ≤ z ≤ Ϯ−y/ϯ−Ϯx/ϯ, Ϭ ≤ y ≤ ϲ−Ϯx
and Ϭ ≤ x ≤ ϯ. We find the mass of the object:

M =

∫∫∫

D
δ(x, y, z) dV

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

∫ Ϯ−y/ϯ−Ϯx/ϯ

Ϭ

(
ϯ
)
dz dy dx

= ϯ
∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

∫ Ϯ−y/ϯ−Ϯx/ϯ

Ϭ
dz dy dx

= ϯ(ϲ) = ϭϴgm.

The evaluaƟon of the triple integral is done in Example ϰϳϱ, so we skipped those

Notes:
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Figure ϭϯ.ϰϴ: Finding the center of mass
of this solid in Example ϰϴϮ.

ϭϯ.ϲ Volume Between Surfaces and Triple IntegraƟon

steps above. Note how the mass of an object with constant density is simply
“density×volume.”

We now find the moments about the planes.

Mxy =

∫∫∫

D
ϯz dV

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

∫ Ϯ−y/ϯ−Ϯx/ϯ

Ϭ

(
ϯz
)
dz dy dx

=

∫ ϯ

Ϭ

∫ ϲ−Ϯx

Ϭ

ϯ
Ϯ
(
Ϯ− y/ϯ− Ϯx/ϯ

)Ϯ dy dx

=

∫ ϯ

Ϭ
−ϰ
ϵ
(
x− ϯ

)ϯ dx

= ϵ.

We omit the steps of integraƟng to find the other moments.

Myz =

∫∫∫

D
ϯx dV

=
Ϯϳ
Ϯ
.

Mxz =

∫∫∫

D
ϯy dV

= Ϯϳ.

The center of mass is

(
x, y, z

)
=

(
Ϯϳ/Ϯ
ϭϴ

,
Ϯϳ
ϭϴ

,
ϵ
ϭϴ

)

=
(
Ϭ.ϳϱ, ϭ.ϱ, Ϭ.ϱ

)
.

Example ϰϴϮ Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = Ϭ and z = −y and the cylinder xϮ + yϮ = ϭ, shown in Figure ϭϯ.ϰϴ,
with density funcƟon δ(x, y, z) = ϭϬ + xϮ + ϱy − ϱz. (Note: this space region
was used in Example ϰϳϳ.)

SÊ½çã®ÊÄ As we start, consider the density funcƟon. It is symmetric
about the y-z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be Ϭ.

As one moves away from the origin in the y or z direcƟons, the object be-
comes less dense, though there is more volume in these regions.

Notes:
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Though none of the integrals needed to compute the center of mass are
parƟcularly hard, they do require a number of steps. We emphasize here the
importance of knowing how to set up the proper integrals; in complex situaƟons
we can appeal to technology for a good approximaƟon, if not the exact answer.
We use the order of integraƟon dz dy dx, using the bounds found in Example
ϰϳϳ. (As these are the same for all four triple integrals, we explicitly show the
bounds only forM.)

M =

∫∫∫

D

(
ϭϬ+ xϮ + ϱy− ϱz

)
dV

=

∫ ϭ

−ϭ

∫ Ϭ

−
√
ϭ−xϮ

∫ −y

Ϭ

(
ϭϬ+ xϮ + ϱy− ϱz

)
dV

=
ϲϰ
ϱ

− ϭϱπ
ϭϲ

≈ ϯ.ϴϱϱ.

Myz =

∫∫∫

D
x
(
ϭϬ+ xϮ + ϱy− ϱz

)
dV

= Ϭ.

Mxz =

∫∫∫

D
y
(
ϭϬ+ xϮ + ϱy− ϱz

)
dV

= Ϯ− ϲϭπ
ϰϴ

≈ −ϭ.ϵϵ.

Mxy =

∫∫∫

D
z
(
ϭϬ+ xϮ + ϱy− ϱz

)
dV

=
ϲϭπ
ϵϲ

− ϭϬ
ϵ

≈ Ϭ.ϴϴϱ.

Note howMyz = Ϭ, as expected. The center of mass is

(
x, y, z

)
=

(

Ϭ,
−ϭ.ϵϵ
ϯ.ϴϱϱ

,
Ϭ.ϴϴϱ
ϯ.ϴϱϱ

)

≈
(
Ϭ,−Ϭ.ϱϭϲ, Ϭ.ϮϯϬ

)
.

As stated before, there are many uses for triple integraƟon beyond finding
volume. When h(x, y, z) describes a rate of change funcƟon over some space

region D, then
∫∫∫

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was compuƟngmass; a density funcƟon is simply a “rate of mass
change per volume” funcƟon. IntegraƟng density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quanƟty; modern technology is very useful in evaluaƟng these

Notes:
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formulas quickly and accurately.

This chapter invesƟgated the natural follow–on to parƟal derivaƟves: iter-
ated integraƟon. We learned how to use the bounds of a double integral to
describe a region in the plane using both rectangular and polar coordinates,
then later expanded to use the bounds of a triple integral to describe a region in
space. We used double integrals to find volumes under surfaces, surface area,
and the center ofmass of lamina; weused triple integrals as an alternatemethod
of finding volumes of space regions and also to find the center of mass of a re-
gion in space.

IntegraƟon does not stop here. We could conƟnue to iterate our integrals,
next invesƟgaƟng “quadruple integrals” whose bounds describe a region in ϰ–
dimensional space (which are very hard to visualize). We can also look back to
“regular” integraƟon where we found the area under a curve in the plane. A
natural analogue to this is finding the “area under a curve,” where the curve is
in space, not in a plane. These are just two of many avenues to explore under
the heading of “integraƟon.”

Notes:
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Exercises ϭϯ.ϲ
Terms and Concepts
ϭ. The strategy for establishing bounds for triple integrals

is “ to , to and
to .”

Ϯ. Give an informal interpretaƟon of what “
∫∫∫

D
dV”

means.

ϯ. Give two uses of triple integraƟon.

ϰ. If an object has a constant density δ and a volume V, what
is its mass?

Problems
In Exercises ϱ – ϴ, two surfaces fϭ(x, y) and fϮ(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

ϱ. fϭ(x, y) = ϴ− xϮ − yϮ, fϮ(x, y) = Ϯx+ y;
R is the square with corners (−ϭ,−ϭ) and (ϭ, ϭ).

ϲ. fϭ(x, y) = xϮ + yϮ, fϮ(x, y) = −xϮ − yϮ;
R is the square with corners (Ϭ, Ϭ) and (Ϯ, ϯ).

ϳ. fϭ(x, y) = sin x cos y, fϮ(x, y) = cos x sin y+ Ϯ;
R is the triangle with corners (Ϭ, Ϭ), (π, Ϭ) and (π, π).

ϴ. fϭ(x, y) = ϮxϮ + ϮyϮ + ϯ, fϮ(x, y) = ϲ− xϮ − yϮ;
R is the circle xϮ + yϮ = ϭ.

In Exercises ϵ – ϭϲ, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all ϲ orders of integraƟon, and find
the volume of D by evaluaƟng the indicated triple integral.

ϵ. D is bounded by the coordinate planes and
z = Ϯ− Ϯx/ϯ− Ϯy.

Evaluate the triple integral with order dz dy dx.

ϭϬ. D is bounded by the planes y = Ϭ, y = Ϯ, x = ϭ, z = Ϭ and
z = (ϯ− x)/Ϯ.

Evaluate the triple integral with order dx dy dz.

ϭϭ. D is bounded by the planes x = Ϭ, x = Ϯ, z = −y and by
z = yϮ/Ϯ.

Evaluate the triple integral with the order dy dz dx.

ϭϮ. D is bounded by the planes z = Ϭ, y = ϵ, x = Ϭ and by
z =

√
yϮ − ϵxϮ.

Do not evaluate any triple integral.

ϴϭϴ



ϭϯ. D is bounded by the planes x = Ϯ, y = ϭ, z = Ϭ and
z = Ϯx+ ϰy− ϰ.

Evaluate the triple integral with the order dx dy dz.

ϭϰ. D is bounded by the plane z = Ϯy and by y = ϰ− xϮ.

Evaluate the triple integral with the order dz dy dx.

ϭϱ. D is bounded by the coordinate planes and by
y = ϭ− xϮ and y = ϭ− zϮ.
Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

ϭϲ. D is bounded by the coordinate planes and by
z = ϭ− y/ϯ and z = ϭ− x.

Evaluate the triple integral with order dx dy dz.

In Exercises ϭϳ – ϮϬ, evaluate the triple integral.

ϭϳ.
∫ π/Ϯ

−π/Ϯ

∫ π

Ϭ

∫ π

Ϭ

(

cos x sin y sin z
)

dz dy dx

ϭϴ.
∫ ϭ

Ϭ

∫ x

Ϭ

∫ x+y

Ϭ

(

x+ y+ z
)

dz dy dx

ϭϵ.
∫ π

Ϭ

∫ ϭ

Ϭ

∫ z

Ϭ

(

sin(yz)
)

dx dy dz

ϮϬ.
∫ πϮ

π

∫ xϯ

x

∫ yϮ

−yϮ

(

z
xϮy+ yϮx
exϮ+yϮ

)

dz dy dx

In Exercises Ϯϭ – Ϯϰ, find the center ofmass of the solid repre-
sented by the indicated space region Dwith density funcƟon
δ(x, y, z).

Ϯϭ. D is bounded by the coordinate planes and
z = Ϯ− Ϯx/ϯ− Ϯy; δ(x, y, z) = ϭϬgm/cmϯ.
(Note: this is the same region as used in Exercise ϵ.)

ϮϮ. D is bounded by the planes y = Ϭ, y = Ϯ, x = ϭ, z = Ϭ and
z = (ϯ− x)/Ϯ; δ(x, y, z) = Ϯgm/cmϯ.
(Note: this is the same region as used in Exercise ϭϬ.)

Ϯϯ. D is bounded by the planes x = Ϯ, y = ϭ, z = Ϭ and
z = Ϯx+ ϰy− ϰ; δ(x, y, z) = xϮlb/inϯ.
(Note: this is the same region as used in Exercise ϭϯ.)

Ϯϰ. D is bounded by the plane z = Ϯy and by y = ϰ− xϮ.
δ(x, y, z) = yϮlb/inϯ.
(Note: this is the same region as used in Exercise ϭϰ.)

ϴϭϵ
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Chapter ϭ
SecƟon ϭ.ϭ

ϭ. Answers will vary.

ϯ. F

ϱ. Answers will vary.

ϳ. −ϱ

ϵ. Ϯ

ϭϭ. Limit does not exist.

ϭϯ. ϳ

ϭϱ. Limit does not exist.

ϭϳ.

h f(a+h)−f(a)
h

−Ϭ.ϭ ϵ
−Ϭ.Ϭϭ ϵ
Ϭ.Ϭϭ ϵ
Ϭ.ϭ ϵ

The limit seems to be exactly ϵ.

ϭϵ.

h f(a+h)−f(a)
h

−Ϭ.ϭ −Ϭ.ϭϭϰϵϰϯ
−Ϭ.Ϭϭ −Ϭ.ϭϭϭϰϴϯ
Ϭ.Ϭϭ −Ϭ.ϭϭϬϳϰϮ
Ϭ.ϭ −Ϭ.ϭϬϳϱϮϳ

The limit is approx. −Ϭ.ϭϭ.

Ϯϭ.

h f(a+h)−f(a)
h

−Ϭ.ϭ Ϭ.ϮϬϮϬϮϳ
−Ϭ.Ϭϭ Ϭ.ϮϬϬϮ
Ϭ.Ϭϭ Ϭ.ϭϵϵϴ
Ϭ.ϭ Ϭ.ϭϵϴϬϮϲ

The limit is approx. Ϭ.Ϯ.

Ϯϯ.

h f(a+h)−f(a)
h

−Ϭ.ϭ −Ϭ.Ϭϰϵϵϱϴϯ
−Ϭ.Ϭϭ −Ϭ.ϬϬϰϵϵϵϵϲ
Ϭ.Ϭϭ Ϭ.ϬϬϰϵϵϵϵϲ
Ϭ.ϭ Ϭ.Ϭϰϵϵϱϴϯ

The limit is approx. Ϭ.ϬϬϱ.

SecƟon ϭ.Ϯ

ϭ. ε should be given first, and the restricƟon |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

ϯ. T

ϱ. Let ε > Ϭ be given. We wish to find δ > Ϭ such that when
|x− ϱ| < δ, |f(x)− (−Ϯ)| < ε.
Consider |f(x)− (−Ϯ)| < ε:

|f(x) + Ϯ| < ε

|(ϯ− x) + Ϯ| < ε

|ϱ− x| < ε

−ε < ϱ− x < ε

−ε < x− ϱ < ε.

This implies we can let δ = ε. Then:

|x− ϱ| < δ

−δ < x− ϱ < δ

−ε < x− ϱ < ε

−ε < (x− ϯ)− Ϯ < ε

−ε < (−x+ ϯ)− (−Ϯ) < ε

|ϯ− x− (−Ϯ)| < ε,

which is what we wanted to prove.

ϳ. Let ε > Ϭ be given. We wish to find δ > Ϭ such that when
|x− ϰ| < δ, |f(x)− ϭϱ| < ε.
Consider |f(x)− ϭϱ| < ε, keeping in mind we want to make a
statement about |x− ϰ|:

|f(x)− ϭϱ| < ε

|xϮ + x− ϱ− ϭϱ| < ε

|xϮ + x− ϮϬ| < ε

|x− ϰ| · |x+ ϱ| < ε

|x− ϰ| < ε/|x+ ϱ|

Since x is near ϰ, we can safely assume that, for instance,
ϯ < x < ϱ. Thus

ϯ+ ϱ < x+ ϱ < ϱ+ ϱ
ϴ < x+ ϱ < ϭϬ
ϭ
ϭϬ

<
ϭ

x+ ϱ
<

ϭ
ϴ

ε

ϭϬ
<

ε

x+ ϱ
<

ε

ϴ

Let δ = ε
ϭϬ . Then:

|x− ϰ| < δ

|x− ϰ| < ε

ϭϬ

|x− ϰ| < ε

x+ ϱ

|x− ϰ| · |x+ ϱ| < ε

x+ ϱ
· |x+ ϱ|

Assuming x is near ϰ, x+ ϱ is posiƟve and we can drop the
absolute value signs on the right.

|x− ϰ| · |x+ ϱ| < ε

x+ ϱ
· (x+ ϱ)

|xϮ + x− ϮϬ| < ε

|(xϮ + x− ϱ)− ϭϱ| < ε,

which is what we wanted to prove.

ϵ. Let ε > Ϭ be given. We wish to find δ > Ϭ such that when
|x− Ϯ| < δ, |f(x)− ϱ| < ε. However, since f(x) = ϱ, a constant
funcƟon, the laƩer inequality is simply |ϱ− ϱ| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

ϭϭ. Let ε > Ϭ be given. We wish to find δ > Ϭ such that when
|x− Ϭ| < δ, |f(x)− Ϭ| < ε. In simpler terms, we want to show
that when |x| < δ, | sin x| < ε.
Set δ = ε. We start with assuming that |x| < δ. Using the hint,
we have that | sin x| < |x| < δ = ε. Hence if |x| < δ, we know
immediately that | sin x| < ε.

SecƟon ϭ.ϯ

ϭ. Answers will vary.

ϯ. Answers will vary.

ϱ. As x is near ϭ, both f and g are near Ϭ, but f is approximately twice
the size of g. (I.e., f(x) ≈ Ϯg(x).)

ϳ. ϲ



ϵ. Limit does not exist.

ϭϭ. Not possible to know.

ϭϯ. −ϰϱ

ϭϱ. −ϭ

ϭϳ. π

ϭϵ. −Ϭ.ϬϬϬϬϬϬϬϭϱ ≈ Ϭ

Ϯϭ. Limit does not exist

Ϯϯ. Ϯ

Ϯϱ. πϮ+ϯπ+ϱ
ϱπϮ−Ϯπ−ϯ ≈ Ϭ.ϲϬϲϰ

Ϯϳ. −ϴ

Ϯϵ. ϭϬ

ϯϭ. −ϯ/Ϯ

ϯϯ. Ϭ

ϯϱ. ϭ

ϯϳ. ϯ

ϯϵ. ϭ

SecƟon ϭ.ϰ

ϭ. The funcƟon approaches different values from the leŌ and right;
the funcƟon grows without bound; the funcƟon oscillates.

ϯ. F

ϱ. (a) Ϯ

(b) Ϯ

(c) Ϯ

(d) ϭ

(e) As f is not defined for x < Ϭ, this limit is not defined.

(f) ϭ

ϳ. (a) Does not exist.

(b) Does not exist.

(c) Does not exist.

(d) Not defined.

(e) Ϭ

(f) Ϭ

ϵ. (a) Ϯ

(b) Ϯ

(c) Ϯ

(d) Ϯ

ϭϭ. (a) Ϯ

(b) Ϯ

(c) Ϯ

(d) Ϭ

(e) Ϯ

(f) Ϯ

(g) Ϯ

(h) Not defined

ϭϯ. (a) Ϯ

(b) −ϰ

(c) Does not exist.

(d) Ϯ

ϭϱ. (a) Ϭ
(b) Ϭ
(c) Ϭ
(d) Ϭ
(e) Ϯ
(f) Ϯ
(g) Ϯ
(h) Ϯ

ϭϳ. (a) ϭ− cosϮ a = sinϮ a
(b) sinϮ a
(c) sinϮ a
(d) sinϮ a

ϭϵ. (a) ϰ
(b) ϰ
(c) ϰ
(d) ϯ

Ϯϭ. (a) −ϭ
(b) ϭ
(c) Does not exist
(d) Ϭ

Ϯϯ. Ϯ/ϯ

Ϯϱ. −ϵ

SecƟon ϭ.ϱ

ϭ. Answers will vary.

ϯ. A root of a funcƟon f is a value c such that f(c) = Ϭ.

ϱ. F

ϳ. T

ϵ. F

ϭϭ. No; lim
x→ϭ

f(x) = Ϯ, while f(ϭ) = ϭ.

ϭϯ. No; f(ϭ) does not exist.

ϭϱ. Yes

ϭϳ. (a) No; lim
x→−Ϯ

f(x) ̸= f(−Ϯ)

(b) Yes
(c) No; f(Ϯ) is not defined.

ϭϵ. (a) Yes
(b) No; the leŌ and right hand limits at ϭ are not equal.

Ϯϭ. (a) Yes
(b) No. limx→ϴ f(x) = ϭϲ/ϱ ̸= f(ϴ) = ϱ.

Ϯϯ. (−∞,−Ϯ] ∪ [Ϯ,∞)

Ϯϱ. (−∞,−
√
ϲ] ∪ [

√
ϲ,∞)

Ϯϳ. (−∞,∞)

Ϯϵ. (Ϭ,∞)

ϯϭ. (−∞, Ϭ]

ϯϯ. Yes, by the Intermediate Value Theorem.

ϯϱ. We cannot say; the Intermediate Value Theorem only applies to
funcƟon values between−ϭϬ and ϭϬ; as ϭϭ is outside this range,
we do not know.

ϯϳ. Approximate root is x = ϭ.Ϯϯ. The intervals used are:
[ϭ, ϭ.ϱ] [ϭ, ϭ.Ϯϱ] [ϭ.ϭϮϱ, ϭ.Ϯϱ]
[ϭ.ϭϴϳϱ, ϭ.Ϯϱ] [ϭ.Ϯϭϴϳϱ, ϭ.Ϯϱ] [ϭ.Ϯϯϰϯϳϱ, ϭ.Ϯϱ]
[ϭ.Ϯϯϰϯϳϱ, ϭ.ϮϰϮϭϴϳϱ] [ϭ.Ϯϯϰϯϳϱ, ϭ.ϮϯϴϮϴϭϯ]

A.Ϯ



ϯϵ. Approximate root is x = Ϭ.ϲϵ. The intervals used are:
[Ϭ.ϲϱ, Ϭ.ϳ] [Ϭ.ϲϳϱ, Ϭ.ϳ] [Ϭ.ϲϴϳϱ, Ϭ.ϳ]
[Ϭ.ϲϴϳϱ, Ϭ.ϲϵϯϳϱ] [Ϭ.ϲϵϬϲϮϱ, Ϭ.ϲϵϯϳϱ]

ϰϭ. (a) ϮϬ

(b) Ϯϱ

(c) Limit does not exist

(d) Ϯϱ

ϰϯ. Answers will vary.

SecƟon ϭ.ϲ

ϭ. F

ϯ. F

ϱ. T

ϳ. Answers will vary.

ϵ. (a) ∞
(b) ∞

ϭϭ. (a) ϭ

(b) Ϭ

(c) ϭ/Ϯ

(d) ϭ/Ϯ

ϭϯ. (a) Limit does not exist

(b) Limit does not exist

ϭϱ. Tables will vary.

(a)

x f(x)
Ϯ.ϵ −ϭϱ.ϭϮϮϰ
Ϯ.ϵϵ −ϭϱϵ.ϭϮ
Ϯ.ϵϵϵ −ϭϱϵϵ.ϭϮ

It seems limx→ϯ− f(x) = −∞.

(b)

x f(x)
ϯ.ϭ ϭϲ.ϴϴϮϰ
ϯ.Ϭϭ ϭϲϬ.ϴϴ
ϯ.ϬϬϭ ϭϲϬϬ.ϴϴ

It seems limx→ϯ+ f(x) = ∞.

(c) It seems limx→ϯ f(x) does not exist.

ϭϳ. Tables will vary.

(a)
x f(x)
Ϯ.ϵ ϭϯϮ.ϴϱϳ
Ϯ.ϵϵ ϭϮϭϮϰ.ϰ

It seems limx→ϯ− f(x) = ∞.

(b)
x f(x)
ϯ.ϭ ϭϬϴ.Ϭϯϵ
ϯ.Ϭϭ ϭϭϴϳϲ.ϰ

It seems limx→ϯ+ f(x) = ∞.

(c) It seems limx→ϯ f(x) = ∞.

ϭϵ. Horizontal asymptote at y = Ϯ; verƟcal asymptotes at x = −ϱ, ϰ.

Ϯϭ. Horizontal asymptote at y = Ϭ; verƟcal asymptotes at x = −ϭ, Ϭ.

Ϯϯ. No horizontal or verƟcal asymptotes.

Ϯϱ. ∞
Ϯϳ. −∞
Ϯϵ. SoluƟon omiƩed.

ϯϭ. Yes. The only “quesƟonable” place is at x = ϯ, but the leŌ and
right limits agree.

Chapter Ϯ
SecƟon Ϯ.ϭ

ϭ. T

ϯ. Answers will vary.

ϱ. Answers will vary.

ϳ. f ′(x) = Ϯ

ϵ. g′(x) = Ϯx

ϭϭ. r ′(x) = −ϭ
xϮ

ϭϯ. (a) y = ϲ

(b) x = −Ϯ

ϭϱ. (a) y = −ϯx+ ϰ

(b) y = ϭ/ϯ(x− ϳ)− ϭϳ

ϭϳ. (a) y = −ϳ(x+ ϭ) + ϴ

(b) y = ϭ/ϳ(x+ ϭ) + ϴ

ϭϵ. (a) y = −ϭ(x− ϯ) + ϭ

(b) y = ϭ(x− ϯ) + ϭ

Ϯϭ. y = −Ϭ.Ϭϵϵ(x− ϵ) + ϭ

Ϯϯ. y = −Ϭ.Ϭϱx+ ϭ

Ϯϱ. (a) ApproximaƟons will vary; they should match (c) closely.

(b) f ′(x) = −ϭ/(x+ ϭ)Ϯ

(c) At (Ϭ, ϭ), slope is−ϭ. At (ϭ, Ϭ.ϱ), slope is−ϭ/ϰ.

Ϯϳ. ...

..

−6

.

−4

.

−2

.

2

.

−2

.

2

.

x

.

y

Ϯϵ. ..... −ϭ.

−Ϭ.5

.

Ϭ.5

.

ϭ

.

−Ϯπ

.

−π

.

π

.

Ϯπ

.

x

.

y

ϯϭ. Approximately Ϯϰ.

ϯϯ. (a) (−∞,∞)

(b) (−∞,−ϭ) ∪ (−ϭ, ϭ) ∪ (ϭ,∞)

(c) (−∞, ϱ]

(d) [−ϱ, ϱ]

SecƟon Ϯ.Ϯ

ϭ. Velocity

ϯ. Linear funcƟons.

ϱ. −ϭϳ

ϳ. f(ϭϬ.ϭ) is likely most accurate, as accuracy is lost the farther from
x = ϭϬ we go.

ϵ. ϲ

ϭϭ. Ō/sϮ

ϭϯ. (a) thousands of dollars per car

(b) It is likely that P(Ϭ) < Ϭ. That is, negaƟve profit for not
producing any cars.

ϭϱ. f(x) = g′(x)

A.ϯ



ϭϳ. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

ϭϵ. f ′(x) = ϭϬx

Ϯϭ. f ′(π) ≈ Ϭ.

SecƟon Ϯ.ϯ

ϭ. Power Rule.

ϯ. One answer is f(x) = ϭϬex.

ϱ. g(x) and h(x)

ϳ. One possible answer is f(x) = ϭϳx− ϮϬϱ.

ϵ. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

ϭϭ. f ′(x) = ϭϰx− ϱ

ϭϯ. m′(t) = ϰϱtϰ − ϯ
ϴ t

Ϯ + ϯ

ϭϱ. f ′(r) = ϲer

ϭϳ. f ′(x) = Ϯ
x − ϭ

ϭϵ. h′(t) = et − cos t+ sin t

Ϯϭ. f ′(t) = Ϭ

Ϯϯ. g′(x) = ϮϰxϮ − ϭϮϬx+ ϭϱϬ

Ϯϱ. f ′(x) = ϭϴx− ϭϮ

Ϯϳ. f ′(x) = ϲxϱ f ′′(x) = ϯϬxϰ f ′′′(x) = ϭϮϬxϯ f(ϰ)(x) = ϯϲϬxϮ

Ϯϵ. h′(t) = Ϯt− et h′′(t) = Ϯ− et h′′′(t) = −et h(ϰ)(t) = −et

ϯϭ. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(ϰ)(θ) = sin θ − cos θ

ϯϯ. Tangent line: y = Ϯ(x− ϭ)
Normal line: y = −ϭ/Ϯ(x− ϭ)

ϯϱ. Tangent line: y = x− ϭ
Normal line: y = −x+ ϭ

ϯϳ. Tangent line: y =
√

Ϯ
Ϯ (x− π

ϰ )−
√
Ϯ

Normal line: y = −Ϯ√
Ϯ
(x− π

ϰ )−
√
Ϯ

ϯϵ. The tangent line to f(x) = ex at x = Ϭ is y = x+ ϭ; thus
eϬ.ϭ ≈ y(Ϭ.ϭ) = ϭ.ϭ.

SecƟon Ϯ.ϰ

ϭ. F

ϯ. T

ϱ. F

ϳ. (a) f ′(x) = (xϮ + ϯx) + x(Ϯx+ ϯ)

(b) f ′(x) = ϯxϮ + ϲx

(c) They are equal.

ϵ. (a) h′(s) = Ϯ(s+ ϰ) + (Ϯs− ϭ)(ϭ)

(b) h′(s) = ϰs+ ϳ

(c) They are equal.

ϭϭ. (a) f ′(x) = x(Ϯx)−(xϮ+ϯ)ϭ
xϮ

(b) f ′(x) = ϭ− ϯ
xϮ

(c) They are equal.

ϭϯ. (a) h′(s) = ϰsϯ(Ϭ)−ϯ(ϭϮsϮ)
ϭϲsϲ

(b) h′(s) = −ϵ/ϰs−ϰ

(c) They are equal.

ϭϱ. f ′(x) = sin x+ x cos x

ϭϳ. g′(x) = −ϭϮ
(x−ϱ)Ϯ

ϭϵ. h′(x) = − cscϮ x− ex

Ϯϭ. (a) f ′(x) = (x+Ϯ)(ϰxϯ+ϲxϮ)−(xϰ+Ϯxϯ)(ϭ)
(x+Ϯ)Ϯ

(b) f(x) = xϯ when x ̸= −Ϯ, so f ′(x) = ϯxϮ.

(c) They are equal.

Ϯϯ. f ′(t) = ϱtϰ(sec t+ et) + tϱ(sec t tan t+ et)

Ϯϱ. g′(x) = Ϭ

Ϯϳ. f ′(x) = (tϮ cos t+Ϯ)(Ϯt sin t+tϮ cos t)−(tϮ sin t+ϯ)(Ϯt cos t−tϮ sin t)
(tϮ cos t+Ϯ)Ϯ

Ϯϵ. g′(x) = Ϯ sin x sec x+ Ϯx cos x sec x+ Ϯx sin x sec x tan x =
Ϯ tan x+ Ϯx+ Ϯx tanϮ x = Ϯ tan x+ Ϯx secϮ x

ϯϭ. Tangent line: y = −(x− ϯπ
Ϯ )− ϯπ

Ϯ = −x

Normal line: y = (x− ϯπ
Ϯ )− ϯπ

Ϯ = x− ϯπ

ϯϯ. Tangent line: y = −ϵx− ϱ
Normal line: y = ϭ/ϵx− ϱ

ϯϱ. x = Ϭ

ϯϳ. x = −Ϯ, Ϭ

ϯϵ. f(ϰ)(x) = −ϰ cos x+ x sin x

ϰϭ. f(ϴ) = Ϭ

ϰϯ. .....

−Ϯ

.

−ϭ

.

ϭ

.

Ϯ

.

−ϯ

.

ϯ

.

−Ϯ

.

Ϯ

.

−ϰ

.

ϰ

. −6.

6

.

x

.

y

ϰϱ. .....−5. 5.

5

.

