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WELCOME to CALCULUS 
 
Calculus is the mathematics of CHANGE and almost everything in our world is 
changing. 
 
Calculus is among the most important and useful developments of human thought, and, 
even though it is over 300 years old, it is still considered the beginning and cornerstone 
of modern mathematics.  It is a wonderful and beautiful and useful set of ideas and 
techniques  
 
You will see the fundamental ideas of this course over and over again in future courses in 
mathematics, the sciences (physical, biological and social) as well in economics, 
engineering and others. 
 
But calculus is an intellectual step up from your previous mathematics courses.  Many of 
the ideas are more carefully defined, and they have both a functional and a graphical 
meaning  Some of the algorithms are more complicated, and in many cases you will need 
to decide on the appropriate algorithm to use.  And there is a huge variety of applications, 
too many to be able to discuss each one in class in detail. 
 
 
What this means for you, the student. 
 
Probably more than in your previous mathematics classes you need  
 

* to think about the concepts as well as the techniques, 
 
*  to think about the patterns as well as the individual steps, 
 
*  to think about the meaning of the concepts and techniques in the context of 

particular applications,  
 
*  to think about how the ideas and techniques apply to functions given by graphs and 

tables as well as by formulas, and 
 
*  to spend enough time (1 to 2 hours each day) doing problems to sort out the 

concepts and to master the techniques and to get better and more efficient with the 
algebra skills that are vital to success. 

 
Sometimes all this mental stretching can seem overwhelming, but stick with it (and do 
lots of problems).  It can even become fun. 
 

So welcome to calculus. 



CONTEMPORARY CALCULUS:  Contents 
 

Note:   
Each section contains Practice Problems throughout the section.  The solutions to these 
Practice Problems are at the end of that section, after the Problem Set for the section. 
 
Each section also contains a Problem Set.  The solutions to the odd problems of each 
Problem Set are at the end of each chapter. 
 
These materials are also available on the web at:           
              http://scidiv.bellevuecollege.edu/dh/OCLmath151/OCLmath151.html 
 
How to Succeed in Beginning Calculus  

  Calculus takes time.  Do not get behind.  Use the textbook  
  intelligently.  Working the problems.  Work together.  Study with  
  a friend.  Work in small groups. 
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  Differentiation and Integration 
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How to Succeed in Beginning Calculus 
 
The following comments are based on over thirty years of watching students succeed and fail in 
calculus courses at universities, colleges and community colleges and of listening to their 
comments as they went through their study of calculus.  This is the best advice we  can give to help 
you succeed. 
 
Calculus takes time.   Almost no one fails calculus because they lack sufficient "mental 
horsepower".  Most people who do not succeed are unwilling (or unable) to devote the necessary 
time to the course.  The "necessary time" depends on how smart you are, what grade you want to 
earn and on how competitive the calculus course is.  Most calculus teachers and successful calculus 
students agree that 2 (or 3) hours every weeknight and 6 or 7 hours each weekend is a good way to 
begin if you seriously expect to earn an  A or B grade.  If you are only willing to devote 5 or 10  
hours a week to calculus outside of class, you should consider postponing your study of calculus. 
 
Do NOT get behind.  The brisk pace of the calculus course is based on the idea that "if you are in 
calculus, then you are relatively smart, you have succeeded in previous mathematics courses, and 
you are willing to work hard to do well."  It is terribly hard to catch up and keep up at the same 
time.  A much safer approach is to work very hard for the first month and then evaluate your 
situation.  If you do get behind, spend a part of your study time catching up, but spend most of it 
trying to follow and understand what is going on in class. 
 
Go to class, every single class.  We hope your calculus teacher makes every idea crystal clear, 
makes every technique obvious and easy, is enthusiastic about  calculus, cares about you as a 
person, and even makes you laugh sometimes.  If not, you still need to attend class.  You need to 
hear the vocabulary of calculus spoken and to see how mathematical ideas are strung together to 
reach conclusions.  You need to see how an expert problem solver approaches problems.  You need 
to hear the announcements about homework and tests.  And you need to get to know some of the 
other students in the class.  Unfortunately, when students get a bit behind or confused, they are 
most likely to miss a class or two (or five).  That is absolutely the worst time to miss classes.  Come 
to class anyway.  Ask where you can get some outside tutoring or counseling.  Ask a classmate to 
help you for an hour after class.  If you must miss a class, ask a classmate what material was 
covered and skim those sections before the next class.  Even if you did not read the material, come 
back to class as soon as possible. 
 
 
 



Work together.  Study with a friend.  Work in small groups.  It is much more fun and is very 
effective for doing well in calculus.  Recent studies, and our personal observations, show that 
students who regularly work together in small groups are less likely to drop the course and are 
more likely to get  A's or B's.  You need lots of time to work on the material alone, but study groups 
of 3–5 students, working together 2 or 3 times a week for a couple hours, seem to help everyone in 
the group.  Study groups offer you a way to get and give help on the material and they can provide 
an occasional psychological boost ("misery loves company?").  They are a place to use the 
mathematical language of the course, to trade mathematical tips, and to "cram" for the next day's 
test.  Students in study groups are less likely to miss important points in the course, and they  get to 
know some very nice people, their classmates. 
 
 
 
Use the textbook effectively.  There are a number of ways of using a mathematics textbook:  
  
 i. to gain an overview of the concepts and techniques,  
 ii. to gain an understanding of the material,  
 iii. to master the techniques, and   
 iv. to review the material and see how it connects with the rest of the course.  
 
The first time you read a section, just try to see what problems are being discussed.  Skip around, 
look at the pictures, and read some of the problems and the definitions.  If something looks 
complicated, skip it.  If an example looks interesting, read it and try to follow the explanation.  This 
is an exploratory phase.  Don't highlight or underline at this stage –– you don't know what is 
important yet and what is just a minor detail. 
 
The next time through the section, proceed in a more organized fashion,  reading each introduction, 
example, explanation,  theorem and proof.  This is the beginning of the "mastery" stage.  If you 
don't understand the explanation of an example, put a question mark (in pencil) in the margin and 
go on.  Read and try to understand each step in the proofs and ask yourself why that step is valid.  If 
you don't see what justified moving from one step to another in the proof, pencil in question marks 
in the margin.  This second phase will go more slowly than the first, but if you don't understand 
some details just keep going.  Don't get bogged down yet. 
 
Finally, worry about the details.  Go quickly over the parts you already understand, but slow down 
and try to figure out the parts marked with question marks.  Try to solve the example problems 
before you refer to the explanations.  If you now understand parts that were giving you trouble, 
cross out the question marks.  If you still don't understand something,  put in another question mark 
and write down your question to ask your teacher, tutor, or classmate. 



 
Finally it is time to try the problems at the end of the section.  Many of them are similar to 
examples in the section, but now you need to solve them.  Some of the problems are more 
complicated than the examples, but they still require the same basic techniques.  Some of the 
problems will require that you use concepts and facts from earlier in the course, a combination of 
old and new concepts and techniques.  Working lots of problems is the "secret" of success in 
calculus. 
 
 
 
 
Working the Problems:  Many students read a problem, work it out and check the answer in the 
back of the book.  If their answer is correct, they go on to the next problem.  If their answer is 
wrong, they manipulate (finagle, fudge, massage) their work until their new answer is correct, and 
then they go on to the next problem.  Do not try the next problem yet!  Before going on, spend a 
short time, just half a minute, thinking about what you have just done in solving the problem.  Ask 
yourself, "What was the point of this problem?" , "What big steps did I have to take to solve this 
problem?" , "What was the process?"  Do not simply review every single step of the solution 
process.  Instead, look at the outline of the solution, the process.  If your first answer was wrong, 
ask yourself, "What about this problem should have suggested the right process the first time?"  As 
much learning and retention can take place in the 30 seconds you spend reviewing the process as 
took place in the 10 minutes you took to solve the problem.  A correct answer is important, but a 
correct process, carefully used, will get you many correct answers. 
 
There is one more step which too many students omit.  Go back and quickly look over the section 
one more time.  Don't worry about the details, just try to understand the overall logic and layout of 
the section. Ask yourself, "What was I expected to learn in this section?"  Typically this last step, a 
review and overview,  goes quickly, but it is very valuable.  It can help you see and retain the 
important ideas and connections. 
 
 

Good luck.  Work hard.  Have Fun.   

Calculus is beautiful and powerful. 
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CHAPTER  0 
 
WELCOME TO CALCULUS 
 

Calculus was first developed more than three hundred years ago by Sir Isaac Newton and Gottfried  Leibniz to 

help them describe and understand the rules governing the motion of planets and moons.  Since then, thousands of 

other men and women have refined the basic ideas of calculus, developed new techniques to make the calculations 

easier, and found ways to apply calculus to problems besides planetary motion.  Perhaps most importantly, they 

have used calculus to help understand a wide variety of physical, biological, economic and social phenomena and 

to describe and solve problems in those areas.   
 

The discovery, development, and application of calculus is a great intellectual achievement, and now you have the 

opportunity to share in that achievement.   You should feel exhilarated.  You may also be somewhat concerned, a 

common reaction of students just beginning to study calculus.  You need to be concerned enough to work to 

master calculus and confident enough to keep going when you don't understand something at first. 
 

Part of the beauty of calculus is that it is based on a few very simple ideas.  Part of the power of calculus is that 

these simple ideas can help us understand, describe, and solve problems in a variety of fields.  This book tries to 

emphasize both the beauty and the power.   
 

In Section 0.1 (Preview) we will look at the main ideas which will continue throughout the book: the problems of 

tangent lines and areas.  We will also consider a process that underlies both of those problems, the limiting 

process of approximating a solution and then getting better and better approximations until we finally get an exact 

solution. 
 

Sections 0.2 (Lines), 0.3 (Functions), and 0.4 (Combinations of Functions)  contain review material which you 

need to recall before we begin calculus.  The emphasis in these sections is on material and skills you will need to 

succeed in calculus.  You should have worked with most of this material in previous courses, but the emphasis 

and use of the material in these sections may be different than in those courses. 
 

Section 0.5 (Mathematical Language)  discusses a few key mathematical phrases.  It considers their use and 

meaning and some of their equivalent forms.  It will be difficult to understand the meaning and subtleties of 

calculus if you don't understand how these phrases are used and what they mean.  

 
0.1 PREVIEW OF CALCULUS 
 
Two Basic Problems 
 

Beginning calculus can be thought of as an attempt, a historically successful attempt, to solve two fundamental 

problems.  In this section we will start to examine geometric forms of those two problems and some fairly simple 

ways to attempt to solve them.  At first,  the problems themselves may not appear very interesting or useful, and 
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the methods for solving them may seem crude, but these simple problems and methods have led to one of the most 

beautiful, powerful, and useful creations in mathematics:  Calculus. 

 
First Problem:  Finding the Slope of a Tangent Line 
 

Suppose we have the graph of a function  y = f(x), and we want to find the  

equation of the line which is tangent to the graph at a particular point  P on  

the graph  (Fig. 1).  (We will give a precise definition of tangent in Section  

1.0.  For now, think of the tangent line as the line which touches the curve 

at the point  P  and stays close to the graph of y = f(x)  near P.)  We know  

that the point  P  is on the tangent line, so if the x–coordinate of  P is   

x = a, then the y–coordinate of P  must be  y = f(a)  and  P = (a, f(a)).  The  

only other information we need to find the equation of the tangent line is  
its slope,  mtan, and that is where the difficulty arises.  In algebra, we needed  

two points in order to determine a slope, and so far we only have the point  P.  Lets simply pick a second point, 

say  Q, on the graph of  y = f(x).  If the x–coordinate of  Q is  b (Fig. 2), then the y–coordinate is  f(b), so   

Q = (b, f(b)).  The slope of the line through  P  and  Q  is   
 

   mPQ =  
rise
run  =  

f(b) – f(a)
b – a   .    

 

If we drew the graph of  y = f(x) on a wall, put nails at the points  P  and  

Q  on the graph, and laid a straightedge on the nails, then the straightedge  
would have slope  mPQ  (Fig. 2).  However, the slope  mPQ  can be very  

different from the value we want, the slope  mtan  of the tangent line.  The  

key idea is that if the point  Q  is close to the point  P,  then the slope  mPQ   

is close to the slope we want, mtan.  Physically, if we slide the  

nail at  Q  along the graph towards the fixed point P, then the slope,   

mPQ =  
f(b) – f(a)

b – a   ,  of the straightedge gets closer and closer to the  

slope,  mtan , of the tangent line.  If the value of  b  is very close to  a, then  

the point  Q  is very close to  P, and the value of  mPQ  is very close to the value of  mtan.  Rather than defacing 

walls with graphs and nails, we can calculate   
 

 mPQ  =    
f(b) – f(a)

b – a      

and examine the values of  mPQ  as  b  gets closer and closer to  a.  We say that  mtan  is the limiting value of  

mPQ  as  b gets very close to a, and we write  
 

    mtan =     

! 

lim
b"a

 
f (b) # f (a)

b # a
 . 
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The slope  mtan  of the tangent line is called the derivative of the function  f(x)  at the point  P, and this part of 

calculus is called differential calculus.  Chapters 2 and 3 begin differential calculus. 
 

The slope of the tangent line to the graph of a function will tell us important information about the function and 

will allow us to solve problems such as: 
 

"The US Post Office requires that the length plus the girth  

(Fig. 3)  of a package not exceed 84 inches.  What is the largest volume which can 

be mailed in a rectangular box?" 

 
An oil tanker was leaking oil, and a 4 inch thick oil slick had formed.  When first 

measured, the slick had a radius 200 feet and the radius was increasing at a rate of 3 

feet per hour.  At that time, how fast was the oil leaking from the tanker? 

Derivatives will even help us solve such "traditional" mathematical problems as  

finding solutions of equations like  x2 = 2 + sin(x)  and   x9 + 5x5 + x3 + 3 = 0. 

 
Second Problem:  Finding the Area of a Shape 
 

Suppose we need to find the area of a leaf  (Fig. 4) as part of a study of how much  

energy a plant gets from sunlight.  One method for finding the area would be to  

trace the shape of the leaf onto a piece of paper and then divide the region into  

"easy" shapes such as rectangles and triangles whose areas we could calculate.   

We could add all of the "easy" areas together to get the area of the leaf.   

A modification of this method would be to trace the shape onto a  

piece of graph paper and then count the number of squares  

completely inside the edge of the leaf to get a lower estimate of the  

area and count the number of squares that touch the leaf to get an  

upper estimate of the area.  If we repeat this process with smaller  

squares, we have to do more counting and adding, but our estimates  

are closer together and closer to the actual area of the leaf.  (This  

area can also be approximated using a sheet of paper, scissors and an accurate scale.  How?) 
 

We can calculate the area  A  between the graph of a function  y = f(x) 

and the x–axis (Fig. 5)  by using similar methods.  We can divide  

the area into strips of width  w  and determine the lower and upper  

values of  y = f(x) on each strip.  Then we can approximate the area  
of each rectangle and add all of the little areas together to get  Aw,  

an approximation of the exact area.  The key idea is that if w is small,   
then the rectangles are narrow, and the approximate area  Aw  is very  
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close to the actual area  A.  If we take narrower and narrower rectangles,  

the approximate areas get closer and closer to the actual area:   A =  

! 

limit
w"0

 Aw .   

 

The process we used is the basis for a technique called integration, and this  

part of calculus is called integral calculus.  Integral calculus and integration  

will begin in Chapter 4. 
 

The process of taking the limit of a sum of "little" quantities will give us important information about the function 

and will also allow us to solve problems such as: 
 

"Find the length of the graph of  y = sin(x)  over one period (from x = 0 to  x = 2π)." 
 

"Find the volume of a torus ("doughnut") of radius  1 inch  

which has a hole of radius 2 inches.  (Fig. 6)" 
 

"A car starts at rest and has an acceleration of    

5 + 3sin(t)  feet per second per second in the northerly  

direction at time  t  seconds.  Where will the car be, relative  

to its starting position,  after 100  seconds?" 

 

 
A Unifying Process:  Limits 
 

We used a similar processes to "solve" both the tangent line problem and the area problem.  First, we found a way 

to get an approximate solution, and then we found a way to improve our approximation.  Finally, we asked what 

would happen if we continued improving our approximations "forever", that is, we "took a limit."  For the tangent 

line problem, we let the point  Q  get closer and closer and closer to P, the limit as  b approached  a.  In the area 

problem, we let the widths of the rectangles get smaller and smaller,  the limit as  w  approached 0.  Limiting 

processes underlie derivatives, integrals, and several other fundamental topics in calculus, and we will examine 

limits and their properties in Chapter 1. 

 
Two Sides Of The Same Coin:  Differentiation and Integration 
 

Just as the set–up of each of the two basic problems involved a limiting process, the solutions to the two problems 

are also related.  The process of differentiation for solving the tangent line problem and the process of integration 

for solving the area problem turn out to be "opposites" of each other:  each process undoes the effect of the other 

process.  The Fundamental Theorem of Calculus in Chapter 4 will show how this "opposite" effect works. 
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Extensions of the Main Problems 
 

The first 5 chapters present the two key ideas of calculus, show "easy" ways to calculate derivatives and 

integrals, and examine some of their applications.  And there is more.  In later chapters, new functions will be 

examined and ways to calculate their derivatives and integrals will be found.  The approximation ideas will be 

extended to use "easy" functions, such as polynomials, to approximate the values of "hard" functions such as  

sin(x)  and  ex .  And the notions of  "tangent lines"  and  "areas" will be extended to 3–dimensional space  as  

"tangent planes"  and  "volumes".   
 

 Success in calculus will require time and effort on your part, but such a  

 beautiful and powerful field is worth that time and effort. 
    

 

PROBLEMS 
 
(Solutions to odd numbered problems are given at the back of the book.) 
 
 
Problems 1 – 4  involve estimating slopes of tangent lines. 
 
 

1) Sketch the lines tangent to the curve shown in Fig. 7  at   

 x = 1, 2 and 3.  Estimate the slope of each of the tangent  

 lines you drew. 
 
 
 
 

 

 

2) Fig. 8 shows the weight of a "typical" child from age 0 to  

 age 24 months.  (Each of your answers should have the  

 units  "kilograms per month.") 

 (a) What was the average rate of weight gain from  

  month 0 to month 24? 

 (b) What was the average weight gain from month  

  9 to month 12?  from month 12 to month 15? 

 (c) Approximately how fast was the child gaining 

  weight at age 12 months?   at age 3 months? 
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3) Fig. 9  shows the temperature of a cup of coffee during a ten minute period. (Each of your answers in (a) – (c) 

should have the units  "degrees per minute.") 

 (a) What was the average rate of cooling  

  from minute 0 to minute 10? 

 (b) What was the average rate of cooling  

  from minute 7 to minute 8?  from  

  minute 8 to minute 9? 

 (c) What was the rate of cooling at  

  minute 8?   at minute 2? 

 (d) When was the cold milk added to  

  the coffee? 
 
 
4) Describe a method for determining the slope at the middle of a steep hill on campus  

 (a) using a ruler, a long piece of string, a glass of water and a loaf of bread. 

 (b) using a protractor, a piece of string and a helium–filled balloon. 
 
 
Problems 5 and 6  involve approximating areas. 
 
 
5) Approximate the area of the leaf in Fig. 4 . 

 

6) Fig. 10 shows temperatures during the month of November. 

 (a) Approximate the shaded area between the  

 temperature curve and the 65o line from  

 Nov. 15 to Nov. 25. 

(b) The area of the "rectangle" is (base)(height) so what  

 are the units of your answer in part (a)? 

(c) Approximate the shaded area between the temperature 

curve and the 65o line from Nov. 5 to Nov. 30. 

 (d) Who might use or care about these results? 
 
 
7) Describe a method for determining the volume of a standard incandescent light bulb using a ruler, a tin  

 coffee can, a scale, and a jug of wine. 

 



0.2    Lines In The Plane        Contemporary Calculus  

 

1 

0.2  LINES IN THE PLANE 
 

The first graphs and functions you encountered in algebra were straight lines and their equations.  These lines 

were easy to graph, and the equations were easy to evaluate and to solve.  They described a variety of physical, 

biological and business phenomena such as  d = rt  relating the distance d traveled to the rate r and time t of 

travel, and  C = 
5
9 ( F – 32)   for converting the temperature in Fahrenheit degrees (F) to Celsius (C). 

 

The first part of calculus, differential calculus, will deal with the ideas and techniques and applications of 

tangent lines to the graphs of functions, so it is important that you understand the graphs and properties and 

equations of straight lines. 

 
The Real Number Line 
 

The real numbers (consisting of all integers, fractions, rational and irrational numbers) can be represented as a 

line, called the real number line  (Fig. 1).  Once we have selected a starting location, called the origin, a 

positive direction (usually up or to the right), and unit of length, then 

every number can be located as a point on the number line.  If we 

move from a point  x = a  to point  x = b  on the line  (Fig. 2), then we 

will have moved an increment of  b – a.  This increment is denoted by 

the symbol ∆x  ( read "delta x" ). 

The Greek capital letter delta, ∆, will appear often in the future and will represent the  "change"  in something.  

If  b  is larger than  a, then we will have moved in the positive direction, and  ∆x = b – a  will be positive. 

 If  b  is smaller than  a, then  ∆x = b – a  will be negative and we will have moved in the 

negative direction.  Finally, if  ∆x = b – a  is zero, then  a=b  and we did not move at all. 
 

We can also use the ∆ notation and absolute values to write the distance that we have  

moved.  On the number line, the distance from  x = a  to  x = b  is 
 

  

 dist(a,b)  =  { b – a  if b ≥ a 
a – b  if b < a     or simply,   dist(a,b)  =  | b – a | = | ∆x | =  (∆x)2  . 

      
 

The midpoint of the segment from  x = a  to  x = b  is  the point  M =  
a + b

2     on the number line. 
    

 
Example 1:  Find the length and midpoint of the interval from  x = –3  to  x = 6. 

Solution: Dist(–3,6) = | 6 – (–3) | = | 9 | = 9.  The midpoint is at  
(–3) + (6)

2     = 3/2 . 
 
Practice 1:  Find the length and midpoint of the interval from  x = –7  to  x = –2. 
 
(Note:  Solutions to Practice Problems are given at the end of each section, after the Problems.) 
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The Cartesian Plane 
 
A real number plane  (Fig. 3)  is determined by two perpendicular number lines, called the coordinate axes,  

which intersect at a point, called the origin of the plane or simply the origin.  Each point P in the plane can be 

described by an ordered pair  (x,y)  of numbers which specify how far, and 

in which directions, we must move from the origin to reach the point P.  The 

point  P = (x,y)  can then be located in the plane by starting at the origin and 

moving x units horizontally and then y units vertically. Similarly, each point 

in the plane can be labeled with the ordered 

 pair  (x,y)  which directs us how to reach that point from the origin.  In this 

book, a point in the plane will be labeled either with a name, say P, or with 

an ordered pair (x,y), or with both P = (x,y).  This coordinate system is 

called the rectangular coordinate system or the Cartesian coordinate 

system after Rene Descartes, and the resulting plane is called the Cartesian Plane.   

The coordinate axes divide the plane into four quadrants which are labeled  

quadrants I, II, III and IV as in Fig. 4   We will often call the horizontal axes the x-axis 

and the vertical axis the y-axis and then refer to the plane as the xy-plane.  This choice  

of x and y as labels for the axes is simply a common choice, and we will sometimes  

prefer to use different labels and even different units of measure on the two axes. 

 
Increments and Distance Between Points In The Plane 
 
 
If we move from a point  P = (x1,y1)  to a point  Q = (x2,y2)  in the plane, 

then we will have two increments or changes to consider.  The increment in 
the x  or horizontal direction is  x2 – x1 which is denoted by   ∆x = x2 – x1 . 

The increment in the  y or vertical direction is  ∆y = y2 – y1 .  These 

increments are shown in Fig. 5 . ∆x  does not represent  ∆  times  x, it 
represents the difference in the  x  coordinates:  ∆x = x2 – x1 .  
 
The distance between the points P = (x1,y1)   and Q = (x2,y2)   is simply  

an application of the Pythagorean formula for right triangles, and 
 

  
 dist(P,Q) =   (∆x)2  + (∆y)2    =   (x2–x1)2 + (y2–y1)2     . 
    

 

 The midpoint  M  of the line segment joining P and Q is  M = (   
x1 + x2

2   ,  
y1 + y2

2    ). 
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Example 2: Find an equation describing the points P = (x,y) which are equidistant from Q = (2,3) and  

R = (5,–1).   (Fig. 6) 

 
Solution:  The points P=(x,y) must satisfy   dist(P,Q) = dist(P,R)   so 
 
     (x–2)2+(y–3)2    =  (x–5)2+(y–(–1))2  .   
 
By squaring each side we get  (x–2)2+(y–3)2 = (x–5)2+(y+1)2 .   
 
Then    x2 – 4x + 4 + y2 – 6y + 9  = x2 – 10x + 25 + y2 + 2y + 1   
 

so   –4x – 6y  + 13 = –10x + 2y + 26    and   y = .75x – 1.625, a straight line.    

Every point on the line  y = .75x – 1.625  is equally distant from Q and R. 
 

Practice 2: Find an equation describing all points P = (x,y) equidistant from Q = (1,–4) and  R = (0,–3). 
 

A circle with radius  r  and center at the point  C = (a,b)  consists of all points  P = (x,y)  which are at a distance 

of  r  from the center  C:  the points  P  which satisfy  dist(P,C) = r . 
 
Example 3: Find the equation of a circle with radius  r = 4  and center  C = (5,–3).   (Fig. 7) 
 

Solution:  A circle is the set of points  P=(x,y)  which are at a fixed 

distance  r  from the center point  C, so this circle will be the 

set of points  P=(x,y)  which are at a distance of 4 units from 

the point  C = (5,–3).  P will be on this circle if  dist(P,C) = 4.  

Using the distance formula and simplifying,  
 

  (x–5)2 + (y+3)2    = 4   so  (x–5)2 + (y+3)2=16   or    
 
 x2 – 10x + 25 + y2 + 6y + 9  = 16. 
 

Practice 3: Find the equation of a circle with radius  r = 5  and center  C = (–2,6). 

 
The Slope Between Points In The Plane 
 

In one dimension on the number line, our only choice was to move in the positive direction (so the x–values 

were increasing) or in the negative direction.  In two dimensions in the plane, we can move in infinitely many 

directions and a precise means of describing direction is needed.  The slope of the line segment joining 
P = (x1,y1)  to  Q = (x2,y2)  , is 
 

                m = { slope from P to Q } =  
rise
run   =  

y2–y1
x2–x1   =  

∆y
 ∆x    . 
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In Fig. 8,  the slope of a line measures how fast we  rise or fall as we move from left to right along the line.  It 

measures the rate of change of the y-coordinate with respect to changes in the x-coordinate.  Most of our work 

will occur in 2 dimensions, and slope will be a very useful concept which will appear often. 

 
 
If P and Q have the same x coordinate, then x1 = x2  and   

∆x = 0.  The line from P to Q is vertical  and the slope  

m = ∆y/∆x  is undefined because ∆x = 0.  If P and Q  
have the same y coordinate, then  y1 = y2  and  

∆y = 0, so the line is horizontal and the slope is   

m = ∆y/∆x = 0/∆x = 0  (assuming ∆x ≠ 0). 
 
 
 

Practice 4: For  P = (–3,2)  and  Q = (5,–14),  find  ∆x, ∆y , and the slope of the line segment from P to Q.   
 

If the coordinates of P or Q contain variables, then the slope  m  is still given by  ∆y/∆x , but we will need to use 

algebra to evaluate and simplify  m. 
 
Example 4: Find the slope of the line segment from  P = (1,3)  to   

 Q = (1+h,  3 + 2h).   (Fig. 9) 
 

Solution:  y1 = 3  and  y2 = 3 + 2h  so  ∆y = (3 + 2h) – (3) = 2h .  x1 = 1  and   

 x2 = 1 + h   so ∆x = (1 + h) – (1) = h,  and the slope is  m = 
∆y
∆x   = 

2h
h   = 2.  

In this example, the value of m is the constant  2  and does not depend on  

 the value of h. 
 

Practice 5: Find the slope and midpoint of the line segment from   

 P = (2,–3)  to  Q = (2 + h,  –3 + 5h). 
 
Example 5: Find the slope between the points  P = (x, x2 + x )  and   
 
 Q = (a, a2 + a )  for  a ≠ x. 
 
Solution: y1 = x2+x  and  y2 = a2+a   so  ∆y = (a2 + a) – (x2 + x).   x1 = x  and  x2 = a   so  ∆x = a–x  and  
 

 the slope is   m =     
∆y
∆x    =    

(a2+a) – (x2+x)
a–x     =   

a2 – x2 + a – x
a – x   

 

  =  
(a–x) (a+x) + (a–x)

a – x    =  
(a–x) .{(a+x) + 1}

a – x     =  (a + x) + 1.  
 
 In this example, the value of m depends on the values of both a and x. 
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Practice 6: Find the slope between  P = (x, 3x2 + 5x)   Q = (a, 3a2 + 5a)   for  a ≠ x. 
 

In application problems it is important to read the information and the questions very carefully.  Including the 

units of measurement of the variables can help you avoid "silly" answers. 
 
Example 6:   In 1970 the population of Houston was 1,233,535 and in 1980 it was 1,595,138.  Find the  

 slope of the line through the points (1970, 1233535) and (1980, 1595138). 
 

Solution:  m =    
∆y
∆x   =   

1595138 – 1233535
1980 – 1970    = 

361603
10    =  36,160.3 

But 36,160.3 is just a number which may or may not have any meaning to you.  If we include the units of 

measurement along with the numbers we will get a more meaningful result: 
 

m =    
∆y
∆x    =   

1595138 people – 1233535 people
year 1980 – year 1970      

 

  =    
361603 people

10 years     =   36,160.3 people/year 

which says that during the decade from 1970 to 1980 the population of Houston grew at an average rate of 

36,160 people per year. 
 

If the x–unit is time in hours and the y-unit is distance in kilometers, then m is  
∆y kilometers
∆x hours    , so the units for  

m  are  kilometers/hour  ("kilometers per hour"), a measure of velocity, the rate of change of distance with 

respect to time.  If the x-unit is the number of employees at a bicycle factory and the y-unit is the number of  
 

bicycles manufactured, then  m  is   
∆y bicycles
∆x employees  , and the units for  a  are bicycles/employee  ("bicycles per 

employee"), a measure of the rate of production per employee. 
 

EQUATIONS OF LINES 
 

Every line has the property that the slope of the segment between any two points on the line is the same, and 

this constant slope property of straight lines leads to ways of finding equations to represent nonvertical lines. 
 
 
Point–Slope Equation 
 

In calculus, we will usually know a point on the line and the slope 

of the line so the point–slope form will be the easiest to apply, and 

the other forms of equations for straight lines can be derived from 

the point–slope form. 
 
If L is a nonvertical line through a known point  P = (x1,y1)  with a 

known slope  m  (Fig. 10), then the equation of the line L  is 
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  Point-Slope:   y – y1 = m(x – x1). 
      

 

Example 7:  Find the equation of the line through  (2,–3)  with slope  5.    

 

Solution:  The solution is simply a matter of knowing and using the point–slope 
formula.  m = 5,  y1 = –3  and  x1 = 2  so  y – (–3) = 5(x – 2).  This 

equation simplifies to   y = 5x –13  (Fig. 11). 
 

The equation of a vertical line through a point  P = (a,b)  is  x = a.  The only 

points  Q = (x,y)  on the vertical line through the point  P  have the same x–

coordinate as  P.   

 

 
Two–Point and Slope–Intercept Equations 
 
If two points  P = (x1,y1) and  Q = (x2,y2)  are on the line L, then we can calculate the slope between them and 

use the first point and the point–slope equation to get the equation of L:    
 

            Two Points:   y – y1 = m(x – x1)   where  m =   
 y2 – y1 
 x2 – x1    . 

       
  

Once we have the slope m, it does not matter whether we use P or Q as the point.  Either choice will give the 

same simplified equation for the line. 
 

It is common practice to rewrite the equation of the line in the form  y = mx + b, the slope-intercept form 

of the line.  The line  y = mx + b  has slope m and crosses the y-axis at  the point  ( 0, b ). 
 

Practice 7:  Use the  ∆y/∆x  definition of slope to calculate the slope of the line  y = mx + b.   
 
 
The point-slope and the two-point formulas are usually more useful for finding the equation of a line, but the  

slope-intercept form is usually the most useful form for an answer because it allows us to easily picture the 

graph of the line and to quickly calculate y-values. 
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Angles Between Lines 
 
The angle of inclination of a line with the x-axis is the smallest  

angle θ which the line makes with the positive x-axis as measured  

from the x-axis counterclockwise to the line (Fig. 12).  Since the slope 

m = ∆y/∆x and since tan(θ) = opposite/adjacent, we have that    

m = tan(θ) .   

The slope of the line is the tangent of the angle of inclination of the line. 

 
Parallel and Perpendicular Lines 
 
Two parallel lines L1 and L2  make equal angles with the  

x-axis so their angles of inclination will be equal  (Fig. 13)  and  
so will their slopes.  Similarly, if their slopes m1 and m2 are equal, 

then the equations of the lines will always differ by a constant:   
 y1 – y2  = {m1x+b1} – {m2x+b2}  

  = (m1–m2)x + (b1–b2)  

  = b1 – b2  

which is a constant so the lines will be parallel.  These two ideas  

can be combined into a single statement: 
 
 
  Two nonvertical lines L1 and L2 with slopes m1 and m2 are parallel  

  if and only if m1 = m2 . 
     
 
Practice 8: Find the equation of the line in Fig. 14 which contains  

 the point  (–2,3)  and is parallel to the line  3x + 5y = 17.    