10

.
x

.

y

SecƟon Ϯ.ϱ

ϭ. T

ϯ. F

ϱ. T

ϳ. f ′(x) = ϭϬ(ϰxϯ − x)ϵ · (ϭϮxϮ − ϭ) = (ϭϮϬxϮ − ϭϬ)(ϰxϯ − x)ϵ

ϵ. g′(θ) = ϯ(sin θ + cos θ)Ϯ(cos θ − sin θ)

ϭϭ. f ′(x) = ϰ
(

x+ ϭ
x
)ϯ(ϭ− ϭ

xϮ
)

ϭϯ. g′(x) = ϱ secϮ(ϱx)

ϭϱ. p′(t) = −ϯ cosϮ(tϮ + ϯt+ ϭ) sin(tϮ + ϯt+ ϭ)(Ϯt+ ϯ)

ϭϳ. f ′(x) = Ϯ/x

ϭϵ. g′(r) = ln ϰ · ϰr

Ϯϭ. g′(t) = Ϭ

Ϯϯ. f ′(x) =
(ϯt+Ϯ)

(

(ln Ϯ)Ϯt
)

−(Ϯt+ϯ)
(

(ln ϯ)ϯt
)

(ϯt+Ϯ)Ϯ

A.ϰ



Ϯϱ. f ′(x) = Ϯx
Ϯ
(ln ϯ·ϯxxϮϮx+ϭ)−(ϯx

Ϯ
+x)(ln Ϯ·Ϯx

Ϯ
Ϯx)

ϮϮxϮ

Ϯϳ. g′(t) = ϱ cos(tϮ+ϯt) cos(ϱt−ϳ)−(Ϯt+ϯ) sin(tϮ+ϯt) sin(ϱt−ϳ)

Ϯϵ. Tangent line: y = Ϭ
Normal line: x = Ϭ

ϯϭ. Tangent line: y = −ϯ(θ − π/Ϯ) + ϭ
Normal line: y = ϭ/ϯ(θ − π/Ϯ) + ϭ

ϯϯ. In both cases the derivaƟve is the same: ϭ/x.

ϯϱ. (a) ◦ F/mph

(b) The sign would be negaƟve; when the wind is blowing at
ϭϬ mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

SecƟon Ϯ.ϲ

ϭ. Answers will vary.

ϯ. T

ϱ. f ′(x) = ϭ
Ϯ x

−ϭ/Ϯ − ϭ
Ϯ x

−ϯ/Ϯ = ϭ
Ϯ
√

x −
ϭ

Ϯ
√

xϯ

ϳ. f ′(t) = −t√
ϭ−tϮ

ϵ. h′(x) = ϭ.ϱxϬ.ϱ = ϭ.ϱ
√
x

ϭϭ. g′(x) =
√

x(ϭ)−(x+ϳ)(ϭ/Ϯx−ϭ/Ϯ)
x = ϭ

Ϯ
√

x −
ϳ

Ϯ
√

xϯ

ϭϯ. dy
dx = −ϰxϯ

Ϯy+ϭ

ϭϱ. dy
dx = sin(x) sec(y)

ϭϳ. dy
dx = y

x

ϭϵ. − Ϯ sin(y) cos(y)
x

Ϯϭ. ϭ
Ϯy+Ϯ

Ϯϯ. − cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y)

Ϯϱ. − Ϯx+y
Ϯy+x

Ϯϳ. (a) y = Ϭ

(b) y = −ϭ.ϴϱϵ(x− Ϭ.ϭ) + Ϭ.Ϯϴϭ

Ϯϵ. (a) y = ϰ

(b) y = Ϭ.ϵϯ(x− Ϯ) + ϰ√ϭϬϴ

ϯϭ. (a) y = − ϭ√
ϯ
(x− ϳ

Ϯ ) +
ϲ+ϯ

√
ϯ

Ϯ

(b) y =
√
ϯ(x− ϰ+ϯ

√
ϯ

Ϯ ) + ϯ
Ϯ

ϯϯ. dϮy
dxϮ = ϯ

ϱ
yϯ/ϱ

xϴ/ϱ
+ ϯ

ϱ
ϭ

yxϲ/ϱ

ϯϱ. dϮy
dxϮ = Ϭ

ϯϳ. y′ = (Ϯx)x
Ϯ(
Ϯx ln(Ϯx) + x

)

Tangent line: y = (Ϯ+ ϰ ln Ϯ)(x− ϭ) + Ϯ

ϯϵ. y′ = xsin(x)+Ϯ( cos x ln x+ sin x+Ϯ
x
)

Tangent line: y = (ϯπϮ/ϰ)(x− π/Ϯ) + (π/Ϯ)ϯ

ϰϭ. y′ = (x+ϭ)(x+Ϯ)
(x+ϯ)(x+ϰ)

( ϭ
x+ϭ + ϭ

x+Ϯ − ϭ
x+ϯ − ϭ

x+ϰ

)

Tangent line: y = ϭϭ/ϳϮx+ ϭ/ϲ

SecƟon Ϯ.ϳ

ϭ. F

ϯ. The point (ϭϬ, ϭ) lies on the graph of y = f−ϭ(x) (assuming f is
inverƟble).

ϱ. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

ϳ. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

ϵ.
(

f−ϭ)′ (ϮϬ) = ϭ
f ′(Ϯ) = ϭ/ϱ

ϭϭ.
(

f−ϭ)′ (
√
ϯ/Ϯ) = ϭ

f ′(π/ϲ) = ϭ

ϭϯ.
(

f−ϭ)′ (ϭ/Ϯ) = ϭ
f ′(ϭ) = −Ϯ

ϭϱ. h′(t) = Ϯ√
ϭ−ϰtϮ

ϭϳ. g′(x) = Ϯ
ϭ+ϰxϮ

ϭϵ. g′(t) = cos−ϭ(t) cos(t)− sin(t)√
ϭ−tϮ

Ϯϭ. h′(x) = sin−ϭ(x)+cos−ϭ(x)√
ϭ−xϮ cos−ϭ(x)Ϯ

Ϯϯ. f ′(x) = − ϭ√
ϭ−xϮ

Ϯϱ. (a) f(x) = x, so f ′(x) = ϭ
(b) f ′(x) = cos(sin−ϭ x) ϭ√

ϭ−xϮ
= ϭ.

Ϯϳ. (a) f(x) =
√
ϭ− xϮ, so f ′(x) = −x√

ϭ−xϮ

(b) f ′(x) = cos(cos−ϭ x)( ϭ√
ϭ−xϮ

= −x√
ϭ−xϮ

Ϯϵ. y = −ϰ(x−
√
ϯ/ϰ) + π/ϲ

ϯϭ. y = −ϰ/ϱ(x− ϭ) + Ϯ

Chapter ϯ
SecƟon ϯ.ϭ

ϭ. Answers will vary.

ϯ. Answers will vary.

ϱ. F

ϳ. A: abs. min B: none C: abs. max D: none E: none

ϵ. f ′(Ϭ) = Ϭ f ′(Ϯ) = Ϭ

ϭϭ. f ′(Ϭ) = Ϭ f ′(ϯ.Ϯ) = Ϭ f ′(ϰ) is undefined

ϭϯ. f ′(Ϭ) is not defined

ϭϱ. min: (−Ϭ.ϱ, ϯ.ϳϱ)
max: (Ϯ, ϭϬ)

ϭϳ. min: (π/ϰ, ϯ
√
Ϯ/Ϯ)

max: (π/Ϯ, ϯ)

ϭϵ. min: (
√
ϯ, Ϯ

√
ϯ)

max: (ϱ, Ϯϴ/ϱ)

Ϯϭ. min: (π,−eπ)

max: (π/ϰ,
√

Ϯeπ/ϰ
Ϯ )

Ϯϯ. min: (ϭ, Ϭ)
max: (e, ϭ/e)

Ϯϱ. dy
dx =

y(y−Ϯx)
x(x−Ϯy)

Ϯϳ. ϯxϮ + ϭ

SecƟon ϯ.Ϯ

ϭ. Answers will vary.

ϯ. Any c in [−ϭ, ϭ] is valid.

ϱ. c = −ϭ/Ϯ

ϳ. Rolle’s Thm. does not apply.

ϵ. Rolle’s Thm. does not apply.

ϭϭ. c = Ϭ

A.ϱ



ϭϯ. c = ϯ/
√
Ϯ

ϭϱ. The Mean Value Theorem does not apply.

ϭϳ. c = ± sec−ϭ(Ϯ/
√
π)

ϭϵ. c = ϱ±ϳ
√

ϳ
ϲ

Ϯϭ. Max value of ϭϵ at x = −Ϯ and x = ϱ; min value of ϲ.ϳϱ at
x = ϭ.ϱ.

Ϯϯ. They are the odd, integer valued mulƟples of π/Ϯ (such as
Ϭ,±π/Ϯ,±ϯπ/Ϯ,±ϱπ/Ϯ, etc.)

SecƟon ϯ.ϯ

ϭ. Answers will vary.

ϯ. Answers will vary.

ϱ. Increasing

ϳ. Graph and verify.

ϵ. Graph and verify.

ϭϭ. Graph and verify.

ϭϯ. Graph and verify.

ϭϱ. domain=(−∞,∞)

c.p. at c = −Ϯ, Ϭ;
increasing on (−∞,−Ϯ) ∪ (Ϭ,∞);
decreasing on (−Ϯ, Ϭ);
rel. min at x = Ϭ;
rel. max at x = −Ϯ.

ϭϳ. domain=(−∞,∞)

c.p. at c = ϭ;
increasing on (−∞,∞);

ϭϵ. domain=(−∞,−ϭ) ∪ (−ϭ, ϭ) ∪ (ϭ,∞)

c.p. at c = Ϭ;
decreasing on (−∞,−ϭ) ∪ (−ϭ, Ϭ);
increasing on (Ϭ, ϭ) ∪ (ϭ,∞);
rel. min at x = Ϭ;

Ϯϭ. domain=(−∞, Ϭ) ∪ (Ϭ,∞);
c.p. at c = Ϯ, ϲ;
decreasing on (−∞, Ϭ) ∪ (Ϭ, Ϯ) ∪ (ϲ,∞);
increasing on (Ϯ, ϲ);
rel. min at x = Ϯ; rel. max at x = ϲ.

Ϯϯ. domain = (−∞,∞);
c.p. at c = −ϭ, ϭ;
decreasing on (−ϭ, ϭ);
increasing on (−∞,−ϭ) ∪ (ϭ,∞);
rel. min at x = ϭ;
rel. max at x = −ϭ

Ϯϱ. c = ± cos−ϭ(Ϯ/π)

SecƟon ϯ.ϰ

ϭ. Answers will vary.

ϯ. Yes; Answers will vary.

ϱ. Graph and verify.

ϳ. Graph and verify.

ϵ. Graph and verify.

ϭϭ. Graph and verify.

ϭϯ. Graph and verify.

ϭϱ. Graph and verify.

ϭϳ. Possible points of inflecƟon: none; concave down on (−∞,∞)

ϭϵ. Possible points of inflecƟon: x = ϭ/Ϯ; concave down on
(−∞, ϭ/Ϯ); concave up on (ϭ/Ϯ,∞)

Ϯϭ. Possible points of inflecƟon: x = (ϭ/ϯ)(Ϯ±
√
ϳ); concave up on

((ϭ/ϯ)(Ϯ−
√
ϳ), (ϭ/ϯ)(Ϯ+

√
ϳ)); concave down on

(−∞, (ϭ/ϯ)(Ϯ−
√
ϳ)) ∪ ((ϭ/ϯ)(Ϯ+

√
ϳ),∞)

Ϯϯ. Possible points of inflecƟon: x = ±ϭ/
√
ϯ; concave down on

(−ϭ/
√
ϯ, ϭ/

√
ϯ); concave up on (−∞,−ϭ/

√
ϯ) ∪ (ϭ/

√
ϯ,∞)

Ϯϱ. Possible points of inflecƟon: x = −π/ϰ, ϯπ/ϰ; concave down on
(−π/ϰ, ϯπ/ϰ) concave up on (−π,−π/ϰ) ∪ (ϯπ/ϰ, π)

Ϯϳ. Possible points of inflecƟon: x = ϭ/eϯ/Ϯ; concave down on
(Ϭ, ϭ/eϯ/Ϯ) concave up on (ϭ/eϯ/Ϯ,∞)

Ϯϵ. min: x = ϭ

ϯϭ. max: x = −ϭ/
√
ϯ min: x = ϭ/

√
ϯ

ϯϯ. min: x = ϭ

ϯϱ. min: x = ϭ

ϯϳ. criƟcal values: x = −ϭ, ϭ; no max/min

ϯϵ. max: x = −Ϯ; min: x = Ϭ

ϰϭ. max: x = Ϭ

ϰϯ. f ′ has no maximal or minimal value

ϰϱ. f ′ has a minimal value at x = ϭ/Ϯ

ϰϳ. f ′ has a relaƟve max at: x = (ϭ/ϯ)(Ϯ+
√
ϳ) relaƟve min at:

x = (ϭ/ϯ)(Ϯ−
√
ϳ)

ϰϵ. f ′ has a relaƟve max at x = −ϭ/
√
ϯ; relaƟve min at x = ϭ/

√
ϯ

ϱϭ. f ′ has a relaƟve min at x = ϯπ/ϰ; relaƟve max at x = −π/ϰ

ϱϯ. f ′ has a relaƟve min at x = ϭ/
√
eϯ = e−ϯ/Ϯ

SecƟon ϯ.ϱ

ϭ. Answers will vary.

ϯ. T

ϱ. T

ϳ. A good sketch will include the x and y intercepts..

ϵ. Use technology to verify sketch.

ϭϭ. Use technology to verify sketch.

ϭϯ. Use technology to verify sketch.

ϭϱ. Use technology to verify sketch.

ϭϳ. Use technology to verify sketch.

ϭϵ. Use technology to verify sketch.

Ϯϭ. Use technology to verify sketch.

Ϯϯ. Use technology to verify sketch.

Ϯϱ. Use technology to verify sketch.

Ϯϳ. CriƟcal points: x = nπ/Ϯ−b
a , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

Ϯϵ. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
dϮy
dxϮ = −ϭ/y− xϮ/yϯ, which is posiƟve when y < Ϭ and is
negaƟve when y > Ϭ. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter ϰ
SecƟon ϰ.ϭ

A.ϲ



ϭ. F

ϯ. xϬ = ϭ.ϱ, xϭ = ϭ.ϱϳϬϵϭϰϴ, xϮ = ϭ.ϱϳϬϳϵϲϯ, xϯ = ϭ.ϱϳϬϳϵϲϯ,
xϰ = ϭ.ϱϳϬϳϵϲϯ, xϱ = ϭ.ϱϳϬϳϵϲϯ

ϱ. xϬ = Ϭ, xϭ = Ϯ, xϮ = ϭ.Ϯ, xϯ = ϭ.Ϭϭϭϳϲϰϳ, xϰ = ϭ.ϬϬϬϬϰϱϴ,
xϱ = ϭ

ϳ. xϬ = Ϯ, xϭ = Ϭ.ϲϭϯϳϬϱϲϯϴϵ, xϮ = Ϭ.ϵϭϯϯϰϭϮϬϳϮ,
xϯ = Ϭ.ϵϵϲϭϯϭϳϬϯϰ, xϰ = Ϭ.ϵϵϵϵϵϮϱϬϴϱ, xϱ = ϭ

ϵ. roots are: x = −ϯ.ϳϭϰ, x = −Ϭ.ϴϱϳ, x = ϭ and x = ϭ.ϱϳϭ

ϭϭ. roots are: x = −Ϯ.ϭϲϱ, x = Ϭ, x = Ϭ.ϱϮϱ and x = ϭ.ϴϭϯ

ϭϯ. x = −Ϭ.ϲϯϳ, x = ϭ.ϰϭϬ

ϭϱ. x = ±ϰ.ϰϵϯ, x = Ϭ

ϭϳ. The approximaƟons alternate between x = ϭ, x = Ϯ and x = ϯ.

SecƟon ϰ.Ϯ

ϭ. T

ϯ. (a) ϱ/(Ϯπ) ≈ Ϭ.ϳϵϲcm/s

(b) ϭ/(ϰπ) ≈ Ϭ.Ϭϳϵϲ cm/s

(c) ϭ/(ϰϬπ) ≈ Ϭ.ϬϬϳϵϲ cm/s

ϱ. ϲϯ.ϭϰmph

ϳ. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) Ϭ.Ϭϱϳϯ rad/s

(b) Ϭ.ϬϳϮϱ rad/s

(c) In the limit, rate goes to Ϭ.Ϭϳϯϯ rad/s

ϵ. (a) Ϭ.Ϭϰ Ō/s

(b) Ϭ.ϰϱϴ Ō/s

(c) ϯ.ϯϱ Ō/s

(d) Not defined; as the distance approaches Ϯϰ, the rates
approaches∞.

ϭϭ. (a) ϱϬ.ϵϮ Ō/min

(b) Ϭ.ϱϬϵ Ō/min

(c) Ϭ.ϭϰϭ Ō/min
As the tank holds about ϱϮϯ.ϲŌϯ, it will take about ϱϮ.ϯϲ minutes.

ϭϯ. (a) The rope is ϴϬŌ long.

(b) ϭ.ϳϭ Ō/sec

(c) ϭ.ϴϳ Ō/sec

(d) About ϯϰ feet.

ϭϱ. The cone is rising at a rate of Ϭ.ϬϬϯŌ/s.

SecƟon ϰ.ϯ

ϭ. T

ϯ. ϮϱϬϬ; the two numbers are each ϱϬ.

ϱ. There is no maximum sum; the fundamental equaƟon has only ϭ
criƟcal value that corresponds to a minimum.

ϳ. Area = ϭ/ϰ, with sides of length ϭ/
√
Ϯ.

ϵ. The radius should be about ϯ.ϴϰcm and the height should be
Ϯr = ϳ.ϲϳcm. No, this is not the size of the standard can.

ϭϭ. The height and width should be ϭϴ and the length should be ϯϲ,
giving a volume of ϭϭ, ϲϲϰinϯ.

ϭϯ. ϱ− ϭϬ/
√
ϯϵ ≈ ϯ.ϰ miles should be run underground, giving a

minimum cost of $ϯϳϰ,ϴϵϵ.ϵϲ.

ϭϱ. The dog should run about ϭϵ feet along the shore before starƟng
to swim.

ϭϳ. The largest area is Ϯ formed by a square with sides of length
√
Ϯ.

SecƟon ϰ.ϰ

ϭ. T

ϯ. F

ϱ. Answers will vary.

ϳ. Use y = xϮ; dy = Ϯx · dx with x = ϲ and dx = −Ϭ.Ϭϳ. Thus
dy = −Ϭ.ϴϰ; knowing ϲϮ = ϯϲ, we have ϱ.ϵϯϮ ≈ ϯϱ.ϭϲ.

ϵ. Use y = xϯ; dy = ϯxϮ · dx with x = ϳ and dx = −Ϭ.Ϯ. Thus
dy = −Ϯϵ.ϰ; knowing ϳϯ = ϯϰϯ, we have ϲ.ϴϯ ≈ ϯϭϯ.ϲ.

ϭϭ. Use y =
√
x; dy = ϭ/(Ϯ

√
x) · dx with x = Ϯϱ and dx = −ϭ. Thus

dy = −Ϭ.ϭ; knowing
√
Ϯϱ = ϱ, we have

√
Ϯϰ ≈ ϰ.ϵ.

ϭϯ. Use y = ϯ√x; dy = ϭ/(ϯ ϯ√xϮ) · dx with x = ϴ and dx = Ϭ.ϱ. Thus
dy = ϭ/Ϯϰ ≈ ϭ/Ϯϱ = Ϭ.Ϭϰ; knowing ϯ√ϴ = Ϯ, we have
ϯ√ϴ.ϱ ≈ Ϯ.Ϭϰ.

ϭϱ. Use y = cos x; dy = − sin x · dx with x = π/Ϯ ≈ ϭ.ϱϳ and
dx ≈ −Ϭ.Ϭϳ. Thus dy = Ϭ.Ϭϳ; knowing cos π/Ϯ = Ϭ, we have
cos ϭ.ϱ ≈ Ϭ.Ϭϳ.

ϭϳ. dy = (Ϯx+ ϯ)dx

ϭϵ. dy = −Ϯ
ϰxϯ dx

Ϯϭ. dy =
(

Ϯxeϯx + ϯxϮeϯx
)

dx

Ϯϯ. dy = Ϯ(tan x+ϭ)−Ϯx secϮ x
(tan x+ϭ)Ϯ dx

Ϯϱ. dy = (ex sin x+ ex cos x)dx

Ϯϳ. dy = ϭ
(x+Ϯ)Ϯ dx

Ϯϵ. dy = (ln x)dx

ϯϭ. (a) ±ϭϮ.ϴ feet
(b) ±ϯϮ feet

ϯϯ. ±ϰϴinϮ, or ϭ/ϯŌϮ

ϯϱ. (a) Ϯϵϴ.ϴ feet
(b) ±ϭϳ.ϯ Ō
(c) ±ϱ.ϴ%

ϯϳ. The isosceles triangle setup works the best with the smallest
percent error.

Chapter ϱ
SecƟon ϱ.ϭ

ϭ. Answers will vary.

ϯ. Answers will vary.

ϱ. Answers will vary.

ϳ. velocity

ϵ. ϭ/ϵxϵ + C

ϭϭ. t+ C

ϭϯ. −ϭ/(ϯt) + C

ϭϱ. Ϯ
√
x+ C

ϭϳ. − cos θ + C

ϭϵ. ϱeθ + C

Ϯϭ. ϱt
Ϯ ln ϱ + C

Ϯϯ. tϲ/ϲ+ tϰ/ϰ− ϯtϮ + C

Ϯϱ. eπx+ C

Ϯϳ. (a) x > Ϭ

A.ϳ



(b) ϭ/x

(c) x < Ϭ

(d) ϭ/x

(e) ln |x|+ C. ExplanaƟons will vary.

Ϯϵ. ϱex + ϱ

ϯϭ. tan x+ ϰ

ϯϯ. ϱ/ϮxϮ + ϳx+ ϯ

ϯϱ. ϱex − Ϯx

ϯϳ. Ϯxϰ lnϮ(Ϯ)+Ϯx+x ln Ϯ)(ln ϯϮ−ϭ)+lnϮ(Ϯ) cos(x)−ϭ−lnϮ(Ϯ)
lnϮ(Ϯ)

ϯϵ. No answer provided.

SecƟon ϱ.Ϯ

ϭ. Answers will vary.

ϯ. Ϭ

ϱ. (a) ϯ

(b) ϰ

(c) ϯ

(d) Ϭ

(e) −ϰ

(f) ϵ

ϳ. (a) ϰ

(b) Ϯ

(c) ϰ

(d) Ϯ

(e) ϭ

(f) Ϯ

ϵ. (a) π

(b) π

(c) Ϯπ

(d) ϭϬπ

ϭϭ. (a) ϰ/π

(b) −ϰ/π

(c) Ϭ

(d) Ϯ/π

ϭϯ. (a) ϰϬ/ϯ

(b) Ϯϲ/ϯ

(c) ϴ/ϯ

(d) ϯϴ/ϯ

ϭϱ. (a) ϯŌ/s

(b) ϵ.ϱŌ

(c) ϵ.ϱŌ

ϭϳ. (a) ϵϲŌ/s

(b) ϲ seconds

(c) ϲ seconds

(d) Never; the maximum height is ϮϬϴŌ.

ϭϵ. ϱ

Ϯϭ. Answers can vary; one soluƟon is a = −Ϯ, b = ϳ

Ϯϯ. −ϳ

Ϯϱ. Answers can vary; one soluƟon is a = −ϭϭ, b = ϭϴ

Ϯϳ. − cos x− sin x+ tan x+ C

Ϯϵ. ln |x|+ csc x+ C

SecƟon ϱ.ϯ

ϭ. limits

ϯ. Rectangles.

ϱ. ϮϮ + ϯϮ + ϰϮ = Ϯϵ

ϳ. Ϭ− ϭ+ Ϭ+ ϭ+ Ϭ = Ϭ

ϵ. −ϭ+ Ϯ− ϯ+ ϰ− ϱ+ ϲ = ϯ

ϭϭ. ϭ+ ϭ+ ϭ+ ϭ+ ϭ+ ϭ = ϲ

ϭϯ. Answers may vary;
∑ϴ

i=Ϭ(i
Ϯ − ϭ)

ϭϱ. Answers may vary;
∑ϰ

i=Ϭ(−ϭ)iei

ϭϳ. ϭϬϰϱ

ϭϵ. −ϴϱϮϱ

Ϯϭ. ϱϬϱϬ

Ϯϯ. ϭϱϱ

Ϯϱ. Ϯϰ

Ϯϳ. ϭϵ

Ϯϵ. π/ϯ+ π/(Ϯ
√
ϯ) ≈ ϭ.ϵϱϰ

ϯϭ. Ϭ.ϯϴϴϱϴϰ

ϯϯ. (a) Exact expressions will vary; (ϭ+n)Ϯ

ϰnϮ .

(b) ϭϮϭ/ϰϬϬ, ϭϬϮϬϭ/ϰϬϬϬϬ, ϭϬϬϮϬϬϭ/ϰϬϬϬϬϬϬ

(c) ϭ/ϰ

ϯϱ. (a) ϴ.

(b) ϴ, ϴ, ϴ

(c) ϴ

ϯϳ. (a) Exact expressions will vary; ϭϬϬ− ϮϬϬ/n.
(b) ϴϬ, ϵϴ, ϰϵϵ/ϱ

(c) ϭϬϬ

ϯϵ. F(x) = ϱ tan x+ ϰ

ϰϭ. G(t) = ϰ/ϲtϲ − ϱ/ϰtϰ + ϴt+ ϵ

ϰϯ. G(t) = sin t− cos t− ϳϴ

SecƟon ϱ.ϰ

ϭ. Answers will vary.

ϯ. T

ϱ. ϮϬ

ϳ. Ϭ

ϵ. ϭ

ϭϭ. (ϱ− ϭ/ϱ)/ ln ϱ

ϭϯ. −ϰ

ϭϱ. ϭϲ/ϯ

ϭϳ. ϰϱ/ϰ

ϭϵ. ϭ/Ϯ

Ϯϭ. ϭ/Ϯ

Ϯϯ. ϭ/ϰ

Ϯϱ. ϴ

Ϯϳ. Ϭ

Ϯϵ. ExplanaƟons will vary. A sketch will help.

ϯϭ. c = ±Ϯ/
√
ϯ

A.ϴ



ϯϯ. c = ϲϰ/ϵ ≈ ϳ.ϭ

ϯϱ. Ϯ/pi

ϯϳ. ϭϲ/ϯ

ϯϵ. ϭ/(e− ϭ)

ϰϭ. ϰϬϬŌ

ϰϯ. −ϭŌ

ϰϱ. −ϲϰŌ/s

ϰϳ. ϮŌ/s

ϰϵ. Ϯϳ/Ϯ

ϱϭ. ϵ/Ϯ

ϱϯ. F′(x) = (ϯxϮ + ϭ) ϭ
xϯ+x

ϱϱ. F′(x) = Ϯx(xϮ + Ϯ)− (x+ Ϯ)

SecƟon ϱ.ϱ

ϭ. F

ϯ. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

ϱ. (a) ϮϱϬ

(b) ϮϱϬ

(c) ϮϱϬ

ϳ. (a) Ϯ+
√
Ϯ+

√
ϯ ≈ ϱ.ϭϱ

(b) Ϯ/ϯ(ϯ+
√
Ϯ+ Ϯ

√
ϯ) ≈ ϱ.Ϯϱ

(c) ϭϲ/ϯ ≈ ϱ.ϯϯ

ϵ. (a) Ϭ.ϮϮϬϳ

(b) Ϭ.ϮϬϬϱ

(c) ϭ/ϱ

ϭϭ. (a) ϵ/Ϯ(ϭ+
√
ϯ) ≈ ϭϮ.Ϯϵϰ

(b) ϯ+ ϲ
√
ϯ ≈ ϭϯ.ϯϵϮ

(c) ϵπ/Ϯ ≈ ϭϰ.ϭϯϳ

ϭϯ. Trapezoidal Rule: ϯ.ϬϮϰϭ
Simpson’s Rule: Ϯ.ϵϯϭϱ

ϭϱ. Trapezoidal Rule: ϯ.Ϭϲϵϱ
Simpson’s Rule: ϯ.ϭϰϮϵϱ

ϭϳ. Trapezoidal Rule: Ϯ.ϱϮϵϳϭ
Simpson’s Rule: Ϯ.ϱϰϰϳ

ϭϵ. Trapezoidal Rule: ϯ.ϱϰϳϮ
Simpson’s Rule: ϯ.ϲϭϯϯ

Ϯϭ. (a) n = ϭϱϬ (using max
(

f ′′(x)
)

= ϭ)

(b) n = ϭϴ (using max
(

f (ϰ)(x)
)

= ϳ)

Ϯϯ. (a) n = ϱϱϵϭ (using max
(

f ′′(x)
)

= ϯϬϬ)

(b) n = ϰϲ (using max
(

f (ϰ)(x)
)

= Ϯϰ)

Ϯϱ. (a) Area is Ϯϱ.Ϭϲϲϳ cmϮ

(b) Area is ϮϱϬ,ϲϲϳ ydϮ

Chapter ϲ
SecƟon ϲ.ϭ

ϭ. Chain Rule.

ϯ. ϭ
ϴ (x

ϯ − ϱ)ϴ + C

ϱ. ϭ
ϭϴ

(

xϮ + ϭ
)ϵ

+ C

ϳ. ϭ
Ϯ ln |Ϯx+ ϳ|+ C

ϵ. Ϯ
ϯ (x+ ϯ)ϯ/Ϯ − ϲ(x+ ϯ)ϭ/Ϯ + C = Ϯ

ϯ (x− ϲ)
√
x+ ϯ+ C

ϭϭ. Ϯe
√

x + C

ϭϯ. − ϭ
ϮxϮ − ϭ

x + C

ϭϱ. sinϯ(x)
ϯ + C

ϭϳ. − tan(ϰ− x) + C

ϭϵ. tanϯ(x)
ϯ + C

Ϯϭ. tan(x)− x+ C

Ϯϯ. The key is to mulƟply csc x by ϭ in the form
(csc x+ cot x)/(csc x+ cot x).