 
If two lines are perpendicular and neither line is vertical, the situation  

is a bit more complicated (Fig. 15).   

 

Assume  L1 and L2 are two nonvertical lines that intersect at the  

origin (for simplicity) and that P = (x1,y1)  and Q = (x2,y2)  are  

points away from the origin on  L1 and L2 , respectively.  Then the  

slopes of  L1 and L2  will be  m1 = y1/x1  and  m2 =  y2/x2 .  The line 

connecting  P and Q  forms the third side of the triangle  OPQ , and this will 
be a right triangle if and only if  L1 and L2  are perpendicular.  In particular,  

L1 and L2 are perpendicular if and only if the triangle  OPQ  satisfies the 

Pythagorean theorem: 
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{dist(O,P) }2 + {dist(O,Q) }2 = {dist(P,Q) }2  or   
 
( x1–0)2 + (y1–0)2 + ( x2–0)2 + (y2–0)2  
 
 = ( x1 – x2)2 + (y1 – y2)2 .   
 

By squaring and simplifying, this last equation reduces to   
 
 0 = –2x1x2 – 2y1y2  so  y2/x2 = – x1/y1  and  

 m2 =  y2/x2 =  –  x1/y1 = – 
1

(y1/x1)   = – 
1

m1
   .   

 
We have just proved the following result: 
 
 
 Two nonvertical lines L1 and L2 with slopes m1 and m2 are perpendicular if  

 and only if  their slopes are negative reciprocals of each other:  m2 = – 
1

m1   . 

     
 
Practice 9: Find the line which goes through the point (2,–5) and is perpendicular to the line  3y – 7x = 2. 

  
Example 8:  Find the distance (the shortest distance) from the point (1,8) to the line  L:  3y – x = 3.   
  
Solution:  This is a sophisticated problem which requires several steps to solve.  

First we need a picture of the problem  (Fig. 16).  We will find the line L* 

through the point (1,8) and perpendicular to L.  Then we will find the point 

P where L and L* intersect, and, finally, we will find the distance from  P  

to  (1,8).   

 

(i) L has slope 1/3  so  L*  has slope  m =  – 
1

1/3   =  –3 ,  and  

 L*   has the equation  y – 8 = –3(x – 1)  which simplifies  

 to  y = –3x + 11.   
 
(ii)  We can find the point of intersection of  L  and  L*  by replacing the  y   

in the equation for L with the  y  from L*  so  

  3(–3x + 11) – x = 3.  Then  x = 3  so  y = –3x + 11 = –3(3) + 11 = 2 ,  

 so  L  and  L* intersect at   P = (3,2). 

 
(iii) Finally, the distance from L  to  (1,8)  is just the distance from the point (1,8) to the  

 point  P = (3,2)  which is   (1 – 3)2 + (8 – 2)2    =  40    ≈ 6.325 . 
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Angle Formed by Intersecting Lines   
 

If two lines which are not perpendicular intersect at a point and 

neither line is vertical, then we can use some geometry and 

trigonometry to determine the angles formed by the intersection of 
the lines (Fig. 17).  Since  θ2  is an exterior angle of the triangle  

ABC,  θ2  is equal to the sum of the two opposite interior angles so   

θ2 = θ1 + θ  and  θ = θ2 – θ1.  Then, from trigonometry,  
 
 

 tan(θ) =  tan(θ2 – θ1) =  
tan (θ2) – tan (θ1)

1 + tan (θ2)tan (θ1)    =   
m2 – m1

1 + m2m1
   .   

 
 

The inverse tangent of an angle is between  –π/2  and  π/2  ( –90o and  90o)  
 

so   θ =  arctan( 
m2 – m1

 1 + m2m1   )   always gives the smaller of the angles.   

 

The larger angle is  π – θ  or  180o – θo . 

 
        The smaller angle  θ   formed by  two nonperpendicular  

         lines with slopes  m1  and  m2  is 

                   θ   = arctan( m2 – m1
 1 + m2m1   ).    

 
 
Example 9: Find the point of intersection and the angle between  y = x + 3  and  y = 2x + 1.    (Fig. 18) 
 

Solution:  Solving the first equation for y and then substituting into the second equation,  (x + 3) = 2x + 1  so  

x = 2.  Putting this back into either equation, we get  y = 5.  Each of the lines is in the slope–intercept 
 form so it is easy to see that  m1 = 1  and  m2 = 2 .   Then   
 

  tan(θ) =  
m2 – m1

1 + m2m1
   =  

2 – 1
1 + (2)(1)   = 1/3  and    

 
  θ = arctan(1/3) = .322 radians  ≈  18.435o  . 
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PROBLEMS 
 
1.  Estimate the slope of each line in Figure 19. 2.  Estimate the slope of each line in Figure 20. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
3.  Calculate the slope of the line through each pair of points: 
 a) ( 2, 4 ) , ( 5, 8 ) b) ( –2, 4 ) , ( 3, –5 ) c) ( 2, 4 ) ,   ( x, x2 )  
 d) ( 2, 5 ) , ( 2+h, 1+ (2+h)2 ) e) ( x, x2+ 3 ) , ( a, a2 + 3 ) 
 
4.  Calculate the slope of the line through each pair of points: 
 a) ( 5, –2 ) , ( 3, 8 ) b) ( –2, –4 ) , ( 5, –3 ) c) ( x, 3x+5 ),   ( a, 3a+5 )  
 d) ( 4, 5 ),  ( 4+h, 5–3h ) e) ( 1, 2 ) ,   ( x, 1+x2 ) f) ( 2, –3 ),  ( 2+h, 1– (1+h)2 )
 g) (x, x2),  (x+h, x2+2xh+h2 ) h) ( x, x2 ),   ( x–h, x2–2xh+h2 ) 
 
5. A small airplane at an altitude of 5000 feet is flying East at 300 feet per second (a bit over 200 miles per  

 hour), and you are watching it with a small telescope as it passes directly overhead.  (Fig. 21) 

 a) What is the slope of the telescope 5, 10  and  20  seconds  

  after the plane passes overhead? 

 b) What is the slope of the telescope  t  seconds after the  

  plane passes overhead? 

 c) After it passes overhead, is the slope of the telescope  

  increasing, decreasing, or staying the same? 

 
6. You are at the origin (0,0)  and are watching a small bug at the  
  point  (t, 1+t2 )  at time  t  seconds.   

 a) What is the slope of your line of vision when  t = 5, 10 and  15  seconds? 

 b) What is the slope of your line of vision at any time  t? 
 

7. The blocks in a city are all perfect squares.  A friend gives you the following directions to a good restaurant; 

 "go north 3 blocks, turn east and go 5 blocks, turn south and go 7 blocks, turn west and go 3 blocks."  How 

far away (straight line distance) is the restaurant? 
 

8. Suppose the directions in problem 7 had been  "go north 5 blocks, turn right and go 6 blocks, turn right and 

go 3 blocks, turn left and go 2 blocks."  How far away is the restaurant? 
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9. How far up a wall will a 20 foot long ladder reach if the bottom must be at least 4 feet from the bottom of 

the wall?  What will be the slope of the ladder if the bottom is 4 feet from the wall?  What angle will the 

ladder make with the ground? 
 
10. Let  P = (1, –2)  and  Q = (5, 4) 
 (a) Find the point midpoint  R  on the line segment from  P  to  Q. 
 (b) Find the point  T  which is  1/3  of the way from  P  to  Q:   Dist(P,T) = (1/3).Dist(P,Q) . 
 (c) Find the point  S  which is  2/5  of the way from  P  to  Q:   Dist(P,S) = (2/5).Dist(P,Q) . 
 
11. Let  P = (2 , 3)  and  Q = (8 , 11) .  Verify that if 0 ≤ a ≤ 1, then the point  R = (x,y)  with   
 x =  2a + 8(1–a)   and  y = 3a + 11(1–a)  is on the line from P to Q and  Dist(P,R) = (1–a).Dist(P,Q) . 
 

12. What is the longest straight stick which fits into a rectangular box which is 24 inches long, 18 inches wide 

and 12 inches high?  What angle, in degrees, does the stick make with the base of the box? 
 
C13. The lines 

! 

y = x  and 

! 

y = 4 " x   intersect at the point  (2, 2). 

a) Use slopes to show that the lines are perpendicular. 

b) Graph them together on your calculator using the "window" 

! 

"10 # x #10, "10 # y #10. 

 Why do the lines not appear to be perpendicular on the calculator display? 

c) Find a suitable window for the graphs so the lines so that they do appear perpendicular. 

 
C14.  a)  Find equations for two lines that both go through the point  (1, 2), one with slope 3 and one with slope -1/3. 

b) Choose a suitable window so the lines will appear perpendicular, and graph them together on your calculator. 
 

15.  Sketch each line which has slope=m and which goes through the point  P.  Find the equation of each line. 
 a) m = 3,  P = (2,5) b) m = –2,  P = (3,2) c) m = –1/2,  P=(1,4) 
 
16.  Sketch each line which has slope=m and which goes through the point P.  Find the equation of each line. 
 a) m = 5,  P = (2,1) b) m = – 2/3,  P = (1,3) c) m = π,  P = (1,–3) 
  
17. Find the equation of each of the following lines. 

a)  L1 goes through the point (2, 5) and is parallel to  3x – 2y = 9. 

b)  L2 goes through the point (–1,2) and is perpendicular to  2x = 7–3y. 

c)  L3  goes through the point (3, –2) and is perpendicular to  y = 1. 

 
18. a) Find a value for  A  so that the line  y = 2x + A  goes through the point  (3,10). 

 b) Find a value for  B  so that the line  y = Bx + 2  goes through the point  (3,10).  

 c) Find a value for  D  so that the line  y = Dx + 7  crosses the  y–axis at  y = 4. 

 d) Find values for  A  and  B  so that the line  Ay = Bx + 1  goes through the points  (1,3)  and  (5,13). 

 
19. Find the shortest distance between the circles with centers  C1 = (1, 2)  and  C2 = (7, 10)  and radii 

 a) r1 = 2  and   r2 =  4 b) r1 = 2  and   r2 =  7 c) r1 = 5  and   r2 =  8  

 d) r1 = 3  and   r2 =  15 e) r1 = 12  and   r2 =  1 
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20. Find the equation of the circle with center  C  and radius  r  when 
 a) C = (2,7)   r = 4 b) C = (3,–2)   r = 1 c) C = (–5,1)   r = 7 d) C = (–3,–1)   r = 4 
 
21. Explain how you can determine, without graphing, whether a given point  P = (x,y)  is inside, on, or  

 outside  the circle with center  C = (h,k)  and  radius  r. 

 
22. A box with a height of 2 cm and a width of 8 cm is 

definitely big enough to hold two semicircular rods with 

radii of 2 cm  (Fig. 22).  Will these same two rods fit into  

 a box 2 cm high and 7.6 cm wide?  Will they fit in a box 

2 cm high and 7.2 cm wide?  (Suggestion:  turn one of 

the rods over.) 

 
23. Show that the equation of the circle with center  C = (h,k)  and radius  r  is  (x – h)2 + (y – k)2  = r2 . 
 
24. Find the equation of the line which is tangent to the circle  x2 + y2 = 25  at the point  P  when 
 a) P = (3,4) b) P = (–4,3) c) P = (0,5) d) P = (–5,0) 
 

25. Find the slope of the line which is tangent to the circle with center  C = (3,1)  at the point  P  when 

 a) P = (8,13) b) P = (–10,1) c) P = (–9,6) d) P = (3,14) 

 

26. Find the center  C = (h,k)  and the radius  r  of the circle which goes through the three points 

 a) (0,1) ,  (1,0) ,  and  (0,5) b) (1,4) ,  (2,2) ,  and  (8,2) c) (1,3) ,  (4,12) ,  and  (8,4) 

 

27.  a) How close does the line  3x – 2y = 4  come to the point  (2,5)? 

 b) How close does the line  y =5 – 2x  come to the point  (1,–2)? 

 c) How close does the circle with radius  3  and center at  (2,3)  come to the point (8,3)? 

 

28.  a) How close does the line  2x – 5y = 4  come to the point (1,5)? 

 b) How close does the line  y = 3 – 2x  come to the point  (5,–2)? 

 c) How close does the circle with radius 4  and center at (4,3) come to the point (10,3)? 
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29. a) Show that the line  L  given by  Ax + By = C has slope  m = –A/B.  (Fig. 23) 

 b) Find the equation of the line  L*  through  (0,0) which is perpendicular to  

  line  L  in part (a). 

 c) Show that the lines  L  and   L*  intersect at the point   
 

   (x, y)  =  ( 
AC

A2 + B2   ,   
BC

A2 + B2   ) . 

 d) Show that the distance from the origin to the point  (x,y)  in  

  part (c)  is   
 

   
| C |

A2 + B2    . 

  
 Steps  (a) – (d)  show that the distance from the origin  

 to the line Ax + By = C  is    
| C |

A2 + B2    . 

 

 

30. Show that the distance from the point  (p,q)  to the line  Ax + By = C  is     
 | Ap + Bq – C |

A2 + B2    . 

 (The steps will be similar to those in problem 29, but the algebra will be more complicated.) 
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Section 0.2 PRACTICE  Answers 
 
Practice 1: Length = Dist( –7, –2 ) = | (–7) – (–2) | = | –5 | = 5. 
 

 The  midpoint is at  
(–7) + (–2)

2    =  
–9
2     = – 4.5 . 

 

Practice 2: Dist(P,Q) = Dist(P,r)  so   (x – 1)2  + (y + 4)2    =   (x – 0)2  + (y + 3)2      . 

 Squaring each side and simplifying,  we eventually have  y = x – 4  . 
 
Practice 3: The point  P = ( x , y)  is on the circle when it is 5 units from the center  C = ( –2, 6)  so 

 Dist(P,C) = 5.  Then  Dist( (x,y) , (–2,6) ) = 5  so 
 

   (x + 2)2 + (y – 6)2     = 5   or   (x + 2)2 + (y – 6)2  =  25 . 
 

Practice 4: ∆x = 5 – (–3) = 8,   ∆y = –14 – 2 = –16 ,  and  slope = 
∆y
∆x   =  

–16
8     = – 2 . 

 

Practice 5: slope = 
∆y
∆x   =  

(–3 + 5h) – (–3)
(2 + h) – 2     =  

5h
h     =  5 . 

 

 The midpoint is at  (  
(2) + (2 + h)

2    ,  
(–3 + 5h) + (–3)

2     )  =  (  2 + 
h
2   ,  –3 +  

5h
2     ). 

 

Practice 6: slope = 
∆y
∆x    =   

(3a2 + 5a) – (3x2 + 5x)
a – x      

 

   =   
3(a2 – x2) + 5(a – x)

a – x     =   
3(a + x)(a – x) + 5(a – x)

a – x    =  3(a + x) + 5 . 
 
Practice 7: Let  y1 = mx1 + b  and  y2 = mx2 + b .   Then 
 

 slope = 
∆y
∆x     =  

(mx2 + b) – (mx1 + b)
x2 – x1

   =  
m(x2 – x1)

x2 – x1
    =  m  . 

 

Practice 8: The line  3x + 5y = 17  has slope  
–3
5     so the slope of the parallel line is  m =  

–3
5    . 

 Using the form  y =  
–3
5   x + b  and the point  ( –2, 3)  on the line,  we have   

  3 =  
–3
5  (–2)  + b   so  b = 

9
5    and    

  y =  
–3
5   x +  

9
5    or   5y + 3x  =  9  .. 

 

Practice 9: The line 3y – 7x = 2  has slope  
7
3   so the slope of the perpendicular line is  m =  

–3
7    . 

 Using the form  y =  
–3
7   x + b  and the point  ( 2, –5)  on the line,  we have 

  –5 =  
–3
7  (2)  + b   so  b = 

–29
7     and   

  y = 
–3
7   x +  

–29
7     or  7y + 3x  =  –29  . 
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0.3 FUNCTIONS AND THEIR GRAPHS 
 

When you prepared for calculus, you learned to manipulate functions by adding, subtracting, multiplying 

and dividing them, as well as calculating functions of functions (composition).  In calculus, we will still be 

dealing with functions and their applications.  We will create new functions by operating on old ones.  We 

will derive information from the graphs of the functions and from the derived functions.  We will find ways 

to describe the point–by–point behavior of functions as well as their behavior  "close to"  some points and 

also over entire intervals.  We will find tangent lines to graphs of functions and areas between graphs of 

functions.  And, of course, we will see how these ideas can be used in a variety of fields. 
 

This section and the next one are  a review of information and procedures you should already know about 

functions before we begin calculus.   

 
What is a function?  
 
 Definition of Function: 

 A function from a set X to a set Y is a rule for assigning  to each element of the set  X  a single 

element of the set Y.  A function assigns a unique (exactly one) output element in the set Y to each 

input element from the set X. 
 

The rule which defines a function is often given by an equation, but it could also be given in words or 

graphically or by a table of values.  In practice, functions are given in all of these ways, and we will use all 

of them in this book. 
 

In the definition of a function, the set X of all inputs is called the domain of the function.  The set Y  of all 

outputs produced from these inputs is called the range of the function.  Two different inputs, elements in 

the domain, can be assigned to the same output, an element in the range, but one input cannot lead to 2 

different outputs. 
 

Most of the time we will work with functions whose domains and ranges are real numbers, but there are 

other types of functions all around us.  Final grades for this course is an example of a function.  For each 

student, the instructor will assign a final grade based on some rule for evaluating that student's 

performance.  The domain of this function consists of all students registered for the course, and the range 

consists of the letters A, B, C, D, F, and perhaps W (withdrawn).  Two students can receive the same final 

grade, but only one grade will be assigned to each student. 
 

Function Machines 
 

Functions are abstract structures, but sometimes it is easier to think of them in a more concrete way.  One 

way is to imagine that a function is a special purpose computer, a machine which accepts inputs, does 
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something to those inputs according to the defining rule, and produces an output.  The output is the value 

of the function for the given input value.  If the defining rule for a function  f  is  "multiply the input by 

itself" ,  f(input) = (input)(input) , then Fig. 1  shows the results of putting the inputs  x,  5, a,  c + 3  and  

x + h  into the machine  f. 

 

 

 

 

 

 
 
Practice 1: If we have a function machine  g  whose rule is  "divide 3 by the input and add 1",    

 g(x) = 3/x + 1,  what outputs do we get from the inputs  x,  5, a,  c + 3  and  x + h ?  What happens 

if we put  0  into the machine  g? 
 

You expect your calculator to behave as a function:  each time you press the same input sequence of keys 

you expect to see the same output display.  In fact, if your calculator did not produce the same output each 

time you would need a new calculator.  (On many calculators there is a key which does not produce the 

same output each time you press it.  Which key is that?) 

 
Functions Defined by Equations 
 

If the domain consists of a collection of real numbers (perhaps all real numbers) and the range is a 

collection of real numbers, then the function is called a numerical function.  The rule for a numerical 

function can be given in several ways, but it is usually written as a formula.  If the rule for a numerical 

function , f , is  "the output is the  input number multiplied by itself", then we could write the rule as  

f(x) = x.x = x2 .  The use of an  "x"  to represent the input is simply a matter of convenience and custom.  

We could also represent the same function by   f(a) = a2 ,  f(€#) = #2  or  f( input ) = ( input )2 . 
 

For the function  f  defined by  f(x) = x2 – x , we have that  f(3) = 32 – 3 = 6,  f(.5) = (.5)2 – (.5) = –.25, and  

f(–2) = (–2)2 – (–2) = 6 .  Notice that the two different inputs,  3  and  –2,  both lead to the output of  6.  

That is allowable for a function.  We can also evaluate  f  if the input contains variables.  If we replace the  

"x"  with something else in the notation  "f(x)",  then we must replace the "x"  with the same thing 

everywhere in the equation: 

f(c) = c2 – c ,  f(a+1) = (a+1)2 – (a+1) = (a2 + 2a + 1) – (a + 1) = a2 + a , 

f(x+h) = (x+h)2 – (x+h) = (x2+2xh+h2) – (x+h) , and, in general,   f(input) = (input)2 – (input) . 
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For more complicated expressions, we can just proceed step–by–step: 
 

f(x+h) – f(x)
h   = 

{(x+h)2 – (x+h)} – {x2 – x}
h   = 

{(x2+2xh+h2) – (x+h)} – {x2 – x}
h   

 

 = 
2xh + h2 – h

h   = 
h(2x + h – 1)

h   = 2x + h – 1  . 
 
Practice 2: For  the function  g   defined by  g(t) = t2 – 5t ,  evaluate g(1), g(–2), g(w+3), g(x+h),  

 g(x+h) – g(x),  and   
g(x+h) – g(x)

h    . 
 
Functions Defined by Graphs and Tables of Values 
 
The graph of a numerical function  f  consists of a plot of ordered pairs  (x,y)  where  x is in the domain of   

f  and  y = f(x).  A table of values of a numerical function consists of a list of some of the ordered pairs  

(x,y)  where  y = f(x).  Fig. shows a graph of  f(x) = sin(x)  for  –4 ≤ x ≤ 9.   
 

A function can be defined by a graph or by a table of  

values, and these types of definitions are common in  

applied fields.   The outcome of an experiment will  

depend on the input, but the experimenter may not  

know the "rule" for predicting the outcome.  In that  

case, the experimenter usually represents the experiment function as a table of measured outcome values 

verses input values  or  as a graph of the outcomes verses the inputs.  The table and graph in Fig. 3 show 

the deflections obtained when weights are loaded at the end of a wooden stick.  The graph in Fig. 4 shows 

the temperature of a hot cup of tea as a function of the time as it sits in a 68o F room.   In these 

experiments, the "rule" for the function is that   f(input) = actual outcome of the experiment. 
 

Tables have the advantage 

of presenting the data 

explicitly, but it is often 

difficult to detect patterns 

simply from lists of 

numbers.  Graphs tend to 

obscure some of the 

precision of the data, but 

patterns are much easier to 

detect visually  

––  we can actually see what is happening with the numbers. 
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Creating Graphs of Functions 
 

Most people understand and can interpret pictures more quickly than tables of data or equations, so if we 

have a function defined by a table of values or by an equation, it is often useful and necessary to create a 

picture of the function, a graph.   

 
A Graph from a Table of Values 
 

If we have a table of values of the function, perhaps consisting of measurements obtained from an 

experiment,  then we can simply plot the ordered pairs in the  xy–plane to get a graph which consists of a 

collection of points.   
 

Fig. 5 shows the lengths and weights of trout 

caught (and released)  during several days of 

fishing.  It also shows a  line which comes 

"close" to the plotted points.  From the graph, 

you could estimate that a  17 inch trout would 

weigh slightly more than one pound. 

 
A Graph from an Equation 
 

Creating the graph of a function given by an equation is similar to creating one from a table of values –– we 

need to plot enough points  (x,y)  where  y = f(x) so we can be confident of the shape and location of the 

graph of the entire function.  We can find a point  (x,y)  which satisfies  y = f(x)  by picking a  value for  x  

and then calculating the value for  y  by evaluating  f(x).  Then we can enter the  (x,y)  value in a table or 

simply plot the point  (x,y) . 
 

If you recognize the form of the equation and know something about the shape of graphs of that form, you may 

not have to plot many points.  If  you do not recognize the form of the equation then you will have to plot more 

points, maybe 10 or 20 or 234:  it  depends on how complicated the graph appears and on how important it is to 

you (or your boss) to have an accurate graph.  Evaluating  y = f(x)  at a lot of different values for  x  and then 

plotting the points  (x,y)  is usually not very difficult, but it can be very time–consuming.  Fortunately, there are 

now calculators and personal computers which will do the evaluations and plotting for you.   

 
Is every graph the graph of a function? 
 

The definition of function requires that each element of the domain, each  input value,  be sent by the 

function to exactly one element of the range, to exactly one output value,  so for each  input x-value there 
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will be exactly one output y–value,  y = f(x).  The points  (x, y1) and  (x,y2) cannot both be on the graph of  

f  unless  y1 = y2 .  The graphic interpretation of this result is called the Vertical Line Test. 
 

 
 Vertical Line Test for a Function:   

 A graph is the graph of a function  if and only if   a vertical line drawn 

 through any point in the domain intersects the graph at exactly one point. 
     

 

Fig. 6(a) shows the graph of a function.  Figs. 6(b) and 

6(c) show graphs which are not the graphs of functions, 

and vertical lines are shown which intersect those 

graphs at more than one point.  Non–functions are not 

"bad", and sometimes they are necessary to describe 

complicated phenomena. 
 
Reading Graphs Carefully 
 

Calculators and computers can help students, reporters, business people and scientific professionals create 

graphs quickly and easily, and because of this, graphs are being used more often than ever to present 

information and justify arguments.  And this text takes a distinctly graphical approach to the ideas and 

meaning of calculus.  Calculators and computers can help us create graphs, but we need to be able to read 

them carefully.  The next examples illustrate some types of information which can be obtained by carefully 

reading and understanding graphs. 
 
 
Example 1: A boat starts from St. Thomas and sails due  

 west with the velocity shown in Fig. 7   

 (a)  When is the boat traveling the fastest?     

 (b)  What does a negative velocity away from  

  St. Thomas mean?   

 (c)  When is the boat the farthest from St. Thomas? 

 

Solution: (a) The greatest speed is 10 mph at  t = 3 hours. 

(b) It means that the boat is heading back toward St. Thomas. 

(c) The boat is farthest from St. Thomas at t = 6 hours.  For  t < 6  the boat's velocity is positive, and 

the distance from the boat to St. Thomas is increasing.  For  t > 6 the boat's velocity is negative, 

and the distance from the boat to St. Thomas is decreasing. 
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Practice 3: You and a friend start out together and hike along the  

 same trail but walk at different speeds  (Fig. 8).   

 (a)  Who is walking faster at  t = 20?   

 (b)  Who is ahead at  t = 20?   

 (c)  When are you and your friend farthest apart?   

 (d)  Who is ahead when  t = 50? 
 
Example 2: In Fig. 9, which has the largest slope:  the line through  

 the points A and P, the line through B and P, or the line 

through C and P? 
 
 
Solution: The line through  C  and  P has the largest slope:   

   mPC > mPB > mPA . 

 
 

 

Practice 4: In Fig. 10, the point  Q  on the curve is fixed,  and the point  P  is moving  

                             to the right along the curve toward the point  Q.  As  P  moves toward  Q: 

 (a)  the  x–coordinate of  P  is  Increasing, Decreasing, Remaining constant, or None of these. 

(b)  the  x–increment from  P  to  Q  is Increasing, Decreasing, Remaining constant, or  

 None of these 

(c)  the slope from P  to  Q  is  Increasing, Decreasing, Remaining constant, or None of these.  
 
 

Example 3:   The graph of  y = f(x)  is shown in Fig. 11.  Let   

 g(x) be the slope of the line tangent to the graph of  f(x)  at the  

 point  (x,f(x)).   

 (a)  Estimate the values  g(1), g(2)  and  g(3).   

 (b)  When  does  g(x) = 0?  (c)  At what value(s) of  x  is  g(x)   

  largest?         (d)  Sketch the graph of  y = g(x). 

 

Solution:  (a)  Fig. 11 shows the graph  y = f(x) with several tangent lines to the graph of  f.  From Fig. 11  

we can estimate that  g(1)  (the slope of the line tangent to the graph of  f  at  (1,0) )  is 

approximately equal to  1.  Similarly,  g(2) ≈ 0  and  g(3) ≈ –1. 

(b) The slope of the tangent line appears to be horizontal (slope = 0) at  x = 2  and at  x = 5. 

(c) The tangent line to the graph appears to have greatest slope (be steepest)  near  x = 1.5 . 
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(d) We can build a table of values of  g(x)  and then sketch the graph of these values. 
 

 x f(x) g(x) = tangent slope at (x, f(x) ) 
0 –1 .5 
1 0 1 
2 2 0 
3 1 –1 
4 0 –1 
5 –1 0 
6 –.5 .5 

The graph  y = g(x) is given in Fig. 12. 
 

 
 

 
 
 

Practice 5:   Water is flowing into a container  (Fig. 13)  at a constant rate of  

 3 gallons per minute.  Starting with an empty container, sketch the graph of  

 the height of the water in the container as a function of time. 
 
 
 

Problems 
 

In problems 1 – 4, use the shapes and slopes of the data to match 

the given numerical triples to the graphs in the figures.   

(For example, A: 3, 3, 6 in Problem 1.  is "over and up" so  

it matches graph  (a) in Fig. 14.  B is "down and over" so it 

matches graph (c) in Fig. 14.) 
 
1. Fig. 14.  Data: A: 3, 3, 6   B: 12, 6, 6    

  C: 7, 7, 3   D: 2, 4, 4   
 
2. Fig. 15.  Data: A: 7, 10, 7   B: 17.3, 17.3, 25    

  C: 4, 4, 8   D: 12, 8, 16  
 
3. Fig. 16.  Data: A: 7, 14, 10   B: 23, 45, 22    

  C: 0.8, 1.2, 0.8   D: 6, 9, 3  
 
4. Fig. 17.  Data: A: 6, 3, 9   B: 18, 10, 10    

  C: 12, 6, 9   D: 3.7, 1.9, 3.6  
 

5. Water is flowing into each of the bottles in Fig. 18 at a steady  

 rate.  Match each bottle shape with the graph of the height of  

 the water as a function of time. 
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6. Sketch the shapes of bottles which will have the water 

height versus time graphs in Fig. 19. 

 
 

 
  
 

7. f(x) = x2 + 3 ,  g(x) =  x – 5     , and  h(x) = 
x

x – 2  

 (a) evaluate f(1), g(1) and h(1) (b) graph f(x), g(x) and h(x)  for  –5 ≤ x ≤ 10 

 (c) evaluate f(3x), g(3x) and h(3x) (d) evaluate f(x+h), g(x+h) and h(x+h) 

  
8. Find the slope of the line through the points P and Q  when 

 (a)  P = (1,3),  Q = (2,7)  (b)  P = (x, x2 + 2),  Q = ( x+h , (x+h)2 + 2) 

 (c)  P = (1,3),  Q = (x, x2 + 2) What are the values of these slopes in (c) if x = 2,  x = 1.1, x = 1.002? 

  
9. Find the slope of the line through the points P and Q  when 

 (a)  P = (1,5),  Q = (2,7)  (b)  P = (x, x2 + 3x – 1),  Q = ( x+h , (x+h)2 + 3(x+h) – 1) 

 (c)  P = (1,3),  Q = (x, x2 + 3x – 1)  What are the values of these slopes in (c) if  x = 1.3, x = 1.1, x = 1.002? 

 

10. f(x) = x2 + x  and  g(x) = 3/x.  Evaluate and simplify   
f(a + h) – f(a)

h     and  
g(a + h) – g(a)

h      

 when    a = 1, a = 2, a = –1, a = x. 
 

11. f(x) = x2 – 2x  and  g(x) = x .  Evaluate and simplify   
f(a+h) – f(a)

h     and  
g(a+h) – g(a)

h     

 when   a = 1, a = 2, a = 3, a = x. 
 
 
 
12. The temperatures in  Fig. 20 were 

recorded during a 12 hour period in 

Chicago. 

 (a) At what time was the temperature  

  the highest?  Lowest? 

 (b) How fast was the temperature  

  rising at 10 am?  At 1 pm? 

 (c) What could have caused the drop  

  in temperature between 1 pm  

  and 3 pm? 



0.3   Functions and Graphs Contemporary Calculus 9 

  

 

13. The graph in Fig. 21 shows the distance of an airplane 

from an airport during a several hour flight. 

 (a) How far was the airplane from the airport at   

  1 pm? At  2 pm? 

 (b) How fast was the distance changing at  1 pm? 

 (c) How could the distance from the plane to the airport 

remain unchanged from 1:45 pm until  2:30 pm 

without the airplane falling? 
 

 

14. The graph in Fig. 22  shows the height of a diver above the  

 water level at time  t  seconds. 

  (a) What was the height of the diving board?  

  (b) When did the diver hit the water? 

  (c) How deep did the diver get?  

  (d) When did the diver return to the surface? 

 

 

 

 

15.  a) Sketch the lines tangent to the curve in  Fig. 23  at  x = 1, 2, 3, 4, and 5. 

 b) For what value(s) of  x  is the value of the function largest?   Smallest? 

 c) For what value(s) of  x  is the slope of the tangent line largest? Smallest? 
 
 
 
 

 

16.  Fig. 24  shows the height of the water 

(above and below mean sea level) at a 

Maine beach. 

 a) At which time(s) was the most  

  beach exposed?  The least? 

 b) At which time(s) was the current  

  the strongest?   
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17. Imagine that you are ice skating, from left to right, along the path   

 in  Fig. 25.  Sketch the path you will follow if you fall at  

 points  A, B, and  C. 
 
 

 

 

18. Define  s(x)  to be the slope of the line through the points  (0,0)  and  (x, f(x) )  in Fig. 26 . (For  

 example,  s(3) = { slope of the line 

through  (0,0)  and  (3, f(3) ) }  =  4/3. )   

 a) Evaluate  s(1), s(2), and  s(4).  

 b) For which integer value of  x   

  between  1  and  7  is   

  s(x)  smallest? 
 
 
 
 

 

 

19. Let  f(x) = x + 1  and  define  s(x)  to be the slope of the line 

  through the points  (0,0)  and  (x, f(x) )  in Fig. 27 .  (For example,   

       s(2) = { slope of the line through  (0,0)  and  (2,3) } = 3/2. ) 

 a) Evaluate  s(1), s(3)  and  s(4).  

 b) Find an equation for  s(x)  in terms of  x. 
 
 

 
 
 
 

20. Define  A(x)  to be the area of the rectangle bounded by the 

axes, the line  y = 2, and a vertical line at  x  as in Fig. 28.   