Ϯϱ. ex
ϯ

ϯ + C

Ϯϳ. x− e−x + C

Ϯϵ. Ϯϳx
ln Ϯϳ + C

ϯϭ. ϭ
Ϯ lnϮ(x) + C

ϯϯ. ϭ
ϲ lnϮ

(

xϯ
)

+ C

ϯϱ. xϮ
Ϯ + ϯx+ ln |x|+ C

ϯϳ. xϯ
ϯ − xϮ

Ϯ + x− Ϯ ln |x+ ϭ|+ C

ϯϵ. ϯ
Ϯ x

Ϯ − ϴx+ ϭϱ ln |x+ ϭ|+ C

ϰϭ.
√
ϳ tan−ϭ

(

x√
ϳ

)

+ C

ϰϯ. ϭϰ sin−ϭ
(

x√
ϱ

)

+ C

ϰϱ. ϱ
ϰ sec−ϭ(|x|/ϰ) + C

ϰϳ.
tan−ϭ

(
x−ϭ√

ϳ

)

√
ϳ

+ C

ϰϵ. ϯ sin−ϭ ( x−ϰ
ϱ

)

+ C

ϱϭ. − ϭ
ϯ(xϯ+ϯ)

+ C

ϱϯ. −
√
ϭ− xϮ + C

ϱϱ. − Ϯ
ϯ cos

ϯ
Ϯ (x) + C

ϱϳ. ϳ
ϯ ln |ϯx+ Ϯ|+ C

ϱϵ. ln
∣

∣xϮ + ϳx+ ϯ
∣

∣+ C

ϲϭ. − xϮ
Ϯ + Ϯ ln

∣

∣xϮ − ϳx+ ϭ
∣

∣+ ϳx+ C

ϲϯ. tan−ϭ(Ϯx) + C

ϲϱ. ϭ
ϯ sin−ϭ ( ϯx

ϰ

)

+ C

ϲϳ. ϭϵ
ϱ tan−ϭ ( x+ϲ

ϱ

)

− ln
∣

∣xϮ + ϭϮx+ ϲϭ
∣

∣+ C

ϲϵ. xϮ
Ϯ − ϵ

Ϯ ln
∣

∣xϮ + ϵ
∣

∣+ C

ϳϭ. − tan−ϭ(cos(x)) + C

ϳϯ. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

ϳϱ.
√
xϮ − ϲx+ ϴ+ C

ϳϳ. ϯϱϮ/ϭϱ

ϳϵ. ϭ/ϱ

ϴϭ. π/Ϯ

ϴϯ. π/ϲ

SecƟon ϲ.Ϯ

ϭ. T

A.ϵ



ϯ. Determining which funcƟons in the integrand to set equal to “u”
and which to set equal to “dv”.

ϱ. −e−x − xe−x + C

ϳ. −xϯ cos x+ ϯxϮ sin x+ ϲx cos x− ϲ sin x+ C

ϵ. xϯex − ϯxϮex + ϲxex − ϲex + C

ϭϭ. ϭ/Ϯex(sin x− cos x) + C

ϭϯ. ϭ/ϭϯeϮx(Ϯ sin(ϯx)− ϯ cos(ϯx)) + C

ϭϱ. −ϭ/Ϯ cosϮ x+ C

ϭϳ. x tan−ϭ(Ϯx)− ϭ
ϰ ln
∣

∣ϰxϮ + ϭ
∣

∣+ C

ϭϵ.
√
ϭ− xϮ + x sin−ϭ x+ C

Ϯϭ. − xϮ
ϰ + ϭ

Ϯ x
Ϯ ln |x|+ Ϯx− Ϯx ln |x|+ C

Ϯϯ. ϭ
Ϯ x

Ϯ ln
(

xϮ
)

− xϮ
Ϯ + C

Ϯϱ. Ϯx+ x (ln |x|)Ϯ − Ϯx ln |x|+ C

Ϯϳ. x tan(x) + ln | cos(x)|+ C

Ϯϵ. Ϯ
ϱ (x− Ϯ)ϱ/Ϯ + ϰ

ϯ (x− Ϯ)ϯ/Ϯ + C

ϯϭ. sec x+ C

ϯϯ. −x csc x− ln | csc x+ cot x|+ C

ϯϱ. Ϯ sin
(√

x
)

− Ϯ
√
x cos

(√
x
)

+ C

ϯϳ. Ϯ
√
xe

√
x − Ϯe

√
x + C

ϯϵ. π

ϰϭ. Ϭ

ϰϯ. ϭ/Ϯ

ϰϱ. ϯ
ϰeϮ − ϱ

ϰeϰ

ϰϳ. ϭ/ϱ
(

eπ + e−π
)

SecƟon ϲ.ϯ

ϭ. F

ϯ. F

ϱ. ϭ
ϰ sinϰ(x) + C

ϳ. ϭ
ϲ cosϲ x− ϭ

ϰ cosϰ x+ C

ϵ. − ϭ
ϵ sinϵ(x) + ϯ sinϳ(x)

ϳ − ϯ sinϱ(x)
ϱ +

sinϯ(x)
ϯ + C

ϭϭ. ϭ
Ϯ

(

− ϭ
ϴ cos(ϴx)− ϭ

Ϯ cos(Ϯx)
)

+ C

ϭϯ. ϭ
Ϯ

( ϭ
ϰ sin(ϰx)− ϭ

ϭϬ sin(ϭϬx)
)

+ C

ϭϱ. ϭ
Ϯ

(

sin(x) + ϭ
ϯ sin(ϯx)

)

+ C

ϭϳ. tanϱ(x)
ϱ + C

ϭϵ. tanϲ(x)
ϲ +

tanϰ(x)
ϰ + C

Ϯϭ. secϱ(x)
ϱ − secϯ(x)

ϯ + C

Ϯϯ. ϭ
ϯ tanϯ x− tan x+ x+ C

Ϯϱ. ϭ
Ϯ (sec x tan x− ln | sec x+ tan x|) + C

Ϯϳ. Ϯ
ϱ

Ϯϵ. ϯϮ/ϯϭϱ

ϯϭ. Ϯ/ϯ

ϯϯ. ϭϲ/ϭϱ

SecƟon ϲ.ϰ

ϭ. backwards

ϯ. (a) tanϮ θ + ϭ = secϮ θ

(b) ϵ secϮ θ.

ϱ. ϭ
Ϯ

(

x
√
xϮ + ϭ+ ln |

√
xϮ + ϭ+ x|

)

+ C

ϳ. ϭ
Ϯ

(

sin−ϭ x+ x
√
ϭ− xϮ

)

+ C

ϵ. ϭ
Ϯ x
√
xϮ − ϭ− ϭ

Ϯ ln |x+
√
xϮ − ϭ|+ C

ϭϭ. x
√

xϮ + ϭ/ϰ+ ϭ
ϰ ln |Ϯ

√

xϮ + ϭ/ϰ+ Ϯx|+ C =
ϭ
Ϯ x
√
ϰxϮ + ϭ+ ϭ

ϰ ln |
√
ϰxϮ + ϭ+ Ϯx|+ C

ϭϯ. ϰ
(

ϭ
Ϯ x
√

xϮ − ϭ/ϭϲ− ϭ
ϯϮ ln |ϰx+ ϰ

√

xϮ − ϭ/ϭϲ|
)

+ C =

ϭ
Ϯ x
√
ϭϲxϮ − ϭ− ϭ

ϴ ln |ϰx+
√
ϭϲxϮ − ϭ|+ C

ϭϱ. ϯ sin−ϭ
(

x√
ϳ

)

+ C (Trig. Subst. is not needed)

ϭϳ.
√
xϮ − ϭϭ−

√
ϭϭ sec−ϭ(x/

√
ϭϭ) + C

ϭϵ.
√
xϮ − ϯ+ C (Trig. Subst. is not needed)

Ϯϭ. − ϭ√
xϮ+ϵ

+ C (Trig. Subst. is not needed)

Ϯϯ. ϭ
ϭϴ

x+Ϯ
xϮ+ϰx+ϭϯ + ϭ

ϱϰ tan−ϭ ( x+Ϯ
Ϯ

)

+ C

Ϯϱ. ϭ
ϳ

(

−
√

ϱ−xϮ
x − sin−ϭ(x/

√
ϱ)
)

+ C

Ϯϳ. π/Ϯ

Ϯϵ. Ϯ
√
Ϯ+ Ϯ ln(ϭ+

√
Ϯ)

ϯϭ. ϵ sin−ϭ(ϭ/ϯ) +
√
ϴ Note: the new lower bound is

θ = sin−ϭ(−ϭ/ϯ) and the new upper bound is θ = sin−ϭ(ϭ/ϯ).
The final answer comes with recognizing that
sin−ϭ(−ϭ/ϯ) = − sin−ϭ(ϭ/ϯ) and that
cos
(

sin−ϭ(ϭ/ϯ)
)

= cos
(

sin−ϭ(−ϭ/ϯ)
)

=
√
ϴ/ϯ.

SecƟon ϲ.ϱ

ϭ. raƟonal

ϯ. A
x + B

x−ϯ

ϱ. A
x−

√
ϳ
+ B

x+
√

ϳ

ϳ. ϯ ln |x− Ϯ|+ ϰ ln |x+ ϱ|+ C

ϵ. ϭ
ϯ (ln |x+ Ϯ| − ln |x− Ϯ|) + C

ϭϭ. − ϰ
x+ϴ − ϯ ln |x+ ϴ|+ C

ϭϯ. − ln |Ϯx− ϯ|+ ϱ ln |x− ϭ|+ Ϯ ln |x+ ϯ|+ C

ϭϱ. x+ ln |x− ϭ| − ln |x+ Ϯ|+ C

ϭϳ. Ϯx+ C

ϭϵ. − ϯ
Ϯ ln
∣

∣xϮ + ϰx+ ϭϬ
∣

∣+ x+
tan −ϭ

(
x+Ϯ√

ϲ

)

√
ϲ

+ C

Ϯϭ. Ϯ ln |x− ϯ|+ Ϯ ln |xϮ + ϲx+ ϭϬ| − ϰ tan−ϭ(x+ ϯ) + C

Ϯϯ. ϭ
Ϯ

(

ϯ ln
∣

∣xϮ + Ϯx+ ϭϳ
∣

∣− ϰ ln |x− ϳ|+ tan −ϭ ( x+ϭ
ϰ

))

+ C

Ϯϱ. ϭ
Ϯ ln
∣

∣xϮ + ϭϬx+ Ϯϳ
∣

∣+ ϱ ln |x+ Ϯ| − ϲ
√
Ϯ tan −ϭ

(

x+ϱ√
Ϯ

)

+ C

Ϯϳ. ϱ ln(ϵ/ϰ)− ϭ
ϯ ln(ϭϳ/Ϯ) ≈ ϯ.ϯϰϭϯ

Ϯϵ. ϭ/ϴ

SecƟon ϲ.ϲ

ϭ. Because cosh x is always posiƟve.

A.ϭϬ



ϯ. cothϮ x− cschϮ x =
(

ex + e−x

ex − e−x

)Ϯ

−
(

Ϯ
ex − e−x

)Ϯ

=
(eϮx + Ϯ+ e−Ϯx)− (ϰ)

eϮx − Ϯ+ e−Ϯx

=
eϮx − Ϯ+ e−Ϯx

eϮx − Ϯ+ e−Ϯx

= ϭ

ϱ. coshϮ x =
(

ex + e−x

Ϯ

)Ϯ

=
eϮx + Ϯ+ e−Ϯx

ϰ

=
ϭ
Ϯ
(eϮx + e−Ϯx) + Ϯ

Ϯ

=
ϭ
Ϯ

(

eϮx + e−Ϯx

Ϯ
+ ϭ
)

=
cosh Ϯx+ ϭ

Ϯ
.

ϳ.
d
dx

[sech x] =
d
dx

[

Ϯ
ex + e−x

]

=
−Ϯ(ex − e−x)

(ex + e−x)Ϯ

= − Ϯ(ex − e−x)

(ex + e−x)(ex + e−x)

= − Ϯ
ex + e−x · e

x − e−x

ex + e−x

= − sech x tanh x

ϵ.
∫

tanh x dx =
∫

sinh x
cosh x

dx

Let u = cosh x; du = (sinh x)dx

=

∫

ϭ
u
du

= ln |u|+ C
= ln(cosh x) + C.

ϭϭ. Ϯ sinh Ϯx

ϭϯ. coth x

ϭϱ. x cosh x

ϭϳ. ϯ√
ϵxϮ+ϭ

ϭϵ. ϭ
ϭ−(x+ϱ)Ϯ

Ϯϭ. sec x

Ϯϯ. y = ϯ/ϰ(x− ln Ϯ) + ϱ/ϰ

Ϯϱ. y = x

Ϯϳ. ϭ/Ϯ ln(cosh(Ϯx)) + C

Ϯϵ. ϭ/Ϯ sinhϮ x+ C or ϭ/Ϯ coshϮ x+ C

ϯϭ. x cosh(x)− sinh(x) + C

ϯϯ. cosh−ϭ(xϮ/Ϯ) + C = ln(xϮ +
√
xϰ − ϰ) + C

ϯϱ. ϭ
ϭϲ tan−ϭ(x/Ϯ) + ϭ

ϯϮ ln |x− Ϯ|+ ϭ
ϯϮ ln |x+ Ϯ|+ C

ϯϳ. tan−ϭ(ex) + C

ϯϵ. x tanh−ϭ x+ ϭ/Ϯ ln |xϮ − ϭ|+ C

ϰϭ. Ϭ

ϰϯ. Ϯ

SecƟon ϲ.ϳ

ϭ. Ϭ/Ϭ,∞/∞, Ϭ · ∞,∞−∞, ϬϬ, ϭ∞,∞Ϭ

ϯ. F

ϱ. derivaƟves; limits

ϳ. Answers will vary.

ϵ. −ϱ/ϯ

ϭϭ. −
√
Ϯ/Ϯ

ϭϯ. Ϭ

ϭϱ. a/b

ϭϳ. ϭ/Ϯ

ϭϵ. Ϭ

Ϯϭ. ∞
Ϯϯ. Ϭ

Ϯϱ. −Ϯ

Ϯϳ. Ϭ

Ϯϵ. Ϭ

ϯϭ. ∞
ϯϯ. ∞
ϯϱ. Ϭ

ϯϳ. ϭ

ϯϵ. ϭ

ϰϭ. ϭ

ϰϯ. ϭ

ϰϱ. ϭ

ϰϳ. Ϯ

ϰϵ. −∞
ϱϭ. Ϭ

SecƟon ϲ.ϴ

ϭ. The interval of integraƟon is finite, and the integrand is
conƟnuous on that interval.

ϯ. converges; could also state< ϭϬ.

ϱ. p > ϭ

ϳ. eϱ/Ϯ

ϵ. ϭ/ϯ

ϭϭ. ϭ/ ln Ϯ

ϭϯ. diverges

ϭϱ. ϭ

ϭϳ. diverges

ϭϵ. diverges

Ϯϭ. diverges

Ϯϯ. ϭ

Ϯϱ. Ϭ

Ϯϳ. −ϭ/ϰ

Ϯϵ. −ϭ

ϯϭ. diverges

ϯϯ. ϭ/Ϯ

ϯϱ. converges; Limit Comparison Test with ϭ/xϯ/Ϯ.

ϯϳ. converges; Direct Comparison Test with xe−x.

ϯϵ. converges; Direct Comparison Test with xe−x.

ϰϭ. diverges; Direct Comparison Test with x/(xϮ + cos x).

A.ϭϭ



ϰϯ. converges; Limit Comparison Test with ϭ/ex.

Chapter ϳ
SecƟon ϳ.ϭ

ϭ. T

ϯ. Answers will vary.

ϱ. ϭϲ/ϯ

ϳ. π

ϵ. Ϯ
√
Ϯ

ϭϭ. ϰ.ϱ

ϭϯ. Ϯ− π/Ϯ

ϭϱ. ϭ/ϲ

ϭϳ. On regions such as [π/ϲ, ϱπ/ϲ], the area is ϯ
√
ϯ/Ϯ. On regions

such as [−π/Ϯ, π/ϲ], the area is ϯ
√
ϯ/ϰ.

ϭϵ. ϱ/ϯ

Ϯϭ. ϵ/ϰ

Ϯϯ. ϭ

Ϯϱ. ϰ

Ϯϳ. Ϯϭϵ,ϬϬϬ ŌϮ

SecƟon ϳ.Ϯ

ϭ. T

ϯ. Recall that “dx” does not just “sit there;” it is mulƟplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of inϯ.

ϱ. ϭϳϱπ/ϯ unitsϯ

ϳ. π/ϲ unitsϯ

ϵ. ϯϱπ/ϯ unitsϯ

ϭϭ. Ϯπ/ϭϱ unitsϯ

ϭϯ. (a) ϱϭϮπ/ϭϱ

(b) Ϯϱϲπ/ϱ

(c) ϴϯϮπ/ϭϱ

(d) ϭϮϴπ/ϯ

ϭϱ. (a) ϭϬϰπ/ϭϱ

(b) ϲϰπ/ϭϱ

(c) ϯϮπ/ϱ

ϭϳ. (a) ϴπ

(b) ϴπ

(c) ϭϲπ/ϯ

(d) ϴπ/ϯ

ϭϵ. The cross–secƟons of this cone are the same as the cone in
Exercise ϭϴ. Thus they have the same volume of ϮϱϬπ/ϯ unitsϯ.

Ϯϭ. Orient the solid so that the x-axis is parallel to long side of the
base. All cross–secƟons are trapezoids (at the far leŌ, the
trapezoid is a square; at the far right, the trapezoid has a top
length of Ϭ, making it a triangle). The area of the trapezoid at x is
A(x) = ϭ/Ϯ(−ϭ/Ϯx+ ϱ+ ϱ)(ϱ) = −ϱ/ϰx+ Ϯϱ. The volume is
ϭϴϳ.ϱ unitsϯ.

SecƟon ϳ.ϯ

ϭ. T

ϯ. F

ϱ. ϵπ/Ϯ unitsϯ

ϳ. πϮ − Ϯπ unitsϯ

ϵ. ϰϴπ
√
ϯ/ϱ unitsϯ

ϭϭ. πϮ/ϰ unitsϯ

ϭϯ. (a) ϰπ/ϱ

(b) ϴπ/ϭϱ

(c) π/Ϯ

(d) ϱπ/ϲ

ϭϱ. (a) ϰπ/ϯ

(b) π/ϯ

(c) ϰπ/ϯ

(d) Ϯπ/ϯ

ϭϳ. (a) Ϯπ(
√
Ϯ− ϭ)

(b) Ϯπ(ϭ−
√
Ϯ+ sinh−ϭ(ϭ))

SecƟon ϳ.ϰ

ϭ. T

ϯ.
√
Ϯ

ϱ. ϰ/ϯ

ϳ. ϭϬϵ/Ϯ

ϵ. ϭϮ/ϱ

ϭϭ. − ln(Ϯ−
√
ϯ) ≈ ϭ.ϯϭϲϵϲ

ϭϯ.
∫ ϭ
Ϭ

√
ϭ+ ϰxϮ dx

ϭϱ.
∫ ϭ
Ϭ

√

ϭ+ ϭ
ϰx dx

ϭϳ.
∫ ϭ
−ϭ

√

ϭ+ xϮ
ϭ−xϮ dx

ϭϵ.
∫ Ϯ
ϭ

√

ϭ+ ϭ
xϰ dx

Ϯϭ. ϭ.ϰϳϵϬ

Ϯϯ. Simpson’s Rule fails, as it requires one to divide by Ϭ. However,
recognize the answer should be the same as for y = xϮ; why?

Ϯϱ. Simpson’s Rule fails.

Ϯϳ. ϭ.ϰϬϱϴ

Ϯϵ. Ϯπ
∫ ϭ
Ϭ Ϯx

√
ϱ dx = Ϯπ

√
ϱ

ϯϭ. Ϯπ
∫ ϭ
Ϭ xϯ

√
ϭ+ ϵxϰ dx = π/Ϯϳ(ϭϬ

√
ϭϬ− ϭ)

ϯϯ. Ϯπ
∫ ϭ
Ϭ

√
ϭ− xϮ

√

ϭ+ x/(ϭ− xϮ) dx = ϰπ

SecƟon ϳ.ϱ

ϭ. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/sϮ·m.
In Imperial Units, it is Ō–lb.

ϯ. Smaller.

ϱ. (a) ϮϰϱϬ j

(b) ϭϱϲϴ j

ϳ. ϳϯϱ j

ϵ. ϭϭ,ϭϬϬ Ō–lb

ϭϭ. ϭϮϱ Ō–lb

ϭϯ. ϭϮ.ϱ Ō–lb

ϭϱ. Ϭ.ϮϲϮϱ = Ϯϭ/ϴϬ j

ϭϳ. ϰϱ Ō–lb

ϭϵ. ϵϱϯ, Ϯϴϰ j

A.ϭϮ



Ϯϭ. ϭϵϮ,ϳϲϳ Ō–lb. Note that the tank is oriented horizontally. Let the
origin be the center of one of the circular ends of the tank. Since
the radius is ϯ.ϳϱ Ō, the fluid is being pumped to y = ϰ.ϳϱ; thus
the distance the gas travels is h(y) = ϰ.ϳϱ− y. A differenƟal
element of water is a rectangle, with length ϮϬ and width
Ϯ
√

ϯ.ϳϱϮ − yϮ. Thus the force required to move that slab of gas is
F(y) = ϰϬ · ϰϱ.ϵϯ ·

√

ϯ.ϳϱϮ − yϮdy. Total work is
∫ ϯ.ϳϱ
−ϯ.ϳϱ ϰϬ · ϰϱ.ϵϯ · (ϰ.ϳϱ− y)

√

ϯ.ϳϱϮ − yϮ dy. This can be
evaluated without actual integraƟon; split the integral into
∫ ϯ.ϳϱ
−ϯ.ϳϱ ϰϬ · ϰϱ.ϵϯ · (ϰ.ϳϱ)

√

ϯ.ϳϱϮ − yϮ dy+
∫ ϯ.ϳϱ
−ϯ.ϳϱ ϰϬ · ϰϱ.ϵϯ ·

(−y)
√

ϯ.ϳϱϮ − yϮ dy. The first integral can be evaluated as
measuring half the area of a circle; the laƩer integral can be
shown to be Ϭ without much difficulty. (Use subsƟtuƟon and
realize the bounds are both Ϭ.)

Ϯϯ. (a) approx. ϱϳϳ,ϬϬϬ j

(b) approx. ϯϵϵ,ϬϬϬ j

(c) approx ϭϭϬ,ϬϬϬ j (By volume, half of the water is between
the base of the cone and a height of ϯ.ϵϲϴϱ m. If one
rounds this to ϰ m, the work is approx ϭϬϰ,ϬϬϬ j.)

Ϯϱ. ϲϭϳ,ϰϬϬ j

SecƟon ϳ.ϲ

ϭ. Answers will vary.

ϯ. ϰϵϵ.Ϯ lb

ϱ. ϲϳϯϵ.Ϯ lb

ϳ. ϯϵϮϬ.ϳ lb

ϵ. Ϯϰϵϲ lb

ϭϭ. ϲϬϮ.ϱϵ lb

ϭϯ. (a) ϮϯϰϬ lb

(b) ϱϲϮϱ lb

ϭϱ. (a) ϭϱϵϳ.ϰϰ lb

(b) ϯϴϰϬ lb

ϭϳ. (a) ϱϲ.ϰϮ lb

(b) ϭϯϱ.ϲϮ lb

ϭϵ. ϱ.ϭ Ō

Chapter ϴ
SecƟon ϴ.ϭ

ϭ. Answers will vary.

ϯ. Answers will vary.

ϱ. Ϯ, ϴ
ϯ ,

ϴ
ϯ ,

ϯϮ
ϭϱ ,

ϲϰ
ϰϱ

ϳ. ϭ
ϯ , Ϯ,

ϴϭ
ϱ , ϱϭϮ

ϯ , ϭϱϲϮϱ
ϳ

ϵ. an = ϯn+ ϭ

ϭϭ. an = ϭϬ · Ϯn−ϭ

ϭϯ. ϭ/ϳ

ϭϱ. Ϭ

ϭϳ. diverges

ϭϵ. converges to Ϭ

Ϯϭ. diverges

Ϯϯ. converges to e

Ϯϱ. converges to Ϭ

Ϯϳ. converges to Ϯ

Ϯϵ. bounded

ϯϭ. bounded

ϯϯ. neither bounded above or below

ϯϱ. monotonically increasing

ϯϳ. never monotonic

ϯϵ. Let {an} be given such that lim
n→∞

|an| = Ϭ. By the definiƟon of
the limit of a sequence, given any ε > Ϭ, there is am such that for
all n > m, | |an| − Ϭ| < ε. Since | |an| − Ϭ| = |an − Ϭ|, this
directly implies that for all n > m, |an − Ϭ| < ε, meaning that
lim

n→∞
an = Ϭ.

ϰϭ. LeŌ to reader

SecƟon ϴ.Ϯ

ϭ. Answers will vary.

ϯ. One sequence is the sequence of terms {a}. The other is the
sequence of nth parƟal sums, {Sn} = {

∑n
i=ϭ ai}.

ϱ. F

ϳ. (a) ϭ, ϱ
ϰ ,

ϰϵ
ϯϲ ,

ϮϬϱ
ϭϰϰ ,

ϱϮϲϵ
ϯϲϬϬ

(b) Plot omiƩed

ϵ. (a) ϭ, ϯ, ϲ, ϭϬ, ϭϱ

(b) Plot omiƩed

ϭϭ. (a) ϭ
ϯ ,

ϰ
ϵ ,

ϭϯ
Ϯϳ ,

ϰϬ
ϴϭ ,

ϭϮϭ
Ϯϰϯ

(b) Plot omiƩed

ϭϯ. (a) Ϭ.ϭ, Ϭ.ϭϭ, Ϭ.ϭϭϭ, Ϭ.ϭϭϭϭ, Ϭ.ϭϭϭϭϭ

(b) Plot omiƩed

ϭϱ. lim
n→∞

an = ∞; by Theorem ϲϯ the series diverges.

ϭϳ. lim
n→∞

an = ϭ; by Theorem ϲϯ the series diverges.

ϭϵ. lim
n→∞

an = e; by Theorem ϲϯ the series diverges.

Ϯϭ. Converges

Ϯϯ. Converges

Ϯϱ. Converges

Ϯϳ. Converges

Ϯϵ. Diverges

ϯϭ. (a) Sn =
(

n(n+ϭ)
Ϯ

)Ϯ

(b) Diverges

ϯϯ. (a) Sn = ϱ ϭ−ϭ/Ϯn

ϭ/Ϯ

(b) Converges to ϭϬ.

ϯϱ. (a) Sn =
ϭ−(−ϭ/ϯ)n

ϰ/ϯ

(b) Converges to ϯ/ϰ.

ϯϳ. (a) With parƟal fracƟons, an = ϯ
Ϯ

(

ϭ
n − ϭ

n+Ϯ

)

. Thus

Sn = ϯ
Ϯ

(

ϯ
Ϯ − ϭ

n+ϭ − ϭ
n+Ϯ

)

.

(b) Converges to ϵ/ϰ

ϯϵ. (a) Sn = ln
(

ϭ/(n+ ϭ)
)

(b) Diverges (to−∞).

ϰϭ. (a) an = ϭ
n(n+ϯ) ; using parƟal fracƟons, the resulƟng

telescoping sum reduces to
Sn = ϭ

ϯ

(

ϭ+ ϭ
Ϯ + ϭ

ϯ − ϭ
n+ϭ − ϭ

n+Ϯ − ϭ
n+ϯ

)

(b) Converges to ϭϭ/ϭϴ.

A.ϭϯ



ϰϯ. (a) With parƟal fracƟons, an = ϭ
Ϯ

(

ϭ
n−ϭ − ϭ

n+ϭ

)

. Thus

Sn = ϭ
Ϯ

(

ϯ/Ϯ− ϭ
n − ϭ

n+ϭ

)

.

(b) Converges to ϯ/ϰ.

ϰϱ. (a) The nth parƟal sum of the odd series is
ϭ+ ϭ

ϯ + ϭ
ϱ + · · ·+ ϭ

Ϯn−ϭ . The n
th parƟal sum of the even

series is ϭ
Ϯ + ϭ

ϰ + ϭ
ϲ + · · ·+ ϭ

Ϯn . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth parƟal sum of the odd series is
ϭ+ ϭ

ϯ + ϭ
ϱ + · · ·+ ϭ

Ϯn−ϭ . The n
th parƟal sum of ϭ plus the

even series is ϭ+ ϭ
Ϯ + ϭ

ϰ + · · ·+ ϭ
Ϯ(n−ϭ) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
parƟal sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

SecƟon ϴ.ϯ

ϭ. conƟnuous, posiƟve and decreasing

ϯ. The Integral Test (we do not have a conƟnuous definiƟon of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivaƟve).

ϱ. Converges

ϳ. Diverges

ϵ. Converges

ϭϭ. Converges

ϭϯ. Converges; compare to
∞
∑

n=ϭ

ϭ
nϮ

, as ϭ/(nϮ + ϯn− ϱ) ≤ ϭ/nϮ for

all n > ϭ.

ϭϱ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
, as ϭ/n ≤ ln n/n for all n ≥ Ϯ.

ϭϳ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
. Since n =

√
nϮ >

√
nϮ − ϭ,

ϭ/n ≤ ϭ/
√
nϮ − ϭ for all n ≥ Ϯ.

ϭϵ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
:

ϭ
n
=

nϮ

nϯ
<

nϮ + n+ ϭ
nϯ

<
nϮ + n+ ϭ
nϯ − ϱ

,

for all n ≥ ϭ.

Ϯϭ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
. Note that

n
nϮ − ϭ

=
nϮ

nϮ − ϭ
· ϭ
n
>

ϭ
n
,

as nϮ
nϮ−ϭ > ϭ, for all n ≥ Ϯ.