 (For example,  A(3) = area of a  2  by  3  rectangle  = 6.) 

 a) Evaluate  A(1), A(2)  and  A(5).  

 b) Find an equation for  A(x)  in terms of  x. 
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21. Use the graph of y = f(x) in Fig. 29  to complete the table.  (You will have to estimate the  

 values of the slopes.) 

 
 
  x f(x) slope of the line tangent 
    to the graph of f at (x, f(x)) 
          
  0 1  1 
  1  
  2 
  3 
  4 
 
 
 

 
22. Sketch the graphs of water height versus time for water  

 pouring into a bottle shaped like: 

 (a)  a milk carton (b)  a spherical glass vase  

 (c)  an oil drum (cylinder) lying on its side  

 (d)  a giraffe (e)  you. 

 

23. Design bottles whose graphs of (highest) water height versus time will look like those in Fig. 30.  
 
 
Section 0.3 PRACTICE  Answers 
 
Practice 1: Input Output Input Output 

 x 
3
x   + 1 c + 3 

3
c + 3   + 1 

 5 
3
5   + 1  =  1.6 x + h 

3
x + h   + 1 

 a 
3
a   + 1  

 0 g(0) =  
3
0   +  1  which is not defined because of division by 0. 

 

Practice 2: g(t) = t2 – 5t . 

 g(1) = 12 – 5(1) = –4 . g(–2) = (–2)2 – 5(–2) = 14 . 

 g(w + 3) = (w + 3)2 –5(w + 3)  =  w2 + 6w + 9 – 5w – 15  =  w2 + w – 6  . 

 g(x + h) = (x + h)  – 5(x + h)  =  x2 + 2xh + h2  – 5x – 5h . 

 g(x + h) – g(x)  = ( x2 + 2xh + h2  – 5x – 5h ) – ( x2 – 5x )  =  2xh + h2 – 5h . 

 

 
g(x + h) – g(x)

h    =   
2xh + h2 – 5h

h     =   2x + h – 5  . 
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Practice 3: (a)  Friend (b)  Friend 

 (c) At  t = 40.  Before that your friend is walking faster and increasing the distance between  

  you.  Then you start to walk faster than your friend and start to catch up. 

 (d) Friend.  You are walking faster than your friend at  t = 50, but you still have  

  not caught up. 

 

Practice 4: (a) The x–coordinate is increasing. (b)  The  x–increment  ∆x  is  decreasing. 

 (c) The slope of the line through  P  and  Q  is  decreasing. 

 

Practice 5: See Fig. 31. 
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0.4 COMBINATIONS OF FUNCTIONS 
 
Multiline Definitions of Functions -- Putting Pieces Together 
 
Sometimes a physical or economic situation behaves differently depending on circumstances, and a more  

complicated function may be needed to describe the situation. 
 

Sales Tax:   Some states have different rates of sale tax depending on the type of item purchased.  A "luxury 

item" may be taxed at 12%, food may have no tax, and all other items may have a 6% tax.   We could describe 

this situation by using a multiline function, a function whose defining rule consists of several pieces.  Which 

piece of the rule we need to use will depend on what we buy.  In this example we could define the tax  T  on an 

item which costs  x  to be 
   

 T(x) =  
⎩⎪
⎨
⎪⎧ 0 if x is the cost of a food
 0.12x if x is the cost of a luxury item
 0.06x if x is the cost of any other item.

    

To find the tax on a $2 can of stew, we would use the first piece of the rule and find that the tax is 0.  To find 

the tax on a $30 pair of earrings, we would use the second piece of the rule and find that the tax is $3.60 .  The 

tax on a $20 book requires using the third rule, and the tax is $1.20 . 
 

Wind Chill Index:   The rate at which a person's body loses heat depends on the temperature of the surrounding air 

and on the speed of the air.  You lose heat more quickly on a windy day than you do on a day with little or no wind.  

Scientists have experimentally determined this rate of heat loss as a function of temperature and wind speed,  and 

the resulting function is called the Wind Chill Index, WCI .  The WCI  is the temperature on a still day (no wind) at 

which your body would lose heat at the same rate as on the windy day.  For example,  the WCI value for   30o F  air  

moving at  15  miles per hour  is  9o F:  your body loses heat as quickly on a  30o F day with a 15 mph wind  as it 

does on a  9o F day with no wind. 
 

If  T  is the Fahrenheit temperature of the air  and  v  is the speed of the wind in miles per hour, then the WCI  is a 

multiline function of the wind speed  v  (and of the temperature T): 
 

WCI  =    
⎩⎪
⎨
⎪⎧ T if 0 ≤ v ≤ 4

 91.4 – 
10.45 + 6.69 v – 0.447v

22  (91.5 – T) if 4 ≤ v ≤ 45
 1.60T – 55 if v > 45

   

The WCI  value for a still day  (0 ≤ v ≤ 4 mph)  is just the air temperature.  The WCI  values for wind speeds  

above  45 mph are the same as the WCI value for a wind speed of 45 mph.  The WCI values for wind speeds 

between  4 mph  and  45 mph  decrease as the wind speeds increase. 
 

This WCI function depends on two variables,  the temperature  and the wind speed.  However, if the temperature is 

constant, then the resulting formula for the WCI will only depend on the speed of the wind.   If the air temperature  

is  30o F  (T = 30), then the formula for the Wind Chill Index is 
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! 

WCI30 =

30o                                    if  0 " v " 4  mph

62.19 #18.70 v +1.25v    if  4 " v " 45  mph
#70                                     if  45 " v  mph

$ 

% 
& 

' 
& 

( 

) 
& 

* 
& 

 

 
The graphs of the the Wind Chill Indices are shown  
on Fig. 1  for temperatures of  40o F, 30o F  and   

20o F .   (From  UMAP Module 658, Windchill  by  

William Bosch  and  L.G. Cobb, 1984. ) 
 

Practice 1: A motel charges $50 per night for a 

room during the tourist season from June 1  

 through September 15, and $40 per night  

 otherwise. Define a multiline function which 

describes these rates. 
 

Example 1: Define   f(x) =   
⎩⎪
⎨
⎪⎧ 2 if x < 0
 2x if 0 ≤ x < 2
 1 if 2 < x

   

 Evaluate  f(–3), f(0), f(1), f(4) and f(2).  Graph  y = f(x)  for  –1 ≤ x ≤ 4 . 

 
Solution:  To evaluate the function for different values of  x,  we must first decide which 

line of the rule applies.  If  x = –3 < 0, then we need to use the first line of the rule, 

and   f(–3) = 2.  When  x = 0  or  x = 1, we need the second line of the function 

definition, and then  f(0) = 2(0) = 0  and  f(1) = 2(1) = 2.  At  x = 4  the  

 third line is needed, and  f(4) = 1.  Finally,  at  x = 2,  none of the lines apply:   

 the second line requires  x < 2  and the third line requires 2 < x,  so  f(2) is  

 undefined.  The graph of  f(x) is given in Fig. 2.  Note the "hole" above   

 x = 2  since  f(2) is not defined by this rule for  f. 

 

Practice 2: Define g(x) =  
⎩⎪
⎨
⎪⎧ x if x < –1

 2 if –1 ≤ x < 1
 –x if 1 < x ≤ 3
 1 if 4 < x.

    Graph  y = g(x)  for  –3 ≤ x ≤ 6 and 

 evaluate  g(–3), g(–1), g(0), g(1/2), g(1), g(π/3), g(2), g(3), g(4) and g(5) .   
  
 

Practice 3: Write a multiline function definition for the function  

 whose graph is given in Fig. 3 . 
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We can think of a multiline function definition as a machine  

which first examines the  input value to decide which line of  

the function rule to apply  (Fig. 4). 

 

 

 

 

 
 

 
 
Composition of Functions  ––  Functions of Functions 
 
Basic functions are often combined with each other to describe more complicated situations. Here we will  

consider the composition of functions,  functions of functions. 
 

 
      Definition:  The composite of two functions  f  and  g , written  f°g , is  f°g(x) ≡  f( g(x) ). 
     

 
The domain of the composite function  f°g(x) = f( g(x) )  consists of those  x–values  for which  g(x)  and   

f( g(x) )  are both defined –– we can evaluate the composition of two functions at a point  x  only if each step in 

the composition is defined. 
 

If we think of our functions as machines, then composition is simply 

a new machine consisting of an arrangement of the original 
machines.  The composition  f°g  of the function machines  f  and  g  

shown in Fig. 5(a)  is an arrangement of the machines so that the 

original input  x  goes into machine  g , the output from machine  g  

becomes the input into machine  f , and the output from machine f is 

our final output.  The composition of the function machines 
f°g(x) = f( g(x) )  is only valid if  x  is an allowable input into  g  (x  

is in the domain of g)  and  if  g(x)  is then an allowable input into f .  
The composition  g°f  involves arranging the machines so the original 

input goes into  f , and the output from f   then 

becomes the input for  g  (Fig. 5(b) ). 
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Example 2: For  f(x) = x – 2 ,  g(x) = x2 ,  and  h(x) = { 3x if  x < 2
 x – 1 if  2 ≤ x  , 

 evaluate  f°g(3), g°f(6), f°h(2)  and  h°g(–3).  Find the equations and domains of  f°g(x)  and g°f(x).   
 
Solution: f°g(3) =  f( g(3) )  =  f( 32 )  =  f( 9 )  =  9 – 2   =  7   ≈  2.646 

  g°f(6) =  g( f(6) )  =  g( 6 – 2  )  =  g( 4  )  =  g( 2 ) =  22  =  4 

  f°h(2) =  f( h(2) )  =  f( 2 – 1 )  =  f( 1 )  =  1 – 2   =  –1   which is undefined 

  h°g(–3) = h( g(–3) ) = h( 9 ) = 9 – 1 = 8. 
 

 f°g(x) = f( g(x) ) = f( x2 ) = x2 – 2   ,  and the domain of  f°g  is those x–values for which   

 x2 – 2 ≥ 0  so  the domain of  f°g  is all  x  such that  x ≥ 2   or  x ≤ – 2  . 
 

 g°f(x) = g( f(x) ) = g( x – 2   ) = { x – 2  }2 = x – 2 ,  but we can evaluate the first piece, f, of the 

composition only if  f(x) = x – 2    is defined,  so the domain of  g°f  is all  x ≥ 2. 

Practice 4: For    f(x) = 
x

x–3 ,     g(x) = 1+x ,    and    h(x) = { 2x if x ≤ 1
 5 – x if 1 < x.   

 Evaluate  f°g(3), f°g(8), g°f(4), f°h(1), f°h(3), f°h(2) and h°g(–1).  Find the equations for f°g(x)  and  g°f(x). 

 
Shifting and Stretching Graphs 
 
Some compositions are relatively common and easy, and you should  

recognize the effect of the composition on the graphs of the functions. 

Example 3: Fig. 6 shows the graph of  y = f(x).   

 Graph  (a)  2 + f(x),  (b)  3.f(x),  and   (c)  f(x – 1) . 
 
Solution:  All of the new graphs are shown below in Fig. 7 . 

(a) Adding  2  to all of the values of  f(x)   rigidly shifts the graph of f(x)  2 units upward. 

 (b) Multiplying all of the values of  f(x)  by  3  leaves all of the roots of  f  fixed:  if  x  is a root of  f  then  f(x) = 0 

and  3f(x) = 3(0) = 0  so  x  is also a root of  3.f(x).  If  x  is not a root of  f,  then the graph of  3f(x)  looks like 

the graph of  f(x)  stretched vertically by a factor of  3. 

(c) The graph of  f(x–1)  is the graph of  f(x)  rigidly shifted  1  units to the right. 
 
We could also get these results by examining the graph of  y = f(x), creating a table of values for  f(x)   
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and the new functions, and then graphing the new functions. 
 

 x f(x) 2 + f(x) 3f(x) x–1 f(x–1) 
 –1 –1 1 –3 –2 f(–2) not defined 
 0 0 2 0 –1 f(0–1) = –1 
 1 1 3 3 0 f(1–1) = 0 
 2 1 3 3 1 f(2–1) = 1 
 3 2 4 6 2 f(3–1) = 1 
 4 0 2 0 3 f(4–1) = 2 
 5 –1 1 –3 4 f(5–1) = 0 

 
If  k  is a positive constant, then 

•  the graph of  y = k + f(x)  will be the graph of  y = f(x)  rigidly shifted up by  k  units, 

•  the graph of  y = kf(x) will have the same roots as the graph of f(x) and will be the graph of  y = f(x)  

vertically stretched by a factor of  k, 

•  the graph of  y = f(x – k)  will be the graph of  y = f(x)  rigidly shifted right by  k  units, 

•  the grah of  y = f(x + k)  will be the graph of  y = f(x)  rigidly shifted left by  k  units. 
 

Practice 5: Fig. 8 is the graph of  g(x).   

 Graph  (a)  1+g(x),  (b)  2g(x),  (c)  g(x–1)  and  (d)  –3g(x). 

  

 
 
Iteration of Functions 
 

There are applications which feed the output from a function machine  

back into the same machine as the new input.  Each time through the 

machine is called an iteration of the function. 
 

Example 4: Suppose  f(x) =   
5/x + x

2    , and we start with the  

  input  x = 4  and  repeatedly feed the output from  f   

  back into  f  (Fig. 9).  What happens? 
 
Solution: Iteration Input Output                           

  1 4 f(4) =  
5/4 + 4

2    = 2.625 

  2 2.625 f( f(4) ) =  
5/2.625 + 2.625

2    = 2.264880952 
  3 2.264880952 f( f( f(4) ) ) = 2.236251251 
  4 2.236251251 2.236067985 
  5 2.236067985 2.236067977 
  6 2.236067977 2.236067977 
 
 

Once we have obtained the output 2.236067977, we will just keep getting the same output.  You might 

recognize this output value as 5  .  This algorithm always finds ± 5  .  If we start with any positive input, the 
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values will eventually get as close to 5   as we want.  Starting with any negative value for the input will 

eventually get us to  – 5  .  We cannot start with  x = 0, since  5/0 is undefined. 
 

Practice 6: What happens if we start with the input value  x = 1  and iterate the function   

 f(x) =  
9/x + x

2    several times?  Do you recognize the resulting number?  What do you think will 

happen to the iterates of  g(x) =   
A/x + x

2   ?  (Try several positive values of A.) 

 
Two Useful Functions:  Absolute Value  and  Greatest Integer 
 

These two functions have useful properties which let us describe situations in which an object abruptly changes 

direction or jumps from one value to another value.  Their graphs will have corners and breaks. 

 
Absolute Value Function:  | x | 
 

The absolute value function of a number  x,  y = f(x) = | x |  ,  is the distance between the number x  and  0.  If  x  

is greater than or equal to 0, then  | x |  is simply  x – 0 = x .  If  x  is negative, then  | x |  is  0 – x = –x = –1.x 

which is positive since   –1.(negative number) = a positive number.  On some calculators and in some computer 

programming languages, the absolute value function is represented by  ABS(x) . 
 

 

 Definition of  | x | : | x | =  { x if x ≥ 0
 –x if x < 0   or      | x | = x2   . 

          
 

The domain of  y = f(x) = | x |  consists of all real numbers.  The range of  f(x) = | x |  consists of all numbers 

larger than or equal to zero,  all non–negative numbers.  The graph of  y = f(x) = | x |  

(Fig. 10)  has no holes or breaks, but it does have a sharp corner at  x = 0.  The 

absolute value will be useful later for describing phenomena such as reflected light 

and bouncing balls which change direction abruptly or whose graphs have corners.  
 
The absolute value function has a number of properties which we will use later. 
 

Properties of  |  |: For all real numbers  a  and  b: 

 (a) | a | ≥ 0 .   | a | = 0  if and only if  a = 0. 

 (b) | ab | = | a | | b | 

 (c) | a + b | ≤ | a |  +  | b | 
 

Taking the absolute value of a function has an interesting effect on the graph of the function.  Since   
 

| x | = { x if x ≥ 0
 –x if x < 0  , then for any function  f(x)  we have   | f(x) | = {f(x) if f(x) ≥ 0

–f(x) if f(x) < 0.   
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In other words,  if  f(x) ≥ 0, then  | f(x) | = f(x)  so the graph of  | f(x) |  is the same as the graph of  f(x).  If  

f(x) < 0, then  | f(x) | = –f(x)  so the graph of  | f(x) |  is just the graph of  f(x)  "flipped" about the   

x–axis, and it lies above the  x–axis.  The graph of  | f(x) |  will always be on or above the  x–axis.  
 

Example 5: Fig. 11 shows the graph of  f(x).  Graph  (a)  | f(x) | ,  (b)  | 1 + f(x) |   

 and  (c) 1 + | f(x) |. 
 

Solution:   The graphs are given in  Fig. 12.  In (b) we shift the graph of  f   

 up  1  unit before taking the absolute value.  In  (c)  we take the absolute  

 value before shifting the graph up  1  unit. 
 

 

Practice 7: Fig. 13 shows the graph of  g(x).  Graph (a)  | g(x) | , (b)  | g(x – 1) | , 

and  (c) g( | x | ).  

  
 
 
 
 
 
 

 

 

 
Greatest Integer Function:  [ x ]  or  INT( x )  
 

The greatest integer function of a number x ,  y = f(x) = [ x ] , is the largest integer which is less than or equal 

to  x .  The value of  [ x ]  is always an integer  and  [ x ]  is always less than or equal to  x.  For example,  [ 3.2 ] 

= 3,  [ 3.9 ] = 3, and  [ 3 ] = 3.  If  x  is positive, then  [ x ]  truncates  x  (drops the fractional part of x)  to get  [ x 

].  If x is negative,  the situation is different:  [ –4.2 ] ≠ –4  since  –4  is not less than or equal to –4.2 :  [ –4.2 ] = 

– 5,  [ –4.7 ] = –5  and  [ –4 ] = –4.  On some calculators and in many programming languages the square 

brackets  [ ]  are used for grouping objects or for lists, and the greatest integer function is represented by  INT(x) 

. 
 

 
     Definition of  [ x ]: [ x ] = the largest integer which is less than or equal to x 
 

    = 
⎩⎪
⎨
⎪⎧  x if x is an integer

  
 largest integer strictly if x is NOT an integer.
     less than x  
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The domain of The f(x) = [ x ]  is all real numbers.  The range of  f(x) = [ x 

]  is only the integers.  The graph of  y = f(x) = [ x ]  is shown in  Fig. 14.  

It has a jump break, a step,  at each integer value of x,  and  f(x) = [ x ]  is 

called a step function.  Between any two consecutive integers, the graph is 

horizontal with no breaks or holes.  The greatest integer function is useful 

for describing phenomena which change values abruptly such as postage 

rates as a function of the weight of the letter  ("26¢ for the first ounce and 

13¢ additional for each additional half ounce").  It can also be used for functions whose graphs are "square 

waves" such as the on and off of a flashing light. 
 
Example 6: Graph  f(x) = INT(1 + .5 sin(x) ). 
 

Solution: One way to create this graph  

 is to first graph  y = 1 + 0.5sin(x) , the  

 thin curve in Fig. 15, and then apply the  

 greatest integer function to  y  to get the  

 thicker "square wave" pattern. 
 
Practice 8: Sketch the graph of     y = INT( x2 )  for  –2 ≤ x ≤ 2 . 
 
 
A Really  "Holey"  Function  
 
The graph of the greatest integer function has a break or jump at each integer value, but how many breaks can  

a function have?  The next function illustrates just how broken or "holey" the graph of a function can be. 
 

Define  

! 

h(x)!=!
 2    if  x  is a rational number
 1    if  x  is an irrational number
" 
# 
$ 

 

 

Then  h( 3 ) = 2, h( 5/3 ) = 2 and  h( –2/5) = 2  since  3,  

5/3  and  –2/5 are all rational numbers.  h( π ) = 1, h( 7 

 ) = 1 , and  h( 2  ) = 1  since  π, 7   and   2   are all 

irrational numbers.  These and some other points are 

plotted in Fig. 16 . 
 

In order to analyze the behavior of  h(x)  the following 

fact about rational and irrational numbers is useful. 
 

 

Fact: "Every interval contains both rational and irrational numbers"  or, equivalently, 
 
 "If  a  and  b  are real numbers  and  a < b, then there is  
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  (i) a rational number R between  a  and  b  (a < R < b),  and   
 
  (ii)  an irrational number  I  between  a  and  b  (a < I < b)." 

 

The Fact tells us that between any two places where the y = h(x) = 1 (because  x  is rational) there is a place where 

y = h(x)  is 2 because there is an irrational number between any two distinct rational numbers.  Similarly,  

between any two places where y = h(x) = 2 (because  x  is irrational) there  

is a place where  y = h(x) = 1  because there is a rational number between any two distinct irrational numbers.  

The graph of  y = h(x)  is impossible to actually draw since every two points on the graph are separated by a hole.  

This is also an example of a function which your computer or calculator can not graph because in general it can 

not determine whether an input value of  x  is irrational. 
 
 
Example 7: Sketch the graph of   
 

 g(x) =  

! 

 2    if  x  is a rational number
 x    if  x  is an irrational number
" 
# 
$ 

 

  
 
Solution:  A sketch of the graph of  y = g(x)  is shown in Fig. 17 .   

 When  x  is rational, the graph of  y = g(x)  looks like the  "holey"  

horizontal line  y = 2.  When  x  is irrational, the graph of  y = g(x)   

 looks like the "holey"  line  y = x. 
 
 

 

Practice 9: Sketch the graph of  r(x)  =  

! 

 2    if  x  is a rational number
 x    if  x  is an irrational number
" 
# 
$ 

 

 
 
 
PROBLEMS 
 
1. If  T  is the Celsius temperature of the air  and  v  is the speed of the wind in kilometers per hour, then  

 

WCI  =  

! 

                   T                                       if  0 " v " 6.5

33 - 10.45 +5.29 v - 0.279v
22

(33- T)    if 6.5 " v " 72

              1.6T -19.8                               if 72 < v  

# 

$ 

% 
% 

& 

% 
% 

.   

Determine the Wind Chill Index  (a)  for a temperature of  0o C  and a wind speed of  49 km/hr and 

(b)  for a temperature of  11o C  and a wind speed of 80 km/hr. 

(c)  Write a multiline function definition for the WCI  if the temperature is 11o C. 
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2. Use the graph of  y = f(x) in  Fig. 18  to evaluate  f(0), f(1), f(2), f(3), f(4)   

 and  f(5).  Write a multiline function definition for  f. 
 

3. Use the graph of  y = g(x) in  Fig. 19  to evaluate  g(0), g(1), g(2), g(3),  

 g(4)  and  g(5).  Write a multiline function definition for  g. 
 

4. Use the values given in the table and   h(x) = 2x + 1 to determine the values  
 of  f°g , g°f  and  h°g. 
 
   x f(x) g(x) f°g(x) g°f(x) h°g(x) 
                                                     
 –1 2 0 
 0 1 2 
 1 –1 1 
 2 0 2 
 

 
5. Use the graphs in Fig. 20  and the equation  h(x) = x – 2  to  

 determine the values of  

 (a) f( f( 1 ) ), f( g( 2 ) ), f( g( 0 ) ), f( g( 1 ) )  

 (b) g( f( 2 ) ), g( f( 3 ) ), g( g( 0 ) ), g( f( 0 ) ) 

 (c) f( h( 3 ) ), f( h( 4 ) ), h( g( 0 ) ), h( g( 1 ) ) 
 
 

6. Use the graphs in Fig. 21   and the equation   

 h(x) = 5 – 2x  to determine the values of  

 (a) h( f( 0 ) ), f( h( 1 ) ), f( g( 2 ) ), f( f( 3 ) ) 

 (b) g( f( 0 ) ), g( f( 1 ) ), g( h( 2 ) ), h( f (3 ) ) 

 (c) f( g( 0 ) ), f( g( 1 ) ), f( h( 2 ) ), h( g( 3 ) ) 
 
 

7. f(x)  =  
⎩⎪
⎨
⎪⎧ 3 if  x < 1
 x–2 if  1 ≤ x < 3
 1 if  3 ≤ x

 g(x) =  ⎩⎨
⎧ x2 –3 if x < 0
 INT( x ) if 0 ≤ x  h(x)  =  x – 2. 

 (a) Evaluate f(x), g(x), and h(x) for  x = –1, 0, 1, 2, 3, and 4 . 

 (b) Evaluate f( g( 1 ) ), f( h( 1 ) ), h( f( 1 ) ), f( f( 2 ) ), g( g( 3.5 ) ) . 

 (c) Graph f(x), g(x) and h(x)  for   –5 ≤ x ≤ 5 . 

 

8. f(x)  = 
⎩⎪
⎨
⎪⎧ x+1 if  x< 1
 1 if  1 ≤ x < 3
 2–x if  3 ≤ x

 g(x) =  { |x+1| if  x < 0
 2x if 0 ≤ x  h(x) = 3. 

 (a) Evaluate f(x), g(x), and h(x) for  x = –1, 0, 1, 2, 3, and 4 . 

 (b) Evaluate f( g( 1 ) ), f( h( 1 ) ), h( f( 1 ) ), f( f( 2 ) ), g( g( 3.5 ) ) . 

 (c) Graph f(x), g(x) and h(x)  for   –5 ≤ x ≤ 5 . 



0.4   Combinations of Functions Contemporary Calculus  

 

11 

 
9. You are planning to take a one week vacation in Europe, and the tour brochure says that Monday and  

 Tuesday will be spent in England, Wednesday in France, Thursday and Friday in Germany, and Saturday 

and Sunday in Italy.  Let  L(d)  be the location of the tour group on day  d  and write a multiline function 

definition for  L(d). 
 

10. A state has just adopted the following state income tax system:  no tax on the first $10,000 earned,   

 1% of the next $10,000 earned,  2% of the next $20,000 earned, and 3% of all additional earnings.  Write a 

multiline function definition for  T(x), the state income tax due on earnings of  x  dollars. 
 

11. Write a multiline function definition for the curve  y = f(x)  in  Fig. 22. 
 

12. Define  B(x)  to be the area of the rectangle whose lower left corner is at the  

 origin and whose upper right corner is at the point  (x, f(x) )  for the function   

 f  in Fig. 23.  Then, for example, B(3)=6. Evaluate  B(1), B(2), B(4)  and  B(5) 
 

13. Define  B(x)  to be the area of the rectangle whose lower left corner is at the  

 origin and whose upper right corner is at the point  (x, 1/x ). 

 a) Evaluate  B(1), B(2) and B(3).  

 b) Show that  B(x) = 1  for all  x > 0. 
 

14. For  f(x) = | 9 – x |  and  g(x) = x – 1   ,  
 (a) evaluate  f°g( 1 ),  f°g( 3 ), f°g( 5 ), f°g( 7 ), f°g( 0 ) 

 (b) evaluate f°f( 2 ),  f°f( 5 ),  f°f( –2 ).  Does  f°f(x) = |x|  for all values of  x ? 
 

 
 
 
15. Fig. 24 is the graph of g(x).  Graph  (a) g(x) – 1,  

 (b) g( x–1 ), (c)  | g(x) |, and  (d)  [ g(x) ] . 
  
16. Fig. 25 is the graph of f(x).  Graph  (a)  f(x) – 2,   

 (b)  f( x – 2 ),  (c) | f(x) |, and (d)  [ f(x) ] . 
  
17. (a) Let  f(x) = 3x + 2  and  g(x) = 2x + A.  Find a value for  A  so that   

  f( g(x) ) = g( f(x) ). 

 (b) Let  f(x) = 3x + 2  and  g(x) = Bx – 1.  Find a value for  B  so that   

  f( g(x) ) = g( f(x) ). 
  
18. (a) Let  f(x) = Cx + 3  and  g(x) = Cx – 1.  Find a value for  C  so that   

  f( g(x) ) = g( f(x) ). 

 (b) Let  f(x) = 2x + D  and  g(x) = 3x + D.  Find a value for  D  so that   

  f( g(x) ) = g( f(x) ). 
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19. Graph  y = f(x) = x – INT(x)  for  –1 ≤ x ≤ 3.  This function is called the  "fractional part of x"  and is an  

 example of a "sawtooth" graph. 
 

20. f(x) = INT(x + 0.5) rounds off x to the NEAREST integer.   g(x) =     
INT(10x + 0.5)

10     rounds off x to  

 the nearest tenth, the first decimal place.   What function will round off x to (a)  the nearest hundredth (2 

decimal places)?   (b) the nearest thousandth (3 decimal places)? 
 

21. Modify the function in example 6 to produce a "square wave" graph with a "long on, short off, long  

 on, short off" pattern. 
 

22. Some versions of the computer language BASIC contain a  "signum" or "sign"  function defined by 

  SGN( x ) =   
⎩⎪
⎨
⎪⎧   1if  x > 0

  0if  x = 0
 –1if  x < 0

  . 

(a) Graph  SGN( x ) (b) Graph  SGN( x – 2 ) (c) Graph  SGN( x – 4 ) 

(d) Graph  SGN( x – 2 ) SGN( x – 4 ) (e) Graph  1 – SGN( x – 2 ) SGN( x – 4 ) 

(f) For  a < b, describe the graph of  1 – SGN( x – a ) SGN( x – b ) 
 

23. Define  g(x)  to be the slope of the line tangent to the graph of  y = f(x)   

 in  Fig. 26  at  (x,y). 

 (a) Estimate  g(1), g(2), g(3) and g(4). 

 (b) Graph  y = g(x)  for  0 ≤ x ≤ 4 . 
 

24. Define  h(x)  to  be the slope of the line tangent to the graph of  y = f(x)   

 in  Fig. 27  at  (x,y). 

 (a) Estimate  h(1), h(2), h(3) and h(4). 

 (b) Graph  y = h(x)  for  0 ≤ x ≤ 4 . 
 

C25. Pressing the COS (cosine) button on your calculator several times will produce  

 iterates of f(x) = cos(x).  What number will the iterates approach if you start with   

 x = 1  and press the COS button 20 or 30 times?   What happens if you start with   

 x = 2  or  x = 10?   (Be sure your calculator is in radian mode.) 
 
 
 
C26. Let  f(x) = 1 + sin(x).  What happens if you start with  x = 1  and repeatedly feed the output from  f   

 back into  f ?  What happens if we start with  x = 2  and examine the iterates of  f ?   (Be sure your 

calculator is in radian mode.) 
 

C27. Starting with  x = 1, do the iterates of  f(x) =   
x2 + 1

2x     approach a number?  What happens if you  

 start with  x = .5  or  x = 4?  
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C28. Let  f(x) = 
x
2  + 3 .  (a)   What are the iterates of  f  if you start with  x = 2?  4?  6?    

 (b)  Find a number  c  so that  f(c) = c.  This value of c is called a fixed point  of  f.    

 (c)  Find a fixed point  of  g(x) = 
x
2  + A. 

 

C29. Let  f(x) = 
x
3  + 4.  (a)   What are the iterates of  f  if you start with  x = 2?  4?  6?    

 (b)  Find a number  c  so that  f(c) = c.   (c)  Find a fixed point  of  g(x) = 
x
3  + A. 

 
Some iterative procedures are geometric rather than numerical.  
 
30. Start with an equilateral triangle with sides of length  1  (Fig, 28a). 

(i) Remove the middle third of each line segment. 

(ii) Replace the removed portion with 2 segments with the same length as the removed segment. 

 The first two iterations of this procedure are shown in Fig. 28b  and Fig. 28c.  Repeat steps  (i)  and  (ii)  

several more times,  each time removing the middle third of each line segment and replacing it with two new 

segments.  What happens to the length of the shape with each iteration?   (The result of iterating over and 

over with this procedure is called Koch's Snowflake, named for  Helga von Koch) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

31. (Optional)  Sketch the graph of  p(x)  = 

! 

 3- x    if  x  is a rational number
   1       if  x  is an irrational number
" 
# 
$ 

 

 

32. (Optional)  Sketch the graph of  q(x)  =   

! 

   x2         if  x  is a rational number
  x +  1     if  x  is an irrational number

" 
# 
$ 
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Section 0.4 PRACTICE  Answers 

 
Practice 1: C(x)  is the cost for one night on date  x . 

  C(x)  = 

! 

  $50     if  x  is between June 1  and September 15
  $40     if  x  is any other date

" 
# 
$ 

   

 
Practice 2:     x g(x)     x g(x)     
  –3 –3 π/3 –π/3 
See Fig. 29  –1 2 2 –2 
  0 2 3 –3 
  1/2 2 4 undefined 
  1 undefined 5 1 
 

Practice 3: f(x)  =  
⎩⎪
⎨
⎪⎧ 1 if  x ≤ –1
 1 – x if  –1 < x ≤ 1
 2 if  1 < x

  

 
Practice 4: f°g(3) = f(2) = 2/–1 = –2 f°g(8) = f(3)  is undefined g°f(4) = g(4) = 5  

 f°h(1) = f(2) = 2/–1 = –2 f°h(3) = f(2) = –2 f°h(2) = f(3) is undefined 

 h°g(–1) = h(0) = 0          f°g(x) = f( 1 + x  ) = ( 1+x   )/( 1+x   – 3) ,  g°f(x) = g(  
x

x–3   )  =   1 + 
x

x–3   

 
Practice 5: See Fig. 30. 
 
 

Practice 6: f(x) =  
9/x + x

2    .  

  f(1) =  
9/1 + 1

2    = 5,   f(5) =  
9/5 + 5

2    = 3.4,   f(3.4) ≈ 3.023529412,  

  f(3.023529412) ≈ 3.000091554,   and   f(3.000091554) ≈ 3.000000001 . 

   These values are approaching  3,  the square root of  9. 

 Putting  A = 6,  then  f(x) =  
6/x + x

2    . 

  f(1) =  
6/1 + 1

2    = 3.5,   f(3.5) =  
6/3.5 + 3.5

2    = 2.607142857,    

  f(2.607142857) ≈ 2.45425636, f(2.45425636) ≈ 2.449494372, 

  f(2.449494372) ≈ 2.449489743 . 

  f(2.449489743) ≈ 2.449489743  (the output is the same as the input for 9 decimal places) 

   These values are approaching  2.449489743,  the square root of  6. 

  For any positive value A,  the iterates of  f(x) = 

! 

A/x +x
2

 (starting with any positive x)  will approach  A  . 
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Practice 7: Fig. 31 shows some of the intermediate steps and final graphs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Practice 8: Fig. 32 shows the graph of  y = x2   

  and  the graph (thicker) of  y = INT( x2 ) . 

 

 

 

 

 

 

 

 

Practice 9: Fig. 33 shows the "holey" graph of   y = x  with a hole  

 at each rational value of x  and the "holey" graph of   

 y = sin(x)  with a hole at each irrational value of x.  

Together they form the graph of  r(x) . 

(This is a very crude image since we can’t really see  

the individual holes which have zero width.) 
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0.5   MATHEMATICAL LANGUAGE  
 

The calculus concepts we will explore in this book are simple and powerful, but sometimes subtle.  To 

succeed in calculus you will have to master some techniques, but, more importantly, you will have to 

understand ideas and be able to work with the ideas in words and pictures -- very clear words and pictures. 

You also need to understand some of the common linguistic constructions used in mathematics.  In this 

section we will discuss a few of the most common mathematical phrases, the meaning of these phrases and 

some of their equivalent forms. 

 

Your calculus teacher is going to use these types of statements, and it is very important that you understand 

exactly what the teacher means.  You have reached the level in mathematics where the precise use of 

language is important. 
 
 
EQUIVALENT STATEMENTS 
 
Two statements are equivalent if they always have the same logical value (a logicl value is either “true” or 

“fale”, that is, if they are both true or are both false.  The statements "x = 3"  and  "x + 2 = 5"  are 

equivalent statements because if one of them is true then so is the other, and if one of them is false then so 

is the other.  The statements "x = 3"   and  "x2 – 4x + 3 = 0"  are not equivalent since  x = 1 makes the 

second  statement true but the first one false.   

 
AND  and  OR 
 

    
        The compound statement  "A  and  B  are true"  is equivalent to  "both of  A  and  B  are true."   
    

 
 If  A or if B or if both are false, then the statement  "A  and  B  are true"  is false.  The statement "x2 = 4  and   

x > 0"  is true when  x = 2 and is false for every other value of x. 

 
    
        The compound statement  "A  or  B  is true"  is equivalent to  "at least one of  A  or  B  is true."    
     

If both  A  and  B  are false, then the statement  "A  or  B  is true"  is false.  The statement  "x2 = 4  or  x > 0"  is 

true if  x = –2 or x is any positive number.  The statement is false when x = –3 and for lots of other values of x. 
 
Practice 1:   Which values of  x  make each statement true? 

(a) "x < 5" (b) "x + 2 = 6" (c) "x2 – 10x + 24 = 0" (d) "(a)  and  (b)" (e) "(a)  or  (c)" 
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NEGATION OF A STATEMENT  
 
For some simple statements we can construct the negation just by adding the word "not." 

 Statement   Negation of the Statement 

 x  is equal to 3  ( x = 3 )  x  is not equal to 3  ( x ≠ 3 ) 
 
 x is less than 5  ( x < 5 )  x  is not less than 5  ( x </   5) 
          x  is greater than or equal to 5   ( x ≥ 5 ) 
 
When the statement contains words such as  "all", "no", or  "some,"  then its negation is more complicated. 
 

   Statement  Negation of the Statement 
 

}All  x  satisfy  A.
Every  x  satisfies A.   

⎩⎪
⎨
⎪⎧ At least one  x  does not satisfy  A.
 There is an  x  which does not satisfy  A.
 Some  x  does not satisfy  A.

  

 

}No  x  satisfies  A. 
Every  x  does not satisfy  A.   { At least one  x   satisfies  A.

 Some  x  satisfies  A.   

 

⎭⎪
⎬
⎪⎫There is an  x  which satisfies A. 

At least one  x  satisfies  A. 
Some  x  satisfies  A. 

  { No  x  satisfies  A.
 Every  x  does not satisfy  A.   

 
We can also negate compound statements containing  "and"  and  "or". 
 

Statement Negation of the Statement 
A  and  B  are both true. At least one of A  or  B  is  not true. 
 
A  and  B  and  C  are all true. At least one of  A  or  B  or  C  is not true. 
 
A  or  B  is true. Both  A  and  B  are not true. 
 

Practice 2: Write the negation of each of these statements. 

 (a) x + 5 ≥ 3 (b) All prime numbers are odd. (c) x2 < 4 

 (d) x divides 2  and  x  divides 3. (e) No mathematician can sing well. 

 

IF ...  THEN ... :  A Very Common Structure in Mathematics 
 
The most common and basic structure used in mathematical language is the  
 
 "If  (some hypothesis)  then  (some conclusion)"  
 
sentence.  Almost every result in mathematics can be stated using one or more  "If … then … " sentences.   
 
    
        "If  A then  B"   means that when the hypothesis A is true, then the conclusion B must also be true. 
    

If the hypothesis is false, then the "If … then … " sentence makes no claim about the truth or falsity of the 

conclusion –– the conclusion may be either true or false. 
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Even in everyday life you have probably encountered "If ... then ..." statements for a long time.  A parent 

might try to encourage a child with a statement such as " If you clean your room then I will buy you an ice 

cream cone." 

 

To show that an "If . . . then . . . " statement is not valid (not true), all we need to do is find a single example 

where the hypothesis is true and the conclusion is false.  Such an example with a true hypothesis and false 

conclusion is called a counterexample for the  "If . . . then . . . "  statement.  A valid  "If . . . then . . . "  

statement has no counterexample. 

 
     
        A counterexample to the statement  “If  A  then  B”  is an example in which A is true and B is false. 
     

 

The only way for the statement " If you clean your room then I will buy you an ice cream cone"  to be false is if 

the child cleaned the room and the parent did not buy the ice cream cone.  If the child did not clean the room but 

the parent still bought the ice cream cone we would say that the statement was true. 

 

The statement  "If  n is a positive integer, then  n2 + 5n + 5  is a prime number"  has hypotheses “n is a positive 

integer” and conclusion “n2 + 5n + 5  is a prime number.”  This “If ... then”  statement is false since replacing  n  

with the number 5 will make the hypothesis true and the conclusion false.  The number 5  is a counterexample 

for the statement.  Every invalid  "If . . . then . . . "  statement has at least one counterexample, and the most 

convincing way to show that a statement is not valid is to find a counterexample to the statement.  
 

A number of other language structures can be translated into the  "If ...  then ..."   form.   The statements below 

all mean the same as  "If  (A)  then  (B)" : 

"All (A) are (B)." "Every (A) is (B)." "Each  (A)  is  (B)."  

"Whenever (A), then (B)." "(B) whenever (A)." "(A)  only if  (B)." 

"(A)  implies  (B)." "(A)  ⇒  (B)"   (the symbol  " ⇒ " means  "implies" ) 
 

Practice 3: Restate "If  (a shape is a square)  then  (the shape is a rectangle)"  as many ways as you can. 
 

"If … then … "  statements occur hundreds of times in every mathematics book, including this one.  It is 

important that you are able to recognize the various forms of "If … then … " statements and that you are able to 

distinguish the hypotheses from the conclusions.   
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Contrapositive Form of an "If … then …" Statement 
 
The statement  "If  (A)  then  (B)"  means that if the hypothesis A is true, then the conclusion B is guaranteed  

to be true.   
 

Suppose we know that in a certain town the statement   
 
 "If (a building is a church)  then  (the building is green)"   
 

is a true statement,.  What can we validly conclude about a red building?  Based on the information we have, we 

can validly conclude that the red building is "not a church"  since every church is green.  We can also conclude 

that a blue building is not a church.  In fact, we can conclude that every “not green”  building is “not a church.”  

That is, if the conclusion of a valid "If … then … " statement is false, then the hypothesis must also be false.   
 

 

 The contrapositive form of  "If (A)  then  (B)"  is   

      "If (negation of B)  then  (negation of A)"    or  "If  (B is false)  then  (A is false)." 

    
 

    
    The statement "If (A)  then  (B)"  and its contrapositive  “If (not B)  then (not A)” are equivalent. 
    

 
What about a green building in this town?  The green building may or may not be a church – perhaps every post 

office is also painted green.  Or perhaps every building in town is green, in which case the statement  "If (a 

building is a church)  then  (the building is green)"  is certainly true. 

 
Practice 4: Write the contrapositive form of each of the following statements. 

(a) If a function is differentiable then it is continuous. (b) All men are mortal. 

(c) If  (x equals 3)  then  (x2 – 5x + 6 equals 0) (d) If  (2 divides x  and  3 divides x)  then  (6 divides x). 
 
 
Converse of an "If … then …" Statement 
 
If we switch the hypotheses and the conclusion of an “If A then B” statement we get the converse “If  B  then  A.” 
 

The converse of an  "If … then … "  statement is a new statement with the hypothesis and conclusion switched:   

the converse of  "If  (A)  then  (B)"  is  "If  (B)  then  (A)."   For example,  the converse of  "If  (a building is a 

church)  then  (the building is green)"  is  "If  (a building is green)  then  (the building is a church)."   The 

converse of an  "If … then … "  statement is not equivalent to the original  "If … then … "  statement.  The 

statement "If x = 2, then  x2 = 4"  is true, but the converse statement  "If  x2 = 4, then  x = 2"  is not true because  

x = –2 makes the hypothesis of the converse true and the conclusion false. 
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 The converse  of  "If (A)  then  (B)"  is  “If  (B)  then  (A).” 

    
 
 

    
    The statement "If (A)  then  (B)" and its converse  “If (B)  then (A)” are  not equivalent. 
    

 

 
Wrap–up 
 
The precise use of language by mathematicians (and mathematics books) is an attempt to clearly communicate  

ideas from one person to another,  but that requires that both people understand the use and rules of the 

language.  If you don't understand this usage, the communication of the ideas will almost certainly fail. 

 
PROBLEMS  
 
In problems 1 and 2, let  A = {1,2,3,4,5},  B = {0,2,4,6}, and  C = {–2,–1,0,1,2,3}.  Which values of  x   

satisfy each statement. 

1. a) x is in A  and  x is in B. b) x is in A  or  x is in C. c) x is not in B  and  x is in C. 

2. a) x is not in  B or C. b) x is in B and C but not in A. c) x is not in A but is in B or C. 
 
In problems 3 – 5, list or describe all the values of  x  which make each statement true. 

3. a) x2 + 3 > 1 b) x3 + 3 > 1 c) [ x ] ≤ | x | 

4. a) 
x2 + 3x

x    = x + 3 b) x > 4  and  x < 9 c) | x | = 3  and  x < 0 

5. a) x + 5 = 3  or   x2 = 9 b) x + 5 = 3  and   x2 = 9 c) | x + 3 | = | x | + 3 
 
In problems 6 – 8, write the contrapositive of each statement.  If the statement is false, give a counterexample. 

6. a) If  x > 3  then  x2 > 9. b) Every solution of   x2 – 6x + 8 = 0  is  even. 

7. a) If  x2 + x – 6 = 0  then  x = 2  or  x = –3 . b) All triangles have 3 sides. 

8. a) Every polynomial has at least one zero. b) If I exercise and eat right  then I will be healthy. 
 
In problems 9 – 11, write the contrapositive of each statement.  If necessary, first write the original statement in  

 the "If . . .  then . . . "  form. 

9. a) If your car is properly tuned,  it will get at least  24 miles per gallon. 

 b) You can have dessert if you eat your vegetables. 

10. a) A well–prepared student will miss less than 15 points. 

 b) I feel good when I jog. 

11. a) If you love your country, you will vote for me. 

 b) If guns are outlawed then only outlaws will have guns. 



0.5  Mathematical Language Contemporary  Calculus  

 

6 

 
In problems 12 – 15, write the negation of each statement. 

12. a) It is raining. b) Some equations have solutions. c) f(x)  and  g(x)  are polynomials. 

13. a) f(x) or g(x)  is positive. b) x  is positive. c) 8  is a prime number. 

14. a) Some months have 6 Mondays. b) All quadratic equations have solutions. 

 c) The absolute value of a number is positive.  

15. a) For all numbers  a  and  b,  | a + b | = | a  | + | b |. b) All snakes are poisonous.  

 c) No dog can climb trees.  
 
16. Write an  "If . . .  then . . . "  statement which is true  but whose converse is false. 

17. Write an  "If . . .  then . . . "  statement which is true  and whose converse is true. 

18. Write an  "If . . .  then . . . "  statement which is false  and whose converse is false. 
 
 
In problems 19 – 22, state whether each statement is true or false.  If the statement is false, give a counterexample. 

19. a) If  a  and  b are real numbers  then  (a + b)2 = a2 + b2  . 

 b) If  a > b  then  a2 > b2 . c) If  a > b  then  a3 > b3 . 

20. a) For all real numbers  a  and  b,  | a + b | = | a | + | b | 

 b) For all real numbers  a  and  b, [ a ] + [ b ] ≤ [ a + b ]   ( [ ]  represents the greatest integer function. ) 

 c) If  f(x) and g(x)  are linear functions  then  f( g(x) )  is a linear function. 

21. a) If  f(x) and g(x)  are linear functions  then  f(x) + g(x)  is a linear function. 

 b) If  f(x) and g(x)  are linear functions  then  f(x)g(x)  is a linear function. 

 c) If  x  divides 6   then  x  divides 30.  

22. a) If  x  divides 50  then  x divides 10. b) If  x divides yz  then  x  divides  y or z.  

 c) If  x divides  a2  then  x divides a. 
 

In problems 23 – 26, rewrite each statement as an  "If … then … " statement and state whether it is true or 

false.  If the statement is false, give a counterexample. 

23. a) The sum of two prime numbers is a prime.  b) The sum of two prime numbers is never a prime.   

 c) Every prime number is odd.  d) Every prime number is even. 

24. a) Every square has 4 sides. b) All 4–sided polygons are squares. 

 c) Every triangle has 2 equal sides. d) Every 4–sided polygon with equal sides is a square. 

25. a) Every solution of x+5=9 is odd. b) Every 3–sided polygon with equal sides is a triangle. 

 c) Every calculus student studies hard. d) All (real number) solutions of x2 – 5x + 6 = 0 are even. 

26. a) Every straight line intersects the x–axis. b) Every (real number) solution of x2 + 3 = 0 is even. 

 c) All birds can fly. d) No mammal can fly. 
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Section 0.5 PRACTICE  Answers 

 
Practice 1: (a) All values of  x  less than 5. (b) x = 4 

 (c) Both x = 4 and x = 6. (d) x = 4 

 (e) x = 6 and all  x  less than 5. 
 
Practice 2: (a) x + 5 < 3 .  

 (b) At least one prime number is even. 

  There is an even prime number. 

 (c) x2 ≥ 4. 

 (d) x does not divide 2 or x does not divide 3. 

 (e) At least one mathematician can sing well. 

  There is a mathematician who can sing well. 
 
Practice 3: Here are several ways to restate  "If  (a shape is a square)  then  (the shape is a rectangle)." 

All squares are rectangles. 

Every square is a rectangle. 

Each square is a rectangle. 

Whenever a shape is a square, then it is a rectangle. 

A shape is a rectangle whenever it is a square. 

A shape is a square only if it is a rectangle. 

A shape is a square implies that it is a rectangle. 

Being a square implies being a rectangle. 
 
Practice 4: (a) statement "If a function is differentiable then it is continuous." 

  contrapositive "If a function is not continuous then it is not differentiable." 

 (b) statement "All men are mortal." 

  contrapositves "All immortals are not men."   

   "If a thing is not mortal then it is not human." 

 (c) statement "If  (x equals 3)  then  (x2 – 5x + 6 equals 0)." 

  contrapositive "If  (x2 – 5x + 6 does not equal 0)  then  (x does not equal 3)." 

 (d) statement "If (2 divides x  and  3 divides x)  then  (6 divides x)." 

  contrapositive "If (6 does not divide x)  then  (2 does not divide x  or  3 does not divide x)." 
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Chapter Zero Solutions to Odd Numbered Problems 
 
Important Note about Precision of Answers: 

In many of the problems in this book you are required to read information from a graph and to calculate with that 

information.  You should take reasonable care to read the graphs as accurately as you can (a small straightedge is 

helpful), but even skilled and careful people make slightly different readings of the same graph.  That is simply 

one of the drawbacks of graphical information.  When answers are given to graphical problems, the answers 

should be viewed as the best approximations we could make, and they usually include the word "approximately" 

or the symbol "≈" meaning "approximately equal to."  Your answers should be close to the given answers, but you 

should not be concerned if they differ a little.  (Yes those are vague terms, but it is all we can say when dealing 

with graphical information.) 
 
Section 0.1  
1.  approx. 1, 0, –1  
 

3.   (a) Approx.  
70 – 150 deg.

10 – 0 min    =  – 8 deg/min.  Avg. rate of cooling ≈ 8 deg/min.  (b) Approx. 6 deg/min cooling, 

and  5 deg/min cooling.  (c) Approx. 5.5 deg/min cooling, and 10 deg/min cooling.  (d) When t = 6 min.  
 

5. We estimate that the area is approximately (very approximate) 9 cm2. 
 
7. Method 1:  Measure the diameter of the coffee can, then fill it about half full of wine and measure the 

height of the wine and calculate the volume.  Submerge the bulb, measure the height of the wine again, 
and calculate the new volume.  The volume of the bulb is the difference of the two calculated volumes. 

 Method 2:  Fill the can completely full of wine and weigh the full can.  Submerge the bulb (displacing 
a volume of wine equal to the volume of the bulb), remove the bulb, and weigh the can again.  By 
subtracting, find the weight of the displaced wine and then use the fact that the density of wine is 
approximately  1 gram per 1  cubic centimeter to determine the volume of the bulb. 

 
Section 0.2 
1.   (a) –3/4  (b) 1/2  (c)  0   (d)  2   (e)  undefined  
 

3. (a) 
4
3   (b)  

–9
5   (c)   x + 2  (if x ≠ 2)   (d)  4 + h (if h ≠ 0)   (e)  a + x  (if a ≠ x) 

 

5. (a)  t = 5:  
5000
1500  = 

10
3    , t = 10:  

5000
3000  = 

5
3   ,  t = 20:  

5000
6000  = 

5
6    (b)   any t > 0:  

5000
300t   = 

50
3t     

 (c)  decreasing, since the numerator remains constant at 5000 while the denominator increases. 

 

7. The restaurant is 4 blocks south and 2 blocks east.  The distance is 42 + 22  = 20  ≈ 4.47  blocks. 
 

9. y = 202 – 42  = 384  ≈ 19.6 feet,  m = 
384
4    ≈ 4.9 .  tan( q ) = 

384
4    ≈ 4.9  so  q  ≈ 1.37   (≈ 78.5o  ) . 

 

11. The equation of the line through  P = (2,3)  and  Q = (8,11)  is  y – 3 = 
8
6 (x – 2)   or  6y – 8x = 2.  Substituting  

x = 2a + 8(1–a) = 8 – 6a  and  y = 3a + 11(1–a) = 11 – 8a  into the equation for the line, we 
 get  6(11 – 8a) –8(8 – 6a) = 66 – 48a –64 + 48a  which equals  2  for every value of  a,  so the point  
 with   x = 2a + 8(1–a)  and  y = 3a + 11(1–a)  is on the line through  P  and  Q  for every value of  a. 

 The  Dist(P,Q) = 62 + 82   = 10.   Dist(P,R)  =  (8–6a – 2)2 + (11–8a – 3)2    

 =  (6 – 6a)2 + (8 – 8a)2   =  62(1–a)2 + 82(1–a)2    =  100(1–a)2   =  10.|1–a|  =  |1–a| .Dist(P,Q) . 
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13. (a) 

! 

m
1
"m

2
= (1)(#1) = #1 so the lines are perpendicular.  (b)  Because 20 units of x-values are physically 

wider on the screen than 20 units of y-values.  (c)  Set the window so (xmax 

! 

"  xmin) 

! 

"1.7 (ymax 

! 

"  ymin). 
 

15. (a) y – 5 = 3(x – 2) or y = 3x – 1.   (b) y – 2 = –2(x – 3)  or y = 8 – 2x  (c) y – 4 = – 
1
2(x – 1)  or y = –

1
2 x + 

9
2   

17. (a) y – 5 = 
3
2(x–2)  or y = 

3
2 x + 2  (b) y – 2 = 

3
2(x+1)  or y = 

3
2 x + 

7
2  (c)   x = 3. 

19. The distance between the centers is  62 + 82   = 10.  (a)  10–2–4 = 4  (b)  10–2–7 = 1 
 (c)  0  (they intersect)  (d)  15–10–3 = 2  (e)  12–10–1 = 1. 
 

21. Find  Dist( P,C ) =  (x–h)2 + (y–k)2    ,  and compare the value to  r: 
 

P is  

 inside the circle if  Dist( P,C ) < r

 on the circle if  Dist( P,C ) = r
 outside the circle if  Dist( P,C ) > r

  

 
23. A point P =(x,y) lies on the circle if and only if its distance from  C = (h,k) is r : Dist( P,C ) = r.  So  P   

 is on the circle if and only if    (x–h)2 + (y–k)2   = r  or  (x–h)2 + (y–k)2 = r2  . 

25. (a) slope is  –
5
12  (b) undefined (vertical line)   (c)  

12
5   (d)  0 (horizontal line) 

  
27. (a)  distance ≈ 2.22 . (b)  Distance ≈ 2.24 . 
 (c)  (by inspection)  3 units which occurs at the point  (5, 3). 

29. (a)  If  B ≠ 0, we may solve for y:  y = – 
A
B x + 

C
B  .  The slope is the coefficient of x:  m = – 

A
B  . 

 (b)  The required slope is  B/A  (the negative reciprocal of  –A/B) so the equation is  y = 
B
A x or  Bx–Ay = 0. 

 (c)  Solve  { Ax + By = C, Bx – Ay = 0 }  to get  x = 
AC

A2 + B2   and  y =  
BC

A2 + B2  . 

 (d)  Distance =   ( 
AC

(A2 + B2)
 )2  + ( 

BC

A2 + B2 )2      =    
A2C2

(A2 + B2)2
 + 

B2C2

(A2 + B2)2
  

   =    
(A2 + B2)C2

(A2 + B2)2 
    =    

C2

A2 + B2     =  
 | C |

A2 + B2
    

 
Section 0.3 
 
1. A–a, B–c, C–d, D–b 3. A–b, B–c, C–d, D–a 
5. (a)–C, (b)–A, (c)–B 
 
6. The bottles are sketched in Fig. 0.3P6. 

7. f(x) = x2 + 3, g(x) = x – 5  ,  h(x) =  
x

x – 2   

 (a)  f(1) = 4,  g(1) is undefined ,  h(1) = –1. 
 (b)  Graphs of  f, g and s  are shown in Fig. 0.3P7. 

 (c)  f( 3x ) = ( 3x )2 + 3 = 9x2 + 3,  g( 3x ) = 3x – 5  (for x ≥ 5/3)   h( 3x ) = 
3x

3x – 2  

 (d)  f( x+h ) = (x+h)2 + 3 = x2 + 2xh + h2 + 3 , g( x+h ) = x + h – 5  , h(x + h) =  
x+h

x+h – 2  
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9. (a)  m = 2    (b)  m = 2x + 3 + h . (c)  m =  x + 4  (if x≠1)   
  If x = 1.3, then m = 5.3 .  If x = 1.1, then  m = 5.1 .  If x = 1.002, then  m = 5.002 . 
 

11. f(x) = x2 – 2x,  g(x) = x  . 

 m =  
f( a+h ) – f( a )

h    = 2a + h – 2 (h≠0).  If a = 1, then m = h.  If a = 2, then m = 2+h.   

   If a = 3, then m = 4 + h.  If a = x, then m = 2x + h – 2. 
 

  m = 
g( a+h ) – g( a )

h    =  
1

a+h + a
   =  

a+h – a
h   .   If a = 1, then m =  

1+h – 1
h  .   

   If a = 2, then  m = 
2+h – 2

h   .  If a = 3, then m = 
3+h – 3

h   .   

   If a = x, then  m =  
x+h – x

h  . 

 
13. (a) Approx. 250 miles, 375 miles.  (b)  Approx. 200 miles/hour. 
 (c) By flying along a circular arc about 375 miles from the airport. 
 
 
15. (a)  See Fig. 0.3P15.  (b)  Max at x = 2.  Min at x = 4.   
 (c)  Largest at x = 5.  Smallest at x = 3. 
 
 
17. The path of the slide is a straight line tangent to the graph of the  
 path at the point of fall.  See Fig. .  
 

19. (a)  s(1) = 2, s(3) = 4/3. s(4) = 5/4.  (b)  s(x) =  
x + 1

x   . 

 
21.  x f(x) slope of the line tangent 
    to the graph of f at (x, f(x)) 
          
  0 1  1 
  1 2  1 
  2 2  –1 
  3 1  0 
  4 1.5  0.5 
 
 
23. On your own. 
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Section 0.4  Answers 
 
1. (a) ≈ – 18 . (b)  –2.2 

(c) If T = 11oC, WCI  =   


 11    if 0 ≤ v ≤ 6.5 

33 – 
10.45 + 5.29 v – 0.279 v

22  (22)if  6.5 < v ≤ 72

–2.2if  72 < v

 .   

 

3. g(0)=3, g(1)=1, g(2)=2, g(3)=3, g(4)=1, g(5)=1.  g(x) = 

 3 – x if x < 1

 x if 1 ≤ x ≤ 3
 1 if x > 3

  

 
5. (a) f( f(1) ) = 1, f( g(2) ) = 2, f( g(0) ) = 2, f( g(1) ) = 3 
 (b) g( f(2) ) = 0, g( f(3) ) = 1, g( g(0) ) = 0, g( f(0) ) = 0 
 (c) f (h(3) ) = 3, f( h(4) ) = 2, h( g(0) ) = 0, h( g(1) ) = –1 
 
7. (a) x –1 0 1 2 3 4 
  f(x) 3 3 –1 0 1 1 
  g(x) –2 0 1 2 3 4 
  h(x) –3 –2 –1 0 1 2 
  
 (b)  f( g(1) ) = –1, f( h(1) ) = 3, h( f(1) ) = –3, f( f(2) ) = 3, g( g(3.5) ) = 3 
 
 (c) See Fig. 0.4P7 for the graphs of  f, g, and h. 
 
9. L(d) =  



 England if d = Mon. or Tue.

 France if d = Wed.
 Germany if d = Thur. or Fri.
 Italy if d = Sat. or Sun.

  

 

11. f(x) =  



 x2 if x < 2
 x – 1 if x > 2

  

 

13. (a)  B(1) = 1.f(1) = 1. 11  = 1,    

  B(2) = 2.f(2) = 2. 12  = 1,   

  B(3) = 3.f(3) = 3. 13  = 1. 

 (b)  For x > 0, B(x) = x.f(x) = x. 1x    = 1 . 

 
15. See Fig. 0.4P15. 
 
17. (a) f( g(x) ) = 6x + 2 + 3A,  g( f(x) ) = g( 3x+2 ) = 6x + 4 + A.  If f(g(x)) = g(f(x)), then   A = 1. 
 (b) f(g(x)) = 3Bx – 1, g(f(x)) = 3Bx + 2B – 1.  If f(g(x)) = g(f(x)), then  B = 0. 
 
19. See Fig. 0.4P19 for the graph of  f(x) = x – [ x ] = x – INT(x). 
 
21. f(x) = [ 1.3 + 0.5.sin(x) ] works.  The value of  0.5 < A < 1.5 in   
 f(x) = [ A + 0.5.sin(x) ] determines the relative lengths of the long  
 and short parts of the pattern.. 
 
23. (a)  g(1) = 1, g(2) = 1, g(3) = 0, g(4) = –1.  Now graph  g 
 
25. ≈ 0.739  starting with x = 1, 2, 10, or any value. 
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27. f(x) = (x2 + 1)/(2x).  (note that this is the corrected version of the function  f) 
 f(1) = 2/2 = 1. 
 f(0.5) = 1.25, f(1.25) = 1.025, f(1.025) ≈ 1.0003049 , f(1.0003049) ≈ 1.000000046, ... 
 f(4) = 2.125, f(2.125) ≈ 1.297794, f(1.297794) ≈ 1.034166, f(1.034166) ≈ 1.000564, ... 
 
29. (a)  f(2) = 14/3 ≈ 4.7, f( 14/3 ) = 50/9 ≈ 5.6, f(50/9) = 158/27 ≈ 5.85, f(158/27) = 482/81 ≈ 5.95 
  f(4) = 16/3 ≈ 5.3, f(16/3) = 52/9 ≈ 5.8, f(52/9) = 160/27 ≈ 5.93, f(160/27) = 484/81 ≈ 5.975 
  f(6) = 6. 
 (b)  c = 6. 

 (c) Solve  c = g(c) = c/3 + A  to get 3c = c + 3A  and  2c = 3A  so  c = 
3A
2    is a fixed point of  g. 

31. On your own. 
 
Section 0.5  Answers 
1. (a)  x = 2, 4 (b)  x = –2, –1, 0, 1, 2, 3, 4, 5 (c)  x = –2, –1, 1, 3 

3. (a)  all  x  (all real numbers) (b)  x > 
3

–2  (c) all x 
 
5. (a)  x = –2, –3, 3 (b)  no values of  x (c) x ≥ 0 
 

7. (a) If  x ≠ 2  and  x ≠ –3, then  x2 + x – 6 ≠ 0.  True. 
 (b) If an object does not have 3 sides, then it is not a triangle.  True. 
 
9. (a) If your car does not get at least 24 miles per gallon, then it is not tuned properly. 
 (b) If you can not have dessert, then you did not eat your vegetables. 
 
11. (a) If you will not vote for me, then you do not love your country. 
 (b) If not only outlaws have guns, then guns are not outlawed.  (poor English) 
  If someone legally has a gun, then guns are not illegal. 
 
13. (a) Both  f(x)  and g(x) are not positive. (b) x is not positive.  ( x ≤ 0 )  
 (c) 8 is not a prime number.  
 
15. (a) For some numbers  a  and  b,  | a+b | ≠ | a | + | b |. (b) Some snake is not poisonous. 
 (c) Some dog can climb trees. 
 
17. If  x  is an integer, then  2x  is an even integer.  True.   
 Converse:  If  2x is an even integer, then  x  is an integer.  True. 
 (It is not likely that these were the statements you thought of.  There are lots of other examples.) 
 

19. (a) False.  Put a = 3  and  b = 4.  Then  (a + b)2 = (7)2 = 49, but  a2 + b2 = 32 + 42 = 9 + 16 = 25. 

 (b) False.  Put a = –2  and  b = –3.  Then  a > b, but  a2 = 4 < 9 = b2 . 
 (c) True. 
 

21. (a) True.       (b)   False.  Put f(x) = x + 1  and g(x) = x + 2.  Then  f(x)g(x) = x2 + 3x + 2 is not a linear function. 
 (c) True.  
 
23. (a) If  a  and  b  are prime numbers, then  a + b  is prime.  False: take  a = 3  and b = 5. 
 (b) If  a  and  b  are prime numbers, then  a + b  is not prime.  False: take a = 2 and b = 3. 
 (c) If  x  is a prime number, then  x  is odd.  False:  take x = 2.  (this is the only counterexample) 
 (d) If  x  is a prime number, then  x  is even.  False:  take x = 3 (or 5 or 7 or ... ) 
 
25. (a) If x is a solution of x + 5 = 9, then x is odd.  False:  take x = 4. 
 (b) If a 3–sided polygon has equal sides, then it is a triangle.  True.  (We also have nonequilateral triangles .) 
 (c) If a person is a calculus student, then that person studies hard.  False (unfortunately), but we won't  
  mention names. 

 (d) If  x is a (real number) solution of x2 – 5x + 6 = 0, then  x  is even.  False: take x = 3. 
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1.0 TANGENT LINES, VELOCITIES,  GROWTH 
 

In section 0.2, we estimated the slope of a line tangent to the graph of a function at a point.  At the end of section 

0.3, we constructed a new function which was the slope of the line tangent to the graph of a function  

at each point.  In both cases, before we could calculate a slope,  we had to estimate the tangent line from the graph of 

the function, a method which required an accurate graph and good estimating.  In this section we will start to look at a 

more precise method of finding the slope of a tangent line which does not require a graph or any estimation by us.  

We will start with a nonapplied problem and then look at two applications of the same idea. 

 
The Slope of a Line Tangent to a Function at a Point 
 

Our goal is to find a way of exactly determining the slope of the line which is tangent to a function (to the graph of the 

function) at a point in a way which does not require us to have the graph of the function. 