Ϯϯ. Converges; compare to
∞
∑

n=ϭ

ϭ
nϮ

.

Ϯϱ. Diverges; compare to
∞
∑

n=ϭ

ln n
n

.

Ϯϳ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
.

Ϯϵ. Diverges; compare to
∞
∑

n=ϭ

ϭ
n
. Just as lim

n→Ϭ

sin n
n

= ϭ,

lim
n→∞

sin(ϭ/n)
ϭ/n

= ϭ.

ϯϭ. Converges; compare to
∞
∑

n=ϭ

ϭ
nϯ/Ϯ

.

ϯϯ. Converges; Integral Test

ϯϱ. Diverges; the nth Term Test and Direct Comparison Test can be
used.

ϯϳ. Converges; the Direct Comparison Test can be used with sequence
ϭ/ϯn.

ϯϵ. Diverges; the nth Term Test can be used, along with the Integral
Test.

ϰϭ. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = Ϭ. Thus for large n, anan+ϭ < an.

(c) Converges; similar logic to part (b) so (an)Ϯ < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

SecƟon ϴ.ϰ

ϭ. algebraic, or polynomial.

ϯ. Integral Test, Limit Comparison Test, and Root Test

ϱ. Converges

ϳ. Converges

ϵ. The RaƟo Test is inconclusive; the p-Series Test states it diverges.

ϭϭ. Converges

ϭϯ. Converges; note the summaƟon can be rewriƩen as
∞
∑

n=ϭ

Ϯnn!
ϯnn!

,

from which the RaƟo Test can be applied.

ϭϱ. Converges

ϭϳ. Converges

ϭϵ. Diverges

Ϯϭ. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach eϮ, not
Ϭ, as n → ∞.)

Ϯϯ. Converges

Ϯϱ. Diverges; Limit Comparison Test

Ϯϳ. Converges; RaƟo Test or Limit Comparison Test with ϭ/ϯn.

Ϯϵ. Diverges; nth-Term Test or Limit Comparison Test with ϭ.

ϯϭ. Diverges; Direct Comparison Test with ϭ/n

ϯϯ. Converges; Root Test

SecƟon ϴ.ϱ

A.ϭϰ



ϭ. The signs of the terms do not alternate; in the given series, some
terms are negaƟve and the others posiƟve, but they do not
necessarily alternate.

ϯ. Many examples exist; one common example is an = (−ϭ)n/n.

ϱ. (a) converges

(b) converges (p-Series)

(c) absolute

ϳ. (a) diverges (limit of terms is not Ϭ)

(b) diverges

(c) n/a; diverges

ϵ. (a) converges

(b) diverges (Limit Comparison Test with ϭ/n)

(c) condiƟonal

ϭϭ. (a) diverges (limit of terms is not Ϭ)

(b) diverges

(c) n/a; diverges

ϭϯ. (a) diverges (terms oscillate between±ϭ)

(b) diverges

(c) n/a; diverges

ϭϱ. (a) converges

(b) converges (Geometric Series with r = Ϯ/ϯ)

(c) absolute

ϭϳ. (a) converges

(b) converges (RaƟo Test)

(c) absolute

ϭϵ. (a) converges

(b) diverges (p-Series Test with p = ϭ/Ϯ)

(c) condiƟonal

Ϯϭ. Sϱ = −ϭ.ϭϵϬϲ; Sϲ = −Ϭ.ϲϳϲϳ;

−ϭ.ϭϵϬϲ ≤
∞
∑

n=ϭ

(−ϭ)n

ln(n+ ϭ)
≤ −Ϭ.ϲϳϲϳ

Ϯϯ. Sϲ = Ϭ.ϯϲϴϭ; Sϳ = Ϭ.ϯϲϳϵ;

Ϭ.ϯϲϴϭ ≤
∞
∑

n=Ϭ

(−ϭ)n

n!
≤ Ϭ.ϯϲϳϵ

Ϯϱ. n = ϱ

Ϯϳ. Using the theorem, we find n = ϰϵϵ guarantees the sum is within
Ϭ.ϬϬϭ of π/ϰ. (Convergence is actually faster, as the sum is within
ε of π/Ϯϰ when n ≥ Ϯϰϵ.)

SecƟon ϴ.ϲ

ϭ. ϭ

ϯ. ϱ

ϱ. ϭ+ Ϯx+ ϰxϮ + ϴxϯ + ϭϲxϰ

ϳ. ϭ+ x+ xϮ
Ϯ + xϯ

ϲ + xϰ
Ϯϰ

ϵ. (a) R = ∞
(b) (−∞,∞)

ϭϭ. (a) R = ϭ

(b) (Ϯ, ϰ]

ϭϯ. (a) R = Ϯ

(b) (−Ϯ, Ϯ)

ϭϱ. (a) R = ϭ/ϱ

(b) (ϰ/ϱ, ϲ/ϱ)

ϭϳ. (a) R = ϭ

(b) (−ϭ, ϭ)

ϭϵ. (a) R = ∞
(b) (−∞,∞)

Ϯϭ. (a) R = ϭ

(b) [−ϭ, ϭ]

Ϯϯ. (a) R = Ϭ

(b) x = Ϭ

Ϯϱ. (a) f ′(x) =
∞
∑

n=ϭ

nϮxn−ϭ; (−ϭ, ϭ)

(b)
∫

f(x) dx = C+
∞
∑

n=Ϭ

n
n+ ϭ

xn+ϭ; (−ϭ, ϭ)

Ϯϳ. (a) f ′(x) =
∞
∑

n=ϭ

n
Ϯn

xn−ϭ; (−Ϯ, Ϯ)

(b)
∫

f(x) dx = C+

∞
∑

n=Ϭ

ϭ
(n+ ϭ)Ϯn

xn+ϭ; [−Ϯ, Ϯ)

Ϯϵ. (a) f ′(x) =
∞
∑

n=ϭ

(−ϭ)nxϮn−ϭ

(Ϯn− ϭ)!
=

∞
∑

n=Ϭ

(−ϭ)n+ϭxϮn+ϭ

(Ϯn+ ϭ)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+
∞
∑

n=Ϭ

(−ϭ)nxϮn+ϭ

(Ϯn+ ϭ)!
; (−∞,∞)

ϯϭ. ϭ+ ϯx+ ϵ
Ϯ x

Ϯ + ϵ
Ϯ x

ϯ + Ϯϳ
ϴ xϰ

ϯϯ. ϭ+ x+ xϮ + xϯ + xϰ

ϯϱ. Ϭ+ x+ ϬxϮ − ϭ
ϲ x

ϯ + Ϭxϰ

SecƟon ϴ.ϳ

ϭ. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is Ϭ, it is a Maclauring polynomial.

ϯ. pϮ(x) = ϲ+ ϯx− ϰxϮ.

ϱ. pϯ(x) = ϭ− x+ ϭ
Ϯ x

ϯ − ϭ
ϲ x

ϯ

ϳ. pϴ(x) = x+ xϮ + ϭ
Ϯ x

ϯ + ϭ
ϲ x

ϰ + ϭ
Ϯϰ x

ϱ

ϵ. pϰ(x) = Ϯxϰ
ϯ + ϰxϯ

ϯ + ϮxϮ + Ϯx+ ϭ

ϭϭ. pϰ(x) = xϰ − xϯ + xϮ − x+ ϭ

ϭϯ. pϰ(x) = ϭ+ ϭ
Ϯ (−ϭ+x)− ϭ

ϴ (−ϭ+x)Ϯ+ ϭ
ϭϲ (−ϭ+x)ϯ− ϱ

ϭϮϴ (−ϭ+x)ϰ

ϭϱ. pϲ(x) = ϭ√
Ϯ
− − π

ϰ +x√
Ϯ

− (− π
ϰ +x)Ϯ

Ϯ
√

Ϯ
+

(− π
ϰ +x)ϯ

ϲ
√

Ϯ
+

(− π
ϰ +x)ϰ

Ϯϰ
√

Ϯ
−

(− π
ϰ +x)ϱ

ϭϮϬ
√

Ϯ
− (− π

ϰ +x)ϲ

ϳϮϬ
√

Ϯ

ϭϳ. pϱ(x) = ϭ
Ϯ−

x−Ϯ
ϰ + ϭ

ϴ (x−Ϯ)Ϯ− ϭ
ϭϲ (x−Ϯ)ϯ+ ϭ

ϯϮ (x−Ϯ)ϰ− ϭ
ϲϰ (x−Ϯ)ϱ

ϭϵ. pϯ(x) = ϭ
Ϯ + ϭ+x

Ϯ + ϭ
ϰ (ϭ+ x)Ϯ

Ϯϭ. pϯ(x) = x− xϯ
ϲ ; pϯ(Ϭ.ϭ) = Ϭ.Ϭϵϵϴϯ. Error is bounded by

± ϭ
ϰ! · Ϭ.ϭϰ ≈ ±Ϭ.ϬϬϬϬϬϰϭϲϳ.

Ϯϯ. pϮ(x) = ϯ+ ϭ
ϲ (−ϵ+ x)− ϭ

Ϯϭϲ (−ϵ+ x)Ϯ; pϮ(ϭϬ) = ϯ.ϭϲϮϬϰ.
The third derivaƟve of f(x) =

√
x is bounded on (ϴ, ϭϭ) by Ϭ.ϬϬϯ.

Error is bounded by± Ϭ.ϬϬϯ
ϯ! · ϭϯ = ±Ϭ.ϬϬϬϱ.

Ϯϱ. The nth derivaƟve of f(x) = ex is bounded by ϯ on intervals
containing Ϭ and ϭ. Thus |Rn(ϭ)| ≤ ϯ

(n+ϭ)!ϭ
(n+ϭ). When n = ϳ,

this is less than Ϭ.ϬϬϬϭ.

A.ϭϱ



Ϯϳ. The nth derivaƟve of f(x) = cos x is bounded by ϭ on intervals
containing Ϭ and π/ϯ. Thus |Rn(π/ϯ)| ≤ ϭ

(n+ϭ)! (π/ϯ)
(n+ϭ).

When n = ϳ, this is less than Ϭ.ϬϬϬϭ. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = ϲ.

Ϯϵ. The nth term is ϭ
n! x

n.

ϯϭ. The nth term is xn.

ϯϯ. The nth term is (−ϭ)n (x−ϭ)n

n .

ϯϱ. ϯ+ ϭϱx+
ϳϱ
Ϯ
xϮ +

ϯϳϱ
ϲ

xϯ +
ϭϴϳϱ
Ϯϰ

xϰ

SecƟon ϴ.ϴ

ϭ. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summaƟon of an infinite
number of terms.

ϯ. All derivaƟves of ex are ex which evaluate to ϭ at x = Ϭ.
The Taylor series starts ϭ+ x+ ϭ

Ϯ x
Ϯ + ϭ

ϯ! x
ϯ + ϭ

ϰ! x
ϰ + · · · ;

the Taylor series is
∞
∑

n=Ϭ

xn

n!

ϱ. The nth derivaƟve of ϭ/(ϭ− x) is f (n)(x) = (n)!/(ϭ− x)n+ϭ,
which evaluates to n! at x = Ϭ.
The Taylor series starts ϭ+ x+ xϮ + xϯ + · · · ;

the Taylor series is
∞
∑

n=Ϭ

xn

ϳ. The Taylor series starts
Ϭ− (x− π/Ϯ) + ϬxϮ + ϭ

ϲ (x− π/Ϯ)ϯ + Ϭxϰ − ϭ
ϭϮϬ (x− π/Ϯ)ϱ;

the Taylor series is
∞
∑

n=Ϭ

(−ϭ)n+ϭ (x− π/Ϯ)Ϯn+ϭ

(Ϯn+ ϭ)!

ϵ. f (n)(x) = (−ϭ)ne−x; at x = Ϭ, f (n)(Ϭ) = −ϭ when n is odd and
f (n)(Ϭ) = ϭ when n is even.
The Taylor series starts ϭ− x+ ϭ

Ϯ x
Ϯ − ϭ

ϯ! x
ϯ + · · · ;

the Taylor series is
∞
∑

n=Ϭ

(−ϭ)n
xn

n!
.

ϭϭ. f (n)(x) = (−ϭ)n+ϭ n!
(x+ϭ)n+ϭ ; at x = ϭ, f (n)(ϭ) = (−ϭ)n+ϭ n!

Ϯn+ϭ

The Taylor series starts
ϭ
Ϯ + ϭ

ϰ (x− ϭ)− ϭ
ϴ (x− ϭ)Ϯ + ϭ

ϭϲ (x− ϭ)ϯ · · · ;

the Taylor series is
∞
∑

n=Ϭ

(−ϭ)n+ϭ (x− ϭ)n

Ϯn+ϭ .

ϭϯ. Given a value x, the magnitude of the error term Rn(x) is bounded
by

∣

∣Rn(x)
∣

∣ ≤
max

∣

∣ f (n+ϭ)(z)
∣

∣

(n+ ϭ)!

∣

∣x(n+ϭ)∣
∣,

where z is between Ϭ and x.
If x > Ϭ, then z < x and f (n+ϭ)(z) = ez < ex. If x < Ϭ, then
x < z < Ϭ and f (n+ϭ)(z) = ez < ϭ. So given a fixed x value, let
M = max{ex, ϭ}; f (n)(z) < M. This allows us to state

∣

∣Rn(x)
∣

∣ ≤ M
(n+ ϭ)!

∣

∣x(n+ϭ)∣
∣.

For any x, lim
n→∞

M
(n+ ϭ)!

∣

∣x(n+ϭ)∣
∣ = Ϭ. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = Ϭ for all x, and hence

ex =
∞
∑

n=Ϭ

xn

n!
for all x.

ϭϱ. Given a value x, the magnitude of the error term Rn(x) is bounded
by

∣

∣Rn(x)
∣

∣ ≤
max

∣

∣ f (n+ϭ)(z)
∣

∣

(n+ ϭ)!

∣

∣(x− ϭ)(n+ϭ)∣
∣,

where z is between ϭ and x.
Note that

∣

∣f (n+ϭ)(x)
∣

∣ = n!
xn+ϭ .

We consider the cases when x > ϭ and when x < ϭ separately.
If x > ϭ, then ϭ < z < x and f (n+ϭ)(z) = n!

zn+ϭ < n!. Thus

∣

∣Rn(x)
∣

∣ ≤ n!
(n+ ϭ)!

∣

∣(x− ϭ)(n+ϭ)∣
∣ =

(x− ϭ)n+ϭ

n+ ϭ
.

For a fixed x,

lim
n→∞

(x− ϭ)n+ϭ

n+ ϭ
= Ϭ.

If Ϭ < x < ϭ, then x < z < ϭ and f (n+ϭ)(z) = n!
zn+ϭ < n!

xn+ϭ .
Thus

∣

∣Rn(x)
∣

∣ ≤ n!/xn+ϭ

(n+ ϭ)!

∣

∣(x− ϭ)(n+ϭ)∣
∣ =

xn+ϭ

n+ ϭ
(ϭ− x)n+ϭ.

Since Ϭ < x < ϭ, xn+ϭ < ϭ and (ϭ− x)n+ϭ < ϭ. We can then
extend the inequality from above to state

∣

∣Rn(x)
∣

∣ ≤ xn+ϭ

n+ ϭ
(ϭ− x)n+ϭ <

ϭ
n+ ϭ

.

As n → ∞, ϭ/(n+ ϭ) → Ϭ. Thus by the Squeeze Theorem, we
conclude that lim

n→∞
Rn(x) = Ϭ for all x, and hence

ln x =
∞
∑

n=ϭ

(−ϭ)n+ϭ (x− ϭ)n

n
for all Ϭ < x ≤ Ϯ.

ϭϳ. Given cos x =
∞
∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
,

cos(−x) =
∞
∑

n=Ϭ

(−ϭ)n
(−x)Ϯn

(Ϯn)!
=

∞
∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
= cos x, as all

powers in the series are even.

ϭϵ. Given sin x =
∞
∑

n=Ϭ

(−ϭ)n
xϮn+ϭ

(Ϯn+ ϭ)!
,

d
dx
(

sin x
)

=
d
dx

( ∞
∑

n=Ϭ

(−ϭ)n
xϮn+ϭ

(Ϯn+ ϭ)!

)

=

∞
∑

n=Ϭ

(−ϭ)n
(Ϯn+ ϭ)xϮn

(Ϯn+ ϭ)!
=

∞
∑

n=Ϭ

(−ϭ)n
xϮn

(Ϯn)!
= cos x. (The

summaƟon sƟll starts at n = Ϭ as there was no constant term in
the expansion of sin x).

Ϯϭ. ϭ+
x
Ϯ
− xϮ

ϴ
+

xϯ

ϭϲ
− ϱxϰ

ϭϮϴ

Ϯϯ. ϭ+
x
ϯ
− xϮ

ϵ
+

ϱxϯ

ϴϭ
− ϭϬxϰ

Ϯϰϯ

Ϯϱ.
∞
∑

n=Ϭ

(−ϭ)n
(xϮ)Ϯn

(Ϯn)!
=

∞
∑

n=Ϭ

(−ϭ)n
xϰn

(Ϯn)!
.

Ϯϳ.
∞
∑

n=Ϭ

(−ϭ)n
(Ϯx+ ϯ)Ϯn+ϭ

(Ϯn+ ϭ)!
.

Ϯϵ. x+ xϮ +
xϯ

ϯ
− xϱ

ϯϬ

ϯϭ.
∫

√
π

Ϭ
sin
(

xϮ
)

dx ≈
∫

√
π

Ϭ

(

xϮ − xϲ

ϲ
+

xϭϬ

ϭϮϬ
− xϭϰ

ϱϬϰϬ

)

dx =

Ϭ.ϴϴϳϳ

Chapter ϵ
SecƟon ϵ.ϭ

A.ϭϲ



ϭ. When defining the conics as the intersecƟons of a plane and a
double napped cone, degenerate conics are created when the
plane intersects the Ɵps of the cones (usually taken as the origin).
Nondegenerate conics are formed when this plane does not
contain the origin.

ϯ. Hyperbola

ϱ. With a horizontal transverse axis, the xϮ term has a posiƟve
coefficient; with a verƟcal transverse axis, the yϮ term has a
posiƟve coefficient.

ϳ. y = −ϭ
ϭϮ (x+ ϭ)Ϯ − ϭ

ϵ. x = yϮ

ϭϭ. x = − ϭ
ϭϮ y

Ϯ

ϭϯ. x = − ϭ
ϴ (y− ϯ)Ϯ + Ϯ

ϭϱ. focus: (ϱ, Ϯ); directrix: x = ϭ. The point P is ϭϬ units from each.

ϭϳ. .....

−ϱ

.

ϱ

. −ϲ.

−ϰ

.

−2

.

x

.

y

ϭϵ. (x−ϭ)Ϯ

ϭ/ϰ + yϮ
ϵ = ϭ; foci at (ϭ,±

√
ϴ.ϳϱ); e =

√
ϴ.ϳϱ/ϯ ≈ Ϭ.ϵϵ

Ϯϭ. (x−Ϯ)Ϯ

Ϯϱ +
(y−ϯ)Ϯ

ϭϲ = ϭ

Ϯϯ. (x+ϭ)Ϯ

ϵ +
(y−ϭ)Ϯ

Ϯϱ = ϭ

Ϯϱ. xϮ
ϯ + yϮ

ϱ = ϭ

Ϯϳ. (x−Ϯ)Ϯ

ϰ +
(y−Ϯ)Ϯ

ϰ = ϭ

Ϯϵ. xϮ − yϮ
ϯ = ϭ

ϯϭ. (y−ϯ)Ϯ

ϰ − (x−ϭ)Ϯ

ϵ = ϭ

ϯϯ. ...

..

−ϱ

.

ϱ

.

−ϲ

.

−ϰ

.

−2

.

2

.

x

.

y

ϯϱ. xϮ
ϰ − yϮ

ϱ = ϭ

ϯϳ. (x−ϯ)Ϯ

ϭϲ − (y−ϯ)Ϯ

ϵ = ϭ

ϯϵ. xϮ
ϰ − yϮ

ϯ = ϭ

ϰϭ. (y− Ϯ)Ϯ − xϮ
ϭϬ = ϭ

ϰϯ. (a) Solve for c in e = c/a: c = ae. Thus aϮeϮ = aϮ − bϮ, and
bϮ = aϮ − aϮeϮ. The result follows.

(b) Mercury: xϮ/(Ϭ.ϯϴϳ)Ϯ + yϮ/(Ϭ.ϯϳϴϳ)Ϯ = ϭ
Earth: xϮ + yϮ/(Ϭ.ϵϵϵϴϲ)Ϯ = ϭ
Mars: xϮ/(ϭ.ϱϮϰ)Ϯ + yϮ/(ϭ.ϱϭϳ)Ϯ = ϭ

(c) Mercury: (x− Ϭ.Ϭϴ)Ϯ/(Ϭ.ϯϴϳ)Ϯ + yϮ/(Ϭ.ϯϳϴϳ)Ϯ = ϭ
Earth: (x− Ϭ.Ϭϭϲϳ)Ϯ + yϮ/(Ϭ.ϵϵϵϴϲ)Ϯ = ϭ
Mars: (x− Ϭ.ϭϰϮϯ)Ϯ/(ϭ.ϱϮϰ)Ϯ + yϮ/(ϭ.ϱϭϳ)Ϯ = ϭ

SecƟon ϵ.Ϯ

ϭ. T

ϯ. rectangular

ϱ.

.....

5

.

10

.

−5

.

x

.

y

ϳ.

.....
1

.
2

.

1

.

2

.

x

.

y

ϵ.

.....
−ϭϬ

.
−ϱ

.
ϱ

.
ϭϬ

.

Ϯ

.

ϰ

.

ϲ

.

8

. x.

y

ϭϭ.

.....

−5

.

5

. −5.

5

.

x

.

y

ϭϯ.

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

x

.

y

A.ϭϳ



ϭϱ.

.....

5

.

10

.

−10

.

10

.

x

.

y

ϭϳ.

.....

−1

.

1

.
−1

.

1

.

x

.

y

ϭϵ. (a) Traces a circle of radius ϭ counterclockwise once.

(b) Traces a circle of radius ϭ counterclockwise over ϲ Ɵmes.

(c) Traces a circle of radius ϭ clockwise infinite Ɵmes.

(d) Traces an arc of a circle of radius ϭ, from an angle of -ϭ
radians to ϭ radian, twice.

Ϯϭ. xϮ − yϮ = ϭ

Ϯϯ. y = xϯ/Ϯ

Ϯϱ. y = xϯ − ϯ

Ϯϳ. yϮ − xϮ = ϭ

Ϯϵ. x = ϭ− ϮyϮ

ϯϭ. xϮ + yϮ = rϮ; circle centered at (Ϭ, Ϭ) with radius r.

ϯϯ. (x−h)Ϯ

aϮ − (y−k)Ϯ

bϮ = ϭ; hyperbola centered at (h, k) with
horizontal transverse axis and asymptotes with slope b/a. The
parametric equaƟons only give half of the hyperbola. When
a > Ϭ, the right half; when a < Ϭ, the leŌ half.

ϯϱ. x = ln t, y = t. At t = ϭ, x = Ϭ, y = ϭ.
y′ = ex; when x = Ϭ, y′ = ϭ.

ϯϳ. x = ϭ/(ϰtϮ), y = ϭ/(Ϯt). At t = ϭ, x = ϭ/ϰ, y = ϭ/Ϯ.
y′ = ϭ/(Ϯ

√
x); when x = ϭ/ϰ, y′ = ϭ.

ϯϵ. t = −ϭ, Ϯ

ϰϭ. t = π/ϲ, π/Ϯ, ϱπ/ϲ

ϰϯ. t = Ϯ

ϰϱ. t = . . . Ϭ, Ϯπ, ϰπ, . . .

ϰϳ. x = ϱϬt, y = −ϭϲtϮ + ϲϰt

ϰϵ. x = Ϯ cos t, y = −Ϯ sin t; other answers possible

ϱϭ. x = cos t+ ϭ, y = ϯ sin t+ ϯ; other answers possible

ϱϯ. x = ± sec t+ Ϯ, y =
√
ϴ tan t− ϯ; other answers possible

SecƟon ϵ.ϯ

ϭ. F

ϯ. F

ϱ. (a) dy
dx = Ϯt

(b) Tangent line: y = Ϯ(x− ϭ) + ϭ; normal line:
y = −ϭ/Ϯ(x− ϭ) + ϭ

ϳ. (a) dy
dx = Ϯt+ϭ

Ϯt−ϭ

(b) Tangent line: y = ϯx+ Ϯ; normal line: y = −ϭ/ϯx+ Ϯ

ϵ. (a) dy
dx = csc t

(b) t = π/ϰ: Tangent line: y =
√
Ϯ(x−

√
Ϯ) + ϭ; normal line:

y = −ϭ/
√
Ϯ(x−

√
Ϯ) + ϭ

ϭϭ. (a) dy
dx =

cos t sin(Ϯt)+sin t cos(Ϯt)
− sin t sin(Ϯt)+Ϯ cos t cos(Ϯt)

(b) Tangent line: y = x−
√
Ϯ; normal line: y = −x−

√
Ϯ

ϭϯ. t = Ϭ

ϭϱ. t = −ϭ/Ϯ

ϭϳ. The graph does not have a horizontal tangent line.

ϭϵ. The soluƟon is non-trivial; use idenƟƟes sin(Ϯt) = Ϯ sin t cos t and
cos(Ϯt) = cosϮ t− sinϮ t to rewrite
g′(t) = Ϯ sin t(Ϯ cosϮ t− sinϮ t). On [Ϭ, Ϯπ], sin t = Ϭ when
t = Ϭ, π, Ϯπ, and Ϯ cosϮ t− sinϮ t = Ϭ when
t = tan−ϭ(

√
Ϯ), π ± tan−ϭ(

√
Ϯ), Ϯπ − tan−ϭ(

√
Ϯ).

Ϯϭ. tϬ = Ϭ; limt→Ϭ
dy
dx = Ϭ.

Ϯϯ. tϬ = ϭ; limt→ϭ
dy
dx = ∞.

Ϯϱ. dϮy
dxϮ = Ϯ; always concave up

Ϯϳ. dϮy
dxϮ = − ϰ

(Ϯt−ϭ)ϯ ; concave up on (−∞, ϭ/Ϯ); concave down on
(ϭ/Ϯ,∞).

Ϯϵ. dϮy
dxϮ = − cotϯ t; concave up on (−∞, Ϭ); concave down on
(Ϭ,∞).

ϯϭ. dϮy
dxϮ =

ϰ(ϭϯ+ϯ cos(ϰt))
(cos t+ϯ cos(ϯt))ϯ , obtained with a computer algebra system;

concave up on
(

− tan−ϭ(
√
Ϯ/Ϯ), tan−ϭ(

√
Ϯ/Ϯ)

)

, concave down
on
(

− π/Ϯ,− tan−ϭ(
√
Ϯ/Ϯ)

)

∪
(

tan−ϭ(
√
Ϯ/Ϯ), π/Ϯ

)

ϯϯ. L = ϲπ

ϯϱ. L = Ϯ
√
ϯϰ

ϯϳ. L ≈ Ϯ.ϰϰϭϲ (actual value: L = Ϯ.ϰϮϮϭϭ)

ϯϵ. L ≈ ϰ.ϭϵϮϭϲ (actual value: L = ϰ.ϭϴϯϬϴ)

ϰϭ. The answer is ϭϲπ for both (of course), but the integrals are
different.

ϰϯ. SA ≈ ϴ.ϱϬϭϬϭ (actual value SA = ϴ.ϬϮϴϱϭ

SecƟon ϵ.ϰ

ϭ. Answers will vary.

ϯ. T

ϱ. ϭ ϮO
A

B

C

D

ϳ. A = P(Ϯ.ϱ, π/ϰ) and P(−Ϯ.ϱ, ϱπ/ϰ);
B = P(−ϭ, ϱπ/ϲ) and P(ϭ, ϭϭπ/ϲ);
C = P(ϯ, ϰπ/ϯ) and P(−ϯ, π/ϯ);
D = P(ϭ.ϱ, Ϯπ/ϯ) and P(−ϭ.ϱ, ϱπ/ϯ);

ϵ. A = (
√
Ϯ,
√
Ϯ)

B = (
√
Ϯ,−

√
Ϯ)

C = P(
√
ϱ,−Ϭ.ϰϲ)

D = P(
√
ϱ, Ϯ.ϲϴ)

A.ϭϴ



ϭϭ.

.....
1

.
2

.

1

.

2

.

x

.

y

ϭϯ.

.....

−2

.

2

. −2.

−1

.

1

.

2

.

x

.

y

ϭϱ.

.....

−2

.

2

.

−2

.

2

.

x

.

y

ϭϳ.

.....

−2

.

2

.
−2

.

2

.

x

.

y

ϭϵ.

.....

−1

.

1

. −1.

1

.

x

.

y

Ϯϭ.

.....

−1

.

1

. −1.

1

.

x

.

y

Ϯϯ.

.....
−Ϯ

.
Ϯ

.

Ϯ

.

ϯ

.

ϭ

.

x

.

y

Ϯϱ.

.....

−8

.

−6

.

−4

.

−2

.

−2

.

2

.

x

.

y

Ϯϳ.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

Ϯϵ.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

ϯϭ. xϮ + (y+ Ϯ)Ϯ = ϰ

ϯϯ. y = Ϯ/ϱx+ ϳ/ϱ

ϯϱ. y = ϰ

ϯϳ. xϮ + yϮ = ϰ

ϯϵ. θ = π/ϰ

ϰϭ. r = ϱ sec θ

ϰϯ. r = cos θ/ sinϮ θ

ϰϱ. r =
√
ϳ

ϰϳ. P(
√
ϯ/Ϯ, π/ϲ), P(Ϭ, π/Ϯ), P(−

√
ϯ/Ϯ, ϱπ/ϲ)

ϰϵ. P(Ϭ, Ϭ) = P(Ϭ, π/Ϯ), P(
√
Ϯ, π/ϰ)

ϱϭ. P(
√
Ϯ/Ϯ, π/ϭϮ), P(−

√
Ϯ/Ϯ, ϱπ/ϭϮ), P(

√
Ϯ/Ϯ, ϯπ/ϰ)

ϱϯ. For all points, r = ϭ; θ =
π/ϭϮ, ϱπ/ϭϮ, ϳπ/ϭϮ, ϭϭπ/ϭϮ, ϭϯπ/ϭϮ, ϭϳπ/ϭϮ, ϭϵπ/ϭϮ, Ϯϯπ/ϭϮ.