Let's start with the problem of finding the slope of the line L (Fig. 1) which is tangent 

to  f(x) = x2  at the point  (2,4).  We could estimate the slope of  L  from the graph, 

but we won't.  Instead, we can see that the line through  (2,4)  and  (3,9)  on the graph 

of  f  is an approximation of the slope of the tangent line,  and we can calculate that 

slope exactly:  m = ∆y/∆x = (9–4)/(3–2) = 5.  But  m = 5  is only an estimate of the 

slope of the tangent line and not a very good 

estimate.  It's too big.  We can get a better estimate 

by picking a second point on the graph of f  which 

is closer to  (2,4)  ––  the point  (2,4)  is fixed and it 

must be one of the points we use.  From Fig. 2, we 

can see that the slope of the line through the points  

(2,4) and (2.5,6.25)  is a better approximation of the slope of the tangent line at  

(2,4):  m = ∆y/∆x = (6.25 – 4)/(2.5 – 2) = 2.25/.5 = 4.5 , a better estimate, but still  

an approximation.  We can continue picking points closer and closer to (2,4) on 

the graph of  f, and then calculating the slopes of the lines through each of these 

points and the point  (2,4): 
 

Points to the left of (2,4)           Points to the right of (2,4) 

x y = x2     slope of line through x y = x2 slope of line through 

  (x,y) and (2,4)    (x,y) and (2,4) 

1.5 2.25 3.5 3 9 5 

1.9 3.61 3.9 2.5 6.25 4.5 

1.99 3.9601 3.99 2.01 4.0401 4.01 
 

The only thing special about the x–values we picked is that they are numbers which are close, and very close, to   

x = 2.  Someone else might have picked other nearby values for  x.  As the points we pick get closer and closer to  
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the point  (2,4) on the graph of  y = x2 , the slopes of the lines through the points and  (2,4)  are better 

approximations of the slope of the tangent line, and these slopes are getting closer and closer to  4. 
 
Practice 1: What is the slope of the line through (2,4) and (x, y) for y = x2  and  x = 1.994? x = 2.0003? 

We can bypass much of the calculating by not picking the points one at a time:  let's look at a general point near  

(2,4).  Define  x = 2 + h  so  h  is the increment from 2 to  x   

(Fig. 3).  If h is small, then  x = 2 + h is close to  2  and  the point  

(2+h, f(2+h) ) = (2+h, (2+h)2 )  is close to  (2,4).  The slope  m  

of the line through the points  (2,4)  and  (2+h, (2+h)2 )  is a good 

approximation of the slope of the tangent line at the point  (2,4):    
 

m = 
∆y
∆x   = 

(2+h)2  – 4
(2+h) – 2     

 

 =  
{4 + 4h + h2} – 4

h    =  
4h + h2

h    =  
h(4 + h)

h    =  4 + h . 
 

If  h  is  very small, then  m = 4 + h is a very good approximation to the slope of the tangent line, and  m = 4 + h  

is very close to the value  4.  The value  m = 4 + h  is called the slope of the secant line through the two points  

(2,4)  and  ( 2+h, (2+h)2 ).  The limiting value  4  of  m = 4 + h  as  h  gets smaller and smaller is called the 

slope of the tangent line to the graph of  f  at  (2,4). 
 

Example 1: Find the slope of the line tangent to  f(x) = x2  at the point  (1,1) by  evaluating the slope of the 

secant line through  (1,1)  and  ( 1+h, f(1+h) )  and then determining what 

happens as  h  gets very small  (Fig. 4). 

 
Solution: The slope of the secant line through the points  (1,1)  and   
  ( 1+h, f(1+h) ) is 
  

 m =  
f( 1+h ) – 1
( 1+h ) – 1     =  

( 1+h )2 – 1
h    =  

{ 1 + 2h + h2 } – 1
h     

 

  = 
2h + h2

h    = 2 + h.    As h gets very small, the value of  m  approaches   

 the value 2, the slope of tangent line at the point  (1,1). 
 

 
 
 

Practice 2: Find the slope of the line tangent to the graph of  y = f(x) = x2  at the point  (–1,1) by  finding the 
slope of the secant line,  msec , through the points  (–1,1)  and  ( –1+h, f( –1+h ) )  and then determining 

what happens to  msec   as  h  gets very small. 
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FALLING TOMATO 
 
Suppose we drop a tomato from 

the top of a 100 foot building   

(Fig. 5) and time its fall.  

 
 
 
 
 
 
 
 
 
 
Some questions are easy to answer directly from the table:   

(a) How long did it take for the tomato to drop 100 feet?    (2.5 seconds) 

(b) How far did the tomato fall during the first second?   (100 – 84 = 16 feet) 

(c) How far did the tomato fall during the last second?    (64 – 0 = 64 feet) 

(d) How far did the tomato fall between  t =.5  and  t = 1?   (96 – 84 = 12 feet) 
 

Some other questions require a little calculation: 

(e) What was the average velocity of the tomato during its fall? 
 

 Average velocity = 
distance fallen

total time    = 
∆ position
∆ time    =  

–100 ft
2.5 s    =  –40 ft/s . 

 
(f) What was the average velocity between  t=1 and  t=2  seconds? 
 

 Average velocity  =  
∆ position

 ∆ time    =  
36 ft – 84 ft

2 s – 1 s     =  
–48 ft

1 s    =  –48 ft/s . 
 

Some questions are more difficult. 

(g) How fast was the tomato falling 1  second after it was dropped? 
 

This question is significantly different from the previous two questions about average velocity.  Here we want 

the instantaneous velocity, the velocity at an instant in time.  Unfortunately the tomato is not equipped with a 

speedometer so we will have to give an approximate answer. 
 

One crude approximation of the instantaneous velocity  after 1 second is simply the average velocity during 

the entire fall,  –40 ft/s .  But the tomato fell slowly at the beginning and rapidly near the end so the  

"–40 ft/s" estimate may or may not be a good answer. 
 

We can get a better approximation of the instantaneous velocity at  t=1  by calculating the average velocities 

over a short time interval near t = 1 .  The average velocity between t = 0.5  and t = 1 is 
–12 feet

0.5 s   = –24 ft/s, 

and the average velocity between t = 1 and t = 1.5  is   
–20 feet

.5 s    =  –40 ft/s  so we can be reasonably sure that 

the instantaneous velocity is between  –24 ft/s  and  –40 ft/s. 
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In general, the shorter the time interval over which we calculate the average velocity, the better the average  

velocity will approximate the instantaneous velocity.  The average velocity  

over a time interval is   
∆ position
∆ time  , which is the slope of the secant line 

through two points on the graph of height versus time  (Fig. 6).   The 

instantaneous velocity at a particular time and height is the slope of the 

tangent line to the graph at the point given by that time and height. 

 

 Average velocity  =  
∆ position
∆ time     

                    =  slope of the secant line through 2 points. 
 

       Instantaneous velocity  =  slope of the line tangent to    

     the graph. 
            

 
 
Practice 3: Estimate the velocity of the tomato  2  seconds after it was dropped. 

 
GROWING BACTERIA 
 

Suppose we set up a machine to count the number of bacteria growing on a petri plate  (Fig. 7).  At first there are 

few bacteria so the population grows slowly.  Then there are more bacteria to divide so the population grows more 

quickly.  Later, there are more bacteria and less room and nutrients available for the expanding population, so the 

population grows slowly again.  Finally, the bacteria have used up 

most of the nutrients, and the population declines as bacteria die. 
 
The population graph can be used to answer a number of questions. 

(a) What is the bacteria population at time  t = 3 days?  

  (Answer: about  500  bacteria) 
 
(b) What is the population increment from  t =  3  to   
  t = 10  days?             (about  4000  bacteria) 
 
(c) What is the rate of population growth from  t = 3  
  to  t = 10 days?   (Fig. 7) 

 
Solution:  The rate of growth from  t = 3  to  t = 10  is the average change in population during that time:   
 

 average change in population =  
change in population

change in time    =  
∆ population
∆ time   

 

  =  
4000 bacteria

7 days     ≈   570  bacteria/day  . 
 
 This is the slope of the secant line through the two points  (3, 500)  and  (10, 4500). 
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(d) What is the rate of population growth on the third day, at  t = 3 ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: This question is asking for the instantaneous rate of population change, the slope of the line  

 which is tangent to the population curve at  (3, 500).  If we sketch a line approximately tangent to the 

curve at  (3, 500)  and pick two points near the ends of the tangent line segment  (Fig. 8),  we can estimate 

that  instantaneous rate of population growth  is approximately   320  bacteria/day . 
 

   Average population growth rate = 
∆ population
∆ time     

              =  slope of the secant line through 2 points. 
 
   Instantaneous population growth rate =  slope of the line tangent to the graph. 
    

 

Practice 4: Approximately what was the average change in population between  t = 9  and  t = 13?  

 Approximately what was rate of population growth at  t = 9  days? 
 

The tangent line problem, the instantaneous velocity problem and the instantaneous growth rate problem are all 

similar.  In each problem we wanted to know how rapidly something was changing at an instant in time, and 

each problem turned out to be finding the slope of a tangent line.  The approach in each problem was also the 

same:  find an approximate solution and then examine what happened to the approximate solution over shorter 

and shorter intervals.  We will often use this approach of finding a limiting value, but before we can use it 

effectively we need to describe the concept of a limit with more precision. 
 
 
PROBLEMS 
 
1. What is the slope of the line through   (3,9)  and  (x, y)  for y = x2  and  x = 2.97?   x = 3.001?    

 x = 3+h?   What happens to this last slope when  h  is very small (close to 0)?   Sketch the graph  
 of  y = x2  for  x  near  3. 
 
2. What is the slope of the line through   (–2,4)  and  (x, y)  for y = x2  and  x = –1.98?   x = –2.03?    

 x = –2+h?  What happens to this last slope when  h  is very small (close to 0)?   Sketch the graph of   

 y = x2  for  x  near  –2. 
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3. What is the slope of the line through   (2,4)  and  (x, y)  for y = x2 + x – 2   and  x = 1.99?    

 x = 2.004?   x = 2+h?  What happens to this last slope when  h  is very small?   Sketch the graph of   

 y = x2  + x – 2  for  x  near  2. 
 
4. What is the slope of the line through   (–1,–2)  and  (x, y)  for y = x2 +x – 2  and  x = –.98?    

 x = –1.03?   x = –1+h?  What happens to this last slope when  h  is very small?   Sketch the graph of   

 y = x2  + x – 2  for  x  near  –1. 

 
5. Fig. 9 shows the temperature during a day in Ames. 

(a) What was the average change in temperature from  9 am   

 to  1 pm?  

(b) Estimate how fast the temperature was rising at  10 am   

 and  at 7 pm? 

 

 
6. Fig. 10 shows the distance of a car from a measuring position  

 located on the edge of a straight road. 

 (a) What was the average velocity of the car from  t = 0 

    to  t = 30 seconds? 

 (b) What was the average velocity of the car from   

  t = 10  to  t = 30 seconds? 

 (c) About how fast was the car traveling  at  t = 10  

  seconds?  at  t = 20 s ?  at  t = 30 s ? 

 (d) What does the horizontal part of the graph between   

  t = 15  and  t = 20 seconds mean? 

 (e) What does the negative velocity at  t = 25  represent? 

 
7. Fig. 11 shows the distance of a car from a measuring  

 position located on the edge of a straight road. 

 (a) What was the average velocity of the car from  

   t = 0  to  t = 20 seconds? 

 (b) What was the average velocity from  t = 10  to   

  t = 30 seconds? 

 (c) About how fast was the car traveling at  t = 10  

  seconds?  at  t = 20 s ?  at  t = 30 s ? 
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8. Fig. 12  shows the composite developmental skill level of chessmasters at different ages as determined by their 

performance against other chessmasters.  (From "Rating Systems for Human Abilities", by W.H. Batchelder and 

R.S. Simpson, 1988. UMAP Module 698.) 
 

 (a) At what age is the "typical" chessmaster playing the best chess? 

 (b) At approximately what age is the chessmaster's skill level  

  increasing most rapidly? 

 (c) Describe the development of the "typical" chessmaster's skill  

  in words. 

(d) Sketch graphs which you think would reasonably describe  

 the performance levels versus age for an athlete, a classical pianist,  

 a rock singer, a mathematician, and a professional in your major field. 
 

 
Problems 9 and 10 define new functions  A(x) in terms of AREAS bounded by the functions  y = 3 and y = x + 1.  

This may seem a strange way to define a functions  A(x),  but this idea will become important later in calculus.  

We are just getting an early start here. 

 

9. Define  A(x) to be the area bounded by the t (horizontal) and y axes,  

 the horizontal line  y = 3, and the vertical line  at x  (Fig. 13).  For  

 example,  A(4) = 12  is the area of the  4 by 3 rectangle. 

 a) Evaluate  A(0), A(1), A(2), A(2.5)  and  A(3). 

 b) What area would  A(4) – A(1)  represent in the figure? 

 c) Graph  y = A(x)  for  0 ≤ x ≤ 4. 
 

10. Define  A(x) to be the area bounded by the t (horizontal) and y axes, the   

 line y = t + 1, and the vertical line at x  (Fig. 14).  For example,  A(4) = 12. 

 a) Evaluate  A(0), A(1), A(2), A(2.5)  and  A(3). 

 b) What area would  A(3) – A(1)  represent in the figure? 

 c) Graph  y = A(x)  for  0 ≤ x ≤ 4. 
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Section 1.0 PRACTICE  Answers 

Practice 1: y = x2  

 If  x = 1.994, then  y = 3.976036   so the slope between  (2, 4)  and  (x ,y)  is   
 

   
4 – y
2 – x   =  

4 – 3.976036
2 – 1.994    =  

0.023964
0.006    ≈  3.994 . 

 
 If  x = 2.0003, then  y ≈ 4.0012   so the slope between  (2, 4)  and  (x ,y)  is   
 

   
4 – y
2 – x   =  

4 – 4.0012
2 – 2.0003   =  

–0.0012
0.0003    ≈  4.0003 . 

 

Practice 2: msec = 
f(–1 + h) – (1)
(–1 + h) – (–1)    =  

(–1 + h)2 – 1
h     =  

1 – 2h + h2 – 1
h     =  

h(–2 + h)
h     =  –2 + h 

 
 As  h  → 0,  msec  =  –2 + h  →  –2 . 

 

Practice 3: The average velocity between t = 1.5  and t = 2.0  is  
36 – 64 feet
2.0 – 1.5 sec   =  –56 feet per second. 

 

 The average velocity between t = 2.0  and t = 2.5  is  
0 – 36 feet

2.5 – 2.0 sec   =  –72 feet per second. 
 
 The velocity at  t = 2.0  is somewhere between  –56 ft/sec  and  –72 ft/sec, probably about the  
 

  middle of this interval:  
(–56) + (–72)

2    =  –64 ft/sec. 
 
Practice 4: (a) When  t = 9  days, the population is approximately  P = 4,200 bacteria.  When  t = 13,   

  P ≈ 5,000.  The average change in population is approximately   

   
5000 – 4200 bacteria

13 – 9 days    =  
800 bacteria

4 days    =  200  bacteria per day. 

 

 

 (b)   To find the rate of population growth at  t = 9 days,   

  sketch the line tangent to the population curve 

  at the point  (9, 4200)  and then use (9, 4200) and 

   another point  on the tangent line to calculate the  

  slope of the line.   Using the approximate values 

  (5, 2800)  and  (9, 4200),  the slope of the tangent  

  line at the point  (9, 4200)  is approximately 

   
4200 – 2800 bacteria

9 – 5 days    =   
1400 bacteria

4 days      ≈  350 bacteria/day . 
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1.1 THE LIMIT OF A FUNCTION 
 
THE IDEA,  Informally     
 

Calculus has been called the study of continuous change, and the limit is the basic concept which allows us 

to describe and analyze such change.  An understanding of limits is necessary to understand derivatives, 

integrals and other fundamental topics of calculus. 

 

The limit of a function describes the behavior of the function when the variable is near,  

but does not equal , a specified number  (Fig. 1).  If the values of  f(x)  get closer  

and closer , as close as we want, to one number  L  as we take values of  x  very close  

to (but not equal to) a number  c, then we    

 
 

 say  "the limit of f(x), as x approaches  c, is L "   and we 
 
 write  " 

! 

lim
x"c

  f(x) = L." (The symbol  " → "  means  "approaches"  or  "gets very close to.") 

        
 

   f(c)   is a single number that describes the behavior (value) of  f  AT  the point  x = c. 
 

! 

lim
x"c

  f(x)   is a single number that describes the behavior of  f  NEAR, BUT NOT AT,  the point  x = c. 

 
If we have a graph of the function near  x = c , then it is usually easy to determine   

! 

lim
x"c

  f(x) . 

 
 
Example 1: Use the graph of  y = f(x)  in Fig. 2 to  

  determine the following limits: 

 
 (a) 

! 

lim
x"1

  f(x) (b) 

! 

lim
x"2

  f(x)  

 (c) 

! 

lim
x"3

  f(x) (d) 

! 

lim
x"4

  f(x) 

 

 
Solution: (a) 

! 

lim
x"1

  f(x)  = 2 .  When  x  is very close to  1,  the values of  f(x) are very close to   

 y = 2.  In this example, it happens that  f(1) = 2, but that is irrelevant for the limit.  The only thing that 

matters is what happens for  x  close to 1 but  x ≠ 1. 

(b) f(2) is undefined, but we only care about the behavior of  f(x)  for  x  close to 2 and  not equal to 2.  When  

x is close to 2, the values of  f(x)  are close to  3.  If we restrict  x  close enough to 2, the  
  
 values of  y  will be as close to  3  as we want,  so  

! 

lim
x"2

  f(x) = 3.   
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(c) When  x  is close to  3  (or as  x approaches the value  3), the values of  f(x) are close to  1 (or  
  
 approach the value 1),  so  

! 

lim
x"3

 f(x) = 1.  For this limit it is completely irrelevant that  f(3) = 2,  We only 

care about what happens to  f(x)  for  x  close to and not equal to 3. 

(d) This one is harder and we need to be careful.  When  x  is close to  4 and slightly less than  4  (x  is just to 

the left of  4 on the  x–axis), then the values of  f(x)  are close to  2.  But if x is close to  4  and slightly 

larger than  4  then the values of  f(x)  are close to 3.   If we only know that  x  is very close to  4, then we 

cannot say whether  y = f(x)  will be close to  2  or close to  3 –– it depends on whether  x  is on the right or 

the left side of  4.  In this situation,  the  f(x)  values are not close to a single number so we say    
  
 

! 

lim
x"4

  f(x)   does not exist.  It is irrelevant that  f(4) = 1.  The limit, as  x  approaches 4, would still  

 be undefined if  f(4)  was 3  or  2 or  anything else.  
 
 
Practice 1: Use the graph of  y = f(x)  in Fig. 3 to determine  

 the following limits: 

 
 (a) 

! 

lim
x"1

  f(x) (b) 

! 

lim
t"2

  f(t) 

 (c) 

! 

lim
x"3

  f(x) (d) 

! 

lim
w"4

  f(w) 

 

Example 2:  Determine the value of   

! 

lim
x"3

 
2x

2
# x #1

x #1
. 

 
Solution:  We need to investigate the values of  f(x)  when  x  is close to  3.  If the  f(x)  values get  

 arbitrarily close to or even equal some number L, then L will be the limit.  One way to keep track of both 

the  x  and the  f(x)  values is to set up a table and to pick several  x  values which are closer and closer (but 

not equal) to  3.  We can pick some values of x which approach 3 from the left, say   x = 2.91, 2.9997, 

2.999993, and 2.9999999  , and some values of x which approach 3 from the right, say  x =  3.1, 3.004, 

3.0001, and 3.000002 .   The only thing important about these particular values for  x  is that they get closer 

and closer to  3  without equaling  3.  You should try some other values "close to 3" to see what happens.  

Our table of values is 

    x   f(x)            x f(x)        
  2.9 6.82 3.1 7.2 
  2.9997 6.9994 3.004 7.008 

  2.999993 6.999986 3.0001 7.0002 
 2.9999999 6.9999998 3.000002 7.000004 

 ↓ ↓ ↓ ↓ 

 3 7 3 7 
 

 As the x values get closer and closer to 3, the  f(x)  values are getting closer and closer to  7.  In  

 fact, we can get  f(x)  as close to  7  as we want  ("arbitrarily close")  by taking the values of  x  very 

close  ("sufficiently close")  to  3.     

! 

lim
x"3

 
2x

2
# x #1

x #1
  =  7. 

 

 Instead of using a table of values ,  we could have graphed  y = f(x)  for  x  close to  3 , Fig. 4, and used 
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  the graph to answer the limit question.  This graphic approach is easier, particularly if you have a 

calculator or computer do the graphing work for you,  but it is really very similar to the "table of values" 

method:  in each case you need to evaluate  y = f(x)  at many values of  x  near  3. 
 

 You might have noticed that if we just evaluate f(3), then we get the correct answer 7.  That works for this 

particular problem, but it often fails.   The next example illustrates the difficulty. 
 

Example 3:    Find  

! 

lim
x"1

 
2x

2
# x #1

x #1
.  (Same as Example 2 but  

 with  x→1.) 
 

Solution:  You might try to evaluate   f(x) =    
2x2 – x – 1

x – 1     at  x = 1,  

 but   f  is not defined at  x = 1.  It is tempting, but wrong, to     

 conclude that this function does not have a limit as  x  approaches 1.   
 

Table Method:  Trying some "test" values for  x  which get closer and closer to 1 from both the left  

 and the right, we get 
    x f(x)            x f(x)        

  0.9 2.82 1.1 3.2 
  0.9998 2.9996 1.003 3.006 

  0.999994 2.999988 1.0001 3.0002 
 0.9999999 2.9999998 1.000007 3.000014 

  ↓ ↓ ↓ ↓ 

  1 3 1 3 
 

 The function  f is not defined at x = 1, but when x is close to 1, the values of f(x) are getting very close to 3.   

 We can get f(x) as close to 3 as we want by taking x very close to 1  so   

! 

lim
x"1

 
2x

2
# x #1

x #1
  = 3. 

Graph Method:  We can graph  y = f(x) =    
2x2 – x – 1

x – 1     for  x  close to  1,  Fig. 5, and notice that 

 whenever  x  is close to  1, the values of  y = f(x) are close to  3.  f is not defined at  x = 1, so the graph has 

a hole above  x = 1,  but we only care about what  f(x) is doing for  x  close to but not equal to 1. 

 

Algebra Method:  We could have found the same result by noting  

          that  f(x) =   
2x2 – x – 1

x – 1     =   
(2x+1)(x–1)

x–1    =  2x+1  as long as   

          x ≠ 1.  (If x≠1,  then  x–1 ≠ 0  so it is valid to divide the  

 numerator and denominator by the factor  x–1.)  The "x→1"  

 part of the limit means that  x  is close to 1 but not equal to 1,  

 so our division step is valid and    
 

            

! 

lim
x"1

 
2x

2
# x #1

x #1
  =  

! 

lim
x"1

  2x + 1  = 3 , the correct answer. 
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THREE METHODS FOR EVALUATING LIMITS 
   
The Algebra Method 
 
The algebra method involves algebraically simplifying the function before trying to evaluate its limit.   

Often, this simplification just means factoring and dividing, but sometimes more complicated algebraic or even 

trigonometric steps are needed. 

 
The Table and Graph Methods 
 
To evaluate a limit of a function  f(x)  as  x  approaches  c, the table method involves calculating the values of   

f(x)  for  "enough"  values of  x  very close to  c so that we can "confidently" determine which value  f(x)  is 

approaching.  If  f(x)  is well–behaved, we may not need to use very many values for  x.  However, this method is 

usually used with complicated functions, and then we need to evaluate  f(x)  for lots of values of  x.   

 

 A computer or calculator can often make the function evaluations easier, but their calculations are subject  

 to "round off" errors.  The result of any computer calculation which involves both large and small numbers 

should be viewed with some suspicion.   For example, the function   
 

 f(x) =    
{ (0.1)x + 1 } – 1

(0.1)x 
   =  

(0.1)x

(0.1)x
   =  1  for every value of x ,  and my calculator gives the correct 

answer for some values of  x :  f(3) =    
{ (0.1)3 + 1 } – 1

(0.1)3 
   =  1 , and   f(8) and  f(9)  both equal  1.   

 But my calculator says  { (0.1)10 + 1 } – 1 = 0  so it evaluates  f(10) to be 0, definitely an incorrect value.  

Your calculator may evaluate  f(10) correctly,  but try  f(35)  or  f(107). 
 
  Calculators are too handy to be ignored, but they are too prone  

  to these types of errors to be believed uncritically.  Be careful. 
     

The graph method is closely related to the table method, but we create a graph of the function instead of a table 

of values, and then we use the graph to determine which value  f(x)  is approaching.   

 
Which Method Should You Use? 
 

In general, the algebraic method is preferred because it is precise and does not depend on which values of  x  we 

chose or the accuracy of our graph or precision of our calculator.  If you can evaluate a limit algebraically, 

you should do so.  Sometimes, however, it will be very difficult to evaluate a limit algebraically, and the table 

or graph methods offer worthwhile alternatives.  Even when you can algebraically evaluate the limit of a 

function, it is still a good idea to graph the function or evaluate it at a few points just to verify your algebraic 

answer. 
 

The table and graph methods have the same advantages and disadvantages.  Both can be used on very 

complicated functions which are difficult to handle algebraically or whose algebraic properties you don't know.  
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Often both methods can be easily programmed on a calculator or computer.  However, these two methods are 

very time–consuming by hand and are prone to round off errors on computers.  You need to know how to use 

these methods when you can't figure out how to use the algebraic method, but you need to use these two methods 

warily. 
 

Example 4: Evaluate  (a) 

! 

lim
x"0

 
x

2
+ 5x + 6

x
2

+ 3x + 2
     and (b) 

! 

lim
x"#2

 
x

2
+ 5x + 6

x
2

+ 3x + 2
. 

 
Solution:  The function in each limit is the same but x is approaching a different number in each of them. 

(a) Since x→0,  we know that x is getting closer and closer to 0 so the values of the  x2 , 5x  and  3x  terms get 

as close to  0  as we want.  The numerator approaches  6 and the denominator approaches 2, so the values 

of the whole function get arbitrarily close to  6/2 = 3, the limit. 
 
(b) As x  approaches –2, the numerator and denominator approach  0,  and a small number divided by a  

 small number can be almost anything –– the ratio depends on the size of the top compared to the bottom.  

More investigation is needed.  
 

Table Method:  If we pick some values of x close to (but not equal to) –2, we get the table 
 

        x  x2 + 5x + 6 x2 + 3x + 2  
x2 + 5x + 6
x2 + 3x + 2     

                                                                                                                                                                                                       
 –1.97 0.0309 –0.0291 –1.061856 
 –2.005  –0.004975 0.005025 –0.990050 
 –1.9998 0.00020004 –0.00019996 –1.00040008 
 –2.00003 –0.00002999 0.0000300009 –0.9996666  

 
 ↓ ↓ ↓ ↓ 
 –2 0 0 –1 

 
Even though the numerator and denominator are each getting closer and closer to 0, their ratio is  

getting arbitrarily close to  –1  which is the limit. 
 

Graph Method:   The graph of  y =  f(x) =    
x2 + 5x + 6
x2 + 3x + 2    in Fig. 6   

          shows that the values of  f(x)  are very close to  –1  when the   

          x–values are close to  –2. 
 

Algebra Method:  f(x) =   
x2 + 5x + 6
x2 + 3x + 2   =   

(x+2)(x+3)
(x+2)(x+1)   .   

       We know  x → –2  so x ≠ –2, and we can divide the top  

 and bottom by  (x+2).   Then  f(x) = (x+3)/(x+1)  so   

 f(x) →  1/–1 = –1  as  x → –2. 

 
  

       If 

! 

lim
x"c

 { polynomial 
polynomial   } approaches  

 0 
 0   , try dividing the top and bottom by  x – c. 
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Practice 2: Evaluate (a) 

! 

lim
x"2

 
x

2
# x # 2

x # 2
 (b) 

! 

lim
t"0

 
t # sin(t)

t
2

+ 3t
 (c) 

! 

lim
w"2

 
w # 2

ln(w /2)
. 

 
ONE–SIDED LIMITS 
 

Sometimes, what happens to us at a place depends on the direction we use to 

approach that place.  If we approach Niagara Falls from the upstream side, then we 

will be 182 feet higher and have different worries than if we approach from the 

downstream side.  Similarly, the values of a function near a point may depend on the 

direction we use to approach that point.  If we let  x  approach  3  from the left (x is 

close to 3 and x < 3), then the values of  [x] = INT(x)  equal  2  (Fig. 7).  If we let  x   

approach  3  from the right (x is close to 3 and x > 3), then the values of  [x] = INT(x)  equal  3. 
 
On the number line we can approach a point from the left or right, and that leads to  one–sided limits. 
 
 
 
 Definition of Left and Right Limits: 
 
  The left limit as  x  approaches  c  of  f(x)  is L  if the values of  f(x) get as close to  L as we 
 
   want when  x  is very close to and left of  c,  x < c: 

! 

lim
x"c

#
 f(x)  = L . 

 
  The right limit,  written with  x →  c+ , requires that  x  lie to the right of c,  x > c. 
        

 
Example 5: Evaluate   

! 

lim
x"2

#
 (x # x[ ]  )  and 

! 

lim
x"2

+
 (x # x[ ]  ) . 

Solution: The left–limit notation  x → 2– requires that  x  be close to 2 and that  

x  be to the left of  2,  so x < 2.    

If  1 < x < 2, then  [x] = 1  so   

! 

lim
x"2

#
 (x # x[ ]  )= 2 – 1 = 1. 

 
If  x  is close to 2 and is to the right of 2, then  2 < x < 3  so  [x] = 2     

and    

! 

lim
x"2

+
 (x # x[ ]  )  = 2 – 2 = 0. 

    The graph of  f(x) = x – [x]  is shown in Fig. 8 . 
 
 
If the left and right limits have the same value, 

! 

lim
x"c

#
f (x)  =  lim

x"c
+
f (x) = L ,  then the value of f(x)  is close to  

L  whenever  x  is close to  c, and it does not matter if  x  is left or right of  c  so  

! 

lim
x"c

f (x) = L .   Similarly,  if 

! 

lim
x"c

f (x) = L  ,  then  f(x) is close to  L  whenever  x  is close to c and less than c  and whenever  x  is close to  c  

and greater than  c,  so 

! 

lim
x"c

#
f (x)  =  lim

x"c
+
f (x) = L  .  We can combine these two statements into a single 

theorem. 
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 One–Sided Limit Theorem:  
  
  

! 

lim
x"c

f (x) = L  if and only if   

! 

lim
x"c

#
f (x)  =  lim

x"c
+
f (x) = L  . 

     
 
 
 
 Corollary: If    

! 

lim
x"c

#
f (x)  $  lim

x"c
+
f (x)  ,  then     

! 

lim
x"c

f (x)   does not exist. 

        
 

One–sided limits are particularly useful for describing the behavior of functions which have steps or jumps. 
   

To determine the limit of a function involving the greatest integer or absolute  

value or a multiline definition, definitely consider both the left and right limits. 
 

Practice 3: Use the graph in Fig. 9  to evaluate the one and two–sided  

 limits of  f  at  x = 0, 1, 2, and 3.  
 

Practice 4: Let  f(x) =  


 1 if x < 1
 x if 1 < x < 3
 2 if 3 < x

 . 

 Find the one and two–sided limits of  f  at  1  and  3. 

 

 

 
 
PROBLEMS 
 
1. Use the graph in Fig. 10  to determine the following limits. 
 

(a) 

! 

lim
x"1

 f (x) (b) 

! 

lim
x"2

 f (x) 

 
(c) 

! 

lim
x"3

 f (x) (d) 

! 

lim
x"4

 f (x) 

 
 
 
2. Use the graph in Fig. 11  to determine the following limits. 
 
(a) 

! 

lim
x"1

 f (x) (b) 

! 

lim
x"2

 f (x)  

 
(c) 

! 

lim
x"3

 f (x) (d) 

! 

lim
x"4

 f (x) 
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3. Use the graph in Fig. 12  to determine the following limits. 

(a) 

! 

lim
x"1

 f(2x) (b) 

! 

lim
x"2

 f(x–1)  

 
(c) 

! 

lim
x"3

 f(2x–5) (d) 

! 

lim
x"0

 f(4+x) 

 
 

4. Use the graph in Fig. 13  to determine  

       the following limits. 
 
 (a) 

! 

lim
x"1

  f(3x) (b) 

! 

lim
x"2

  f(x+1)  

 
 (c) 

! 

lim
x"3

   f(2x–4) (d) 

! 

lim
x"0

  | f(4+x) | 

 
 

 

5. Evaluate     (a) 

! 

lim
x"1

 
x

2
+ 3x + 3

x # 2
  (b) 

! 

lim
x"2

 
x

2
+ 3x + 3

x # 2
 

 

6. Evaluate  (a) 

! 

lim
x"0

 
x + 7

x
2

+ 9x +14
  (b)   

! 

lim
x"3

 
x + 7

x
2

+ 9x +14
 

 

(c) 

! 

lim
x"#4

 
x + 7

x
2

+ 9x +14
 (d) 

! 

lim
x"#7

 
x + 7

x
2

+ 9x +14
  

 

7. Evaluate    (a) 

! 

lim
x"1

 
cos(x)

x
  (b) 

! 

lim
x"#

 
cos(x)

x
  (c) 

! 

lim
x"#1

 
cos(x)

x
 

 

8. Evaluate    (a) 

! 

lim
x"7

 x # 3   (b) 

! 

lim
x"9

 x # 3     (c) 

! 

lim
x"9

 
x # 3

x # 9
 

 
9. Evaluate    (a) 

! 

lim
x"0

#
 | x |  (b) 

! 

lim
x"0

+
 | x |   (c) 

! 

lim
x"0

 | x |  

 

10. Evaluate    (a) 

! 

lim
x"0

#
 
| x |

x
  (b) 

! 

lim
x"0

+
 
| x |

x
  (c) 

! 

lim
x"0

 
| x |

x
 

 

11. Evaluate    (a) 

! 

lim
x"5

  | x # 5 |  (b) 

! 

lim
x"3

  
| x # 5 |

x # 5
 (c) 

! 

lim
x"5

  
| x # 5 |

x # 5
 

 

12. f(x) =  


 x if  x < 0
 sin(x) if  0 < x ≤ 2
 1 if  2 < x

 .  Find the one and two–sided limits of  f  as  x → 0, 1, and 2. 

 

13. g(x) =  


 1 if  x ≤ 2
 8/x if  2 < x < 4
 6 – x if  4 < x

 .  Find the one and two–sided limits of  g  as  x → 1, 2, 4, and 5. 
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In problems 14 – 17  use a calculator or computer to get approximate answers accurate to  2  decimal places. 
 

14. (a) 

! 

lim
x"0

  2x #1
x

 (b) 

! 

lim
x"1

  log10(x)
x #1

 15. (a) 

! 

lim
x"0

  3x #1
x

 (b) 

! 

lim
x"1

  ln(x)
x #1

 

  

16. (a) 

! 

lim
x"5

  x #1 # 2
x # 5

 (b) 

! 

lim
x"0

  sin(3x)
5x

 17. (a) 

! 

lim
x"16

  x # 4
x #16

 (b) 

! 

lim
x"0

  sin(7x)
2x

  

 

 

18. Define  A(x)  to be the area bounded by the  x  and  y  axes, the  

 bent line in Fig. 14, and the vertical line at  x.  For example,   

 A(4) = 10. 
 

a) Evaluate  A(0), A(1), A(2), and  A(3). 

b) Graph  y = A(x)  for  0 ≤ x ≤ 4. 

c) What area does  A(3) – A(1)  represent? 
 
 
 
 
19. Define  A(x)  to be the area bounded by the  x  and  y  axes, the  

 line y =  
1
2  x  + 2 , and the vertical line at  x.  (Fig. 15). 

 For example,  A(4) = 12. 
 

a) Evaluate  A(0), A(1), A(2), and  A(3). 

b) Graph  y = A(x)  for  0 ≤ x ≤ 4. 

 c) What area does  A(3) – A(1)  represent? 

 

 

20.  Sketch 

! 

f (x) = 4x " x 2     for  

! 

0 " x " 4  (this is a semicircle) .   

 Define  A(x)  to be the area bounded by the  x  and  y  axes, the  graph  y = f(x) , and the vertical line at  x. 

a) Evaluate  A(0), A(2), and  A(4). 

b) Graph  y = A(x)  for  0 ≤ x ≤ 4. 

c) What area does  A(3) – A(1)  represent? 
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Section 1.1 PRACTICE  Answers 

 

Practice 1:  (a)  2 (b)  2 (c)  does not exist  (no limit) (d)  1 

 

Practice 2: (a) 

! 

lim
x"2

  
(x +1)(x # 2)

x # 2
 =  lim

x"2
  (x +1)  =  3 

 

 (b) 

! 

lim
t"0

  
t # sin(t)

t(t + 3)
 =  lim

t"0
  

sin(t)

t + 3
 =  

0

3
 =  0   

 

 (c) 

! 

lim
w"2

 
w # 2

ln(w /2)
 =  2 .   Try this one numerically or using a graph. 

 

w 
w – 2

ln( w/2 )  w 
w – 2

ln( w/2 )  
      

 2.2 2.098411737 1.9 1.949572575 

 2.01 2.004995844 1.99 1.994995823 

 2.003 2.001499625 1.9992 1.999599973 

 2.0001 2.00005 1.9999 1.99995 

 

 
Practice 3: 

! 

lim
x"0

#
 f(x)  =  1 

! 

lim
x"0

+
 f(x)  =  2 

! 

lim
x"0

 f(x)  does not exist   

 
 

! 

lim
x"1

#
 f(x)  =  1 

! 

lim
x"1

+
 f(x)  =  1 

! 

lim
x"1

 f(x)  1   

 
 

! 

lim
x"2

#
 f(x)  =  –1 

! 

lim
x"2

+
 f(x)  =  –1 

! 

lim
x"2

 f(x) =  –1   

 
 

! 

lim
x"3

#
 f(x)  =  –1 

! 

lim
x"3

+
 f(x)  =  1 

! 

lim
x"3

 f(x)  does not exist   

 

 
Practice 4: 

! 

lim
x"1

#
 f(x)  =  1 

! 

lim
x"1

+
 f(x)  =  1 

! 

lim
x"1

 f(x) = 1   

 
 

! 

lim
x"3

#
 f(x)  =  3 

! 

lim
x"3

+
 f(x)  =  2 

! 

lim
x"3

 f(x)  does not exist   
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1.2  PROPERTIES OF LIMITS 
 
This section presents results which make it easier to calculate limits of combinations of functions or to show  

that a limit does not exist.  The main result says we can determine the limit of "elementary combinations" of 

functions by calculating the limit of each function separately and recombining these results for our final answer. 

 
 

 Main Limit Theorem:   
 
 If 

! 

lim
x"a

 f(x) = L  and   

! 

lim
x"a

 g(x) = M , 

 
 then (a) 

! 

lim
x"a

 {f(x) + g(x)} =   

! 

lim
x"a

 f(x) + 

! 

lim
x"a

 g(x) =   L + M 

 
 (b) 

! 

lim
x"a

 {f(x) – g(x)} =   

! 

lim
x"a

 f(x) – 

! 

lim
x"a

 g(x) =   L – M 

 
 (c) 

! 

lim
x"a

 k f(x) =   k 

! 

lim
x"a

 f(x)  =  kL 

 
 (d) 

! 

lim
x"a

 f(x).g(x)   =   {

! 

lim
x"a

 f(x)}.{ 

! 

lim
x"a

 g(x)} =  L.M 

 

 (e) 

! 

lim
x"a

 f (x)
g(x)

 =  
lim
x"a

 f (x)

lim
x"a

 g(x)
 =   

L
M        (if   M ≠ 0 ) . 

 

 (f) 

! 

lim
x"a

 { f(x) }n  =   {

! 

lim
x"a

  f(x) }n =  Ln   

 

 (g) 

! 

lim
x"a

 f (x)n  =  lim
x"a

 f (x)n   =  
n

 L      (if  L > 0  when  n  is even) 

 
 

The Main Limit Theorem says we get the same result if we first perform the algebra and then take the  

limit or if we take the limits first and then perform the algebra: e.g., (a)  the limit of the sum equals the sum 

of the limits.  A proof of the Main Limit Theorem is not inherently difficult, but it requires a more precise 

definition of the limit concept than we have given, and it then involves a number of technical difficulties.  
 
 
Practice 1: For  f(x) =  x2 – x – 6  and  g(x) = x2 – 2x – 3 , evaluate the following limits: 

 

(a) 

! 

lim
x"1

 {f(x) + g(x)} (b) 

! 

lim
x"1

 f(x)g(x) (c) 

! 

lim
x"1

 f(x)/g(x) (d) 

! 

lim
x"3

 {f(x) + g(x)}  

(e) 

! 

lim
x"3

 f(x)g(x) (f) 

! 

lim
x"3

 f(x)/g(x)  (g) 

! 

lim
x"2

 { f(x) }3  (h) 

! 

lim
x"2

 1# g(x)   
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Limits of Some Very Nice Functions:  Substitution 
 

As you may have noticed in the previous example, for some functions  f(x)  it is possible to calculate the 

limit as  x  approaches  a  simply by substituting  x = a  into the function and then evaluating  f(a),  but 

sometimes this method does not work.  The Substitution Theorem uses the following Two Easy Limits and 

the Main Limit Theorem to partially answer when such a substitution is valid. 

 
Two Easy Limits: 

! 

lim
x"a

 k  =  k and 

! 

lim
x"a

 x  =  a . 

 

 Substitution Theorem For Polynomial and Rational Functions: 
 
 If P(x)  and  Q(x)  are polynomials  and  a  is any number,   
 

 then 

! 

lim
x"a

 P(x) = P(a)       and 

! 

lim
x"a

 P(x)
Q(x)

 =  
P(a)
Q(a)      if   Q(a) ≠ 0 . 

 
The Substitution Theorem says that we can calculate the limits of polynomials and rational functions by  

substituting as long as the substitution does not result in a division by zero. 
 

Practice 2: Evaluate (a) 

! 

lim
x"2

 5x3 – x2 + 3  (b) 

! 

lim
x"2

 x
3 # 7x
x 2 + 3x

  (c) 

! 

lim
x"2

 x 2 # 2x
x 2 # x # 2

  

 

Limits of Other Combinations of Functions 
 

So far we have concentrated on limits of single functions and elementary combinations of functions.   If we 

are working with limits of other combinations or compositions of functions, the situation is slightly more 

difficult, but sometimes these more complicated limits have useful geometric interpretations.   
 
Example 1: Use the function defined by the graph in Fig. 1  to evaluate  
 

 (a)  

! 

lim
x"1

  { 3 + f(x) } (b) 

! 

lim
x"1

  f(2+x)  (c) 

! 

lim
x"0

  f(3–x)  (d) 

! 

lim
x"2

  f(x+1) – f(x) 

 
Solution: (a)  

! 

lim
x"1

 { 3 + f(x) }  is a straightforward application of part (a) of the Main Limit Theorem:    

 
  

! 

lim
x"1

 { 3 + f(x) } =   

! 

lim
x"1

 3   +  

! 

lim
x"1

 f(x)  =  3 + 2  =  5 . 

 

(b) We first need to examine what happens to the quantity  2+x , as  x→1 ,   

 before we can consider the limit of  f(2+x).  When  x  is very close to  1,  the  

 value of  2+x  is very close to  3,  so the limit of  f(2+x)  as  x→1 is equivalent  

 to  the limit of  f(w)  as w→3   (w=2+x),  and it is clear from   
 
the graph that  

! 

lim
w"3

  f(w) = 1 :      

! 

lim
x"1

 f(2+x)  =   

! 

lim
w"3

  f(w) = 1   (w represents  2+x). 
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 In most cases it is not necessary to formally substitute a new variable  w  for the quantity  2+x,  but it 

is still necessary to think about what happens to the quantity  2+x  as   x→1. 

(c) As  x→0,  the quantity  3–x  will approach  3  so we want to know what happens to the values of  f   

 when the variable is approaching  3: 

! 

lim
x"0

  f(3–x) = 1 . 

 (d) 

! 

lim
x"2

 { f(x+1) – f(x) }  =  

! 

lim
x"2

 f(x+1) –

! 

lim
x"2

 f(x)    replace  x+1  with w 

 
   = 

! 

lim
w"3

    f(w) –

! 

lim
x"2

 f(x)   =  1 – 3  =  –2 .  

    
Practice 3: Use the function defined by the graph in Fig. 2  to evaluate  
 

(a)  

! 

lim
x"1

 f(2x)  (b) 

! 

lim
x"2

 f(x–1)   

 
(c) 

! 

lim
x"0

  3.f(4+x)  (d) 

! 

lim
x"2

 f(3x–2) . 

 
Example 2: Use the function defined by the graph in Fig. 3  to evaluate  
 

(a) 

! 

lim
h"0

  f(3+h)  (b) 

! 

lim
h"0

  f(3)   

 

(c) 

! 

lim
h"0

  { f(3+h) – f(3) } (d) 

! 

lim
h"0

  f (3 + h) # f (3)
h

 

Solution:  Part (d) is a common form of limit, and  parts  (a) – (c)  are the steps we need to evaluate  (d). 

 
(a) As   h→0,  the quantity  w = 3+h  will approach  3  so     

! 

lim
h"0

 f(3+h) =  

! 

lim
x"3

  f(w)  = 1 . 

 
(b) f(3)  is the constant  1  and  f(3) does not depend on  h  in any way so    

! 

lim
h"0

 f(3) = 1 . 

(c) The limit in part (c) is just an algebraic combination of the limits in  (a)  and  (b): 
 
 

! 

lim
h"0

 { f(3+h) – f(3) }  =  

! 

lim
h"0

 f(3+h) – 

! 

lim
h"0

 f(3)  =  1 – 1 = 0 . 

 The quantity   f(3+h) – f(3)  also has a geometric interpretation ––  it is the change in  

 the  y–coordinates, the ∆y,  between the points  (3,f(3))  and (3+h,f(3+h)).   (Fig. 4) 
 

 (d) As  h→0,  the numerator and denominator of    
f(3+h) – f(3)

h      

 both approach 0  so we cannot immediately determine the value  

 of the limit.  But if we recognize that   f(3+h) – f(3) = ∆y  for  

 the two points  ( 3, f(3) )  and  ( 3+h, f(3+h) )  and  that  h = ∆x  

 for the same two points, then we can interpret   
f(3+h) – f(3)

h      

 as   
∆y
∆x     which is the slope of the secant line through the two  

 points.  So 
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! 

lim
h"0

  f (3+ h) # f (3)
h

  =  

! 

lim
"x#0

  "y
"x

  =  

! 

lim
"x#0

 { slope of the secant line } 

 
  =  slope of the tangent line at  ( 3, f(3) )  ≈  – 2 . 
 

 This limit, representing the slope of line tangent to the graph of  f  at the point  ( 3, f(3) ) , is a  

 pattern we will see often in the future. 
 

Tangent Lines as Limits 
 

If we have two points on the graph of a function,  ( x, f(x) )  and  ( x+h, f(x+h) ), then  ∆y = f(x+h) – f(x)  

and  ∆x = (x+h) – (x) = h  so the slope of the secant line through those points is   msecant  =   
 ∆y 
 ∆x      

and the slope of the line tangent to the graph of  f  at the point  ( x, f(x) )  is, by definition, 
 

 mtangent  =  

! 

lim
"x#0

 { slope of the secant line }  =   

! 

lim
"x#0

  "y
"x

 = 

! 

lim
h"0

  f (x + h) # f (x)
h

 . 

 
Example 3: Give a geometric interpretation for the following limits and estimate their values for the  
 

function in Fig. 5: (a) 

! 

lim
h"0

  f (1+ h) # f (1)
h

  (b) 

! 

lim
h"0

  f (2 + h) # f (2)
h

  

 

Solution:  Part (a)  represents the slope of the line tangent to the graph of  f(x)  at the  
  
 point  ( 1, f(1) )  so   
 

 

! 

lim
h"0

  f (1+ h) # f (1)
h

 ≈  1 .  Part (b)  represents the slope of the line tangent to the  

 graph of  f(x)  at the point  ( 2, f(2) )  so  

! 

lim
h"0

  f (2 + h) # f (2)
h

 ≈  –1 . 

 
Practice 4: Give a geometric interpretation for the following limits and  

  estimate their values for the function in Fig. 6:   
 

 

! 

lim
h"0

  g(1+ h) # g(1)
h

  

! 

lim
h"0

  g(3+ h) # g(3)
h

   

! 

lim
h"0

  g(h) # g(0)
h

 . 

 
 
Comparing the Limits of Functions 
 

Sometimes it is difficult to work directly with a function.  However, if we can compare our difficult function 

with easier ones, then we can use information about the easier functions to draw conclusions about the 

difficult one.  If the complicated function is always between two functions whose limits are equal, then we 

know the limit of the complicated function. 
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 Squeezing Theorem  (Fig. 7): 

  If   g(x) ≤ f(x) ≤ h(x)  for all  x  near  c  (for all  x  close to but not equal to c) 
 
  and     

! 

lim
x"c

  g(x)  =   

! 

lim
x"c

  h(x)  = L 

 
 then for  x  near  c,  f(x) will be squeezed between  g(x) and h(x),  and  

! 

lim
x"c

  f(x)  = L  . 

 
Example 4: Use the inequality  –|x| ≤ sin(x) ≤ |x|  to determine  

! 

lim
x"0

 sin(x)   

  and   

! 

lim
x"0

 cos(x)  . 

 
Solution: 

! 

lim
x"0

 |x| = 0  and  

! 

lim
x"0

 –|x| = 0  so, by the Squeezing Theorem,    

 

! 

lim
x"0

 sin(x)  = 0 .  If  –π/2 < x < π/2  then  cos(x) = + 1 – sin2(x)   so 

 

! 

lim
x"0

  cos(x) = 

! 

lim
x"0

 + 1 – sin2(x)    =  + 1 – 0   =  1 . 

 
 

Example 5: Evaluate    

! 

lim
x"0

 x.sin( 
1
x  ) . 

Solution: The graph of  y = sin( 
1
x  )  for values of  x  near  0  is shown in Fig. 8.  The  y–values of this 

graph change very rapidly for values of  x  near  0, but  they all lie between  –1  and  +1:  

 –1 ≤ sin( 
1
x  ) ≤ +1 .  The fact that   

 sin( 
1
x  ) is bounded between  –1  and  +1 

implies that  x sin( 
1
x  )  is stuck between  

–x  and  +x ,  so the function we are 

interested in ,  x.sin( 
1
x  ),  is squeezed 

between two "easy" functions,  –x  and  x  

(Fig. 9).  Both "easy" functions  approach  0  

as  x→0 ,  so x.sin( 
1
x  )  must also approach  

0  as  x→0 :   

! 

lim
x"0

 x.sin( 
1
x  )  = 0  . 

 
 
 
 
 
Practice 5: If   f(x)  is always between  x2 + 2  and  2x + 1,  then   

! 

lim
x"1

 f(x)  = ? 

Practice 6: Use the relation   cos(x) ≤   
 sin(x) 

x     ≤ 1  to show that   

! 

lim
x"0

 sin(x)
x

 = 1.   (The steps for 

deriving the inequalities are shown in problem 19.) 



1.2 Properties of Limits Contemporary  Calculus  
6 

 
List Method for Showing that a Limit Does Not Exist   
 

If  the limit, as  x  approaches  c,  exists and equals  L,  then we can guarantee that the values of  f(x)  are  

as close to  L  as we want by restricting  the values of  x  to be very, very close to  c.  To show that a limit, 

as  x  approaches  c,  does not exist, we need to show that no matter how closely we restrict the values of  x  

to  c,  the values of  f(x)  are not all close to a single, finite value  L.  One way to  
 
demonstrate that    

! 

lim
x"c

  f(x) does not exist  is to show that the left and right limits exist but are not equal. 

 
Another method of showing that  

! 

lim
x"c

   f(x)    does not exist  is to find two infinite lists of numbers,   

{a1, a2, a3, a4, . . . }  and  {b1, b2, b3, b4, . . . } ,  which approach arbitrarily close to the value  c  as the 

subscripts get larger, but so that the lists of function values, {f(a1), f(a2), f(a3), f(a4), . . . }  and   

{f(b1), f(b2), f(b3), f(b4), . . },  approach two different numbers as the subscripts get larger. 
 
 

Example 6: For  f(x) =   
⎩⎪
⎨
⎪⎧ 1 if x < 1
 x if 1 < x < 3
 2 if 3 < x

 ,  show that   

! 

lim
x"3

 f(x)  does not exist. 

 
Solution:  We can use one–sided limits to show that this limit does not exist, or we can use the list  

 method by selecting values for one list to approach  3  from the right and values for the other list to 

approach  3  from the left.   
 

One way to define values of  {a1, a2, a3, a4, . . . }  which approach 3 from the right is to define   

a1 = 3 + 1,  a2 = 3 + 
1
2  ,  a3 = 3 + 

1
3   ,  a4 = 3 + 

1
4   and, in general,  an = 3 + 

1
n   .  Then  an > 3  

so  f( an ) = 2  for  all subscripts  n ,  and  the values in the list  {f(a1), f(a2), f(a3), f(a4), . . . } are 

approaching  2 .  In fact, all of the  f( an ) = 2 . 
 
We can define values of  {b1, b2, b3, b4, . . . }  which approach 3 from the left by  b1 = 3 – 1,   

b2 = 3 – 
1
2  ,  b3 = 3 – 

1
3   ,  b4 = 3 – 

1
4   and, in general,  bn = 3 – 

1
n   .   Then  bn < 3  so   

f( bn ) = bn = 3 – 
1
n    for each subscript  n ,  and the values in the list    

{ f(b1),  f(b2),  f(b3),  f(b4), . . . } = { 2,  2.5,  2.67,  2.75, 2.8, . . . , 3 – 
1
n   , . . } approach  3. 

 
Since the values in the lists  { f(a1),  f(a2),  f(a3),  f(a4), . . . } and  { f(b1),  f(b2),  f(b3),  f(b4), . . . }  
  
approach two different numbers, we can conclude that   

! 

lim
x"3

 f(x)  does not exist. 
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Example 7: Let  h(x)  =  { 2 if  x  is a rational number
 1 if  x  is an irrational number  be the "holey" function  

 
 introduced in Section 0.4 .  Use the list method to show that   

! 

lim
x"3

 h(x)  does not exist. 

Solution:   Let   { a1, a2, a3, a4, . . . }  be a list of rational numbers which approach  3, for example, a1 = 3 + 

1, a2 = 3 + 1/2, . . ., an = 3 + 1/n.   Then  f( an )  always equals  2  so  { f(a1),  f(a2),  f(a3),  f(a4), . . . } = 

{ 2, 2, 2, . . . }  and the   f( an )  values "approach"  2.  If  {b1, b2, b3, b4, . . . }  is a list of irrational 

numbers which approach  3, for example, b1 = 3 + π, b2 = 3 + π/2, . . ., bn = 3 + π/n. then  { f(b1),  f(b2),  

f(b3),  f(b4), . . . } = { 1, 1, 1, . . . }  and the  f( bn ) "approach"  1.  Since the   f( an )  and   f( bn )  values 

approach different numbers,  the limit as x→3  does not exist. 
 

 A similar argument will work as  x  approaches any number  c, so for every c  we have that 

! 

lim
x"c

   h(x)  

does not exist.  The "holey" function does not have a limit as x approaches any value  c. 

 
PROBLEMS 

1. Use the functions  f  and  g  defined by the graphs  

 in Fig. 10 to determine the following limits. 
 
 (a) 

! 

lim
x"1

 { f(x) + g(x) } (b) 

! 

lim
x"1

 f(x).g(x) 

  
 (c) 

! 

lim
x"1

 f(x)/g(x) (d) 

! 

lim
x"1

 f( g(x) ) 

 

2. Use the functions  f  and  g  defined by the graphs  

 in Fig. 10 to determine the following limits. 
 
 (a) 

! 

lim
x"2

 { f(x) + g(x) } (b) 

! 

lim
x"2

 f(x).g(x)  

 
 (c) 

! 

lim
x"2

 f(x)/g(x) (d) 

! 

lim
x"2

 f( g(x) ) 

 
3. Use the function  h  defined by the graph in Fig. 11 to determine  

 the following limits. 
 
 (a) 

! 

lim
x"2

 h(2x – 2) (b) 

! 

lim
x"2

 { x + h(x) }  

 (c) 

! 

lim
x"2

 h(1 + x) (d) 

! 

lim
x"3

 h( x/2 ) 

 
4. Use the function  h  defined by the graph in Fig. 11 to determine  

 the following limits. 
  
 (a) 

! 

lim
x"2

 h(5 – x) (b) 

! 

lim
x"2

 x.h(x – 1)  

 (c) 

! 

lim
x"0

 { h(3 + x) – h(3) } (d) 

! 

lim
x"0

  h(3+ x) # h(3)
x
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5. Label the parts of the graph of  f  (Fig. 12)  which are described by 

 (a) 2 + h (b) f(2 ) (c) f(2 + h) 
 

 (d) f(2 + h) – f(2) (e) 
f(2 + h) – f(2)
(2 + h) – (2)   (f) 

f(2 – h) – f(2)
(2 – h) – (2)   

 
6. Label the parts of the graph of  f  (Fig. 13)  which are described by 

 (a) a + h (b) g(a ) (c) g(a + h) 
 

 (d) g(a + h) – g(a) (e) 
g(a + h) – g(a)

(a + h) – (a)   (f) 
g(a – h) – g(a)

(a – h) – (a)   
 

 
7. Use the function  f  defined by the graph in Fig. 14 to determine  

 the following limits. 
 
  (a) 

! 

lim
x"1+

 f(x) (b) 

! 

lim
x"1#

 f(x) (c) 

! 

lim
x"1

 f(x) 

 
  (d) 

! 

lim
x"3+

 f(x) (e) 

! 

lim
x"3#

 f(x) (f) 

! 

lim
x"3

 f(x) 

 
  (g) 

! 

lim
x"#1+

 f(x) (h) 

! 

lim
x"#1#

 f(x) (i) 

! 

lim
x"#1

 f(x) 

 
 

8. Use the function  f  defined by the graph in Fig. 14 to determine  

 the following limits. 

 (a) 

! 

lim
x"2+

 f(x) (b) 

! 

lim
x"2#

 f(x) (c) 

! 

lim
x"2

 f(x) 

 
  
 (d) 

! 

lim
x"4 +

 f(x) (e) 

! 

lim
x"4 #

 f(x) (f) 

! 

lim
x"4

 f(x) 

 
 (g) 

! 

lim
x"#2+

 f(x) (h) 

! 

lim
x"#2#

 f(x) (i) 

! 

lim
x"#2

 f(x) 

 
 
9. The Lorentz Contraction Formula in relativity theory says the length  L  of an object moving at v  miles  

 per second with respect to an observer is  L =  A. 1 – 
v2

c2     where c  is the speed of light (a constant). 

 a) Determine the "rest length"  of the object  (v = 0). b) Determine   

! 

lim
v"c #

 L  . 

  
10. (a) 

! 

lim
x"2+

 INT(x) (b) 

! 

lim
x"2#

 INT(x) (c) 

! 

lim
x"#2+

 INT(x)  (d) 

! 

lim
x"#2#

 INT(x)  

 

 (e) 

! 

lim
x"#2.3

 INT(x)  (f) 

! 

lim
x"3

 INT( x/2 )  (g) 

! 

lim
x"3

 INT(x)/2 (h) 

! 

lim
x"0+

 INT(2 + x) # INT(2)
x
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11. f(x) =   {1  if x < 1
 x  if 1 < x  and   g(x) =  {x  if x ≠ 2

 3  if x = 2  . 
   
 (a) 

! 

lim
x"2

 { f(x) + g(x) } (b) 

! 

lim
x"2

 f(x)/g(x) (c) 

! 

lim
x"2

 f( g(x) ) 
   
 (d) 

! 

lim
x"0

  g(x)/f(x) (e) 

! 

lim
x"1

 f(x)/g(x) (f) 

! 

lim
x"1

 g( f(x) ) 

 
Problems 12 – 15 require a calculator. 
 
12. Give geometric interpretations for the following  

 limits and use a calculator to estimate their values. 

 (a) 

! 

lim
h"0

  arctan(0 + h) # arctan(0)
h

   

       (b) 

! 

lim
h"0

  arctan(1+ h) # arctan(1)
h

   

      (c) 

! 

lim
h"0

  arctan(2 + h) # arctan(2)
h

  

       

13. (a) What does  

! 

lim
h"0

  cos(h) #1
h

  represent on the graph of  y = cos(x)?   

  (It may help to recognize that  
cos(h) – 1

h    =  
cos(0 + h) – cos(0)

h    ) 

 (b) Graphically and using your calculator, determine  

! 

lim
h"0

  cos(h) #1
h

 . 

    

14. (a) What does the ratio   
ln(1 + h)

h     represent on the graph of  y = ln(x)?   

  (It may help to recognize that  
ln(1 + h)

h    =  
ln(1 + h) – ln(1)

h    . ) 

 (b) Graphically and using your calculator, determine  

! 

lim
h"0

  ln(1+ h)
h

 . 

    
15. Use your calculator (to generate a table of values) to help you estimate 

 (a) 

! 

lim
h"0

  e
h #1
h

  (b) 

! 

lim
c"0

  tan(1+ c) # tan(1)
c

  (c) 

! 

lim
t"0

  g(2 + t) # g(2)
t

 when   g(t) = t2 – 5 . 

    
16. (a) For  h > 0, find the slope of the line through the points  ( h, | h | )  and  ( 0,0 ). 

 (b) For  h < 0, find the slope of the line through the points  ( h, | h | )  and  ( 0,0 ). 

 (c) Evaluate 

! 

lim
h"0#

  | h |
h

 , 

! 

lim
h"0+

  | h |
h

 ,  and     

! 

lim
h"0

  | h |
h

  

17. Describe the behavior of the function y = f(x) in Fig. 16 at each integer using one of the phrases: 

  (a)  "connected and smooth",  (b)  "connected with a corner",   

 (c)  "not connected because of a simple hole which could be  

  plugged by adding or moving one point", or   

 (d)  "not connected because of a vertical jump which could  

  not be plugged by moving one point." 
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18. Describe the behavior of the function y = f(x) in Fig. 17 at each  

 integer using one of the phrases:  (a)  "connected and smooth",   

 (b)  "connected with a corner",  (c)  "not connected because of a 

simple hole which could be plugged by adding or moving one 

point", or   

 (d)  "not connected because of a vertical jump which could not be  

 plugged by moving one point." 
 

19. This problem outlines the steps of a proof that   

! 

lim
" #0+

  sin(")
"

 =  1 . Statements  (a) – (h)   

 below refer to  Fig. 18.   Assume that  0 <  θ  < 
π
2    and justify why  

 each statement is true. 
 

 (a) Area of  ∆OPB =  
1
2  (base)(height)   = 

1
2   sin(θ)  . 

 

 (b)  
area of the sector (the pie shaped region) OPB

area of the whole circle       
 

  =   
angle defining sector OPB
angle of the whole circle     =  

θ
2π     

 

  so  (area of the sector OPB)  =  
θπ
2π    =   

θ
2   . 

 

 (c) The line  L  through the points  (0,0)  and  P = ( cos(θ),sin(θ) )  has slope  m = 
sin(θ)
cos(θ)   , so     

 

  C = (1,  
sin(θ)
cos(θ)   )   and    the area of  ∆OCB  = 

1
2  (base)(height)   = 

1
2  (1) 

sin(θ)
cos(θ)   . 

 
 (d) Area of  ∆OPB < area of sector  OPB  <  area of  ∆OCB  . 
 

 (e) 
1
2   sin(θ)  <  

θ
2   <  

1
2  (1) 

sin(θ)
cos(θ)     and   sin(θ)  <  θ  <  

sin(θ)
cos(θ)    . 

 

 (f) 1  <  
θ

sin(θ)   <  
1

cos(θ)      and   1 >  
sin(θ)
θ    >  cos(θ)  . 

 
 (g) 

! 

lim
" #0+

  1  =  1     and     

! 

lim
" #0+

  cos(θ)  = 1  . 

 

 (h) 

! 

lim
" #0+

  sin(")
"

 = 1  . 
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20. Use the list method to show that      

! 

lim
x"2

 | x # 2 |
x # 2

  does not exist .   

 

21. Show that     

! 

lim
x"0

 sin( 
1
x  )   does not exist. 

 (Suggestion:  Let f(x) = sin( 
1
x  )  and pick  an = 

1
nπ   so  f( an ) = sin( 

1
an   ) = sin( nπ ) = 0  for every n.  

Then pick  bn = 
 1

2nπ + π/2    so  f( bn ) = sin( 
1
bn   ) = sin( 2nπ + 

π
2  ) = sin( 

π
2  ) = 1  for every n. ) 

 

 

 

Section 1.2 PRACTICE  Answers 

 

 

Practice 1: (a) –10 (b) 24 (c) 3/2 (d) 0 

  (e) 0 (f) 5/4 (g) –64 (h) 2    

 

Practice 2: (a) 39 (b) –3/5 (c) 2/3   

 

Practice 3: (a) 0 (b) 2 (c) 3   (d) 1    

 

Practice 4: (a) slope of the line tangent to the graph of  g  at the point  (1, g(1) ):  estimated slope ≈ –2 
 
 (b) slope of the line tangent to the graph of  g  at the point  (3, g(3) ):  estimated slope ≈ 0 
 
 (c) slope of the line tangent to the graph of  g  at the point  (0, g(0) ):  estimated slope ≈ 1 

 
Practice 5: 

! 

lim
x"1

 x2 + 2 = 3  and   

! 

lim
x"1

 2x + 1 = 3  so   

! 

lim
x"1

 f(x)  = 3 . 

 

Practice 6: 

! 

lim
x"0

 cos(x) = 1  and   

! 

lim
x"0

 1 = 1  so   

! 

lim
x"0

 sin(x)
x

 = 1 . 
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1.3   CONTINUOUS  FUNCTIONS 
 

In section 1.2 we saw a few "nice" functions whose limits as  x → a  simply involved substituting  a  into 
the function: 

! 

lim
x"a

 f(x) = f(a) .  Functions whose limits have this substitution property are called continuous 

functions, and they have a number of other useful properties and are very common in applications.  We 

will examine what it means graphically for a function to be continuous or not continuous.  Some properties 

of continuous functions will be given, and we will look at a few applications of these properties including a 

way to solve horrible equations such as   sin(x) =  
2x +1
x – 2   . 

 

DEFINITION  AND  MEANING  OF  CONTINUOUS 
 

 
    Definition of Continuity at a Point  
  
 A function  f  is continuous at  x = a   if and only if   

! 

lim
x"a

 f(x) = f(a) . 

    
 

The graph in  Fig. 1  illustrates some of the different ways a  

function can behave at and near a point, and  Table 1  contains  

some numerical information about the function and its behavior.  

Based on the information in the table, we can conclude that  f   
 
is continuous at  1  since  

! 

lim
x"1

 f(x) = 2 = f(1).   

We can also conclude from the information in the table that    

f  is not continuous at  2 or 3 or 4,  because   
 

! 

lim
x"2

 f(x) ≠ f(2) , 

! 

lim
x"3

 f(x) ≠ f(3) ,  and  

! 

lim
x"4

 f(x) ≠ f(4). 

 
Graphic Meaning of Continuity 
 

When  x  is close to  1, the values of  f(x)  are close to the value  f(1),  

and the graph of  f  in Fig. 1  does not have a hole or break at  x=1 .  

The graph of  f  is connected at  x=1  and can be drawn without 

lifting your pencil.  At  x=2  and  x=4  the graph of  f  has holes,  and 

at  x=3  the graph has a break.  The function  f  is also continuous at  

1.7  (why?) , and at every point shown except at 2, 3, and 4. 
 