ϱϱ. Answers will vary. Ifm and n do not have any common factors,
then an interval of Ϯnπ is needed to sketch the enƟre graph.

SecƟon ϵ.ϱ

ϭ. Using x = r cos θ and y = r sin θ, we can write x = f(θ) cos θ,
y = f(θ) sin θ.

ϯ. (a) dy
dx = − cot θ

(b) tangent line: y = −(x−
√
Ϯ/Ϯ) +

√
Ϯ/Ϯ; normal line:

y = x

ϱ. (a) dy
dx =

cos θ(ϭ+Ϯ sin θ)
cosϮ θ−sin θ(ϭ+sin θ)

(b) tangent line: x = ϯ
√
ϯ/ϰ; normal line: y = ϯ/ϰ

ϳ. (a) dy
dx = θ cos θ+sin θ

cos θ−θ sin θ

(b) tangent line: y = −Ϯ/πx+ π/Ϯ; normal line:
y = π/Ϯx+ π/Ϯ

ϵ. (a) dy
dx =

ϰ sin(t) cos(ϰt)+sin(ϰt) cos(t)
ϰ cos(t) cos(ϰt)−sin(t) sin(ϰt)

(b) tangent line: y = ϱ
√
ϯ(x+

√
ϯ/ϰ)− ϯ/ϰ; normal line:

y = −ϭ/ϱ
√
ϯ(x+

√
ϯ/ϰ)− ϯ/ϰ

A.ϭϵ



ϭϭ. horizontal: θ = π/Ϯ, ϯπ/Ϯ;

verƟcal: θ = Ϭ, π, Ϯπ

ϭϯ. horizontal: θ = tan−ϭ(ϭ/
√
ϱ), π/Ϯ, π − tan−ϭ(ϭ/

√
ϱ), π +

tan−ϭ(ϭ/
√
ϱ), ϯπ/Ϯ, Ϯπ − tan−ϭ(ϭ/

√
ϱ);

verƟcal: θ = Ϭ, tan−ϭ(
√
ϱ), π − tan−ϭ(

√
ϱ), π, π +

tan−ϭ(
√
ϱ), Ϯπ − tan−ϭ(

√
ϱ)

ϭϱ. In polar: θ = Ϭ ∼= θ = π

In rectangular: y = Ϭ

ϭϳ. area = ϰπ

ϭϵ. area = π/ϭϮ

Ϯϭ. area = π − ϯ
√
ϯ/Ϯ

Ϯϯ. area = π + ϯ
√
ϯ

Ϯϱ. area =
∫ π/ϯ

π/ϭϮ

ϭ
Ϯ
sinϮ(ϯθ) dθ −

∫ π/ϲ

π/ϭϮ

ϭ
Ϯ
cosϮ(ϯθ) dθ =

ϭ
ϭϮ

+
π

Ϯϰ

Ϯϳ. area =
∫ π/ϯ

Ϭ

ϭ
Ϯ
(ϭ− cos θ)Ϯ dθ +

∫ π/Ϯ

π/ϯ

ϭ
Ϯ
(cos θ)Ϯ dθ =

ϳπ
Ϯϰ

−
√
ϯ
Ϯ

≈ Ϭ.ϬϱϬϯ

Ϯϵ. ϰπ

ϯϭ. L ≈ Ϯ.ϮϱϵϮ; (actual value L = Ϯ.ϮϮϳϰϴ)

ϯϯ. SA = ϭϲπ

ϯϱ. SA = ϯϮπ/ϱ

ϯϳ. SA = ϯϲπ

Chapter ϭϬ

SecƟon ϭϬ.ϭ

ϭ. right hand

ϯ. curve (a parabola); surface (a cylinder)

ϱ. a hyperboloid of two sheets

ϳ. || AB || =
√
ϲ; || BC || =

√
ϭϳ; || AC || =

√
ϭϭ. Yes, it is a right

triangle as || AB ||Ϯ + || AC ||Ϯ = || BC ||Ϯ.

ϵ. Center at (ϰ,−ϭ, Ϭ); radius = ϯ

ϭϭ. Interior of a sphere with radius ϭ centered at the origin.

ϭϯ. The first octant of space; all points (x, y, z) where each of x, y and
z are posiƟve. (Analogous to the first quadrant in the plane.)

ϭϱ.

ϭϳ.

ϭϵ. yϮ + zϮ = xϰ

Ϯϭ. z = (
√

xϮ + yϮ)Ϯ = xϮ + yϮ

Ϯϯ. (a) x = yϮ +
zϮ

ϵ

Ϯϱ. (b) xϮ +
yϮ

ϵ
+

zϮ

ϰ
= ϭ

Ϯϳ.

Ϯϵ.

ϯϭ.

SecƟon ϭϬ.Ϯ

ϭ. Answers will vary.

ϯ. A vector with magnitude ϭ.

ϱ. It stretches the vector by a factor of Ϯ, and points it in the
opposite direcƟon.

A.ϮϬ



ϳ. # ‰PQ = ⟨−ϰ, ϰ⟩ = −ϰ⃗i+ ϰ⃗j

ϵ. # ‰PQ = ⟨Ϯ, Ϯ, Ϭ⟩ = Ϯ⃗i+ Ϯ⃗j

ϭϭ. (a) u⃗+ v⃗ = ⟨ϯ, Ϯ, ϭ⟩; u⃗− v⃗ = ⟨−ϭ, Ϭ,−ϯ⟩;
πu⃗−

√
Ϯ⃗v =

⟨

π − Ϯ
√
Ϯ, π −

√
Ϯ,−π − Ϯ

√
Ϯ
⟩

.

(c) x⃗ = ⟨−ϭ, Ϭ,−ϯ⟩.

ϭϯ.

.....

u⃗

.

v⃗

.

u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

Sketch of u⃗− v⃗ shiŌed for clarity.

ϭϱ.

...

..
u⃗
.

v⃗

.
u⃗ + v⃗

.

u⃗ − v⃗

.

x

.

y

.

z

ϭϳ. || u⃗ || =
√
ϭϳ, || v⃗ || =

√
ϯ, || u⃗+ v⃗ || =

√
ϭϰ, || u⃗− v⃗ || =

√
Ϯϲ

ϭϵ. || u⃗ || = ϳ, || v⃗ || = ϯϱ, || u⃗+ v⃗ || = ϰϮ, || u⃗− v⃗ || = Ϯϴ

Ϯϭ. u⃗ =
⟨

ϯ/
√
ϯϬ, ϳ/

√
ϯϬ
⟩

Ϯϯ. u⃗ = ⟨ϭ/ϯ,−Ϯ/ϯ, Ϯ/ϯ⟩
Ϯϱ. u⃗ = ⟨cos ϱϬ◦, sin ϱϬ◦⟩ ≈ ⟨Ϭ.ϲϰϯ, Ϭ.ϳϲϲ⟩.
Ϯϳ.

|| u⃗ || =
√

sinϮ θ cosϮ φ+ sinϮ θ sinϮ φ+ cosϮ θ

=
√

sinϮ θ(cosϮ φ+ sinϮ φ) + cosϮ θ

=
√

sinϮ θ + cosϮ θ
= ϭ.

Ϯϵ. The force on each chain is ϭϬϬlb.

ϯϭ. The force on each chain is ϱϬlb.

ϯϯ. θ = ϱ.ϳϭ◦; the weight is liŌed Ϭ.ϬϬϱ Ō (about ϭ/ϭϲth of an inch).

ϯϱ. θ = ϴϰ.Ϯϵ◦; the weight is liŌed ϵ Ō.

SecƟon ϭϬ.ϯ

ϭ. Scalar

ϯ. By considering the sign of the dot product of the two vectors. If
the dot product is posiƟve, the angle is acute; if the dot product is
negaƟve, the angle is obtuse.

ϱ. −ϮϮ

ϳ. ϯ

ϵ. not defined

ϭϭ. Answers will vary.

ϭϯ. θ = Ϭ.ϯϮϭϴ ≈ ϭϴ.ϰϯ◦

ϭϱ. θ = π/ϰ = ϰϱ◦

ϭϳ. Answers will vary; two possible answers are ⟨−ϳ, ϰ⟩ and ⟨ϭϰ,−ϴ⟩.

ϭϵ. Answers will vary; two possible answers are ⟨ϭ, Ϭ,−ϭ⟩ and
⟨ϰ, ϱ,−ϵ⟩.

Ϯϭ. proj v⃗ u⃗ = ⟨−ϭ/Ϯ, ϯ/Ϯ⟩.
Ϯϯ. proj v⃗ u⃗ = ⟨−ϭ/Ϯ,−ϭ/Ϯ⟩.
Ϯϱ. proj v⃗ u⃗ = ⟨ϭ, Ϯ, ϯ⟩.
Ϯϳ. u⃗ = ⟨−ϭ/Ϯ, ϯ/Ϯ⟩+ ⟨ϯ/Ϯ, ϭ/Ϯ⟩.
Ϯϵ. u⃗ = ⟨−ϭ/Ϯ,−ϭ/Ϯ⟩+ ⟨−ϱ/Ϯ, ϱ/Ϯ⟩.
ϯϭ. u⃗ = ⟨ϭ, Ϯ, ϯ⟩+ ⟨Ϭ, ϯ,−Ϯ⟩.

ϯϯ. ϭ.ϵϲlb

ϯϱ. ϭϰϭ.ϰϮŌ–lb

ϯϳ. ϱϬϬŌ–lb

ϯϵ. ϱϬϬŌ–lb

SecƟon ϭϬ.ϰ

ϭ. vector

ϯ. “Perpendicular” is one answer.

ϱ. Torque

ϳ. u⃗× v⃗ = ⟨ϭϭ, ϭ,−ϭϳ⟩
ϵ. u⃗× v⃗ = ⟨ϰϳ,−ϯϲ,−ϰϰ⟩

ϭϭ. u⃗× v⃗ = ⟨Ϭ, Ϭ, Ϭ⟩

ϭϯ. i⃗× k⃗ = −⃗j

ϭϱ. Answers will vary.

ϭϳ. ϱ

ϭϵ. Ϭ

Ϯϭ.
√
ϭϰ

Ϯϯ. ϯ

Ϯϱ. ϱ
√
Ϯ/Ϯ

Ϯϳ. ϭ

Ϯϵ. ϳ

ϯϭ. Ϯ

ϯϯ. ± ϭ√
ϲ
⟨ϭ, ϭ,−Ϯ⟩

ϯϱ. ⟨Ϭ,±ϭ, Ϭ⟩
ϯϳ. ϴϳ.ϱŌ–lb

ϯϵ. ϮϬϬ/ϯ ≈ ϲϲ.ϲϳŌ–lb

ϰϭ. With u⃗ = ⟨uϭ, uϮ, uϯ⟩ and v⃗ = ⟨vϭ, vϮ, vϯ⟩, we have

u⃗ · (⃗u× v⃗) = ⟨uϭ, uϮ, uϯ⟩ · (⟨uϮvϯ − uϯvϮ,−(uϭvϯ − uϯvϭ), uϭvϮ − uϮvϭ⟩)
= uϭ(uϮvϯ − uϯvϮ)− uϮ(uϭvϯ − uϯvϭ) + uϯ(uϭvϮ − uϮvϭ)
= Ϭ.

SecƟon ϭϬ.ϱ

ϭ. A point on the line and the direcƟon of the line.

ϯ. parallel, skew

ϱ. vector: ℓ(t) = ⟨Ϯ,−ϰ, ϭ⟩+ t ⟨ϵ, Ϯ, ϱ⟩
parametric: x = Ϯ+ ϵt, y = −ϰ+ Ϯt, z = ϭ+ ϱt
symmetric: (x− Ϯ)/ϵ = (y+ ϰ)/Ϯ = (z− ϭ)/ϱ

ϳ. Answers can vary: vector: ℓ(t) = ⟨Ϯ, ϭ, ϱ⟩+ t ⟨ϱ,−ϯ,−ϭ⟩
parametric: x = Ϯ+ ϱt, y = ϭ− ϯt, z = ϱ− t
symmetric: (x− Ϯ)/ϱ = −(y− ϭ)/ϯ = −(z− ϱ)

ϵ. Answers can vary; here the direcƟon is given by d⃗ϭ × d⃗Ϯ: vector:
ℓ(t) = ⟨Ϭ, ϭ, Ϯ⟩+ t ⟨−ϭϬ, ϰϯ, ϵ⟩
parametric: x = −ϭϬt, y = ϭ+ ϰϯt, z = Ϯ+ ϵt
symmetric: −x/ϭϬ = (y− ϭ)/ϰϯ = (z− Ϯ)/ϵ A.Ϯϭ



ϭϭ. Answers can vary; here the direcƟon is given by d⃗ϭ × d⃗Ϯ: vector:
ℓ(t) = ⟨ϳ, Ϯ,−ϭ⟩+ t ⟨ϭ,−ϭ, Ϯ⟩
parametric: x = ϳ+ t, y = Ϯ− t, z = −ϭ+ Ϯt
symmetric: x− ϳ = Ϯ− y = (z+ ϭ)/Ϯ

ϭϯ. vector: ℓ(t) = ⟨ϭ, ϭ⟩+ t ⟨Ϯ, ϯ⟩
parametric: x = ϭ+ Ϯt, y = ϭ+ ϯt
symmetric: (x− ϭ)/Ϯ = (y− ϭ)/ϯ

ϭϱ. parallel

ϭϳ. intersecƟng; ℓ⃗ϭ(ϯ) = ℓ⃗Ϯ(ϰ) = ⟨ϵ,−ϱ, ϭϯ⟩

ϭϵ. skew

Ϯϭ. same

Ϯϯ.
√
ϰϭ/ϯ

Ϯϱ. ϱ
√
Ϯ/Ϯ

Ϯϳ. ϯ/
√
Ϯ

Ϯϵ. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = Ϭ⃗, giving a distance of Ϭ.

ϯϭ. (a) The distance formula cannot be used because since d⃗ϭ and
d⃗Ϯ are parallel, c⃗ is Ϭ⃗ and we cannot divide by || Ϭ⃗ ||.

(b) Since d⃗ϭ and d⃗Ϯ are parallel,
#     ‰PϭPϮ lies in the plane formed

by the two lines. Thus #     ‰PϭPϮ × d⃗Ϯ is orthogonal to this
plane, and c⃗ = (

#     ‰PϭPϮ × d⃗Ϯ)× d⃗Ϯ is parallel to the plane,
but sƟll orthogonal to both d⃗ϭ and d⃗Ϯ. We desire the length
of the projecƟon of #     ‰PϭPϮ onto c⃗, which is what the formula
provides.

(c) Since the lines are parallel, one can measure the distance
between the lines at any locaƟon on either line (just as to
find the distance between straight railroad tracks, one can
use a measuring tape anywhere along the track, not just at
one specific place.) Let P = Pϭ and Q = PϮ as given by the
equaƟons of the lines, and apply the formula for distance
between a point and a line.

SecƟon ϭϬ.ϲ

ϭ. A point in the plane and a normal vector (i.e., a direcƟon
orthogonal to the plane).

ϯ. Answers will vary.

ϱ. Answers will vary.

ϳ. Standard form: ϯ(x− Ϯ)− (y− ϯ) + ϳ(z− ϰ) = Ϭ
general form: ϯx− y+ ϳz = ϯϭ

ϵ. Answers may vary;
Standard form: ϴ(x− ϭ) + ϰ(y− Ϯ)− ϰ(z− ϯ) = Ϭ
general form: ϴx+ ϰy− ϰz = ϰ

ϭϭ. Answers may vary;
Standard form: −ϳ(x− Ϯ) + Ϯ(y− ϭ) + (z− Ϯ) = Ϭ
general form: −ϳx+ Ϯy+ z = −ϭϬ

ϭϯ. Answers may vary;
Standard form: Ϯ(x− ϭ)− (y− ϭ) = Ϭ
general form: Ϯx− y = ϭ

ϭϱ. Answers may vary;
Standard form: Ϯ(x− Ϯ)− (y+ ϲ)− ϰ(z− ϭ) = Ϭ
general form: Ϯx− y− ϰz = ϲ

ϭϳ. Answers may vary;
Standard form: (x− ϱ) + (y− ϳ) + (z− ϯ) = Ϭ
general form: x+ y+ z = ϭϱ

ϭϵ. Answers may vary;
Standard form: ϯ(x+ ϰ) + ϴ(y− ϳ)− ϭϬ(z− Ϯ) = Ϭ
general form: ϯx+ ϴy− ϭϬz = Ϯϰ

Ϯϭ. Answers may vary:

ℓ =











x = ϭϰt
y = −ϭ− ϭϬt
z = Ϯ− ϴt

Ϯϯ. (−ϯ,−ϳ,−ϱ)

Ϯϱ. No point of intersecƟon; the plane and line are parallel.

Ϯϳ.
√

ϱ/ϳ

Ϯϵ. ϭ/
√
ϯ

ϯϭ. If P is any point in the plane, and Q is also in the plane, then # ‰PQ
lies parallel to the plane and is orthogonal to n⃗, the normal vector.
Thus n⃗ · # ‰PQ = Ϭ, giving the distance as Ϭ.

Chapter ϭϭ

SecƟon ϭϭ.ϭ

ϭ. parametric equaƟons

ϯ. displacement
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ϭϳ. || r⃗(t) || =
√

Ϯϱ cosϮ t+ ϵ sinϮ t.

ϭϵ. || r⃗(t) || =
√
cosϮ t+ tϮ + tϰ.

Ϯϭ. Answers may vary; three soluƟons are
r⃗(t) = ⟨ϯ sin t+ ϱ, ϯ cos t+ ϱ⟩,
r⃗(t) = ⟨−ϯ cos t+ ϱ, ϯ sin t+ ϱ⟩ and
r⃗(t) = ⟨ϯ cos t+ ϱ,−ϯ sin t+ ϱ⟩.

Ϯϯ. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨−ϯ cos t+ ϯ, Ϯ sin t− Ϯ⟩,
r⃗(t) = ⟨ϯ cos t+ ϯ,−Ϯ sin t− Ϯ⟩ and
r⃗(t) = ⟨ϯ sin t+ ϯ, Ϯ cos t− Ϯ⟩.

Ϯϱ. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨t,−ϭ/Ϯ(t− ϭ) + ϱ⟩,
r⃗(t) = ⟨t+ ϭ,−ϭ/Ϯt+ ϱ⟩,
r⃗(t) = ⟨−Ϯt+ ϭ, t+ ϱ⟩ and
r⃗(t) = ⟨Ϯt+ ϭ,−t+ ϱ⟩.

Ϯϳ. Answers may vary, though most direct soluƟon is
r⃗(t) = ⟨ϯ cos(ϰπt), ϯ sin(ϰπt), ϯt⟩.

Ϯϵ. ⟨ϭ, ϭ⟩
ϯϭ. ⟨ϭ, Ϯ, ϳ⟩

SecƟon ϭϭ.Ϯ

ϭ. component

ϯ. It is difficult to idenƟfy the points on the graphs of r⃗(t) and r⃗ ′(t)
that correspond to each other.

ϱ.
⟨

eϯ, Ϭ
⟩

ϳ. ⟨Ϯt, ϭ, Ϭ⟩
ϵ. (Ϭ,∞)

ϭϭ. r⃗ ′(t) =
⟨

−ϭ/tϮ, ϱ/(ϯt+ ϭ)Ϯ, secϮ t
⟩

ϭϯ. r⃗ ′(t) = ⟨Ϯt, ϭ⟩ · ⟨sin t, Ϯt+ ϱ⟩+
⟨

tϮ + ϭ, t− ϭ
⟩

· ⟨cos t, Ϯ⟩ =
(tϮ + ϭ) cos t+ Ϯt sin t+ ϰt+ ϯ

ϭϱ.
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r⃗ ′(1)
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x
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y

r⃗ ′(t) = ⟨Ϯt+ ϭ, Ϯt− ϭ⟩

ϭϳ.

.....

2

.

4

.
−2
.

2

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) =
⟨

Ϯt, ϯtϮ − ϭ
⟩

ϭϵ. ℓ(t) = ⟨Ϯ, Ϭ⟩+ t ⟨ϯ, ϭ⟩

Ϯϭ. ℓ(t) = ⟨−ϯ, Ϭ, π⟩+ t ⟨Ϭ,−ϯ, ϭ⟩

Ϯϯ. t = Ϯnπ, where n is an integer; so
t = . . .− ϰπ,−Ϯπ, Ϭ, Ϯπ, ϰπ, . . .

Ϯϱ. r⃗(t) is not smooth at t = ϯπ/ϰ+ nπ, where n is an integer

Ϯϳ. Both derivaƟves return
⟨

ϱtϰ, ϰtϯ − ϯtϮ, ϯtϮ
⟩

.

Ϯϵ. Both derivaƟves return
⟨

Ϯt− et − ϭ, cos t− ϯtϮ, (tϮ + Ϯt)et − (t− ϭ) cos t− sin t
⟩

.

ϯϭ.
⟨

tan−ϭ t, tan t
⟩

+ C⃗

ϯϯ. ⟨ϰ,−ϰ⟩

ϯϱ. r⃗(t) = ⟨ln |t+ ϭ|+ ϭ,− ln | cos t|+ Ϯ⟩

ϯϳ. r⃗(t) = ⟨− cos t+ ϭ, t− sin t, et − t− ϭ⟩

ϯϵ. ϭϬπ

ϰϭ.
√
Ϯ(ϭ− e−ϭ)

SecƟon ϭϭ.ϯ

ϭ. Velocity is a vector, indicaƟng an objects direcƟon of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.

ϯ. The average velocity is found by dividing the displacement by the
Ɵme traveled – it is a vector. The average speed is found by
dividing the distance traveled by the Ɵme traveled – it is a scalar.

ϱ. One example is traveling at a constant speed s in a circle, ending
at the starƟng posiƟon. Since the displacement is Ϭ⃗, the average
velocity is Ϭ⃗, hence || Ϭ⃗ || = Ϭ. But traveling at constant speed s
means the average speed is also s > Ϭ.

ϳ. v⃗(t) = ⟨Ϯ, ϱ, Ϭ⟩, a⃗(t) = ⟨Ϭ, Ϭ, Ϭ⟩

ϵ. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

A.Ϯϯ



ϭϭ. v⃗(t) = ⟨ϭ, cos t⟩, a⃗(t) = ⟨Ϭ,− sin t⟩
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ϭϯ. v⃗(t) = ⟨Ϯt+ ϭ,−Ϯt+ Ϯ⟩, a⃗(t) = ⟨Ϯ,−Ϯ⟩
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ϭϱ. || v⃗(t) || =
√
ϰtϮ + ϭ.

Min at t = Ϭ; Max at t = ±ϭ.

ϭϳ. || v⃗(t) || = ϱ.
Speed is constant, so there is no difference between min/max

ϭϵ. || v⃗(t) || = | sec t|
√
tanϮ t+ secϮ t.

min: t = Ϭ; max: t = π/ϰ

Ϯϭ. || v⃗(t) || = ϭϯ.
speed is constant, so there is no difference between min/max

Ϯϯ. || v⃗(t) || =
√

ϰtϮ + ϭ+ tϮ/(ϭ− tϮ).
min: t = Ϭ; max: there is no max; speed approaches∞ as
t → ±ϭ

Ϯϱ. (a) r⃗ϭ(ϭ) = ⟨ϭ, ϭ⟩; r⃗Ϯ(ϭ) = ⟨ϭ, ϭ⟩
(b) v⃗ϭ(ϭ) = ⟨ϭ, Ϯ⟩; || v⃗ϭ(ϭ) || =

√
ϱ; a⃗ϭ(ϭ) = ⟨Ϭ, Ϯ⟩

v⃗Ϯ(ϭ) = ⟨Ϯ, ϰ⟩; || v⃗Ϯ(ϭ) || = Ϯ
√
ϱ; a⃗Ϯ(ϭ) = ⟨Ϯ, ϭϮ⟩

Ϯϳ. (a) r⃗ϭ(Ϯ) = ⟨ϲ, ϰ⟩; r⃗Ϯ(Ϯ) = ⟨ϲ, ϰ⟩
(b) v⃗ϭ(Ϯ) = ⟨ϯ, Ϯ⟩; || v⃗ϭ(Ϯ) || =

√
ϭϯ; a⃗ϭ(Ϯ) = ⟨Ϭ, Ϭ⟩

v⃗Ϯ(Ϯ) = ⟨ϲ, ϰ⟩; || v⃗Ϯ(Ϯ) || = Ϯ
√
ϭϯ; a⃗Ϯ(Ϯ) = ⟨Ϭ, Ϭ⟩

Ϯϵ. v⃗(t) = ⟨Ϯt+ ϭ, ϯt+ Ϯ⟩, r⃗(t) =
⟨

tϮ + t+ ϱ, ϯtϮ/Ϯ+ Ϯt− Ϯ
⟩

ϯϭ. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨ϭ− cos t, sin t⟩

ϯϯ. Displacement: ⟨Ϭ, Ϭ, ϲπ⟩; distance traveled: Ϯ
√
ϭϯπ ≈ ϮϮ.ϲϱŌ;

average velocity: ⟨Ϭ, Ϭ, ϯ⟩; average speed:
√
ϭϯ ≈ ϯ.ϲϭŌ/s

ϯϱ. Displacement: ⟨Ϭ, Ϭ⟩; distance traveled: Ϯπ ≈ ϲ.ϮϴŌ; average
velocity: ⟨Ϭ, Ϭ⟩; average speed: ϭŌ/s

ϯϳ. At t-values of sin−ϭ(ϵ/ϯϬ)/(ϰπ) + n/Ϯ ≈ Ϭ.ϬϮϰ+ n/Ϯ seconds,
where n is an integer.

ϯϵ. (a) Holding the crossbow at an angle of Ϭ.Ϭϭϯ radians,
≈ Ϭ.ϳϰϱ◦ will hit the target Ϭ.ϰs later. (Another soluƟon
exists, with an angle of ϴϵ◦, landing ϭϴ.ϳϱs later, but this is
impracƟcal.)

(b) In the .ϰ seconds the arrow travels, a deer, traveling at
ϮϬmph or Ϯϵ.ϯϯŌ/s, can travel ϭϭ.ϳŌ. So she needs to lead
the deer by ϭϭ.ϳŌ.

ϰϭ. The posiƟon funcƟon is r⃗(t) =
⟨

ϮϮϬt,−ϭϲtϮ + ϭϬϬϬ
⟩

. The
y-component is Ϭ when t = ϳ.ϵ; r⃗(ϳ.ϵ) = ⟨ϭϳϯϵ.Ϯϱ, Ϭ⟩, meaning
the box will travel about ϭϳϰϬŌ horizontally before it lands.

SecƟon ϭϭ.ϰ

ϭ. ϭ

ϯ. T⃗(t) and N⃗(t).

ϱ. T⃗(t) =
⟨

ϰt√
ϮϬtϮ−ϰt+ϭ

, Ϯt−ϭ√
ϮϬtϮ−ϰt+ϭ

⟩

; T⃗(ϭ) =
⟨

ϰ/
√
ϭϳ, ϭ/

√
ϭϳ
⟩

ϳ. T⃗(t) = cos t sin t√
cosϮ t sinϮ t

⟨− cos t, sin t⟩. (Be careful; this cannot be
simplified as just ⟨− cos t, sin t⟩ as

√
cosϮ t sinϮ t ̸= cos t sin t, but

rather | cos t sin t|.) T⃗(π/ϰ) =
⟨

−
√
Ϯ/Ϯ,

√
Ϯ/Ϯ
⟩

ϵ. ℓ(t) = ⟨Ϯ, Ϭ⟩+ t
⟨

ϰ/
√
ϭϳ, ϭ/

√
ϭϳ
⟩

; in parametric form,

ℓ(t) =
{

x = Ϯ+ ϰt/
√
ϭϳ

y = t/
√
ϭϳ

ϭϭ. ℓ(t) =
⟨√

Ϯ/ϰ,
√
Ϯ/ϰ
⟩

+ t
⟨

−
√
Ϯ/Ϯ,

√
Ϯ/Ϯ
⟩

; in parametric form,

ℓ(t) =
{

x =
√
Ϯ/ϰ−

√
Ϯt/Ϯ

y =
√
Ϯ/ϰ+

√
Ϯt/Ϯ

ϭϯ. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

ϭϱ. T⃗(t) =
⟨

− sin t√
ϰ cosϮ t+sinϮ t

, Ϯ cos t√
ϰ cosϮ t+sinϮ t

⟩

;

N⃗(t) =
⟨

− Ϯ cos t√
ϰ cosϮ t+sinϮ t

,− sin t√
ϰ cosϮ t+sinϮ t

⟩

ϭϳ. (a) Be sure to show work
(b) N⃗(π/ϰ) =

⟨

−ϱ/
√
ϯϰ,−ϯ/

√
ϯϰ
⟩

ϭϵ. (a) Be sure to show work

(b) N⃗(Ϭ) =
⟨

− ϭ√
ϱ
, Ϯ√

ϱ

⟩

Ϯϭ. T⃗(t) = ϭ√
ϱ
⟨Ϯ, cos t,− sin t⟩; N⃗(t) = ⟨Ϭ,− sin t,− cos t⟩

Ϯϯ. T⃗(t) = ϭ√
aϮ+bϮ

⟨−a sin t, a cos t, b⟩; N⃗(t) = ⟨− cos t,− sin t, Ϭ⟩

Ϯϱ. aT = ϰt√
ϭ+ϰtϮ

and aN =
√

ϰ− ϭϲtϮ
ϭ+ϰtϮ

At t = Ϭ, aT = Ϭ and aN = Ϯ;
At t = ϭ, aT = ϰ/

√
ϱ and aN = Ϯ/

√
ϱ.