Informally:  A function is continuous at a point if the graph of the function is connected there.   

 A function is not continuous at a point if its graph has a hole or break at that point.   

 

lim  f(x)
x!a

a f(a)

1 2 2

2 1 2

3 2 does not exist

undefined4 2

Table 1  
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Sometimes the definition of continuous (the substitution condition for limits) is easier to use if we break it 

into several smaller pieces and then check whether or not our function satisfies each piece. 
 

{ f  is continuous at a }   if and only if   { 

! 

lim
x"a

 f(x) = f(a)  }   if and only if  

(i) f  is defined at  a, 

(ii) the limit of  f(x) , as  x→ a , exists  (so the left limit and right limits exist and are equal) 
 

and (iii) the value of  f  at  a  equals the value of the limit as  x→ a: 

! 

lim
x"a

 f(x) = f(a) . 

If  f  satisfies conditions  (i), (ii)  and  (iii) , then  f  is continuous at  a.  If  f  does not satisfy one or more of 

the three conditions at  a , then  f  is not continuous at  a. 
 

For the function in Fig. 1, at  a = 1,  all 3 conditions are satisfied,  and  f  is continuous at  1.  At  a = 2,  

conditions (i) and (ii) are satisfied but not (iii), so  f  is not continuous at  2.  At  a = 3,  condition (i) is 

satisfied but (ii) is violated, so  f  is not continuous at  3.  At  a = 4,  condition (i) is violated, so  f  is not 

continuous at  4. 
 
 

A function is continuous on an interval  if it is continuous at every point in the interval.  A function  
 
f  is continuous from the left at  a  if   

! 

lim
x"a

#
 f(x) = f(a) ,  and is continuous from the right 

 if  

! 

lim
x"a

+
 f(x) = f(a) . 

 

Example 1:  Is   f(x)  =  


 x + 1 if  x ≤ 1 
   2 if 1 < x ≤ 2
 1/(x–3) if  x > 2

   continuous at  1, 2, 3 ? 

Solution:   We could answer these questions by examining the graph of  f(x),  but lets try them without the 

graph.      At  a = 1,  f(1) = 2   and the left and right limits are equal, 
 

  f(x) =  

! 

lim
x"1

#
 (x +1)  = 2    and   

! 

lim
x"1

+
   f(x) =  

! 

lim
x"1

+
  2  = 2,  so  f  is continuous at  1. 

 
 At  a = 2,  f(2) = 2,  but the left and right limits are not equal, 

 
 

! 

lim
x"2

#
  f(x) =  

! 

lim
x"2

#
  2  = 2    and    

! 

lim
x"2

+
  f(x) =  

! 

lim
x"2

+
 1/(x–3)  = –1, so  f  fails condition (ii)  and is 

not continuous at   2.    f  is continuous from the left at  2,  but not from the right. 
 

   At  a = 3,  f(3) = 1/0  which is undefined  so  f  is not continuous at  3  because it fails condition  (i). 
 

Example 2: Where is  f(x) = 3x2 – 2x  continuous? 

Solution: At every point.  By the Substitution Theorem for Polynomials, every polynomial  

  is continuous everywhere. 
  
 

Example 3: Where are   g(x) =   
x + 5
x – 3     and  h(x) =   

x2 + 4x – 5
x2 – 4x + 3

     continuous? 
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Solution:   g  is a rational function so by the Substitution Theorem for Polynomials and Rational Functions it 

is continuous everywhere except where its denominator is 0:  g  is continuous everywhere except  3.  The 

 graph of  g  (Fig. 2)  is connected everywhere except at  3  where it has a vertical asymptote.   

 h(x) =   
 (x – 1)(x + 5) 
 (x – 1)(x – 3)     is also continuous everywhere except where its denominator is  0:  h  is 

continuous everywhere except  3  and  1 .  The graph of  h  (Fig. 3)  is connected everywhere except at  

3  where it has a vertical asymptote and at  1  where it has a hole:  f(1) = 0/0  is undefined. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Example 4: Where is  f(x) = INT(x)  continuous? 
 

Solution:   The graph of  y = INT(x) seems to be connected except at each integer, and at each integer there 

is a "jump"  (Fig. 4).  

 If  a  is an integer,  then  
 
 

! 

lim
x"a

#
 INT(x) = a–1,  and  

! 

lim
x"a

+
 INT(x) = a , so  

! 

lim
x"a

 INT(x) is 

undefined, and  INT(x) is not continuous.   

 

 If  a  is not an integer,  then the left and right limits of INT(x) ,  as x→ a,  

both equal INT(a)  so   
  
 

! 

lim
x"a

 INT(x)  = INT(a)  = f(a)  and  INT(x)  is continuous.  f(x) = INT(x)  

is continuous except at the integers. 

In fact, f(x) = INT(x)  is continuous from the right everywhere and is 

continuous from the left everywhere except at the integers. 

 

Practice 1: Where is  f(x) =  |x|/x    continuous? 
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Why do we care whether a function is continuous? 
 
There are several reasons for us to examine continuous functions and their properties: 
 

• Most of the applications in engineering, the sciences and business are continuous and are modeled by 

continuous functions or by pieces of continuous functions.  
 

• Continuous functions have a number of useful properties which are not necessarily true if the function is 

not continuous.   If a result is true of all continuous functions and we have a continuous function, then the 

result is true for our function.  This can save us from having to show, one by one, that each result is true 

for each particular function we use.  Some of these properties are given in the rest of this section. 
 

• Differential calculus has been called the study of continuous change,  and many of the results of 

calculus are guaranteed to be true only for continuous functions.  If you look ahead into Chapters 2 and 

3, you will see that many of the theorems have the form "If  f  is continuous and (some additional 

hypothesis),  then  (some conclusion)". 
 

Combinations of Continuous Functions 
 
 
   Theorem:   If   f(x)  and  g(x)  are continuous at  a, and  k  is any constant, 

 then   the elementary combinations of  f  and  g   

  ( k.f(x), f(x) + g(x), f(x) – g(x), f(x).g(x), and f(x)/g(x)  (g(a)≠0) )   

  are continuous at  a. 
 
 

The continuity of a function is defined in terms of limits, and all of these results about simple combinations 

of continuous functions follow from the results about simple combinations of limits in the Main Limit 

Theorem.  Our hypothesis is that  f  and  g  are both continuous at  a, so we can assume that    
 
 

! 

lim
x"a

 f(x) = f(a)   and       

! 

lim
x"a

 g(x) = g(a) and then use the appropriate part of the Main Limit Theorem. 

For example, 

! 

lim
x"a

 { f(x) + g(x) } = {

! 

lim
x"a

 f(x) }+{

! 

lim
x"a

 g(x) } = f(a) + g(a), so  f + g  is continuous at  a. 

 
Practice 2:   Prove: If  f and  g  are continuous at  a,  then  kf  and  f – g  are continuous at  a.   (k  a constant.) 
 

    Composition of Continuous Functions 

 If g  is continuous at   a   and  f  is continuous at   g(a), 
     
 then 

! 

lim
x"a

 { f( g(x) ) } =  f(

! 

lim
x"a

 g(x) )  =  f( g(a) )  so   f°g(x) = f( g(x) )  is continuous at  a. 

 
  

This result will not be proved here, but the proof just formalizes the following line of reasoning: 



1.3 Continuous Functions Contemporary  Calculus  
5 

The hypothesis that  "g  is continuous at  a"  means that if  x  is close to  a  then  g(x)  will be close to  

g(a).  Similarly,  "f  is continuous at  g(a)"  means that if  g(x)  is close to  g(a)  then   
f( g(x) ) = f°g(x) will be close to  f( g(a) ) =f°g(a) .  Finally, we can conclude that if  x  is close to  a, 

then  g(x)  is close to  g(a)  so  f°g(x)   is close to  f°g(a),  and therefore f°g  is continuous at  x = a. 
 
The next theorem presents an alternate version of the limit condition for continuity, and we will use this 

alternate version occasionally in the future. 

 
Theorem:   

! 

lim
x"a

 f(x) = f(a)   if and only if      

! 

lim
h"0

 f(a+h) = f(a) . 

 
Proof:  Let's define a new variable  h  by  h = x – a  so  x = a + h   
 
 (Fig. 5).  Then  x → a   if and only if  h = x – a → 0 ,  so   
 
 

! 

lim
x"a

 f(x)  =  

! 

lim
h"0

 f(a+h) ,  and  

! 

lim
x"a

 f(x)  =  f(a)   if and only if 

  
 

! 

lim
h"0

 f(a+h) = f(a) .    

 
             A function  f  is continuous at  a  if and only if   

! 

lim
h"0

 f(a+h) = f(a) . 

 

Which Functions Are Continuous? 
 

Fortunately, the situations which we encounter most often in applications and the functions which model 

those situations are either continuous everywhere or continuous everywhere except at a few places, so any 

result which is true of all continuous functions will be true of most of the functions we commonly use.  
 

Theorem:  The following functions are continuous everywhere, at every value of  x:  

 (a)  polynomials, (b)  sin(x)  and  cos(x), and    (c)   | x | . 
 

Proof: (a)  This follows from the 

Substitution Theorem for Polynomials and 

the definition of continuity. 

 (b)   The graph of  y = sin(x)  (Fig. 6) 

clearly indicates that  sin(x) does not 

have any holes or breaks so  sin(x) is 

continuous everywhere.  Or we could 

justify that result analytically: 
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for every real number  a, 
 

! 

lim
h"0

 sin(a+h) =   

! 

lim
h"0

 sin(a)cos(h) + cos(a)sin(h)  

 
  =   

! 

lim
h"0

 sin(a) . 

! 

lim
h"0

 cos(h)  + 

! 

lim
h"0

  cos(a) . 

! 

lim
h"0

 sin(h) 

 
  (recall from section 1.2 that    

! 

lim
h"0

 cos(h) = 1  and  

! 

lim
h"0

  sin(h)  = 0  ) 

 
  =   

! 

lim
h"0

 sin(a) .1  +  

! 

lim
h"0

 cos(a) .0  =  sin(a),   

 
so  f(x) = sin(x) is continuous at every point.  The justification of  f(x) = cos(x)  is similar. 
 

 (c) f(x) = |x| .   When  x > 0, then  |x| =x  and its graph  (Fig. 7)  is a straight line and is continuous 

since  x  is a polynomial function.  When  x <0, then |x| = –x  and it is also continuous.  The only 

questionable point is the "corner" on the graph  when  x = 0, but the 

graph there is only bent, not broken: 
 
    

! 

lim
h"0

+
  |x|  = 

! 

lim
h"0

+
 x  = 0    

 
and   

! 

lim
h"0

#
 |x|  =

! 

lim
h"0

#
 –x  = 0   so  

! 

lim
h"0

 |x|  = 0 = |0| ,  

 
and  f(x) = |x|   is also continuous at   0. 

 
A continuous function can have corners  but not holes or breaks (jumps).   

 
Several results about limits of functions can be written in terms of continuity of those functions.  Even 

functions which fail to be continuous at some points are often continuous most places. 
 
Theorem: (a) A rational function is continuous  except where the denominator is 0. 

 (b) Tangent, cotangent, secant and cosecant are continuous except where they are undefined. 

 (c) The greatest integer function  [ x ] = INT(x)  is continuous except at each integer. 
 

(d) But the "holey"  function  h(x)  =  { 2 if  x  is a rational number
 1 if  x  is an irrational number    

 is discontinuous everywhere. 

 
INTERMEDIATE VALUE PROPERTY OF CONTINUOUS FUNCTIONS 
 
Since the graph of a continuous function is connected and does not have any holes or  

breaks in it, the values of the function can not "skip" or "jump over" a horizontal line   

(Fig. 8).  If one value of the continuous function is below the line and another value of  

the function is above the line, then somewhere the graph will cross the line.  The next  

theorem makes this statement more precise.  The result seems obvious, but its proof is 

technically difficult and is not given here. 
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 Intermediate Value Theorem for Continuous Functions 

  If   f  is continuous on the interval  [a,b]  and  V  is any value between  f(a)  and  f(b), 
 
  then  there is a number  c  between  a  and  b  so that  f(c) = V 

   (that is,  f  actually takes each intermediate value between  f(a) and f(b). ) 
     
 

If the graph of  f  connects the points  (a, f(a))  and  (b, f(b) )  and  V  is any 

number between  f(a)  and  f(b),  then  the graph of  f  must cross the horizontal 

line  y = V   somewhere  between  x = a  and  x = b  (Fig. 9).  Since  f  is 

continuous,  its graph cannot "hop" over the line  y = V. 
 
Most people take this theorem for granted in some common situations: 
 

• If a child's temperature rose from  98.6o to 101.3o , then there was an instant 

when the child's temperature was exactly 100o .  In fact,  every temperature 

between 98.6o  and 101.3o occurred at some instant. 
 

• If you dove to pick up a shell 25 feet below the surface of a lagoon, then at some instant in time you  

 were 17 feet below the surface.  (Actually, you want to be at 17 feet twice.  Why?) 
 

• If you started driving from a stop (velocity = 0)  and accelerated to a velocity of 30 kilometers per hour,   

 then there was an instant when your velocity was exactly 10 kilometers per hour. 
 

But we cannot apply the Intermediate Value Theorem if the function is not continuous: 
 
• In 1987 it cost  22¢ to mail a letter first class inside the United States,  and in 1990 it cost  25¢ to mail  

 the same letter,  but we cannot conclude that there was a time when it cost 23¢ or 24¢ to send the letter.  

Postal rates did not increase in a continuous fashion.  They jumped directly from  22¢  to  25¢ . 
 

• Prices, taxes and rates of pay change in jumps, discrete steps, without taking on the intermediate values. 
 

The Intermediate Value Property can help us finds roots of functions and solve equations.  If f  is 

continuous on [a,b]  and  f(a)  and  f(b) have opposite signs  (one is positive and one is negative) ,  then  0  

is an intermediate value between  f(a)  and  f(b)  so  f  will have a root between  x = a  and  x= b. 

 
Bisection Algorithm for Approximating Roots  
 
The Intermediate Value Theorem is an example of an "existence theorem"  because it concludes that  

something exists:  a number  c  so that  f(c) = V.  Many existence theorems do not tell us how to find the 

number or object which exists and are of no use in actually finding those numbers or objects.  However, the 

Intermediate Value is the basis for a method commonly used to approximate the roots of continuous 

functions, the Bisection Algorithm. 
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Bisection Algorithm for Finding a Root of  f(x) 

 
 (i) Find two values of  x , say  a  and  b,  so that  f(a)  and  f(b)  have opposite signs 

  (then   f(x)  has a root between  a  and  b,  a root in the interval [a,b].) 
 

(ii) Calculate the midpoint  (bisection point) of the interval  [a,b],  m = (a+b)/2,  and evaluate  f(m). 
 

(iii) (a) If  f(m) = 0, then   m  is a root of  f  ,  and we are done. 

 (b) If  f(m) ≠ 0, then  f(m)  has the sign opposite one of  f(a)  or  f(b): 

  if  f(a)  and  f(m)  have opposite signs,  then  f  has a root in [a,m]  so  put  b = m  

  if  f(b)  and  f(m)  have opposite signs,  then  f  has a root in [m,b]  so  put  a = m   
  
(iv) Repeat steps (ii) and (iii) until a root is found exactly or is approximated closely enough.  

 

The length of the interval known to contain a root  is cut in half 

each time through steps (ii) and (iii)  so the Bisection Algorithm 

quickly "squeezes" in on a root  (Fig. 10). 
 

The steps of the Bisection Algorithm can be done "by hand", but it 

is tedious to do very many of them that way.  Computers are very 

good with this type of tedious repetition, and the algorithm is 

simple to program.   
 
Example 7: Find a root of  f(x) =  x – x3  + 1. 
 

Solution:  f(0) = 1  and  f(1) = 1  so we cannot conclude that  f  has  

 a root between 0 and 1.   f(1) = 1  and  f(2) = –5  have opposite 

signs, so by the Intermediate Value Property of continuous 

functions  (this function is a polynomial so it is continuous 

everywhere)  we know that there is a number  c  between  1   

 and  2  such that  f(c) = 0  (Fig. 11).  The midpoint of the  

 interval  [1,2]  is  m = (1+2)/2 = 3/2 = 1.5 ,  and  f(3/2) = –7/8  so  

f  changes sign between  1  and  1.5  and we can be sure that 

there is a root between  1  and  1.5 .  If we repeat the operation  

 for the interval  [1, 1.5],  the midpoint is   m = (1+1.5)/2 = 1.25, and  f(1.25) = 19/64 > 0    

 so  f  changes sign between  1.25  and  1.5  and we know  f  has a root between  1.25  and  1.5 . 
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 Repeating this procedure a few more times, we get that 

  

 a b m = (b+a)/2 f(a) f(b) f(m) root between 
           

 1 2  1 –5  1 2 
 1 2 1.5 1 –5 –0.875 1 1.5 
 1 1.5 1.25 1 –0.875 0.2969 1.25 1.5 
 1.25 1.5 1.375 0.2969 –0.875 –0.2246 1.25 1.375 
 1.25 1.375 1.3125 0.2969 –0.2246 0.0515 1.3125 1.375 
 1.3125 1.375 1.34375 

 
If we continue the table,  the interval containing the root will squeeze around the value  1.324718 . 

 

The Bisection Algorithm has one major drawback –– there are some roots it does not find.  The algorithm 

requires that the function be both positive and negative near the root so that the graph actually crosses the 

x–axis.  The function    f(x) = x2  – 6x + 9 = (x – 3)2   has the root  x = 3  but is never negative  (Fig. 12).  

We cannot find two starting points  a  and  b  so that  f(a)  and  f(b)  have  

opposite signs, and we cannot use the Bisection Algorithm to find the root   

x = 3.  In Chapter 2 we will see another method, Newton's Method, which  

does find roots of this type. 
 

The Bisection Algorithm requires that we supply two starting points  a  and   

b,  two x–values at which the function has opposite signs.  These values can  

often be found with a little "trial and error",  or we can examine the graph of 

the function and use it to help pick the two values.  
 
 

Finally,  the Bisection Algorithm can also be used to solve equations because the solution of any equation can 

always be transformed into an equivalent problem of finding roots by moving everything to one side of the equal 

sign.  For example,  the problem of solving the equation  x3  = x + 1 can be transformed into the equivalent 

problem of solving  x + 1 –  x3  = 0  or of finding the roots of  f(x) = x  + 1 –  x3   which we did in the previous 

example.   
 

Example 8: Find all of the solutions of   sin(x)  =   
2x +1
x – 2    .  (x is in radians.) 

 
Solution:  We can convert this problem of solving an equation to the problem of finding the roots of    

 f(x)  =   sin(x)  –   
2x +1
x – 2    = 0.  The function  f(x)  is continuous everywhere except at  x = 2,  and the 

graph of  f(x)  in Fig. 13  can help us find two starting values for the Bisection Algorithm.  The graph 

shows that  f(–1) is negative  and  f(0) is positive, and we know  f(x)  is continuous on the interval   

 [–1,0].  Using the algorithm with the starting interval  [–1,0], we get that the root is contained in the 

shrinking intervals:  
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 [–.5,0], [–.25,0], [–.25, –.125], . . . ,  

 [–.238281, –.236328] , . . . , [–.237176, –.237177]   

 so the root is approximately  –.237177  . 
 

 We might also notice that  f(0) = 0.5  is positive and   

 f(π) = 0 –  
2π + 1
π – 2    ≈ –6.38  is negative.  Why is it  

 wrong to conclude that  f(x)  has another root between   

 x = 0  and  x = π? 

 

 

PROBLEMS 
 

1. At which points is the function in Fig. 14  

discontinuous? 
 

2. At which points is the function in Fig. 15  

discontinuous?  
 
 
3. Find at least one point at which each function is not continuous and  

 state which of the  3  conditions in the definition of continuity is  

 violated at that point. 

(a) 
x + 5
x – 3  (b) 

x2 + x – 6
x – 2   (c) cos(x)  

 

(d) INT( x2 ) (e) 
x

sin(x)  (f) 
x
x  

 

(g) ln( x2 ) (h) 
π

x2 –6x + 9
  (i) tan(x) 

 
4. Which three of the following functions are not continuous.  Use the appropriate theorems of this  

 section to justify that each of the other functions is continuous. 

(a)  
7

2 + sin(x)  (b) cos(x5 – 7x +π) (c) 
x2 – 5

 1 + cos2(x)
  

 

(d) 
x2 – 5

 1 + cos(x)  (e) INT( 3 + 0.5sin(x) )   (f) INT( 0.3sin(x) + 1.5 ) 
 

(g) cos( sin(x) )  (h) x2 – 6x + 10  (i) 
3

cos(x)
 
 

 
(j) 2sin(x)   (k) log( |x| ) (l) 1 – 3–x 
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5. A continuous function  f  has the values given below: 
 
  x 0 1 2 3 4 5    

  f(x) 5 3 –2 –1 3 –2 
 
(a) f  has at least       roots between 0 and 5. (b) f(x) = 4  at least       times between 0 and 5. 

(c) f(x) = 2  at least      times between 0 and 5. (d) f(x) = 3  at least       times between 0 and 5. 

(e) Is it possible for  f(x) to equal 7 for some x values between  0  and  5? 
 
6. A continuous function  g  has the values given below: 
 
  x 1 2 3 4 5 6 7     

  g(x) –3 1 4 –1 3 –2 –1 
 
(a) g  has at least       roots between 1 and 5. (b) g(x) = 3.2  at least       times between 1 and 7. 

(c) g(x) = –0.7  at least      times between 3 and 7. (d) g(x) = 1.3  at least       times between 2 and 6. 

(e) Is it possible for  g(x) to equal  π  for some value(s) of  x  between  5  and  6? 
 

7. This problem asks you to verify that the Intermediate Value Theorem is true for some particular functions, 

intervals and intermediate values.  In each problem you are given a function  f , an interval [a,b] and a value 

V.  Verify that  V  is between  f(a)  and  f(b) and find a value of  c  in the interval so that  f(c) = V. 

(a) f(x) = x2  on  [0,3],  V = 2. (b) f(x) = x2  on  [–1,2],  V = 3. 

(c) f(x) = sin(x)  on  [0,π/2],  V = 1/2 . (d) f(x) = x  on  [0,1],  V = 1/3. 

(e) f(x) = x2  – x  on  [2,5],  V = 4. (f) f(x) = ln(x)  on  [1,10],  V = 2. 
 
 
8. Two students claim that they both started with the points  x = 1   

 and  x = 9 and applied the Bisection Algorithm to the function in  

 Fig. 16.  The first student says that the algorithm converged to 

the root near  x = 8, but the second claims that the algorithm will  

 converge to the root near x = 4.  Who is right? 
 
 
9. Two students claim that they both started with the points  x = 0   

 and  x = 5 and applied the Bisection Algorithm to the function  

 in Fig. 17.  The first student says that the algorithm converged to  

 the root labeled A, but the second claims that the algorithm will  

 converge to the root labeled B.  Who is right? 

 



1.3 Continuous Functions Contemporary  Calculus  
12 

10. If you apply the Bisection Algorithm to the function in  

 Fig. 18 and use the given starting points, which root does  

 the algorithm find?    (a)  starting points  0  and  9. 

 (b) starting points  1  and  5. (c) starting points  3  and  5. 
 
11. If you apply the Bisection Algorithm to the function in Fig. 19 and  

 use the given starting points, which root does the algorithm find? 

 (a) starting points  3  and  7. (b) starting points  4  and  6. 

 (c) starting points  1  and  6. 
 
 
In problems 12 – 17 , use the Intermediate Value Theorem to verify that each function has a root in the  

given interval(s).  Then use the Bisection Algorithm to narrow the location of that root to an interval of 

length less than or equal to  0.1 . 
 
12. f(x) =  x2 – 2  on  [ 0, 3]. 13. g(x) =  x3 – 3x2 + 3  on  [ –1, 0] , [ 1, 2], [ 2, 4] . 
 
14. h(t) =  t5 – 3t + 1   on  [ 1, 3] . 15. r(x) =  5 – 2x   on  [ 1, 3] . 
 
16. s(x) =  sin(2x) – cos(x)  on  [ 0, π] 17. p(t) =  t3 + 3t + 1   on  [ –1, 1] 
 

18. What is wrong  with this reasoning: "If  f(x) = 1/x  then  f(–1) = –1  and  f(1) = 1.  Because  f(–1)  and  

f(1)  have opposite signs,  f  has a root between  x = –1  and  x = 1." 
 
19. Each of the following statements is false for some functions.  For each statement, sketch the graph of  

 a counterexample. 

a) If  f(3) = 5  and  f(7) = –3, then  f  has a root between  x = 3  and  x = 7. 

b) If  f  has a root between  x = 2  and  x = 5, then  f(2)  and  f(5)  have opposite signs. 

c) If the graph of a function has a sharp corner, then the function is not continuous there. 
 

20. Define  A(x)  to be the area  bounded by the  x  and  y axes, the curve  y = f(x),  

  and the vertical line at  x  (Fig. 20).  From the figure, it  

  is clear that A(1) < 3  and  A(3) > 3. 

  Do you think there is a value of  x, between  1  and  3,   

  so  A(x) = 3? If so, justify your conclusion and estimate 

   the location of the value of  x  so   A(x) = 3.   

  If not, justify your conclusion. 
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21. Define  A(x)  to be the area  bounded by the  x  and  y axes, the curve   

 y = f(x), and the vertical line at  x  (Fig. 21). 
 

 a) Shade the part of the graph represented  

  by  A(2.1) – A(2)  and  

  estimate the value of  
A(2.1) – A(2)

0.1   . 

 b) Shade the part of the graph represented by   

  A(4.1) – A(4)  and  

  estimate the value of  
A(4.1) – A(4)

0.1   . 
 
22. (a) A square sheet of paper has a straight line drawn on it from the lower left corner to the upper right   

  corner.  Is it possible for you to start on the left edge of the sheet and draw a connected line to the 

right edge that does not cross the diagonal line? 

 (b) Prove:  If  f  is continuous on the interval  [0,1]  and  0 ≤ f(x) ≤ 1 for all  x, then there is a number  

c, 0 ≤ c ≤ 1, such that  f(c) = c.  (The number  c  is called a "fixed point"  of  f  because the image 

of  c  is  the same as c  ––  f  does not move c.) 

 Hint:  Define a new function  g(x) = f(x) – x  and start by considering the values  g(0)  and   g(1). 

 (c) What does part (b) have to do with part (a) of this problem? 

(d) Is the theorem in part (b) true if we replace  the closed interval  [0,1]  with the open interval  (0,1)?  

True/False:  "If  f  is continuous on the interval  (0,1)  and  0 < f(x) < 1 for all  x, then there is a 

number  c, 0 < c < 1, such that  f(c) = c." 
 

23. A piece of string is tied in a loop and tossed onto quadrant I  enclosing  

 a single region (Fig. 22). 

(a)  Is it always possible to find a line L which goes through the origin  

 so that L divides the region into two equal areas?  (Justify your 

answer.)  

(b) Is it always possible to find a line  L  which is parallel to the   

 x–axis so that L divides the region into two equal areas?   

 (Justify your answer.) 

(c) Is it always possible to find  2 lines, L parallel to the x–axis and  

 M parallel to the y–axis, so  L  and  M  divide the region into 4 equal areas?  (Justify your answer.) 
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Section 1.3 PRACTICE  Answers 

 

Practice 1: 

! 

f (x)  =  
| x |

x
    (Fig. 23)  is continuous everywhere except at  x = 0  where this function  

 is not defined. 
  

If  a > 0, then   

! 

lim
x"a

 
| x |

x
 = 1  = f(a)  so  f  is continuous at  a. 

 

If  a < 0, then   

! 

lim
x"a

 
| x |

x
 = –1  = f(a)  so  f  is continuous at  a. 

 

f(0) is not defined., 

! 

lim
x"0

#
 
| x |

x
  = –1  and  

! 

lim
x"0

+
 
| x |

x
 = +1   so  

 

  

! 

lim
x"0

 
| x |

x
  does not exist. 

 

Practice 2: (a) To prove that  kf  is continuous at  a, we need to prove that  kf  satisfies  
   
  the definition of continuity  at  a: 

! 

lim
x"a

  kf(x)  =  kf(a) . 

 
  Using results about limits, we know   
 
   

! 

lim
x"a

  kf(x)  =  k 

! 

lim
x"a

  f(x)  =  k f(a)   (since  f  is assumed to be  

 
  continuous at a)  so   kf  is continuous at  a. 
 

 (b) To prove that  f – g  is continuous at  a, we need to prove that  f – g  satisfies  
 
  the definition of continuity  at  a: 

! 

lim
x"a

  ( f(x) – g(x) )  =  f(a) – g(a). 

 
   Again using information about limits, 
 
     

! 

lim
x"a

   ( f(x) – g(x) )  =    

! 

lim
x"a

  f(x)  –

! 

lim
x"a

  g(x)  =  f(a) – g(a)   (since  f  and  g  are  

 
   both continuous at  a)  so  f – g  is continuous at  a. 
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1.4 DEFINITION OF LIMIT 
 

It may seem strange that we have been using and calculating the values of limits for awhile without having 

a precise definition of limit, but the history of mathematics shows that many concepts, including limits, 

were successfully used before they were precisely defined or even fully understood.  We have chosen to 

follow the historical sequence in this chapter and to emphasize the intuitive and graphical meaning of limit 

because most students find these ideas and calculations easier than the definition.  Also, this intuitive and 

graphical understanding of limit was sufficient for the first hundred years of the development of calculus  

(from Newton and Leibniz in the late  1600's to  Cauchy in the early 1800's),  and it is sufficient for using 

and understanding the results in beginning calculus. 
 

Mathematics, however, is more than a collection of useful tools, and part of its power and beauty comes 

from the fact that in mathematics terms are precisely defined and results are rigorously proved.   

Mathematical tastes (what is mathematically beautiful, interesting, useful) change over time, but because of 

these careful definitions and proofs, the results remain true, everywhere and forever.  Textbooks seldom 

give all of the definitions and proofs, but it is important to mathematics that such definitions and proofs 

exist. 
 

The goal of this section is to provide a precise definition of the limit of a function.  The definition will not 

help you calculate the values of limits, but it provides a precise statement of what a limit is.  The definition 

of limit is then used to verify the limits of some functions, and some general results are proved. 

 

The Intuitive Approach 
 

The precise ("formal") definition of limit carefully defines the ideas that we have already been using 

graphically and intuitively.  The following side–by–side columns show some of the phrases we have been 

using to describe limits, and those phrases, particularly the last ones, provide the basis to building the 

definition of limit.  
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A Particular Limit 
 

 

! 

lim
x"3

  2x – 1 = 5    

 

"as the values of  x  approach  3, the values  

of  2x–1  approach (are arbitrarily close to)  5" 
 

"when  x  is close to  3 (but not equal to  3),  

the value of  2x–1  is close to  5" 
 

"we can guarantee that the values of   

f(x) = 2x–1  are as close to  5  as we want by 

starting with values of  x  sufficiently close to  3 

(but not equal to 3)" 

General Limit 
 

! 

lim
x"a

  f(x) = L 

 

"as the values of  x  approach  a, the values  

of  f(x)  approach (are arbitrarily close to)  L" 
 

"when  x  is close to  a (but not equal to  a),  

the value of  f(x)  is close to  L" 
 

"we can guarantee that the values of  f(x)   

are as close to  L  as we want by starting  

with values of  x  sufficiently close to  a 

(but not equal to  a)" 

 
Let's examine what the last phrase ("we can ...") means for the Particular Limit. 

 
Example 1: We know   

! 

lim
x"3

 2x – 1 = 5.  Show that we can guarantee that  

 the values of  f(x) = 2x – 1  are as close to  5  as we want by starting  

 with values of  x  sufficiently close to  3.   

(a)  What values of  x  guarantee that  f(x) = 2x – 1  is within  1  unit  

 of 5 ?  (Fig. 1a) 
 
Solution:  "within  1  unit of  5" means between  5–1 = 4  and  5+1 = 6, so the  

 question can be rephrased as "for what values of  x  is  y = 2x – 1  between  4  

and  6:  4 < 2x – 1 < 6?"  We want to know which values of  x  put the values 

of  y = 2x –1  into the shaded band in Fig. 1a.  The algebraic process is 

straightforward:  solve  4 < 2x – 1 < 6  for  x  to  get  5 < 2x < 7  and  

2.5 < x < 3.5.  We can restate this result 

as follows:  "If  x is within  0.5 units of  

3, then  y = 2x–1  is within 1 unit of 5."  

(Fig. 1b) 
  

Any smaller distance also satisfies the 

guarantee:  e.g., "If  x is within  0.4 units  

of  3, then  y = 2x–1  is within 1 unit of 

5."  (Fig. 1c) 
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(b)  What values of  x  guarantee the  f(x) = 2x – 1  is within 

0.2 units of 5?  (Fig. 2a) 
 

Solution:  "within  0.2  units of  5" means between  5–0.2 = 4.8  and  

5+0.2 = 5.2, so the question can be rephrased as "for what values of  

x  is  y = 2x – 1  between  4.8  and  5.2:  4.8 < 2x – 1 < 5.2?"  

Solving for  x, we  get  5.8 < 2x < 6.2  and  2.9 < x < 3.1.  "If  x is 

within  0.1 units of  3, then   y = 2x–1  is within 0.2 units of 5." 

(Fig. 2b)  Any smaller distance also satisfies the guarantee. 