At t = Ϭ, all acceleraƟon comes in the form of changing the
direcƟon of velocity and not the speed; at t = ϭ, more
acceleraƟon comes in changing the speed than in changing
direcƟon.

Ϯϳ. aT = Ϭ and aN = Ϯ
At t = Ϭ, aT = Ϭ and aN = Ϯ;
At t = π/Ϯ, aT = Ϭ and aN = Ϯ.
The object moves at constant speed, so all acceleraƟon comes
from changing direcƟon, hence aT = Ϭ. a⃗(t) is always parallel to
N⃗(t), but twice as long, hence aN = Ϯ.

Ϯϵ. aT = Ϭ and aN = a
At t = Ϭ, aT = Ϭ and aN = a;
At t = π/Ϯ, aT = Ϭ and aN = a.
The object moves at constant speed, meaning that aT is always Ϭ.
The object “rises” along the z-axis at a constant rate, so all
acceleraƟon comes in the form of changing direcƟon circling the
z-axis. The greater the radius of this circle the greater the
acceleraƟon, hence aN = a.

SecƟon ϭϭ.ϱ

ϭ. Ɵme and/or distance

ϯ. Answers may include lines, circles, helixes

ϱ. κ

ϳ. s = ϯt, so r⃗(s) = ⟨Ϯs/ϯ, s/ϯ,−Ϯs/ϯ⟩
ϵ. s =

√
ϭϯt, so r⃗(s) =

⟨

ϯ cos(s/
√
ϭϯ), ϯ sin(s/

√
ϭϯ), Ϯs/

√
ϭϯ
⟩

A.Ϯϰ



ϭϭ. κ =
|ϲx|

(ϭ+(ϯxϮ−ϭ)Ϯ)ϯ/Ϯ
;

κ(Ϭ) = Ϭ, κ(ϭ/Ϯ) = ϭϵϮ
ϭϳ

√
ϭϳ

≈ Ϯ.ϳϰ.

ϭϯ. κ =
| cos x|

(ϭ+sinϮ x)ϯ/Ϯ ;

κ(Ϭ) = ϭ, κ(π/Ϯ) = Ϭ

ϭϱ. κ =
|Ϯ cos t cos(Ϯt)+ϰ sin t sin(Ϯt)|

(ϰ cosϮ(Ϯt)+sinϮ t)ϯ/Ϯ ;

κ(Ϭ) = ϭ/ϰ, κ(π/ϰ) = ϴ

ϭϳ. κ =
|ϲtϮ+Ϯ|

(ϰtϮ+(ϯtϮ−ϭ)Ϯ)ϯ/Ϯ ;

κ(Ϭ) = Ϯ, κ(ϱ) = ϭϵ
ϭϯϵϰ

√
ϭϯϵϰ

≈ Ϭ.ϬϬϬϰ

ϭϵ. κ = Ϭ;
κ(Ϭ) = Ϭ, κ(ϭ) = Ϭ

Ϯϭ. κ = ϯ
ϭϯ ;

κ(Ϭ) = ϯ/ϭϯ, κ(π/Ϯ) = ϯ/ϭϯ

Ϯϯ. maximized at x = ±
√

Ϯ
ϰ√ϱ

Ϯϱ. maximized at t = ϭ/ϰ

Ϯϳ. radius of curvature is ϱ
√
ϱ/ϰ.

Ϯϵ. radius of curvature is ϵ.

ϯϭ. xϮ + (y− ϭ/Ϯ)Ϯ = ϭ/ϰ, or c⃗(t) = ⟨ϭ/Ϯ cos t, ϭ/Ϯ sin t+ ϭ/Ϯ⟩

ϯϯ. xϮ + (y+ ϴ)Ϯ = ϴϭ, or c⃗(t) = ⟨ϵ cos t, ϵ sin t− ϴ⟩

Chapter ϭϮ
SecƟon ϭϮ.ϭ

ϭ. Answers will vary.

ϯ. topographical

ϱ. surface

ϳ. domain: RϮ

range: z ≥ Ϯ

ϵ. domain: RϮ

range: R

ϭϭ. domain: RϮ

range: Ϭ < z ≤ ϭ

ϭϯ. domain: {(x, y) | xϮ + yϮ ≤ ϵ}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius ϯ.
range: Ϭ ≤ z ≤ ϯ

ϭϱ. Level curves are lines y = (ϯ/Ϯ)x− c/Ϯ.
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ϭϳ. Level curves are parabolas x = yϮ + c.
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ϭϵ. Level curves are circles, centered at (ϭ/c,−ϭ/c) with radius
Ϯ/cϮ − ϭ. When c = Ϭ, the level curve is the line y = x.
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Ϯϭ. Level curves are ellipses of the form xϮ
cϮ + yϮ

cϮ/ϰ = ϭ, i.e., a = c
and b = c/Ϯ.
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Ϯϯ. domain: x+ Ϯy− ϰz ̸= Ϭ; the set of points in Rϯ NOT in the
domain form a plane through the origin.
range: R

Ϯϱ. domain: z ≥ xϮ − yϮ; the set of points in Rϯ above (and
including) the hyperbolic paraboloid z = xϮ − yϮ.
range: [Ϭ,∞)

Ϯϳ. The level surfaces are spheres, centered at the origin, with radius√
c.

Ϯϵ. The level surfaces are paraboloids of the form z = xϮ
c + yϮ

c ; the
larger c, the “wider” the paraboloid.

ϯϭ. The level curves for each surface are similar; for z =
√

xϮ + ϰyϮ

the level curves are ellipses of the form xϮ
cϮ + yϮ

cϮ/ϰ = ϭ, i.e., a = c
and b = c/Ϯ; whereas for z = xϮ + ϰyϮ the level curves are
ellipses of the form xϮ

c + yϮ
c/ϰ = ϭ, i.e., a =

√
c and b =

√
c/Ϯ.

The first set of ellipses are spaced evenly apart, meaning the
funcƟon grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the funcƟon
grows faster and faster as c increases.
The funcƟon z =

√

xϮ + ϰyϮ can be rewriƩen as zϮ = xϮ + ϰyϮ,
an ellipƟc cone; the funcƟon z = xϮ + ϰyϮ is a paraboloid, each
matching the descripƟon above.
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SecƟon ϭϮ.Ϯ

ϭ. Answers will vary.

ϯ. Answers will vary.
One possible answer: {(x, y)|xϮ + yϮ ≤ ϭ}

ϱ. Answers will vary.
One possible answer: {(x, y)|xϮ + yϮ < ϭ}

ϳ. (a) Answers will vary.
interior point: (ϭ, ϯ)
boundary point: (ϯ, ϯ)

(b) S is a closed set

(c) S is bounded

ϵ. (a) Answers will vary.
interior point: none
boundary point: (Ϭ,−ϭ)

(b) S is a closed set, consisƟng only of boundary points

(c) S is bounded

ϭϭ. (a) D =
{

(x, y) | ϵ− xϮ − yϮ ≥ Ϭ
}

.

(b) D is a closed set.

(c) D is bounded.

ϭϯ. (a) D =
{

(x, y) | y > xϮ
}

.

(b) D is an open set.

(c) D is unbounded.

ϭϱ. (a) Along y = Ϭ, the limit is ϭ.

(b) Along x = Ϭ, the limit is−ϭ.
Since the above limits are not equal, the limit does not exist.

ϭϳ. (a) Along y = mx, the limit is
mx(ϭ−m)

mϮx+ ϭ
.

(b) Along x = Ϭ, the limit is−ϭ.
Since the above limits are not equal, the limit does not exist.

ϭϵ. (a) Along y = Ϯ, the limit is:

lim
(x,y)→(ϭ,Ϯ)

x+ y− ϯ
xϮ − ϭ

= lim
x→ϭ

x− ϭ
xϮ − ϭ

= lim
x→ϭ

ϭ
x+ ϭ

= ϭ/Ϯ.

(b) Along y = x+ ϭ, the limit is:

lim
(x,y)→(ϭ,Ϯ)

x+ y− ϯ
xϮ − ϭ

= lim
x→ϭ

Ϯ(x− ϭ)
xϮ − ϭ

= lim
x→ϭ

Ϯ
x+ ϭ

= ϭ.

Since the limits along the lines y = Ϯ and y = x+ ϭ differ, the
overall limit does not exist.

SecƟon ϭϮ.ϯ

ϭ. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being mulƟplied by a
nonconstant funcƟon.

ϯ. fx

ϱ. fx = Ϯxy− ϭ, fy = xϮ + Ϯ
fx(ϭ, Ϯ) = ϯ, fy(ϭ, Ϯ) = ϯ

ϳ. fx = − sin x sin y, fy = cos x cos y
fx(π/ϯ, π/ϯ) = −ϯ/ϰ, fy(π/ϯ, π/ϯ) = ϭ/ϰ

ϵ. fx = Ϯxy+ ϲx, fy = xϮ + ϰ
fxx = Ϯy+ ϲ, fyy = Ϭ
fxy = Ϯx, fyx = Ϯx

ϭϭ. fx = ϭ/y, fy = −x/yϮ
fxx = Ϭ, fyy = Ϯx/yϯ
fxy = −ϭ/yϮ, fyx = −ϭ/yϮ

ϭϯ. fx = Ϯxex
Ϯ+yϮ , fy = Ϯyex

Ϯ+yϮ

fxx = Ϯex
Ϯ+yϮ + ϰxϮex

Ϯ+yϮ , fyy = Ϯex
Ϯ+yϮ + ϰyϮex

Ϯ+yϮ

fxy = ϰxyex
Ϯ+yϮ , fyx = ϰxyex

Ϯ+yϮ

ϭϱ. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

ϭϳ. fx = −ϱyϯ sin(ϱxyϯ), fy = −ϭϱxyϮ sin(ϱxyϯ)
fxx = −Ϯϱyϲ cos(ϱxyϯ),
fyy = −ϮϮϱxϮyϰ cos(ϱxyϯ)− ϯϬxy sin(ϱxyϯ)
fxy = −ϳϱxyϱ cos(ϱxyϯ)− ϭϱyϮ sin(ϱxyϯ),
fyx = −ϳϱxyϱ cos(ϱxyϯ)− ϭϱyϮ sin(ϱxyϯ)

ϭϵ. fx = ϮyϮ√
ϰxyϮ+ϭ

, fy = ϰxy√
ϰxyϮ+ϭ

fxx = − ϰyϰ√
ϰxyϮ+ϭ

ϯ , fyy = − ϭϲxϮyϮ√
ϰxyϮ+ϭ

ϯ + ϰx√
ϰxyϮ+ϭ

fxy = − ϴxyϯ√
ϰxyϮ+ϭ

ϯ + ϰy√
ϰxyϮ+ϭ

, fyx = − ϴxyϯ√
ϰxyϮ+ϭ

ϯ + ϰy√
ϰxyϮ+ϭ

Ϯϭ. fx = − Ϯx
(xϮ+yϮ+ϭ)Ϯ , fy = − Ϯy

(xϮ+yϮ+ϭ)Ϯ

fxx = ϴxϮ
(xϮ+yϮ+ϭ)ϯ − Ϯ

(xϮ+yϮ+ϭ)Ϯ , fyy =
ϴyϮ

(xϮ+yϮ+ϭ)ϯ − Ϯ
(xϮ+yϮ+ϭ)Ϯ

fxy = ϴxy
(xϮ+yϮ+ϭ)ϯ , fyx =

ϴxy
(xϮ+yϮ+ϭ)ϯ

Ϯϯ. fx = ϲx, fy = Ϭ
fxx = ϲ, fyy = Ϭ
fxy = Ϭ, fyx = Ϭ

Ϯϱ. fx = ϭ
ϰxy , fy = − ln x

ϰyϮ

fxx = − ϭ
ϰxϮy , fyy =

ln x
Ϯyϯ

fxy = − ϭ
ϰxyϮ , fyx = − ϭ

ϰxyϮ

Ϯϳ. f(x, y) = x sin y+ x+ C, where C is any constant.

Ϯϵ. f(x, y) = ϯxϮy− ϰxyϮ + Ϯy+ C, where C is any constant.

ϯϭ. fx = ϮxeϮy−ϯz, fy = ϮxϮeϮy−ϯz, fz = −ϯxϮeϮy−ϯz

fyz = −ϲxϮeϮy−ϯz, fzy = −ϲxϮeϮy−ϯz

ϯϯ. fx = ϯ
ϳyϮz , fy = − ϲx

ϳyϯz , fz = − ϯx
ϳyϮzϮ

fyz = ϲx
ϳyϯzϮ , fzy =

ϲx
ϳyϯzϮ

SecƟon ϭϮ.ϰ

ϭ. T

ϯ. T

ϱ. dz = (sin y+ Ϯx)dx+ (x cos y)dy

ϳ. dz = ϱdx− ϳdy

ϵ. dz = x√
xϮ+y

dx+ ϭ
Ϯ
√

xϮ+y
dy, with dx = −Ϭ.Ϭϱ and dy = .ϭ. At

(ϯ, ϳ), dz = ϯ/ϰ(−Ϭ.Ϭϱ) + ϭ/ϴ(.ϭ) = −Ϭ.ϬϮϱ, so
f(Ϯ.ϵϱ, ϳ.ϭ) ≈ −Ϭ.ϬϮϱ+ ϰ = ϯ.ϵϳϱ.

ϭϭ. dz = (Ϯxy− yϮ)dx+ (xϮ − Ϯxy)dy, with dx = Ϭ.Ϭϰ and
dy = Ϭ.Ϭϲ. At (Ϯ, ϯ), dz = ϯ(Ϭ.Ϭϰ) + (−ϴ)(Ϭ.Ϭϲ) = −Ϭ.ϯϲ, so
f(Ϯ.Ϭϰ, ϯ.Ϭϲ) ≈ −Ϭ.ϯϲ− ϲ = −ϲ.ϯϲ.

ϭϯ. The total differenƟal of volume is dV = ϰπdr+ πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensiƟve to changes in the radius.

ϭϱ. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx+ x secϮ θdθ.
With θ = ϴϱ◦ and x = ϯϬ, we have dℓ = ϭϭ.ϰϯdx+ ϯϵϰϵ.ϯϴdθ.
The measured length of the wall is much more sensiƟve to errors
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in θ than in x. While it can be difficult to compare sensiƟviƟes
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

ϭϳ. dw = Ϯxyzϯ dx+ xϮzϯ dy+ ϯxϮyzϮ dz

ϭϵ. dx = Ϭ.Ϭϱ, dy = −Ϭ.ϭ. dz = ϵ(.Ϭϱ) + (−Ϯ)(−Ϭ.ϭ) = Ϭ.ϲϱ. So
f(ϯ.Ϭϱ, Ϭ.ϵ) ≈ ϳ+ Ϭ.ϲϱ = ϳ.ϲϱ.

Ϯϭ. dx = Ϭ.ϱ, dy = Ϭ.ϭ, dz = −Ϭ.Ϯ.
dw = Ϯ(Ϭ.ϱ) + (−ϯ)(Ϭ.ϭ) + ϯ.ϳ(−Ϭ.Ϯ) = −Ϭ.Ϭϰ, so
f(Ϯ.ϱ, ϰ.ϭ, ϰ.ϴ) ≈ −ϭ− Ϭ.Ϭϰ = −ϭ.Ϭϰ.

SecƟon ϭϮ.ϱ

ϭ. Because the parametric equaƟons describe a level curve, z is
constant for all t. Therefore dz

dt = Ϭ.

ϯ. dx
dt , and

∂f
∂y

ϱ. F

ϳ. (a) dz
dt = ϯ(Ϯt) + ϰ(Ϯ) = ϲt+ ϴ.

(b) At t = ϭ, dz
dt = ϭϰ.

ϵ. (a) dz
dt = ϱ(−Ϯ sin t) + Ϯ(cos t) = −ϭϬ sin t+ Ϯ cos t

(b) At t = π/ϰ, dz
dt = −ϰ

√
Ϯ.

ϭϭ. (a)
dz
dt

= Ϯx(cos t) + ϰy(ϯ cos t).

(b) At t = π/ϰ, x =
√
Ϯ/Ϯ, y = ϯ

√
Ϯ/Ϯ, and dz

dt = ϭϵ.

ϭϯ. t = −ϰ/ϯ; this corresponds to a minimum

ϭϱ. t = tan−ϭ(ϭ/ϱ) + nπ, where n is an integer

ϭϳ. We find that
dz
dt

= ϯϴ cos t sin t.

Thus dz
dt = Ϭ when t = πn or πn+ π/Ϯ, where n is any integer.

ϭϵ. (a) ∂z
∂s = Ϯxy(ϭ) + xϮ(Ϯ) = Ϯxy+ ϮxϮ;
∂z
∂t = Ϯxy(−ϭ) + xϮ(ϰ) = −Ϯxy+ ϰxϮ

(b) With s = ϭ, t = Ϭ, x = ϭ and y = Ϯ. Thus ∂z
∂s = ϲ and

∂z
∂t = Ϭ

Ϯϭ. (a) ∂z
∂s = Ϯx(cos t) + Ϯy(sin t) = Ϯx cos t+ Ϯy sin t;
∂z
∂t = Ϯx(−s sin t) + Ϯy(s cos t) = −Ϯxs sin t+ Ϯys cos t

(b) With s = Ϯ, t = π/ϰ, x =
√
Ϯ and y =

√
Ϯ. Thus ∂z

∂s = ϰ
and ∂z

∂t = Ϭ

Ϯϯ. fx = Ϯx tan y, fy = xϮ secϮ y;
dy
dx

= − Ϯ tan y
x secϮ y

Ϯϱ. fx =
(x+ yϮ)(Ϯx)− (xϮ + y)(ϭ)

(x+ yϮ)Ϯ
,

fy =
(x+ yϮ)(ϭ)− (xϮ + y)(Ϯy)

(x+ yϮ)Ϯ
;

dy
dx

= −Ϯx(x+ yϮ)− (xϮ + y)
x+ yϮ − Ϯy(xϮ + y)

Ϯϳ. dz
dt = Ϯ(ϰ) + ϭ(−ϱ) = ϯ.

Ϯϵ. ∂z
∂s = −ϰ(ϱ) + ϵ(−Ϯ) = −ϯϴ,
∂z
∂t = −ϰ(ϳ) + ϵ(ϲ) = Ϯϲ.

SecƟon ϭϮ.ϲ

ϭ. A parƟal derivaƟve is essenƟally a special case of a direcƟonal
derivaƟve; it is the direcƟonal derivaƟve in the direcƟon of x or y,
i.e., ⟨ϭ, Ϭ⟩ or ⟨Ϭ, ϭ⟩.

ϯ. u⃗ = ⟨Ϭ, ϭ⟩
ϱ. maximal, or greatest

ϳ. ∇f =
⟨

−Ϯxy+ yϮ + y,−xϮ + Ϯxy+ x
⟩

ϵ. ∇f =
⟨

−Ϯx
(xϮ+yϮ+ϭ)Ϯ ,

−Ϯy
(xϮ+yϮ+ϭ)Ϯ

⟩

ϭϭ. ∇f = ⟨Ϯx− y− ϳ, ϰy− x⟩
ϭϯ. ∇f =

⟨

−Ϯxy+ yϮ + y,−xϮ + Ϯxy+ x
⟩

;∇f(Ϯ, ϭ) = ⟨−Ϯ, Ϯ⟩. Be
sure to change all direcƟons to unit vectors.

(a) Ϯ/ϱ (⃗u = ⟨ϯ/ϱ, ϰ/ϱ⟩)
(b) −Ϯ

√
ϱ (⃗u =

⟨

−ϭ/
√
ϱ,−Ϯ

√
ϱ
⟩

)

ϭϱ. ∇f =
⟨

−Ϯx
(xϮ+yϮ+ϭ)Ϯ ,

−Ϯy
(xϮ+yϮ+ϭ)Ϯ

⟩

;∇f(ϭ, ϭ) = ⟨−Ϯ/ϵ,−Ϯ/ϵ⟩. Be
sure to change all direcƟons to unit vectors.

(a) Ϭ (⃗u =
⟨

ϭ/
√
Ϯ,−ϭ/

√
Ϯ
⟩

)

(b) Ϯ
√
Ϯ/ϵ (⃗u =

⟨

−ϭ/
√
Ϯ,−ϭ/

√
Ϯ
⟩

)

ϭϳ. ∇f = ⟨Ϯx− y− ϳ, ϰy− x⟩;∇f(ϰ, ϭ) = ⟨Ϭ, Ϭ⟩.

(a) Ϭ

(b) Ϭ

ϭϵ. ∇f =
⟨

−Ϯxy+ yϮ + y,−xϮ + Ϯxy+ x
⟩

(a) ∇f(Ϯ, ϭ) = ⟨−Ϯ, Ϯ⟩
(b) || ∇f(Ϯ, ϭ) || = || ⟨−Ϯ, Ϯ⟩ || =

√
ϴ

(c) ⟨Ϯ,−Ϯ⟩
(d)

⟨

ϭ/
√
Ϯ, ϭ/

√
Ϯ
⟩

Ϯϭ. ∇f =
⟨

−Ϯx
(xϮ+yϮ+ϭ)Ϯ ,

−Ϯy
(xϮ+yϮ+ϭ)Ϯ

⟩

(a) ∇f(ϭ, ϭ) = ⟨−Ϯ/ϵ,−Ϯ/ϵ⟩.
(b) || ∇f(ϭ, ϭ) || = || ⟨−Ϯ/ϵ,−Ϯ/ϵ⟩ || = Ϯ

√
Ϯ/ϵ

(c) ⟨Ϯ/ϵ, Ϯ/ϵ⟩
(d)

⟨

ϭ/
√
Ϯ,−ϭ/

√
Ϯ
⟩

Ϯϯ. ∇f = ⟨Ϯx− y− ϳ, ϰy− x⟩

(a) ∇f(ϰ, ϭ) = ⟨Ϭ, Ϭ⟩
(b) Ϭ

(c) ⟨Ϭ, Ϭ⟩
(d) All direcƟons give a direcƟonal derivaƟve of Ϭ.

Ϯϱ. (a) ∇F(x, y, z) =
⟨

ϲxzϯ + ϰy, ϰx, ϵxϮzϮ − ϲz
⟩

(b) ϭϭϯ/
√
ϯ

Ϯϳ. (a) ∇F(x, y, z) =
⟨

ϮxyϮ, Ϯy(xϮ − zϮ),−ϮyϮz
⟩

(b) Ϭ

SecƟon ϭϮ.ϳ

ϭ. Answers will vary. The displacement of the vector is one unit in
the x-direcƟon and ϯ units in the z-direcƟon, with no change in y.
Thus along a line parallel to v⃗, the change in z is ϯ Ɵmes the
change in x – i.e., a “slope” of ϯ. Specifically, the line in the x-z
plane parallel to z has a slope of ϯ.

ϯ. T

ϱ. (a) ℓx(t) =







x = Ϯ+ t
y = ϯ
z = −ϰϴ− ϭϮt

(b) ℓy(t) =







x = Ϯ
y = ϯ+ t
z = −ϰϴ− ϰϬt

A.Ϯϳ



(c) ℓ⃗u (t) =







x = Ϯ+ t/
√
ϭϬ

y = ϯ+ ϯt/
√
ϭϬ

z = −ϰϴ− ϲϲ
√

Ϯ/ϱt

ϳ. (a) ℓx(t) =







x = ϰ+ t
y = Ϯ
z = Ϯ+ ϯt

(b) ℓy(t) =







x = ϰ
y = Ϯ+ t
z = Ϯ− ϱt

(c) ℓ⃗u (t) =







x = ϰ+ t/
√
Ϯ

y = Ϯ+ t/
√
Ϯ

z = Ϯ−
√
Ϯt

ϵ. ℓ⃗n(t) =







x = Ϯ− ϭϮt
y = ϯ− ϰϬt
z = −ϰϴ− t

ϭϭ. ℓ⃗n(t) =







x = ϰ+ ϯt
y = Ϯ− ϱt
z = Ϯ− t

ϭϯ. (ϭ.ϰϮϱ, ϭ.Ϭϴϱ,−ϰϴ.Ϭϳϴ), (Ϯ.ϱϳϱ, ϰ.ϵϭϱ,−ϰϳ.ϵϱϮ)

ϭϱ. (ϱ.Ϭϭϰ, Ϭ.ϯϭ, ϭ.ϲϲϮ) and (Ϯ.ϵϴϲ, ϯ.ϲϵϬ, Ϯ.ϯϯϴ)

ϭϳ. −ϭϮ(x− Ϯ)− ϰϬ(y− ϯ)− (z+ ϰϴ) = Ϭ

ϭϵ. ϯ(x− ϰ)− ϱ(y− Ϯ)− (z− Ϯ) = Ϭ (Note that this tangent plane
is the same as the original funcƟon, a plane.)

Ϯϭ. ∇F = ⟨x/ϰ, y/Ϯ, z/ϴ⟩; at P,∇F =
⟨

ϭ/ϰ,
√
Ϯ/Ϯ,

√
ϲ/ϴ
⟩

(a) ℓ⃗n(t) =







x = ϭ+ t/ϰ
y =

√
Ϯ+

√
Ϯt/Ϯ

z =
√
ϲ+

√
ϲt/ϴ

(b) ϭ
ϰ (x− ϭ) +

√
Ϯ

Ϯ (y−
√
Ϯ) +

√
ϲ

ϴ (z−
√
ϲ) = Ϭ.

Ϯϯ. ∇F =
⟨

yϮ − zϮ, Ϯxy,−Ϯxz
⟩

; at P,∇F = ⟨Ϭ, ϰ, ϰ⟩

(a) ℓ⃗n(t) =







x = Ϯ
y = ϭ+ ϰt
z = −ϭ+ ϰt

(b) ϰ(y− ϭ) + ϰ(z+ ϭ) = Ϭ.

SecƟon ϭϮ.ϴ

ϭ. F; it is the “other way around.”

ϯ. T

ϱ. One criƟcal point at (−ϰ, Ϯ); fxx = ϭ and D = ϰ, so this point
corresponds to a relaƟve minimum.

ϳ. One criƟcal point at (ϲ,−ϯ); D = −ϰ, so this point corresponds
to a saddle point.

ϵ. Two criƟcal points: at (Ϭ,−ϭ); fxx = Ϯ and D = −ϭϮ, so this point
corresponds to a saddle point;
at (Ϭ, ϭ), fxx = Ϯ and D = ϭϮ, so this corresponds to a relaƟve
minimum.

ϭϭ. One criƟcal point at (Ϭ, Ϭ). D = −ϭϮxϮyϮ, so at (Ϭ, Ϭ), D = Ϭ and
the test is inconclusive. (Some elementary thought shows that it
is the absolute minimum.)

ϭϯ. One criƟcal point: fx = Ϭ when x = ϯ; fy = Ϭ when y = Ϭ, so one
criƟcal point at (ϯ, Ϭ), which is a relaƟve maximum, where
fxx = yϮ−ϭϲ

(ϭϲ−(x−ϯ)Ϯ−yϮ)ϯ/Ϯ and D = ϭϲ
(ϭϲ−(x−ϯ)Ϯ−yϮ)Ϯ .

Both fx and fy are undefined along the circle (x− ϯ)Ϯ + yϮ = ϭϲ;
at any point along this curve, f(x, y) = Ϭ, the absolute minimum
of the funcƟon.

ϭϱ. The triangle is bound by the lines y = −ϭ, y = Ϯx+ ϭ and
y = −Ϯx+ ϭ.
Along y = −ϭ, there is a criƟcal point at (Ϭ,−ϭ).
Along y = Ϯx+ ϭ, there is a criƟcal point at (−ϯ/ϱ,−ϭ/ϱ).
Along y = −Ϯx+ ϭ, there is a criƟcal point at (ϯ/ϱ,−ϭ/ϱ).
The funcƟon f has one criƟcal point, irrespecƟve of the constraint,
at (Ϭ,−ϭ/Ϯ).
Checking the value of f at these four points, along with the three
verƟces of the triangle, we find the absolute maximum is at
(Ϭ, ϭ, ϯ) and the absolute minimum is at (Ϭ,−ϭ/Ϯ, ϯ/ϰ).

ϭϳ. The region has no “corners” or “verƟces,” just a smooth edge.
To find criƟcal points along the circle xϮ + yϮ = ϰ, we solve for yϮ:
yϮ = ϰ− xϮ. We can go further and state y = ±

√
ϰ− xϮ.

We can rewrite f as
f(x) = xϮ + Ϯx+ (ϰ− xϮ) +

√
ϰ− xϮ = Ϯx+ ϰ+

√
ϰ− xϮ. (We

will return and use−
√
ϰ− xϮ later.) Solving f ′(x) = Ϭ, we get

x =
√
Ϯ ⇒ y =

√
Ϯ. f ′(x) is also undefined at x = ±Ϯ, where

y = Ϭ.
Using y = −

√
ϰ− xϮ, we rewrite f(x, y) as

f(x) = Ϯx+ ϰ−
√
ϰ− xϮ. Solving f ′(x) = Ϭ, we get

x = −
√
Ϯ, y = −

√
Ϯ.

The funcƟon f itself has a criƟcal point at (−ϭ,−ϭ).
Checking the value of f at (−ϭ,−ϭ), (

√
Ϯ,
√
Ϯ), (−

√
Ϯ,−

√
Ϯ),

(Ϯ, Ϭ) and (−Ϯ, Ϭ), we find the absolute maximum is at (Ϯ, Ϭ, ϴ)
and the absolute minimum is at (−ϭ,−ϭ,−Ϯ).

Chapter ϭϯ
SecƟon ϭϯ.ϭ

ϭ. C(y), meaning that instead of being just a constant, like the
number ϱ, it is a funcƟon of y, which acts like a constant when
taking derivaƟves with respect to x.

ϯ. curve to curve, then from point to point

ϱ. (a) ϭϴxϮ + ϰϮx− ϭϭϳ

(b) −ϭϬϴ

ϳ. (a) xϰ/Ϯ− xϮ + Ϯx− ϯ/Ϯ

(b) Ϯϯ/ϭϱ

ϵ. (a) sinϮ y

(b) π/Ϯ

ϭϭ.
∫ ϰ

ϭ

∫ ϭ

−Ϯ
dy dx and

∫ ϭ

−Ϯ

∫ ϰ

ϭ
dx dy.

area of R = ϵuϮ

ϭϯ.
∫ ϰ

Ϯ

∫ ϳ−x

x−ϭ
dy dx. The order dx dy needs two iterated integrals as

x is bounded above by two different funcƟons. This gives:
∫ ϯ

ϭ

∫ y+ϭ

Ϯ
dx dy+

∫ ϱ

ϯ

∫ ϳ−y

Ϯ
dx dy.

area of R = ϰuϮ

ϭϱ.
∫ ϭ

Ϭ

∫

√
x

xϰ
dy dx and

∫ ϭ

Ϭ

∫ ϰ√y

yϮ
dx dy

area of R = ϳ/ϭϱuϮ

ϭϳ.

.....

R

.

y = 4 − x2

. −2. 2.

2

.

4

.
x

.

y

A.Ϯϴ



area of R =

∫ ϰ

Ϭ

∫

√
ϰ−y

−√
ϰ−y

dx dy

ϭϵ.

.....

R

.

x2/16 + y2/4 = 1

.

2

.

4

.
−2
.

2

.

x

.

y

area of R =

∫ ϰ

Ϭ

∫

√
ϰ−xϮ/ϰ

−
√

ϰ−xϮ/ϰ
dy dx

Ϯϭ.

.....

R

.

y = xϮ

.

y =
x+

Ϯ

.
−ϭ
.

ϭ
.

Ϯ
.

ϭ

.

Ϯ

.

ϯ

.

ϰ

. x.

y

area of R =

∫ Ϯ

−ϭ

∫ x+Ϯ

xϮ
dy dx

SecƟon ϭϯ.Ϯ

ϭ. volume

ϯ. The double integral gives the signed volume under the surface.
Since the surface is always posiƟve, it is always above the x-y
plane and hence produces only “posiƟve” volume.

ϱ. ϲ;
∫ ϭ

−ϭ

∫ Ϯ

ϭ

(

x
y
+ ϯ
)

dy dx

ϳ. ϭϭϮ/ϯ;
∫ Ϯ

Ϭ

∫ ϰ−Ϯy

Ϭ

(

ϯxϮ − y+ Ϯ
)

dx dy

ϵ. ϭϲ/ϱ;
∫ ϭ

−ϭ

∫ ϭ−xϮ

Ϭ
(x+ y+ Ϯ) dy dx

ϭϭ. (a)

.....

R

.

y =
√

x

.

y = x2

. 1.

1

. x.

y

(b)
∫ ϭ

Ϭ

∫

√
x

xϮ
xϮy dy dx =

∫ ϭ

Ϭ

∫

√
y

yϮ
xϮy dx dy.

(c) ϯ
ϱϲ

ϭϯ. (a)

.....

R

.

−1

.

1

.

1

. −1.

x

.

y

(b)
∫ ϭ

−ϭ

∫ ϭ

−ϭ
xϮ − yϮ dy dx =

∫ ϭ

−ϭ

∫ ϭ

−ϭ
xϮ − yϮ dx dy.

(c) Ϭ

ϭϱ. (a)

.....

R

.

ϯx
+
Ϯy
=
6

. ϭ. Ϯ.

ϭ

.

Ϯ

.

ϯ

.
x

.

y

(b)

(c)
∫ Ϯ

Ϭ

∫ ϯ−ϯ/Ϯx

Ϭ

(

ϲ− ϯx− Ϯy
)

dy dx =
∫ ϯ

Ϭ

∫ Ϯ−Ϯ/ϯy

Ϭ

(

ϲ− ϯx− Ϯy
)

dx dy.

(d) ϲ

ϭϳ. (a)

.....

R

.

−3

.

3

. −3.

3

.

x

.

y

(b)
∫ ϯ

−ϯ

∫

√
ϵ−xϮ

Ϭ

(

xϯy− x
)

dy dx =

∫ ϯ

Ϭ

∫

√
ϵ−yϮ

−
√

ϵ−yϮ

(

xϯy− x
)

dx dy.

(c) Ϭ

ϭϵ. IntegraƟng ex
Ϯ
with respect to x is not possible in terms of

elementary funcƟons.
∫ Ϯ

Ϭ

∫ Ϯx

Ϭ
ex

Ϯ
dy dx = eϰ − ϭ.

Ϯϭ. IntegraƟng
∫ ϭ

y

Ϯy
xϮ + yϮ

dx gives tan−ϭ(ϭ/y)− π/ϰ; integraƟng

tan−ϭ(ϭ/y) is hard.
∫ ϭ

Ϭ

∫ x

Ϭ

Ϯy
xϮ + yϮ

dy dx = ln Ϯ.

Ϯϯ. average value of f = ϲ/Ϯ = ϯ

Ϯϱ. average value of f = ϭϭϮ/ϯ
ϰ = Ϯϴ/ϯ

SecƟon ϭϯ.ϯ

ϭ. f
(

r cos θ, r sin θ
)

, r dr dθ
A.Ϯϵ



ϯ.
∫ Ϯπ

Ϭ

∫ ϭ

Ϭ

(

ϯr cos θ − r sin θ + ϰ
)

r dr dθ = ϰπ

ϱ.
∫ π

Ϭ

∫ ϯ cos θ

cos θ

(

ϴ− r sin θ
)

r dr dθ = ϭϲπ

ϳ.
∫ Ϯπ

Ϭ

∫ Ϯ

ϭ

(

ln(rϮ)
)

r dr dθ = Ϯπ
(

ln ϭϲ− ϯ/Ϯ
)

ϵ.
∫ π/Ϯ

−π/Ϯ

∫ ϲ

Ϭ

(

rϮ cosϮ θ − rϮ sinϮ θ
)

r dr dθ =

∫ π/Ϯ

−π/Ϯ

∫ ϲ

Ϭ

(

rϮ cos(Ϯθ)
)

r dr dθ = Ϭ

ϭϭ.
∫ π/Ϯ

−π/Ϯ

∫ ϱ

Ϭ

(

rϮ
)

dr dθ = ϭϮϱπ/ϯ

ϭϯ.
∫ π/ϰ

Ϭ

∫

√
ϴ

Ϭ

(

r cos θ + r sin θ
)

r dr dθ = ϭϲ
√
Ϯ/ϯ

ϭϱ. (a) This is impossible to integrate with rectangular coordinates
as e−(xϮ+yϮ) does not have an anƟderivaƟve in terms of
elementary funcƟons.

(b)
∫ Ϯπ

Ϭ

∫ a

Ϭ
rer

Ϯ
dr dθ = π(ϭ− e−aϮ ).

(c) lim
a→∞

π(ϭ− e−aϮ ) = π. This implies that there is a finite

volume under the surface e−(xϮ+yϮ) over the enƟre x-y
plane.

SecƟon ϭϯ.ϰ

ϭ. Because they are scalar mulƟples of each other.

ϯ. “liƩle masses”

ϱ. Mx measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direcƟon.

ϳ. x = ϱ.Ϯϱ

ϵ. (x, y) = (Ϭ, ϯ)

ϭϭ. M = ϭϱϬgm;

ϭϯ. M = Ϯlb

ϭϱ. M = ϭϲπ ≈ ϱϬ.Ϯϳkg

ϭϳ. M = ϱϰπ ≈ ϭϲϵ.ϲϱlb

ϭϵ. M = ϭϱϬgm;My = ϲϬϬ;Mx = −ϳϱ; (x, y) = (ϰ,−Ϭ.ϱ)

Ϯϭ. M = Ϯlb;My = Ϭ;Mx = Ϯ/ϯ; (x, y) = (Ϭ, ϭ/ϯ)

Ϯϯ. M = ϭϲπ ≈ ϱϬ.Ϯϳkg;My = ϰπ;Mx = ϰπ; (x, y) = (ϭ/ϰ, ϭ/ϰ)

Ϯϱ. M = ϱϰπ ≈ ϭϲϵ.ϲϱlb;My = Ϭ;Mx = ϱϬϰ; (x, y) = (Ϭ, Ϯ.ϵϳ)

Ϯϳ. Ix = ϲϰ/ϯ; Iy = ϲϰ/ϯ; IO = ϭϮϴ/ϯ

Ϯϵ. Ix = ϭϲ/ϯ; Iy = ϲϰ/ϯ; IO = ϴϬ/ϯ

SecƟon ϭϯ.ϱ

ϭ. arc length

ϯ. surface areas

ϱ. IntuiƟvely, adding h to f only shiŌs f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
AnalyƟcally, fx = gx and fy = gy; therefore, the surface area of
each is computed with idenƟcal double integrals.

ϳ. SA =

∫ Ϯπ

Ϭ

∫ Ϯπ

Ϭ

√

ϭ+ cosϮ x cosϮ y+ sinϮ x sinϮ y dx dy

ϵ. SA =

∫ ϭ

−ϭ

∫ ϭ

−ϭ

√

ϭ+ ϰxϮ + ϰyϮ dx dy

ϭϭ. SA =

∫ ϯ

Ϭ

∫ ϭ

−ϭ

√
ϭ+ ϵ+ ϰϵ dx dy = ϲ

√
ϱϵ ≈ ϰϲ.Ϭϵ

ϭϯ. This is easier in polar:

SA =

∫ Ϯπ

Ϭ

∫ ϰ

Ϭ
r
√

ϭ+ ϰrϮ cosϮ t+ ϰrϮ sinϮ t dr dθ

=

∫ Ϯπ

Ϭ

∫ ϰ

Ϭ
r
√

ϭ+ ϰrϮ dr dθ

=
π

ϲ
(

ϲϱ
√
ϲϱ− ϭ

)

≈ Ϯϳϯ.ϴϳ

ϭϱ.

SA =

∫ Ϯ

Ϭ

∫ Ϯx

Ϭ

√

ϭ+ ϭ+ ϰxϮ dy dx

=

∫ Ϯ

Ϭ

(

Ϯx
√

Ϯ+ ϰxϮ
)

dx

=
Ϯϲ
ϯ

√
Ϯ ≈ ϭϮ.Ϯϲ

ϭϳ. This is easier in polar:

SA =

∫ Ϯπ

Ϭ

∫ ϱ

Ϭ
r

√

ϭ+
ϰrϮ cosϮ t+ ϰrϮ sinϮ t
rϮ sinϮ t+ rϮ cosϮ t

dr dθ

=

∫ Ϯπ

Ϭ

∫ ϱ

Ϭ
r
√
ϱ dr dθ

= Ϯϱπ
√
ϱ ≈ ϭϳϱ.ϲϮ

ϭϵ. IntegraƟng in polar is easiest considering R:

SA =

∫ Ϯπ

Ϭ

∫ ϭ

Ϭ
r
√

ϭ+ cϮ + dϮ dr dθ

=

∫ Ϯπ

Ϭ

ϭ
Ϯ

(

√

ϭ+ cϮ + dϮ
)

dy

= π
√

ϭ+ cϮ + dϮ.

The value of h does not maƩer as it only shiŌs the plane verƟcally
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

SecƟon ϭϯ.ϲ

ϭ. surface to surface, curve to curve and point to point

ϯ. Answers can vary. From this secƟon we used triple integraƟon to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

ϱ. V =
∫ ϭ
−ϭ
∫ ϭ
−ϭ
(

ϴ− xϮ − yϮ − (Ϯx+ y)
)

dx dy = ϴϴ/ϯ

ϳ. V =
∫ π
Ϭ
∫ x
Ϭ
(

cos x sin y+ Ϯ− sin x cos y
)

dy dx = πϮ − π ≈ ϲ.ϳϮϴ

ϵ. dz dy dx:
∫ ϯ

Ϭ

∫ ϭ−x/ϯ

Ϭ

∫ Ϯ−Ϯx/ϯ−Ϯy

Ϭ
dz dy dx

dz dx dy:
∫ ϭ

Ϭ

∫ ϯ−ϯy

Ϭ

∫ Ϯ−Ϯx/ϯ−Ϯy

Ϭ
dz dx dy

dy dz dx:
∫ ϯ

Ϭ

∫ Ϯ−Ϯx/ϯ

Ϭ

∫ ϭ−x/ϯ−z/Ϯ

Ϭ
dy dz dx

dy dx dz:
∫ Ϯ

Ϭ

∫ ϯ−ϯz/Ϯ

Ϭ

∫ ϭ−x/ϯ−z/Ϯ

Ϭ
dy dx dz

dx dz dy:
∫ ϭ

Ϭ

∫ Ϯ−Ϯy

Ϭ

∫ ϯ−ϯy−ϯz/Ϯ

Ϭ
dx dz dy

dx dy dz:
∫ Ϯ

Ϭ

∫ ϭ−z/Ϯ

Ϭ

∫ ϯ−ϯy−ϯz/Ϯ

Ϭ
dx dy dz

V =

∫ ϯ

Ϭ

∫ ϭ−x/ϯ

Ϭ

∫ Ϯ−Ϯx/ϯ−Ϯy

Ϭ
dz dy dx = ϭ.

A.ϯϬ



ϭϭ. dz dy dx:
∫ Ϯ

Ϭ

∫ Ϭ

−Ϯ

∫ −y

yϮ/Ϯ
dz dy dx

dz dx dy:
∫ Ϭ

−Ϯ

∫ Ϯ

Ϭ

∫ −y

yϮ/Ϯ
dz dx dy

dy dz dx:
∫ Ϯ

Ϭ

∫ Ϯ

Ϭ

∫ −z

−
√

Ϯz
dy dz dx

dy dx dz:
∫ Ϯ

Ϭ

∫ Ϯ

Ϭ

∫ −z

−
√

Ϯz
dy dx dz

dx dz dy:
∫ Ϭ

−Ϯ

∫ −y

yϮ/Ϯ

∫ Ϯ

Ϭ
dx dz dy

dx dy dz:
∫ Ϯ

Ϭ

∫ −z

−
√

Ϯz

∫ Ϯ

Ϭ
dx dy dz

V =

∫ Ϯ

Ϭ

∫ Ϯ

Ϭ

∫ −z

−
√

Ϯz
dy dz dx = ϰ/ϯ.

ϭϯ. dz dy dx:
∫ Ϯ

Ϭ

∫ ϭ

ϭ−x/Ϯ

∫ Ϯx+ϰy−ϰ

Ϭ
dz dy dx

dz dx dy:
∫ ϭ

Ϭ

∫ Ϯ

Ϯ−Ϯy

∫ Ϯx+ϰy−ϰ

Ϭ
dz dx dy

dy dz dx:
∫ Ϯ

Ϭ

∫ Ϯx

Ϭ

∫ ϭ

z/ϰ−x/Ϯ+ϭ
dy dz dx

dy dx dz:
∫ ϰ

Ϭ

∫ Ϯ

z/Ϯ

∫ ϭ

z/ϰ−x/Ϯ+ϭ
dy dx dz

dx dz dy:
∫ ϭ

Ϭ

∫ ϰy

Ϭ

∫ Ϯ

z/Ϯ−Ϯy+Ϯ
dx dz dy

dx dy dz:
∫ ϰ

Ϭ

∫ ϭ

z/ϰ

∫ Ϯ

z/Ϯ−Ϯy+Ϯ
dx dy dz

V =

∫ ϰ

Ϭ

∫ ϭ

z/ϰ

∫ Ϯ

Ϯy−z/Ϯ−Ϯ
dx dy dz = ϰ/ϯ.

ϭϱ. dz dy dx:
∫ ϭ

Ϭ

∫ ϭ−xϮ

Ϭ

∫

√
ϭ−y

Ϭ
dz dy dx

dz dx dy:
∫ ϭ

Ϭ

∫

√
ϭ−y

Ϭ

∫

√
ϭ−y

Ϭ
dz dx dy

dy dz dx:
∫ ϭ

Ϭ

∫ x

Ϭ

∫ ϭ−xϮ

Ϭ
dy dz dx+

∫ ϭ

Ϭ

∫ ϭ

x

∫ ϭ−zϮ

Ϭ
dy dz dx

dy dx dz:
∫ ϭ

Ϭ

∫ z

Ϭ

∫ ϭ−zϮ

Ϭ
dy dx dz+

∫ ϭ

Ϭ

∫ ϭ

z

∫ ϭ−xϮ

Ϭ
dy dx dz

dx dz dy:
∫ ϭ

Ϭ

∫

√
ϭ−y

Ϭ

∫

√
ϭ−y

Ϭ
dx dz dy

dx dy dz:
∫ ϭ

Ϭ

∫ ϭ−zϮ

Ϭ

∫

√
ϭ−y

Ϭ
dx dy dz

Answers will vary. Neither order is parƟcularly “hard.” The order
dz dy dx requires integraƟng a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

ϭϳ. ϴ

ϭϵ. π

Ϯϭ. M = ϭϬ,Myz = ϭϱ/Ϯ,Mxz = ϱ/Ϯ,Mxy = ϱ;
(x, y, z) = (ϯ/ϰ, ϭ/ϰ, ϭ/Ϯ)

Ϯϯ. M = ϭϲ/ϱ,Myz = ϭϲ/ϯ,Mxz = ϭϬϰ/ϰϱ,Mxy = ϯϮ/ϵ;
(x, y, z) = (ϱ/ϯ, ϭϯ/ϭϴ, ϭϬ/ϵ) ≈ (ϭ.ϲϳ, Ϭ.ϳϮ, ϭ.ϭϭ)

A.ϯϭ





Index

!, ϯϵϳ
Absolute Convergence Theorem, ϰϰϴ
absolute maximum, ϭϮϯ
absolute minimum, ϭϮϯ
Absolute Value Theorem, ϰϬϭ
acceleraƟon, ϳϯ, ϲϰϮ
AlternaƟng Harmonic Series, ϰϭϵ, ϰϰϲ, ϰϱϵ
AlternaƟng Series Test

for series, ϰϰϮ
aN, ϲϲϬ, ϲϳϬ
analyƟc funcƟon, ϰϴϬ
angle of elevaƟon, ϲϰϳ
anƟderivaƟve, ϭϴϵ
arc length, ϯϳϬ, ϱϭϵ, ϱϰϱ, ϲϯϵ, ϲϲϰ
arc length parameter, ϲϲϰ, ϲϲϲ
asymptote

horizontal, ϰϵ
verƟcal, ϰϳ

aT, ϲϲϬ, ϲϳϬ
average rate of change, ϲϮϳ
average value of a funcƟon, ϳϲϵ
average value of funcƟon, Ϯϯϲ

Binomial Series, ϰϴϬ
BisecƟon Method, ϰϮ
boundary point, ϲϴϮ
bounded sequence, ϰϬϰ

convergence, ϰϬϱ
bounded set, ϲϴϮ

center of mass, ϳϴϯ–ϳϴϱ, ϳϴϳ, ϴϭϰ
Chain Rule, ϵϳ

mulƟvariable, ϳϭϯ, ϳϭϲ
notaƟon, ϭϬϯ

circle of curvature, ϲϲϵ
closed, ϲϴϮ
closed disk, ϲϴϮ
concave down, ϭϰϰ
concave up, ϭϰϰ
concavity, ϭϰϰ, ϱϭϲ

inflecƟon point, ϭϰϱ
test for, ϭϰϱ

conic secƟons, ϰϵϬ
degenerate, ϰϵϬ
ellipse, ϰϵϯ
hyperbola, ϰϵϲ
parabola, ϰϵϬ

Constant MulƟple Rule
of derivaƟves, ϴϬ
of integraƟon, ϭϵϯ
of series, ϰϭϵ

constrained opƟmizaƟon, ϳϰϱ
conƟnuous funcƟon, ϯϳ, ϲϴϴ

properƟes, ϰϬ, ϲϴϵ
vector–valued, ϲϯϬ

contour lines, ϲϳϲ
convergence

absolute, ϰϰϲ, ϰϰϴ
AlternaƟng Series Test, ϰϰϮ
condiƟonal, ϰϰϲ
Direct Comparison Test, ϰϮϵ

for integraƟon, ϯϯϵ
Integral Test, ϰϮϲ
interval of, ϰϱϰ
Limit Comparison Test, ϰϯϬ

for integraƟon, ϯϰϭ
nth–term test, ϰϮϮ
of geometric series, ϰϭϰ
of improper int., ϯϯϰ, ϯϯϵ, ϯϰϭ
of monotonic sequences, ϰϬϳ
of p-series, ϰϭϱ
of power series, ϰϱϯ
of sequence, ϰϬϬ, ϰϬϱ
of series, ϰϭϭ
radius of, ϰϱϰ
RaƟo Comparison Test, ϰϯϱ
Root Comparison Test, ϰϯϴ

criƟcal number, ϭϮϱ
criƟcal point, ϭϮϱ, ϳϰϬ–ϳϰϮ
cross product

and derivaƟves, ϲϯϱ
applicaƟons, ϱϵϳ

area of parallelogram, ϱϵϴ
torque, ϲϬϬ
volume of parallelepiped, ϱϵϵ

definiƟon, ϱϵϯ
properƟes, ϱϵϱ, ϱϵϲ

curvature, ϲϲϲ
and moƟon, ϲϳϬ
equaƟons for, ϲϲϴ
of circle, ϲϲϴ, ϲϲϵ
radius of, ϲϲϵ

curve
parametrically defined, ϱϬϯ
rectangular equaƟon, ϱϬϯ
smooth, ϱϬϵ

curve sketching, ϭϱϮ
cusp, ϱϬϵ
cycloid, ϲϮϱ
cylinder, ϱϱϱ

decreasing funcƟon, ϭϯϲ

A.ϯϯ



finding intervals, ϭϯϳ
strictly, ϭϯϲ

definite integral, ϮϬϭ
and subsƟtuƟon, ϮϳϬ
properƟes, ϮϬϯ

derivaƟve
acceleraƟon, ϳϰ
as a funcƟon, ϲϰ
at a point, ϲϬ
basic rules, ϳϴ
Chain Rule, ϵϳ, ϭϬϯ, ϳϭϯ, ϳϭϲ
Constant MulƟple Rule, ϴϬ
Constant Rule, ϳϴ
differenƟal, ϭϴϭ
direcƟonal, ϳϮϬ, ϳϮϮ, ϳϮϯ, ϳϮϲ, ϳϮϳ
exponenƟal funcƟons, ϭϬϯ
First Deriv. Test, ϭϯϵ
Generalized Power Rule, ϵϴ
higher order, ϴϭ

interpretaƟon, ϴϮ
hyperbolic funct., ϯϭϲ
implicit, ϭϬϲ, ϳϭϴ
interpretaƟon, ϳϭ
inverse funcƟon, ϭϭϳ
inverse hyper., ϯϭϵ
inverse trig., ϭϮϬ
Mean Value Theorem, ϭϯϮ
mixed parƟal, ϲϵϲ
moƟon, ϳϰ
mulƟvariable differenƟability, ϳϬϱ, ϳϭϬ
normal line, ϲϭ
notaƟon, ϲϰ, ϴϭ
parametric equaƟons, ϱϭϯ
parƟal, ϲϵϮ, ϳϬϬ
Power Rule, ϳϴ, ϵϭ, ϭϭϭ
power series, ϰϱϳ
Product Rule, ϴϱ
QuoƟent Rule, ϴϴ
Second Deriv. Test, ϭϰϴ
Sum/Difference Rule, ϴϬ
tangent line, ϲϬ
trigonometric funcƟons, ϵϬ
vector–valued funcƟons, ϲϯϭ, ϲϯϮ, ϲϯϱ
velocity, ϳϰ

differenƟable, ϲϬ, ϳϬϱ, ϳϭϬ
differenƟal, ϭϴϭ

notaƟon, ϭϴϭ
Direct Comparison Test

for integraƟon, ϯϯϵ
for series, ϰϮϵ

direcƟonal derivaƟve, ϳϮϬ, ϳϮϮ, ϳϮϯ, ϳϮϲ, ϳϮϳ
directrix, ϰϵϬ, ϱϱϱ
Disk Method, ϯϱϱ
displacement, ϮϯϬ, ϲϮϲ, ϲϯϵ
distance

between lines, ϲϭϭ
between point and line, ϲϭϭ
between point and plane, ϲϮϬ
between points in space, ϱϱϮ
traveled, ϲϱϬ

divergence
AlternaƟng Series Test, ϰϰϮ
Direct Comparison Test, ϰϮϵ

for integraƟon, ϯϯϵ
Integral Test, ϰϮϲ
Limit Comparison Test, ϰϯϬ

for integraƟon, ϯϰϭ
nth–term test, ϰϮϮ
of geometric series, ϰϭϰ
of improper int., ϯϯϰ, ϯϯϵ, ϯϰϭ
of p-series, ϰϭϱ
of sequence, ϰϬϬ
of series, ϰϭϭ
RaƟo Comparison Test, ϰϯϱ
Root Comparison Test, ϰϯϴ

dot product
and derivaƟves, ϲϯϱ
definiƟon, ϱϴϬ
properƟes, ϱϴϭ, ϱϴϮ

double integral, ϳϲϮ, ϳϲϯ
in polar, ϳϳϯ
properƟes, ϳϲϲ

eccentricity, ϰϵϱ, ϰϵϵ
elementary funcƟon, ϮϰϬ
ellipse

definiƟon, ϰϵϯ
eccentricity, ϰϵϱ
parametric equaƟons, ϱϬϵ
reflecƟve property, ϰϵϲ
standard equaƟon, ϰϵϰ

extrema
absolute, ϭϮϯ, ϳϰϬ
and First Deriv. Test, ϭϯϵ
and Second Deriv. Test, ϭϰϴ
finding, ϭϮϲ
relaƟve, ϭϮϰ, ϳϰϬ, ϳϰϭ

Extreme Value Theorem, ϭϮϰ, ϳϰϱ
extreme values, ϭϮϯ

factorial, ϯϵϳ
First DerivaƟve Test, ϭϯϵ
floor funcƟon, ϯϴ
fluid pressure/force, ϯϴϴ, ϯϵϬ
focus, ϰϵϬ, ϰϵϯ, ϰϵϲ
Fubini’s Theorem, ϳϲϯ
funcƟon

of three variables, ϲϳϵ
of two variables, ϲϳϱ
vector–valued, ϲϮϯ

Fundamental Theorem of Calculus, ϮϮϴ, ϮϮϵ
and Chain Rule, ϮϯϮ

Gabriel’s Horn, ϯϳϲ
Generalized Power Rule, ϵϴ
geometric series, ϰϭϯ, ϰϭϰ
gradient, ϳϮϮ, ϳϮϯ, ϳϮϲ, ϳϮϳ, ϳϯϳ

and level curves, ϳϮϯ
and level surfaces, ϳϯϳ

Harmonic Series, ϰϭϵ



Head To Tail Rule, ϱϳϬ
Hooke’s Law, ϯϴϭ
hyperbola

definiƟon, ϰϵϲ
eccentricity, ϰϵϵ
parametric equaƟons, ϱϬϵ
reflecƟve property, ϰϵϵ
standard equaƟon, ϰϵϳ

hyperbolic funcƟon
definiƟon, ϯϭϯ
derivaƟves, ϯϭϲ
idenƟƟes, ϯϭϲ
integrals, ϯϭϲ
inverse, ϯϭϳ

derivaƟve, ϯϭϵ
integraƟon, ϯϭϵ
logarithmic def., ϯϭϴ

implicit differenƟaƟon, ϭϬϲ, ϳϭϴ
improper integraƟon, ϯϯϰ, ϯϯϳ
increasing funcƟon, ϭϯϲ

finding intervals, ϭϯϳ
strictly, ϭϯϲ

indefinite integral, ϭϴϵ
indeterminate form, Ϯ, ϰϴ, ϯϮϳ, ϯϮϴ
inflecƟon point, ϭϰϱ
iniƟal point, ϱϲϲ
iniƟal value problem, ϭϵϰ
Integral Test, ϰϮϲ
integraƟon

arc length, ϯϳϬ
area, ϮϬϭ, ϳϱϰ, ϳϱϱ
area between curves, Ϯϯϯ, ϯϰϲ
average value, Ϯϯϲ
by parts, Ϯϳϱ
by subsƟtuƟon, Ϯϱϳ
definite, ϮϬϭ

and subsƟtuƟon, ϮϳϬ
properƟes, ϮϬϯ
Riemann Sums, ϮϮϰ

displacement, ϮϯϬ
distance traveled, ϲϱϬ
double, ϳϲϮ
fluid force, ϯϴϴ, ϯϵϬ
Fun. Thm. of Calc., ϮϮϴ, ϮϮϵ
general applicaƟon technique, ϯϰϱ
hyperbolic funct., ϯϭϲ
improper, ϯϯϰ, ϯϯϳ, ϯϯϵ, ϯϰϭ
indefinite, ϭϴϵ
inverse hyper., ϯϭϵ
iterated, ϳϱϯ
Mean Value Theorem, Ϯϯϱ
mulƟple, ϳϱϯ
notaƟon, ϭϵϬ, ϮϬϭ, ϮϮϵ, ϳϱϯ
numerical, ϮϰϬ

LeŌ/Right Hand Rule, ϮϰϬ, Ϯϰϳ
Simpson’s Rule, Ϯϰϱ, Ϯϰϳ, Ϯϰϴ
Trapezoidal Rule, Ϯϰϯ, Ϯϰϳ, Ϯϰϴ

of mulƟvariable funcƟons, ϳϱϭ
of power series, ϰϱϳ

of trig. funcƟons, Ϯϲϯ
of trig. powers, Ϯϴϲ, Ϯϵϭ
of vector–valued funcƟons, ϲϯϳ
parƟal fracƟon decomp., ϯϬϲ
Power Rule, ϭϵϰ
Sum/Difference Rule, ϭϵϰ
surface area, ϯϳϰ, ϱϮϭ, ϱϰϲ
trig. subst., Ϯϵϳ
triple, ϴϬϬ, ϴϭϭ, ϴϭϯ
volume

cross-secƟonal area, ϯϱϯ
Disk Method, ϯϱϱ
Shell Method, ϯϲϮ, ϯϲϲ
Washer Method, ϯϱϳ, ϯϲϲ

work, ϯϳϴ
interior point, ϲϴϮ
Intermediate Value Theorem, ϰϮ
interval of convergence, ϰϱϰ
iterated integraƟon, ϳϱϯ, ϳϲϮ, ϳϲϯ, ϴϬϬ, ϴϭϭ, ϴϭϯ

changing order, ϳϱϳ
properƟes, ϳϲϲ, ϴϬϳ

L’Hôpital’s Rule, ϯϮϰ, ϯϮϲ
lamina, ϳϳϵ
LeŌ Hand Rule, ϮϭϬ, Ϯϭϱ, ϮϰϬ
LeŌ/Right Hand Rule, Ϯϰϳ
level curves, ϲϳϲ, ϳϮϯ
level surface, ϲϴϬ, ϳϯϳ
limit

Absolute Value Theorem, ϰϬϭ
at infinity, ϰϵ
definiƟon, ϭϬ
difference quoƟent, ϲ
does not exist, ϰ, ϯϮ
indeterminate form, Ϯ, ϰϴ, ϯϮϳ, ϯϮϴ
L’Hôpital’s Rule, ϯϮϰ, ϯϮϲ
leŌ handed, ϯϬ
of infinity, ϰϲ
of mulƟvariable funcƟon, ϲϴϯ, ϲϴϰ, ϲϵϬ
of sequence, ϰϬϬ
of vector–valued funcƟons, ϲϮϵ
one sided, ϯϬ
properƟes, ϭϴ, ϲϴϰ
pseudo-definiƟon, Ϯ
right handed, ϯϬ
Squeeze Theorem, ϮϮ

Limit Comparison Test
for integraƟon, ϯϰϭ
for series, ϰϯϬ

lines, ϲϬϰ
distances between, ϲϭϭ
equaƟons for, ϲϬϲ
intersecƟng, ϲϬϳ
parallel, ϲϬϳ
skew, ϲϬϳ

logarithmic differenƟaƟon, ϭϭϯ

Maclaurin Polynomial, see Taylor Polynomial
definiƟon, ϰϲϲ

Maclaurin Series, see Taylor Series



definiƟon, ϰϳϳ
magnitude of vector, ϱϲϲ
mass, ϳϳϵ, ϳϴϬ, ϴϭϰ

center of, ϳϴϯ
maximum

absolute, ϭϮϯ, ϳϰϬ
and First Deriv. Test, ϭϯϵ
and Second Deriv. Test, ϭϰϴ
relaƟve/local, ϭϮϰ, ϳϰϬ, ϳϰϯ

Mean Value Theorem
of differenƟaƟon, ϭϯϮ
of integraƟon, Ϯϯϱ

Midpoint Rule, ϮϭϬ, Ϯϭϱ
minimum

absolute, ϭϮϯ, ϳϰϬ
and First Deriv. Test, ϭϯϵ, ϭϰϴ
relaƟve/local, ϭϮϰ, ϳϰϬ, ϳϰϯ

moment, ϳϴϱ, ϳϴϳ, ϴϭϰ
monotonic sequence, ϰϬϱ
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, ϲϳϱ, ϲϳϵ

conƟnuity, ϲϴϴ–ϲϵϬ, ϳϬϲ, ϳϭϭ
differenƟability, ϳϬϱ, ϳϬϲ, ϳϭϬ, ϳϭϭ
domain, ϲϳϱ, ϲϳϵ
level curves, ϲϳϲ
level surface, ϲϴϬ
limit, ϲϴϯ, ϲϴϰ, ϲϵϬ
range, ϲϳϱ, ϲϳϵ

Newton’s Method, ϭϲϬ
norm, ϱϲϲ
normal line, ϲϭ, ϱϭϯ, ϳϯϯ
normal vector, ϲϭϱ
nth–term test, ϰϮϮ
numerical integraƟon, ϮϰϬ

LeŌ/Right Hand Rule, ϮϰϬ, Ϯϰϳ
Simpson’s Rule, Ϯϰϱ, Ϯϰϳ

error bounds, Ϯϰϴ
Trapezoidal Rule, Ϯϰϯ, Ϯϰϳ

error bounds, Ϯϰϴ

open, ϲϴϮ
open ball, ϲϵϬ
open disk, ϲϴϮ
opƟmizaƟon, ϭϳϯ

constrained, ϳϰϱ
orthogonal, ϱϴϰ, ϳϯϯ

decomposiƟon, ϱϴϴ
orthogonal decomposiƟon of vectors, ϱϴϴ
orthogonal projecƟon, ϱϴϲ
osculaƟng circle, ϲϲϵ

p-series, ϰϭϱ
parabola

definiƟon, ϰϵϬ
general equaƟon, ϰϵϭ
reflecƟve property, ϰϵϯ

parallel vectors, ϱϳϰ
Parallelogram Law, ϱϳϬ
parametric equaƟons

arc length, ϱϭϵ

concavity, ϱϭϲ
definiƟon, ϱϬϯ
finding dϮy

dxϮ , ϱϭϳ
finding dy

dx , ϱϭϯ
normal line, ϱϭϯ
surface area, ϱϮϭ
tangent line, ϱϭϯ

parƟal derivaƟve, ϲϵϮ, ϳϬϬ
high order, ϳϬϬ
meaning, ϲϵϰ
mixed, ϲϵϲ
second derivaƟve, ϲϵϲ
total differenƟal, ϳϬϰ, ϳϭϬ

perpendicular, see orthogonal
planes

coordinate plane, ϱϱϰ
distance between point and plane, ϲϮϬ
equaƟons of, ϲϭϲ
introducƟon, ϱϱϰ
normal vector, ϲϭϱ
tangent, ϳϯϲ

point of inflecƟon, ϭϰϱ
polar

coordinates, ϱϮϱ
funcƟon

arc length, ϱϰϱ
gallery of graphs, ϱϯϮ
surface area, ϱϰϲ

funcƟons, ϱϮϴ
area, ϱϰϭ
area between curves, ϱϰϯ
finding dy

dx , ϱϯϴ
graphing, ϱϮϴ

polar coordinates, ϱϮϱ
ploƫng points, ϱϮϱ

Power Rule
differenƟaƟon, ϳϴ, ϴϱ, ϵϭ, ϭϭϭ
integraƟon, ϭϵϰ

power series, ϰϱϮ
algebra of, ϰϴϮ
convergence, ϰϱϯ
derivaƟves and integrals, ϰϱϳ

projecƟle moƟon, ϲϰϳ, ϲϰϴ, ϲϲϭ

quadric surface
definiƟon, ϱϱϴ
ellipsoid, ϱϲϬ
ellipƟc cone, ϱϱϵ
ellipƟc paraboloid, ϱϱϵ
gallery, ϱϱϵ–ϱϲϭ
hyperbolic paraboloid, ϱϲϭ
hyperboloid of one sheet, ϱϲϬ
hyperboloid of two sheets, ϱϲϭ
sphere, ϱϲϬ
trace, ϱϱϴ

QuoƟent Rule, ϴϴ

R, ϱϲϲ
radius of convergence, ϰϱϰ
radius of curvature, ϲϲϵ



RaƟo Comparison Test
for series, ϰϯϱ

rearrangements of series, ϰϰϳ, ϰϰϴ
related rates, ϭϲϲ
Riemann Sum, ϮϭϬ, Ϯϭϰ, Ϯϭϳ

and definite integral, ϮϮϰ
Right Hand Rule, ϮϭϬ, Ϯϭϱ, ϮϰϬ
right hand rule

of Cartesian coordinates, ϱϱϮ
Rolle’s Theorem, ϭϯϮ
Root Comparison Test

for series, ϰϯϴ

saddle point, ϳϰϮ, ϳϰϯ
Second DerivaƟve Test, ϭϰϴ, ϳϰϯ
sensiƟvity analysis, ϳϬϵ
sequence

Absolute Value Theorem, ϰϬϭ
posiƟve, ϰϮϵ

sequences
boundedness, ϰϬϰ
convergent, ϰϬϬ, ϰϬϱ, ϰϬϳ
definiƟon, ϯϵϳ
divergent, ϰϬϬ
limit, ϰϬϬ
limit properƟes, ϰϬϯ
monotonic, ϰϬϱ

series
absolute convergence, ϰϰϲ
Absolute Convergence Theorem, ϰϰϴ
alternaƟng, ϰϰϭ

ApproximaƟon Theorem, ϰϰϰ
AlternaƟng Series Test, ϰϰϮ
Binomial, ϰϴϬ
condiƟonal convergence, ϰϰϲ
convergent, ϰϭϭ
definiƟon, ϰϭϭ
Direct Comparison Test, ϰϮϵ
divergent, ϰϭϭ
geometric, ϰϭϯ, ϰϭϰ
Integral Test, ϰϮϲ
interval of convergence, ϰϱϰ
Limit Comparison Test, ϰϯϬ
Maclaurin, ϰϳϳ
nth–term test, ϰϮϮ
p-series, ϰϭϱ
parƟal sums, ϰϭϭ
power, ϰϱϮ, ϰϱϯ

derivaƟves and integrals, ϰϱϳ
properƟes, ϰϭϵ
radius of convergence, ϰϱϰ
RaƟo Comparison Test, ϰϯϱ
rearrangements, ϰϰϳ, ϰϰϴ
Root Comparison Test, ϰϯϴ
Taylor, ϰϳϳ
telescoping, ϰϭϲ, ϰϭϳ

Shell Method, ϯϲϮ, ϯϲϲ
signed area, ϮϬϭ
signed volume, ϳϲϮ, ϳϲϯ
Simpson’s Rule, Ϯϰϱ, Ϯϰϳ

error bounds, Ϯϰϴ
smooth, ϲϯϰ
smooth curve, ϱϬϵ
speed, ϲϰϮ
sphere, ϱϱϯ
Squeeze Theorem, ϮϮ
Sum/Difference Rule

of derivaƟves, ϴϬ
of integraƟon, ϭϵϰ
of series, ϰϭϵ

summaƟon
notaƟon, Ϯϭϭ
properƟes, Ϯϭϯ

surface area, ϳϵϮ
solid of revoluƟon, ϯϳϰ, ϱϮϭ, ϱϰϲ

surface of revoluƟon, ϱϱϲ, ϱϱϳ

tangent line, ϲϬ, ϱϭϯ, ϱϯϴ, ϲϯϯ
direcƟonal, ϳϯϬ

tangent plane, ϳϯϲ
Taylor Polynomial

definiƟon, ϰϲϲ
Taylor’s Theorem, ϰϲϵ

Taylor Series
common series, ϰϴϮ
definiƟon, ϰϳϳ
equality with generaƟng funcƟon, ϰϳϵ

Taylor’s Theorem, ϰϲϵ
telescoping series, ϰϭϲ, ϰϭϳ
terminal point, ϱϲϲ
total differenƟal, ϳϬϰ, ϳϭϬ

sensiƟvity analysis, ϳϬϵ
total signed area, ϮϬϭ
trace, ϱϱϴ
Trapezoidal Rule, Ϯϰϯ, Ϯϰϳ

error bounds, Ϯϰϴ
triple integral, ϴϬϬ, ϴϭϭ, ϴϭϯ

properƟes, ϴϬϳ

unbounded sequence, ϰϬϰ
unbounded set, ϲϴϮ
unit normal vector

aN, ϲϲϬ
and acceleraƟon, ϲϱϵ, ϲϲϬ
and curvature, ϲϳϬ
definiƟon, ϲϱϳ
in RϮ, ϲϱϵ

unit tangent vector
and acceleraƟon, ϲϱϵ, ϲϲϬ
and curvature, ϲϲϲ, ϲϳϬ
aT, ϲϲϬ
definiƟon, ϲϱϱ
in RϮ, ϲϱϵ

unit vector, ϱϳϮ
properƟes, ϱϳϰ
standard unit vector, ϱϳϲ
unit normal vector, ϲϱϳ
unit tangent vector, ϲϱϱ

vector–valued funcƟon
algebra of, ϲϮϰ



arc length, ϲϯϵ
average rate of change, ϲϮϳ
conƟnuity, ϲϯϬ
definiƟon, ϲϮϯ
derivaƟves, ϲϯϭ, ϲϯϮ, ϲϯϱ
describing moƟon, ϲϰϮ
displacement, ϲϮϲ
distance traveled, ϲϱϬ
graphing, ϲϮϯ
integraƟon, ϲϯϳ
limits, ϲϮϵ
of constant length, ϲϯϳ, ϲϰϲ, ϲϰϳ, ϲϱϲ
projecƟle moƟon, ϲϰϳ, ϲϰϴ
smooth, ϲϯϰ
tangent line, ϲϯϯ

vectors, ϱϲϲ
algebra of, ϱϲϵ
algebraic properƟes, ϱϳϮ
component form, ϱϲϳ
cross product, ϱϵϯ, ϱϵϱ, ϱϵϲ
definiƟon, ϱϲϲ
dot product, ϱϴϬ–ϱϴϮ
Head To Tail Rule, ϱϳϬ
magnitude, ϱϲϲ
norm, ϱϲϲ
normal vector, ϲϭϱ
orthogonal, ϱϴϰ
orthogonal decomposiƟon, ϱϴϴ
orthogonal projecƟon, ϱϴϲ
parallel, ϱϳϰ
Parallelogram Law, ϱϳϬ
resultant, ϱϳϬ
standard unit vector, ϱϳϲ
unit vector, ϱϳϮ, ϱϳϰ
zero vector, ϱϳϬ

velocity, ϳϯ, ϲϰϮ
volume, ϳϲϮ, ϳϲϯ, ϳϵϴ

Washer Method, ϯϱϳ, ϯϲϲ
work, ϯϳϴ, ϱϵϬ



DifferenƟaƟon Rules

ϭ.
d
dx

(cx) = c

Ϯ.
d
dx

(u± v) = u′ ± v′

ϯ.
d
dx

(u · v) = uv′ + u′v

ϰ.
d
dx

(

u
v

)

=
vu′ − uv′

vϮ

ϱ.
d
dx

(u(v)) = u′(v)v′

ϲ.
d
dx

(c) = Ϭ

ϳ.
d
dx

(x) = ϭ

ϴ.
d
dx

(xn) = nxn−ϭ

ϵ.
d
dx

(ex) = ex

ϭϬ.
d
dx

(ax) = ln a · ax

ϭϭ.
d
dx

(ln x) =
ϭ
x

ϭϮ.
d
dx

(loga x) =
ϭ
ln a

· ϭ
x

ϭϯ.
d
dx

(sin x) = cos x

ϭϰ.
d
dx

(cos x) = − sin x

ϭϱ.
d
dx

(csc x) = − csc x cot x

ϭϲ.
d
dx

(sec x) = sec x tan x

ϭϳ.
d
dx

(tan x) = secϮ x

ϭϴ.
d
dx

(cot x) = − cscϮ x

ϭϵ.
d
dx
(

sin−ϭ x
)

=
ϭ√

ϭ− xϮ

ϮϬ.
d
dx
(

cos−ϭ x
)

=
−ϭ√
ϭ− xϮ

Ϯϭ.
d
dx
(

csc−ϭ x
)

=
−ϭ

|x|
√
xϮ − ϭ

ϮϮ.
d
dx
(

sec−ϭ x
)

=
ϭ

|x|
√
xϮ − ϭ

Ϯϯ.
d
dx
(

tan−ϭ x
)

=
ϭ

ϭ+ xϮ

Ϯϰ.
d
dx
(

cot−ϭ x
)

=
−ϭ

ϭ+ xϮ

Ϯϱ.
d
dx

(cosh x) = sinh x

Ϯϲ.
d
dx

(sinh x) = cosh x

Ϯϳ.
d
dx

(tanh x) = sechϮ x

Ϯϴ.
d
dx

(sech x) = − sech x tanh x

Ϯϵ.
d
dx

(csch x) = − csch x coth x

ϯϬ.
d
dx

(coth x) = − cschϮ x

ϯϭ.
d
dx
(

cosh−ϭ x
)

=
ϭ√

xϮ − ϭ

ϯϮ.
d
dx
(

sinh−ϭ x
)

=
ϭ√

xϮ + ϭ

ϯϯ.
d
dx
(

sech−ϭ x
)

=
−ϭ

x
√
ϭ− xϮ

ϯϰ.
d
dx
(

csch−ϭ x
)

=
−ϭ

|x|
√
ϭ+ xϮ

ϯϱ.
d
dx
(

tanh−ϭ x
)

=
ϭ

ϭ− xϮ

ϯϲ.
d
dx
(

coth−ϭ x
)

=
ϭ

ϭ− xϮ

IntegraƟon Rules

ϭ.
∫

c · f(x) dx = c
∫

f(x) dx

Ϯ.
∫

f(x)± g(x) dx =
∫

f(x) dx±
∫

g(x) dx

ϯ.
∫

Ϭ dx = C

ϰ.
∫

ϭ dx = x+ C

ϱ.
∫

xn dx =
ϭ

n+ ϭ
xn+ϭ + C, n ̸= −ϭ

n ̸= −ϭ

ϲ.
∫

ex dx = ex + C

ϳ.
∫

ax dx =
ϭ
ln a

· ax + C

ϴ.
∫

ϭ
x
dx = ln |x|+ C

ϵ.
∫

cos x dx = sin x+ C

ϭϬ.
∫

sin x dx =− cos x+ C

ϭϭ.
∫

tan x dx =− ln | cos x|+ C

ϭϮ.
∫

sec x dx = ln | sec x+ tan x|+ C

ϭϯ.
∫

csc x dx =− ln | csc x+ cot x|+ C

ϭϰ.
∫

cot x dx = ln | sin x|+ C

ϭϱ.
∫

secϮ x dx = tan x+ C

ϭϲ.
∫

cscϮ x dx =− cot x+ C

ϭϳ.
∫

sec x tan x dx = sec x+ C

ϭϴ.
∫

csc x cot x dx =− csc x+ C

ϭϵ.
∫

cosϮ x dx =
ϭ
Ϯ
x+

ϭ
ϰ
sin
(

Ϯx
)

+ C

ϮϬ.
∫

sinϮ x dx =
ϭ
Ϯ
x− ϭ

ϰ
sin
(

Ϯx
)

+ C

Ϯϭ.
∫

ϭ
xϮ + aϮ

dx =
ϭ
a
tan−ϭ

(

x
a

)

+ C

ϮϮ.
∫

ϭ√
aϮ − xϮ

dx = sin−ϭ
(

x
a

)

+ C

Ϯϯ.
∫

ϭ
x
√
xϮ − aϮ

dx =
ϭ
a
sec−ϭ

( |x|
a

)

+ C

Ϯϰ.
∫

cosh x dx = sinh x+ C

Ϯϱ.
∫

sinh x dx = cosh x+ C

Ϯϲ.
∫

tanh x dx = ln(cosh x) + C

Ϯϳ.
∫

coth x dx = ln | sinh x|+ C

Ϯϴ.
∫

ϭ√
xϮ − aϮ

dx = ln
∣

∣x+
√

xϮ − aϮ
∣

∣+ C

Ϯϵ.
∫

ϭ√
xϮ + aϮ

dx = ln
∣

∣x+
√

xϮ + aϮ
∣

∣+ C

ϯϬ.
∫

ϭ
aϮ − xϮ

dx =
ϭ
Ϯ
ln
∣

∣

∣

∣

a+ x
a− x

∣

∣

∣

∣

+ C

ϯϭ.
∫

ϭ
x
√
aϮ − xϮ

dx =
ϭ
a
ln
(

x
a+

√
aϮ − xϮ

)

+ C

ϯϮ.
∫

ϭ
x
√
xϮ + aϮ

dx =
ϭ
a
ln
∣

∣

∣

∣

x
a+

√
xϮ + aϮ

∣

∣

∣

∣

+ C



The Unit Circle

x

y

Ϭ◦ Ϭ (ϭ, Ϭ)

ϯϬ◦
π/ϲ

(√
ϯ

Ϯ , ϭ
Ϯ

)

ϰϱ◦
π/ϰ

(√
Ϯ

Ϯ ,
√

Ϯ
Ϯ

)

ϲϬ◦

π/ϯ

(
ϭ
Ϯ ,

√
ϯ

Ϯ

)

ϵϬ◦

π/Ϯ

(Ϭ, ϭ)

ϭϮϬ◦

Ϯπ/ϯ

(

− ϭ
Ϯ ,

√
ϯ

Ϯ

)

ϭϯϱ◦
ϯπ/ϰ

(

−
√

Ϯ
Ϯ ,

√
Ϯ

Ϯ

)

ϭϱϬ◦
ϱπ/ϲ

(

−
√

ϯ
Ϯ , ϭ

Ϯ

)

ϭϴϬ◦π(−ϭ, Ϭ)

ϮϭϬ◦
ϳπ/ϲ

(

−
√

ϯ
Ϯ ,− ϭ

Ϯ

)
ϮϮϱ◦

ϱπ/ϰ

(

−
√

Ϯ
Ϯ ,−

√
Ϯ

Ϯ

)

ϮϰϬ◦

ϰπ/ϯ

(

− ϭ
Ϯ ,−

√
ϯ

Ϯ

)

ϮϳϬ◦

ϯπ/Ϯ

(Ϭ,−ϭ)

ϯϬϬ◦

ϱπ/ϯ

(
ϭ
Ϯ ,−

√
ϯ

Ϯ

)

ϯϭϱ◦

ϳπ/ϰ

(√
Ϯ

Ϯ ,−
√

Ϯ
Ϯ

)

ϯϯϬ◦
ϭϭπ/ϲ

(√
ϯ

Ϯ ,− ϭ
Ϯ

)

DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
ϭ
y

sec θ =
ϭ
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

O
ppositeHy

po
ten

use

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes

sinϮ x+ cosϮ x = ϭ

tanϮ x+ ϭ = secϮ x

ϭ+ cotϮ x = cscϮ x

CofuncƟon IdenƟƟes

sin
(π

Ϯ
− x
)

= cos x

cos
(π

Ϯ
− x
)

= sin x

tan
(π

Ϯ
− x
)

= cot x

csc
(π

Ϯ
− x
)

= sec x

sec
(π

Ϯ
− x
)

= csc x

cot
(π

Ϯ
− x
)

= tan x

Double Angle Formulas

sin Ϯx = Ϯ sin x cos x

cos Ϯx = cosϮ x− sinϮ x

= Ϯ cosϮ x− ϭ

= ϭ− Ϯ sinϮ x

tan Ϯx =
Ϯ tan x

ϭ− tanϮ x

Sum to Product Formulas

sin x+ sin y = Ϯ sin
(
x+ y
Ϯ

)

cos
(
x− y
Ϯ

)

sin x− sin y = Ϯ sin
(
x− y
Ϯ

)

cos
(
x+ y
Ϯ

)

cos x+ cos y = Ϯ cos
(
x+ y
Ϯ

)

cos
(
x− y
Ϯ

)

cos x− cos y = −Ϯ sin
(
x+ y
Ϯ

)

sin
(
x− y
Ϯ

)

Power–Reducing Formulas

sinϮ x =
ϭ− cos Ϯx

Ϯ

cosϮ x =
ϭ+ cos Ϯx

Ϯ

tanϮ x =
ϭ− cos Ϯx
ϭ+ cos Ϯx

Even/Odd IdenƟƟes

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
ϭ
Ϯ
(
cos(x− y)− cos(x+ y)

)

cos x cos y =
ϭ
Ϯ
(
cos(x− y) + cos(x+ y)

)

sin x cos y =
ϭ
Ϯ
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
ϭ∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = ϭ
Ϯbh

Law of Cosines:
cϮ = aϮ + bϮ − Ϯab cos θ

b
θ

ac
h

Right Circular Cone

Volume = ϭ
ϯπr

Ϯh

Surface Area =
πr
√
rϮ + hϮ + πrϮ

h

r

Parallelograms

Area = bh

b

h

Right Circular Cylinder

Volume = πrϮh

Surface Area =
Ϯπrh+ ϮπrϮ

h

r

Trapezoids

Area = ϭ
Ϯ (a+ b)h

b

a

h

Sphere

Volume = ϰ
ϯπr

ϯ

Surface Area =ϰπrϮ
r

Circles

Area = πrϮ

Circumference = Ϯπr
r

General Cone

Area of Base = A

Volume = ϭ
ϯAh

h

A

Sectors of Circles

θ in radians

Area = ϭ
Ϯθr

Ϯ

s = rθ r

s

θ

General Right Cylinder

Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−ϭxn−ϭ + · · ·+ aϭx+ aϬ be a polynomial. If p(a) = Ϭ, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = Ϭ. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = axϮ + bx+ c, and Ϭ ≤ bϮ − ϰac, then the real zeros of p are x = (−b±

√
bϮ − ϰac)/Ϯa

Special Factors
xϮ − aϮ = (x− a)(x+ a) xϯ − aϯ = (x− a)(xϮ + ax+ aϮ)
xϯ + aϯ = (x+ a)(xϮ − ax+ aϮ) xϰ − aϰ = (xϮ − aϮ)(xϮ + aϮ)
(x+ y)n = xn + nxn−ϭy+ n(n−ϭ)

Ϯ! xn−ϮyϮ + · · ·+ nxyn−ϭ + yn

(x− y)n = xn − nxn−ϭy+ n(n−ϭ)
Ϯ! xn−ϮyϮ − · · · ± nxyn−ϭ ∓ yn

Binomial Theorem
(x+ y)Ϯ = xϮ + Ϯxy+ yϮ (x− y)Ϯ = xϮ − Ϯxy+ yϮ
(x+ y)ϯ = xϯ + ϯxϮy+ ϯxyϮ + yϯ (x− y)ϯ = xϯ − ϯxϮy+ ϯxyϮ − yϯ
(x+ y)ϰ = xϰ + ϰxϯy+ ϲxϮyϮ + ϰxyϯ + yϰ (x− y)ϰ = xϰ − ϰxϯy+ ϲxϮyϮ − ϰxyϯ + yϰ

RaƟonal Zero Theorem
If p(x) = anxn + an−ϭxn−ϭ + · · ·+ aϭx+ aϬ has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of aϬ and s is a factor of an.

Factoring by Grouping
acxϯ + adxϮ + bcx+ bd = axϮ(cs+ d) + b(cx+ d) = (axϮ + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c

(a
b

)

( c
d

) =
(a
b

)(d
c

)

=
ad
bc

(a
b

)

c
=

a
bc

a
(
b
c

) =
ac
b

a
(
b
c

)

=
ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

aϬ = ϭ, a ̸= Ϭ (ab)x = axbx axay = ax+y √
a = aϭ/Ϯ

ax

ay
= ax−y n

√
a = aϭ/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

ϭ
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=ϭ

c = cn
n∑

i=ϭ

i =
n(n+ ϭ)

Ϯ
n∑

i=ϭ

iϮ =
n(n+ ϭ)(Ϯn+ ϭ)

ϲ

n∑

i=ϭ

iϯ =
(
n(n+ ϭ)

Ϯ

)Ϯ

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

Ϯ
[
f(xϭ) + Ϯf(xϮ) + Ϯf(xϯ) + ...+ Ϯf(xn) + f(xn+ϭ)

]

with Error ≤ (b− a)ϯ

ϭϮnϮ
[
max

∣
∣f ′′(x)

∣
∣
]

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

ϯ
[
f(xϭ) + ϰf(xϮ) + Ϯf(xϯ) + ϰf(xϰ) + ...+ Ϯf(xn−ϭ) + ϰf(xn) + f(xn+ϭ)

]

with Error ≤ (b− a)ϱ

ϭϴϬnϰ
[
max

∣
∣f (ϰ)(x)

∣
∣
]

Arc Length:

L =
∫ b

a

√

ϭ+ f ′(x)Ϯ dx

Surface of RevoluƟon:

S = Ϯπ
∫ b

a
f(x)
√

ϭ+ f ′(x)Ϯ dx

(where f(x) ≥ Ϭ)

S = Ϯπ
∫ b

a
x
√

ϭ+ f ′(x)Ϯ dx

(where a, b ≥ Ϭ)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
Ϯ!

(x− c)Ϯ +
f ′′′(c)
ϯ!

(x− c)ϯ + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = Ϭ:

pn(x) = f(Ϭ) + f ′(Ϭ)x+
f ′′(Ϭ)
Ϯ!

xϮ +
f ′′′(Ϭ)
ϯ!

xϯ + ...+
f (n)(Ϭ)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑

n=ϭ

an lim
n→∞

an ̸= Ϭ This test cannot be used to
show convergence.

Geometric Series
∞∑

n=Ϭ

rn |r| < ϭ |r| ≥ ϭ Sum =
ϭ

ϭ− r

Telescoping Series
∞∑

n=ϭ

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=ϭ

bn

)

− L

p-Series
∞∑

n=ϭ

ϭ
(an+ b)p

p > ϭ p ≤ ϭ

Integral Test
∞∑

n=Ϭ

an

∫ ∞

ϭ
a(n) dn

is convergent

∫ ∞

ϭ
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑

n=Ϭ

an

∞∑

n=Ϭ

bn

converges and
Ϭ ≤ an ≤ bn

∞∑

n=Ϭ

bn

diverges and
Ϭ ≤ bn ≤ an

Limit Comparison
∞∑

n=Ϭ

an

∞∑

n=Ϭ

bn

converges and
lim

n→∞
an/bn ≥ Ϭ

∞∑

n=Ϭ

bn

diverges and
lim

n→∞
an/bn > Ϭ

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑

n=Ϭ

an lim
n→∞

an+ϭ

an
< ϭ lim

n→∞
an+ϭ

an
> ϭ

{an}must be posiƟve
Also diverges if

lim
n→∞

an+ϭ/an = ∞

Root Test
∞∑

n=Ϭ

an lim
n→∞

(
an
)ϭ/n

< ϭ lim
n→∞

(
an
)ϭ/n

> ϭ

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)ϭ/n

= ∞
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