 
Rather than redoing these calculations for every possible distance from  5, 

we can do the work once, generally: 

(c)  What values of  x  guarantee that  f(x) = 2x – 1  is within  

E  units of 5?  (Fig. 3a) 
 

Solution:  "within  E  unit of  5" means between  5–E  and  5+E , so the  

 question is "for what values of  x  is  y = 2x – 1  between  5–E  and  

5+ε:  5–E < 2x – 1 < 5+E?"  Solving  5–E < 2x – 1 < 5+E  for  x, we  

get  6–E < 2x < 6+E  and  3 – E/2 < x < 3 + E/2.  "If  x is within  E/2  

units of  3, then  y = 2x–1  is within  E  units of 5."  (Fig. 3b)  Any 

smaller distance also satisfies the guarantee. 
 

Part (c) of  Example 1  illustrates a little of the power of general solutions 

in mathematics.  Rather than doing a new set of similar calculations every 

time someone demands that  f(x) = 2x – 1  be within some given distance  

of  5, we did the calculations once.  And then we can respond for any given 

distance.  For the question  "What values of  x  guarantee that  f(x) = 2x – 1  

is within  0.4, 0.1 and 0.006  units of 5?", we can answer  "If  x is within  

0.2 (= 0.4/2), 0.05 (=0.1/2) and 0.003 (=0.006/2)  units of  3." 

 
Practice 1: 

! 

lim
x"2

 4x – 5 = 3.   What 

 values of  x  guarantee that   

 f(x) = 4x – 5  is within      

 (a)  1  unit of 3?     

 (b)  0.08 units of  3?     

 (c)  E units of 3?  (Fig. 4) 

 

3

3–E

3+E

2

y = 4x – 5"y within  E  of 3"

Fig, 4
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The same ideas work even if the graphs of the functions are not straight 

lines, but the calculations are more complicated. 
 
Example 2: 

! 

lim
x"2

 x2  = 4.  (a)  What values of  x   guarantee that   

 f(x) = x2  is within  1  unit of 4?  (b)  Within 0.2 units of 4?   

 (Fig. 5a)  State each answer in the form  "If  x  is within ______  

units  of 2, then  f(x)  is within  1 (or 0.2)  unit of 4." 
 

Solution:  (a) If  x2  is within  1  unit of 4, then  3 <  x2 < 5  so  3  < x < 

! 

5   

 or  1.732 < x < 2.236.  The interval containing these  x  values 

extends from 2 – 3   ≈  0.268  units to the left of  2  to  

  5  – 2 ≈ 0.236  units to the right of  2.  Since we want to 

specify a single distance on each side of  2, we can pick the 

smaller of the two distances, 0.236 .  (Fig. 5b) 

  "If  x  is within _0.236_  units of 2,  

  then  f(x)  is within  1 unit of 4." 
 

 (b) Similarly, if  x2  is within  0.2  units of 4, then  3.8 <  x2 < 4.2  

so  3.8  < x < 4.2   or  1.949 < x < 2.049.   The interval 

containing these  x  values extends from 2 – 3.8   ≈  0.051  units to the left of  2  to   

  4.2  – 2 ≈ 0.049  units to the right of  2.  Again picking the smaller of the two distances, "If  x  is 

within _0.049_  units of 2, then  f(x)  is within  1 unit of 4." 
 

The situation in Example 2 of different distances on the left and right sides is very common, and we always 

pick our single distance to be the smaller of the distances to the left and right.  By using the smaller 

distance, we can be certain that if  x  is within that smaller distance on either side, then the value of  f(x)  is 

within the specified distance of the value of the limit. 

 
Practice 2: 

! 

lim
x"9

  x  = 3.  What values of  x  guarantee that  f(x) 

= x   is within  1  unit of 3?   Within  0.2 units of 3?  

(Fig. 6)  State each answer in the form   

 "If  x  is within ______  units of 2, then  f(x)  

 is within  1 (or 0.2)  unit of 4." 
 

The same ideas can also be used when the function and the specified 

distance are given graphically, and in that case we can give the answer 

graphically. 
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Example 3: In Fig. 7,  

! 

lim
x"2

 f(x) = 3.   What values of  x  guarantee that   

 y = f(x)  is within   E  units (given graphically) of 3?  State your 

answer in the form  "If  x  is within ______  (show a distance D 

graphically) of 2, then  f(x)  is within  E  units of 3." 
 
 

Solution: The solution process requires several steps as illustrated in  Fig. 8: 
 
 i. Use the given distance  E  to find the values  3 – E  and  3 + E  on the y–axis. 
 
 ii. Sketch the horizontal band which has its lower edge at y = 3 – E  and  

  its upper edge at  y = 3 + E. 
 
 iii. Find the first locations to the right and left of  x = 2  where the  

  graph of  y = f(x)  crosses the lines  y = 3 – E  and  y = 3 + E,  

  and at these locations draw vertical lines to the  x–axis. 
 
 iv. On the  x–axis, graphically determine the distance from 2 to  
  the vertical line on the left (labeled  DL) and from  2  to the vertical  

  line on the right (labeled  DR). 
 
 v. Let the length  D  be the smaller of the lengths  DL and  DR . 

 

 

 

 

 

 

 

 

 
Practice 3: In Fig. 9,  

! 

lim
x"3

 f(x) = 1.8 .   What values 

  of  x  guarantee that  y = f(x)  is within   

 E  units of 1.8? 
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The Formal Definition of Limit 
 

The ideas of the previous examples and practice problems can be stated for general functions and limits, 

and they provide the basis for the definition of limit which is given in the box.  The use of the lower case 

Greek letters  ε  (epsilon)  and  δ   (delta) in the definition is standard, and this definition is sometimes 

called the  "epsilon–delta" definition of limit. 

 
 
 Definition of   

! 

lim
x"a

 f(x) = L: 

 
 

! 

lim
x"a

 f(x) = L   means 

 

 for every given  ε > 0  there is a  δ > 0  so that   (Fig. 10) 

  if   x   is within  δ  units of  a  (and x ≠ a)  

  then   f(x)  is within  ε  units of L. 

  (Equivalently:  | f(x) – L | < ε    whenever  0 < | x – a | < δ .) 

     

 

In this definition, ε  represents the given distance on either side 

of the limiting value  y = L, and  δ  is the distance on each side 

of the  point  x = a  on the x–axis that we have been finding in 

the previous examples.  This definition has the form of a a 

"challenge and reponse:"  for any positive challenge ε  (make  

f(c) within  ε  of  L), there is a positive response  δ  (start with  x  

within  δ  of  a and  x ≠ a). 

 

 
Example 4: In Fig. 11a,  

! 

lim
x"a

 f(x) = L,  and a value for  ε  is 

given graphically as a length.  Find  

a length for  δ  that satisfies the definition of limit   

(so "if  x  is within  δ  of  a  (and x ≠ a), then  f(x)   

is within  ε  of L"). 
 

Solution: Follow the steps outlined in Example 3.  

 The length for  δ  is shown in Fig. 11b, 

 and any shorter length for  δ  also 

 satisfies the definition. 
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Practice 4: In Fig. 12,  

! 

lim
x"a

 f(x) = L,  and a value for  ε  is given 

graphically as a length.  Find a length for  δ  that 

satisfies the definition of limit  

 
Example 5: Prove that    

! 

lim
x"3

 4x – 5 = 7.  

 
Solution:  We need to show that  

 "for every given  ε > 0  there is a  δ > 0  so that  

  if   x   is within  δ  units of  3  (and x ≠ 3)  

  then   4x – 5  is within  ε  units of  7." 

Actually there are two things we need to do.  First, we need to find a value for  δ (typically depending on  

ε), and, second, we need to show that our  δ  really does satisfy the  "if – then" part of the definition. 

i. Finding  δ  is similar to part (c)  in Example 1  and Practice 1:  assume  4x – 5  is within  ε  units of  

7  and solve for  x.  If  7 – ε < 4x – 5 < 7 + ε,  then  12 – ε < 4x < 12 + ε  and   

 3 – ε/4 < x < 3 + ε/4,  so  x  is within  ε/4  units of  3.  Put  δ = ε/4. 

ii. To show that  δ = ε/4  satisfies the definition, we merely reverse the order of the steps in part i. 

 Assume that  x  is within  δ  units of  3.  Then  3 – δ < x < 3 + δ  so   

  3 – ε/4 < x < 3 + ε/4  (replacing  δ  with  ε/4 ), 

  12 – ε < 4x < 12 + ε   (multiplying by 4),  and   

  7 – ε < 4x – 5 < 7 + ε   (subtracting 5),  so 
 

we can conclude that  f(x) = 4x – 5  is within  ε  units of  7.  This formally verifies that  

! 

lim
x"3

 4x – 5 = 7. 

 
Practice 5: Prove that    

! 

lim
x"4

 5x + 3 = 23.  

 

The method used to prove the values of the limits for these particular linear functions can also be used to 

prove the following general result about the limits of linear functions. 

 
Theorem: 

! 

lim
x"a

 mx + b  = ma + b 

 
Proof: Let  f(x) = mx + b. 

 Case 1: m = 0.  Then f(x) = 0x + b = b  is simply a constant function, and any value for  δ > 0 satisfies 

the definition.  Given any value of  ε > 0, let  δ = 1  (any positive value for  δ  works).  If  x  is 

is within  1 unit of  a, then  f(x) – f(a) = b – b = 0 < e, so we have shown that for any   

  ε > 0, there is a  δ > 0 which satisfies the definition. 

 Case 2: m ≠ 0.  Then  f(x) = mx + b.  For any  ε > 0, put  δ = 
ε

|m|  > 0.  If  x  is within  δ = 
ε

|m|   of  a, then   

a –  
ε

|m|   < x < a +  
ε

|m|     so  –  
ε

|m|   < x – a <  
ε

|m|      and   | x – a | <  
ε

|m|    . 
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  Then the distance between  f(x)  and  L = ma + b  is 

  | f(x) – L | = | (mx + b) – (ma + b) | = |m|.| x – a | < |m| 
ε

|m|   = ε    

  so  f(x)  is within  ε   

  of  L = ma + b.  (Fig. 13) 

 In each case, we have shown that "given any  ε > 0, there is a   

 δ > 0"  that satisfies the rest of the definition is satisfied. 

 

 

 If there is even a single value of  ε  for which there is no  δ, then the function 

does not satisfy the difinition, and we say that the limit "does not exist.: 

 
 

Example 6: Let  f(x)  =  { 2 if x < 1
 4 if x > 1  as is shown in Fig. 14 . 

 
 Use the definition to prove that    

! 

lim
x"1

 f(x)  does not exist.   

Solution: One common proof technique in mathematics is called "proof by 

contradiction,"  and that is the method we use here.  Using that method in 

this case,  (i)  we assume that the limit does exist and equals some number L, (ii)  we show that this 

assumption leads to a contradiction, and (iii) we conclude that the assumption must have been false.  

Therefore, we conclude that the limit does not exist. 
 

(i) Assume that the limit exists:     

! 

lim
x"1

 f(x) = L  for some value for L.  Let  ε = 
1
2  .  (The definition says 

"for every  ε" so we can pick this value.  Why we chose this value for  ε  shows up later in the proof.)  

Then, since we are assuming that the limit exists, there is a  δ > 0 so that if  x  is within  δ  of  1  then  

f(x)  is within  ε  of L. 
 

(ii) Let  x1  be between  1  and  1 + δ.  Then  x1 > 1  so  f(x1) = 4.  Also,  x1  is within  δ of  1  so  f(x1) = 

4  is within  
1
2   of  L,  and  L  is between  3.5 and 4.5:  3.5 < L < 4.5. 

 
 Let  x2  be between  1  and  1 – δ.  Then  x2 < 1  so  f(x2) = 2.  Also, x2  is within  δ  of  1  so  f(x2) = 

2  is within  
1
2   of  L,  and  L  is between  1.5 and 2.5:  1.5 < L < 2.5. 

 

(iii) The two inequalities in bold print provide the contradiction we were hoping  

 to find.  There is no value  L  that simultaneously satisfies  3.5 < L < 4.5  and  1.5 < L < 2.5, so we 

can conclude that our assumption was false and that  f(x)  does not have a limit as  x → 1. 
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Practice 6: Use the definition to prove that    

! 

lim
x"0

 
1

x
  does not exist  (Fig. 15). 

 
 
Proofs of Two Limit Theorems 
 

The theorems and their proofs are included here so you can see how such  

proofs proceed  –– you have already used these theorems to evaluate limits  

of functions..  There are rigorous proofs of all of the other limit properties,  

but they are somewhat more complicated than the proofs given here. 

 
Theorem: If  

! 

lim
x"a

 f(x) = L,  then    

! 

lim
x"a

 k.f(x) = k.L . 

Proof: Case k = 0:  The Theorem is true but not very interesting:     

! 

lim
x"a

 0.f(x) =  

! 

lim
x"a

 0 = 0.L . 

Case k ≠ 0:  Since   

! 

lim
x"a

 f(x) = L,  then, by the definition, for every  ε > 0 there is a  δ > 0 so that   

| f(x) – L | < ε  whenever  | x – a | < δ.  For any  ε > 0 , we know   
ε
|k|  > 0 and pick a value of  

δ  that satisfies   | f(x) – L | <  
ε
|k|    whenever  | x – a | < δ.  When   

  | x – a | < δ      ("x is within  δ  of  a")  then 

  | f(x) – L | <  
ε
|k|    ("f(x)  is within   

ε
|k|    of  L")   so 

  |k|.| f(x) – L | <  ε    (multiplying each side by  |k| > 0)  and   

  | k.f(x) – k.L | <  ε   (k.f(x)  is within  ε  of  k.L). 

 
Theorem: If   

! 

lim
x"a

 f(x)  = L  and  

! 

lim
x"a

 g(x)  = M,  then   

! 

lim
x"a

 f(x) + g(x) = L + M. 

 
Proof:  Assume that   

! 

lim
x"a

 f(x)  = L  and  

! 

lim
x"a

 g(x)  = M.  Then, given any  ε > 0, we know  ε/2 > 0  and 

that there are deltas for  f  and  g , δf  and  δg , so that  

 if  | x – a | < δf , then  | f(x) – L | < ε/2  ("if  x  is within  δf  of  a, then  f(x)  is within  ε/2  of  L", and 

 if  | x – a | < δg , then  | g(x) – M | < ε/2  ("if  x  is within  δg  of  a, then  g(x)  is within  ε/2  of  M"). 
 

Let  δ  be the smaller of  δf  and  δg.  If  | x – a | < δ, then  | f(x) – L | < ε/2  and  | g(x) – M | < ε/2  so 
 

| (f(x) + g(x)) – (L + M)) | = | (f(x) – L)  +  (g(x) – M) |  (rearranging the terms) 
 
 ≤ | f(x) – L | + | g(x) – M |  (by the Triangle Inequality for absolute values) 
 

 < 
ε
2   + 

ε
2  =  ε. (by the definition of the limits for  f  and  g). 
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Problems 
 

In problems 1–4, state each answer in the form  "If  x  is within            units of . . . " 

 
1. 

! 

lim
x"3

 2x + 1 = 7.  What values of  x  guarantee that  f(x) = 2x + 1  is  (a)  within  1  unit of 7?  

 (b)  within  0.6  units of 7?    (c)  within  0.04  units of 7?    (d)  within  ε  units of 7?  
 
2. 

! 

lim
x"1

 3x + 2 = 5.  What values of  x  guarantee that  f(x) = 3x + 2  is within  1  unit of 5 ?   

 (b)  within  0.6  units of 5?    (c)  within  0.09  units of 5?    (d)  within  ε  units of 5?  
 
3. 

! 

lim
x"2

 4x – 3 = 5.  What values of  x  guarantee that  f(x) = 4x – 3  is within  1  unit of 5 ?   

 (b)  within  0.4  units of 5?    (c)  within  0.08  units of 5?    (d)  within  ε  units of 5?  
 
4. 

! 

lim
x"1

 5x – 3 = 2.  What values of  x  guarantee that  f(x) = 5x – 3  is within  1  unit of 2 ?  

 (b)  within  0.5  units of 5?    (c)  within  0.01  units of 5?    (d)  within  ε  units of 5?   
 

5. For problems 1 – 4, list the slope of each function  f  and the  δ  (as a function of  ε).  For these linear 

functions  f,  how is   δ  related to the slope? 
 

6. You have been asked to cut two boards (exactly the same length after the cut) and place them end to end.  If 

the combined length must be within  0.06  inches of  30 inches, then each board must be within how many 

inches of 15? 
 

7. You have been asked to cut three boards (exactly the same length after the cut) and place them end to end.  If 

the combined length must be within  0.06  inches of  30 inches, then each board must be within how many 

inches of 10? 
 
8. 

! 

lim
x"3

 x2 = 9.  What values of x  guarantee that  f(x) = x2  is within 1 unit of 9?  within  0.2 units? 

 
9. 

! 

lim
x"2

 x3 = 8.  What values of x  guarantee that  f(x) = x3  is within 0.5 unit of 8?   within  0.05 units? 

 
10. 

! 

lim
x"16

 x  = 4.  What values of x  guarantee that  f(x) = x    is within 1 unit of 4?  Within 0.1 units? 

 
11. 

! 

lim
x"3

 1+ x  = 2.  What values of x  guarantee that  f(x) = 1+x   is within 1 unit of 2?  Within 0.0002 units? 

 

12. You have been asked to cut four pieces of wire (exactly the same length after the cut) and form them into a 

square.  If the area of the square must be within  0.06  inches of  100 inches, then each piece of wire must be 

within how many inches of 10? 
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13. You have been asked to cut four pieces of wire (exactly the same length after the cut) and form them into a 

square.  If the area of the square must be within  0.06  inches of  25 inches, then each piece of wire must be 

within how many inches of 5? 
 
In problems  14 – 17,    lim

x∅a 
 f(x) = L  and the function  f  and a value for  ε  are given graphically.  Find a 

length for  δ  that satisfies the definition of limit for the given function and value of  ε. 
 

14. f  and  ε  as shown in Fig. 16. 15. f  and  ε  as shown in Fig. 17. 
 

 

 

 

 

 

 

 

 

16. f  and  ε  as shown in Fig. 18. 17. f  and  ε  as shown in Fig. 19. 
 
 
 
 
 
 
 
 
 
 
 
 

 
18. Redo each of problems 14 – 17 taking a new value of  ε  to be half the value of  ε  given in the problem. 

 

In problems  19–22, use the definition to prove that the given limit does not exist. 

(Find a value for  ε > 0 for which there is no  δ  that satisfies the definition.) 
 

19. f(x)  =  { 4 if x < 2
 3 if x > 2  as is shown in Fig. 20.   

 
 Show  

! 

lim
x"2

 f(x)  does not exist. 
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20. f(x)  = INT(x)   as is shown in Fig. 21.   

 Show  

! 

lim
x"3

 f(x)  does not exist. 

21. f(x)  =  { x if x < 2
 6–x if x > 2  .  Show  

! 

lim
x"2

 f(x)  does not exist. 

 

22. f(x)  =  
 x+1 if x < 2
 x2 if x > 1  .  Show  

! 

lim
x"2

 f(x)  does not exist. 

 
23. Prove:  If   

! 

lim
x"a

 f(x)  = L  and  

! 

lim
x"a

 g(x)  = M,  then   

! 

lim
x"a

 f(x) – g(x) = L – M. 

 
 
Section 1.4 PRACTICE  Answers 
 

Practice 1: (a) 3 – 1 < 4x – 5 < 3 + 1  so  7 < 4x < 9  and  1.75 < x < 2.25:  "x  within  1/4  unit of 2." 

 (b) 3 – 0.08 < 4x – 5 < 3 + 0.08  so  7.92 < 4x < 8.08  and  1.98 < x < 2.02: " x within  0.02  units of 2." 

 (c) 3 – E < 4x – 5 < 3 + E  so  8 _ E < 4x < 8 + E  and  2 –  
E
4  < x < 2 + 

E
4   :  "x within  E/4  units of 2." 

 

Practice 2: "within  1  unit of 3":  If  2 < x  < 4 ,  then  4 < x < 16  which extends from 5 units to  

 the left of 9  to  7 units to right of 9.  Using the smaller of these two distances from 9,  

 "If  x  is within 5 units of 9, then  x   is within  1  unit of  3." 

 "within 0.2 units of 3":  If  2.8 < x  < 3.2 , then  7.84 < x < 10.24  which extends from  

 1.16 units to the left of 9  to  1.24 units to the right of 9.  "If  x  is within 1.16 units of 9,  

 then  x   is wqithin 0.2  units of 3. 
 

Practice 3: See Fig. 22. Practice 4:    See Fig. 23  
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Practice 5: Given any  ε > 0, take  δ = ε/5. 

 If  x  is within  δ = ε/5  of  4, then    

 4 – ε/5  < x < 4 + ε/5  so 

 – ε/5 < x – 4 < ε/5  (subtracting 4 ) 

 – ε < 5x – 20 < ε    (multiplying by 5) 

 – ε < (5x + 3) – 23 < ε    (rearranging to get the form we want) 

so, finally,  f(x) = 5x + 3  is within  ε  of  L = 23. 

 

 We have shown that "for any  ε > 0, there is a   δ > 0  (namely    δ = ε/5)"  so that the rest of the 

definition is satisfied. 

 

Practice 6: This is a much more sophisticated (= harder) problem. 
 

Using "proof by contradiction" as outlined in the solution to Example 6. 
  

(i) Assume that the limit exists:     

! 

lim
x"0

 
1

x
 = L  for some value for L.  Let  ε = 1 .  (The definition says 

"for every  ε" so we can pick this value.  For this limit, the definition fails for every  ε > 0.)  Then, since 

we are assuming that the limit exists, there is a  δ > 0 so that if  x  is within  δ  of  0  then   

 f(x) = 
1
x    is within  ε = 1  of L. 

 

(ii) (See Fig. 24)  Let  x1  be between  0  and  0 + δ  and also require that  x1 < 
1
2  .  Then   

 0 < x1 < 
1
2    so  f(x1) = 

1
x1

  > 2.   Since  x1  is within  δ of  0,  f(x1) > 2  is within  ε = 1  of  L,  

 so  L  is greater than 2 –  ε = 1:  1 < L. 
 

 Let  x2  be between  0  and  0 – δ  and also require that x2 > – 
1
2 .  Then  0 > x2 > 

1
2    so   

 f(x2) = 
1
x2

  < –2.   Since  x2  is within  δ of  0,  f(x2) < –2  is within  

ε = 1  of  L, so  L  is less than  –2 +  ε = –1:  –1 > L. 
 

(iii) The two inequalities in bold print provide the contradiction we 

were hoping to find.  There is no value  L  that satisfies   

     BOTH   1 < L  and  L < –1,  

 so we can conclude that our assumption was false and that   

 f(x) = 
1
x    does not have a limit as  x → 0. 
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Chapter One 
 
Section 1.0  
 

1.  m = 
y – 9
x – 3 . If x = 2.97, then  m = 

–0.1791
–0.03    = 5.97 .  If x = 3.001, then  m = 

! 

0.006001

0.001

 = 6.001. 

 If x = 3 + h, then  m = 
(3+h)2 – 9
(3+h) – 3    =  

9 + 6h + h2 – 9
h    =  6 + h.  When  h  is very small (close to 0),  

 6 + h is very close to 6. 
 

3. m = 
y – 4
x – 2  . If x = 1.99, then m =  

-0.0499
–0.01    = 4.99.  If x = 2.004, then m = 

0.020016
0.004    = 5.004. 

 If x = 2 + h, then  m = 
{ (2+h)2 + (2+h) – 2 } – 4

(2+h) – 2    =  
4+4h+h2 + 2+h – 2 – 4

h    =  5 + h.  When   
 h  is very small,  5 + h  is very close to 5. 
 
5. All of these answers are approximate.  Your answers should be close to these numbers. 

 (a) average rate of temperature change ≈  
80o – 64o

1 pm – 9 am   =  
16o

4 hours   =  4o  per hour. 

 (b) at 10 am, temperature was rising about  5o  per hour. 
  at 7 pm, temperature was rising about  –10o  per hour  (falling about 10o  per hour). 
 
7. All of these answers are approximate.  Your answers should be close to these numbers. 
 (a) average velocity ≈  

! 

300 ft " 0 ft

20 sec " 0 sec

=  15 feet per second. 

 (b) average velocity ≈  

! 

100 ft " 200 ft

30 sec "10 sec

=  –5 feet per second. 

 (c) at  t = 10 seconds, velocity  ≈ 30 feet per second  (between 20 and 35 ft/s).  
  at  t = 20 seconds, velocity  ≈ –1 feet per second. 
  at  t = 30 seconds, velocity  ≈ –40 feet per second. 
 
9. (a)  A(0) = 0, A(1) = 3, A(2) = 6, A(2.5) = 7.5, A(3) = 9. 
 (b) the area of the rectangle bounded below by the x–axis, above by the line y = 3, on the left by  
  the vertical line  x = 1, and on the right by the vertical line  x = 4. 
 (c) Graph of  y = A(x) = 3x. 
 
Section 1.1  
 
1.  (a)  2 (b)  1 (c)  DNE (does not exist) (d)  1 
 
3.  (a)  1 (b)  –1 (c)  –1  (d)  2 
 
5. (a)  –7  (b)  ( 13/0)  DNE  
 
7. (a)  0.54  (remember, we are using radian mode)   (b) –0.318     (c)  –0.54 
 
9. (a)  0 (b)  0 (c)  0 10. (a)  –1 (b)  +1 (c) DNE (does not exist) 
 
11. (a)  0 (b)  –1 (c)  DNE 
 
13. 

! 

lim
h"0

#
 g(x) =  1 

! 

lim
x"0

+
 g(x) = 1 

! 

lim
h"0

 g(x) = 1  

 
 

! 

lim
h"2

#
 g(x) =  1 

! 

lim
x"2

+
 g(x) = 4 

! 

lim
h"2

 g(x)  does not exist  
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! 

lim
h"4

#
 g(x) =  2 

! 

lim
x"4

+
 g(x) = 2 

! 

lim
h"4

 g(x) = 2  

 
 

! 

lim
h"5

#
 g(x) =  1 

! 

lim
x"5

+
 g(x) = 1 

! 

lim
h"5

 g(x) = 1  

 
15. (a) 1.0986 (b) 1 17. (a) 0.125 (b) 3.5 
 
19. (a)  A(0) = 0,  A(1) = 2.25,  A(2) = 5,   A(3) = 8.25 
 (b)  A(x) = 2x +  x2/4 
 (c) the area of the region bounded below by the x–axis, above by the line y = x/2 + 2, on the left  
  by the vertical line x = 1, and on the right by the vertical line x = 3. 
 
Section 1.2  
 
1.  (a)  2 (b)  0 (c)  DNE (does not exist)

 (d)  1.5 
 
3.  (a)  1 (b)  3 (c)  1     (d)  ≈ 0.8 
 
5. See Fig. 1.2P5 . 
 
7. (a) 2    (b) –1    (c) DNE    (d) 2     
 (e) 2    (f) 2    (g) 1    (h) 2    (i) DNE 
 
9. (a)  When v = 0, L = A . 
 

 (b) 

! 

lim
v"c

#
 A 1 – 

v2

c2    =  0 

 
11. (a) 4    (b) 1    (c) 2    (d) 0    (e) 1    (f) 1 
 
13. (a)  Slope of the line tangent to the graph of  y = cos(x)  at the point  (0,1).   (b)  Slope = 0. 
 
15. (a)  ≈ 1      (b) ≈ 3.43       (c)  ≈ 4 
 
17. at x = –1: a at x = 0: b at x = 1: c at x = 2: d 
 at x = 3: c at x = 4: b at x = 5: a 
 
19.  Verify each step. 
 
21. Several different lists will work.  Here is one example. 

 Put  an = 1/(nπ)  for n = 1, 2, 3, ...  so  an  approaches 0 and  sin( an ) = sin( 
1

1/(nπ)  ) = sin( nπ) = 0  for all n. 

 Put  bn = 
1

2nπ + π/2    for  n = 1, 2, 3, ...  so  bn  approaches  0  and 
  sin( bn ) = sin( 2nπ + π/2) = sin( π/2 ) = 1  for all n. 
 
 Therefore, 

! 

lim
h"0

  sin( 1/x )  does not exist. 
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Section 1.3  
 
1.  Discontinuous at  1, 3, and 4.  
3. (a)  Discontinuous at  x = 3.  Fails condition  (i)  there. 
 (b)  Discontinuous at  x = 2.  Fails condition  (i)  there. 
 (c)  Discontinuous where  cos(x) is negative, (e.g., at x = π).  Fails condition  (i)  there. 
 (d)  Discontinuous where  x2  is an integer  (e.g., at x = 1 or  2   ).  Fails condition  (ii)  there. 
 (e)  Discontinuous where sin(x) = 0  (e.g., at x =  0, 

! 

±π, 

! 

±2π, ...).  Fails condition  (i)  there. 
 (f)  Discontinuous at  x = 0.  Fails condition  (i)  there. 
 (g)  Discontinuous at  x = 0.  Fails condition  (i)  there. 
 (h)  Discontinuous at  x = 3.  Fails condition  (i)  there. 
 (i)  Discontinuous at  x = π/2.  Fails condition  (i)  there. 
 
5. (a) f(x) = 0 for at least 3 values of  x , 0 ≤ x ≤ 5 . 
 (b) 1    (c) 3    (d) 2    (e) Yes.  It does not have to happen, but it is possible. 
 
7. (a)  f(0) = 0, f(3) = 9  and  0 ≤ 2 ≤ 9.  c = 2   ≈  1.414  
 (b)  f(–1) = 1, f(2) = 4  and  1 ≤ 3 ≤ 4.  c = 3   ≈  1.732  
 (c)  f(0) = 0, f(π/2) = 1  and  0 ≤ 1/2 ≤ 1.  c = (inverse sine of 1/2) ≈ 0.524 
 (d)  f(0) = 0, f(1) = 1  and  0 ≤ 1/3 ≤ 1.  c = 1/3 
 (e)  f(2) = 2, f(5) = 20  and  2 ≤ 4 ≤ 20.  c = (1 + 17  )/2 ≈  2.561 . 

 (f)  f(1) = 0, f(10) ≈ 2.30  and  0 ≤ 2 ≤ 2.30 .  c =  (inverse of  ln(2) ) = e2  ≈ 7.389 . 

  
9. Neither student is correct.  The bisection algorithm converges to the root labeled  C. 

 
11. (a)  D       
 (b)  D        
 (c)  hits B 
 
13. [ –0.9375, –0.875], ≈ –0.879 
 [ 1.3125, 1.375], ≈ 1.347 
 [ 2.5, 2.5625], ≈ 2.532 
 
15. [ 2.3125, 2.375],  ≈ 2.32 . 
 
17. [ –0.375, –0.3125],  ≈ –0.32 . 
 
19. See the three  
 graphs in Fig. 1.3P19. 
 
 
 
21. (a)  A(2.1) – A(2)  is the area of the region bounded below by the x–axis, above by the graph of  f, on the  
  left by the vertical line  x = 2,  and on the right by the vertical line  x = 2.1. 
 

    
A(2.1) – A(2)

0.1    ≈  f(2)  or f(2.1) so  
A(2.1) – A(2)

0.1    ≈  1. 
 
 (b) A(4.1) – A(4)  is the area of the region bounded below by the x–axis, above by the graph of  f, on the left  

  by the vertical line  x = 4, and on the right by the vertical line  x = 4.1.     
A(4.1) – A(4)

0.1    ≈  f(4) ≈ 2. 
 
23. (a)  Yes.  You supply the justification. (b) Yes (c) Try it. 
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 2.0  INTRODUCTION TO DERIVATIVES 
 
PREVIEW OF CHAPTER 2 
 

The two previous chapters have laid the foundation for the study of calculus.   They provided a review of 

some material you will need, and they started to emphasize the various ways we will need to view and use 

functions: functions given by graphs, equations, and tables of values.  
 

Chapter 2  will focus on the idea of tangent lines.  We will get a definition for the derivative of a function 

and calculate the derivatives of some functions using this definition.  Then we will examine some of the 

properties of derivatives, see some relatively easy ways to calculate the derivatives, and begin to look at 

some ways we can use derivatives.  Chapter 2  will emphasize what derivatives are, how to calculate them, 

and some of their applications. 
 

This section begins with a very graphical approach to slopes of tangent lines.  It then examines the problem 

of finding the slopes of the tangent lines for a single function, y = x2 , in some detail, and illustrates how 

these slopes can help us solve fairly sophisticated problems. 

 
Slopes of Tangent Lines:  Graphically 
 
Fig. 1  is the graph of a function  y = f(x).  We can use the information in the graph to fill in the table: 
 

x y = f(x) m(x)  =  the estimated SLOPE of the tangent 

   line to y=f(x) at the point (x,y) 
                                                                           
0 0  1 
1 1  0 
2 0  – 1 
3 – 1  0 

4 1  1 
5 2  1/2 

 

We can estimate the values of  m(x) at some non-integer values of x,   

m(.5) ≈ 0.5  and  m(1.3) ≈ –0.3,  and even over entire intervals,  if  0 < x < 1, 

then  m(x) is positive.  
 

The values of  m(x)  definitely depend on the values of  x ,  and  m(x)  is a 

function of  x.  We can use the results in the table to help sketch the graph of  

m(x)  in Fig. 2. 
 

Practice 1: The graph of  y = f(x)  is given in Fig. 3.  Set up a table of values 

for  x  and  m(x)  (the slope of the line tangent to the graph of  

 y=f(x) at the point (x,y) )  and then graph the function  m(x). 
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In some applications, we need to know where the graph of a function  f(x)  has horizontal tangent lines (slopes = 0).  

In  Fig. 3, the slopes of the tangent lines to graph of  y = f(x)  are  0  when  x = 2  or  x ≈  4.5  . 
 

Practice 2: At what values of  x  does the graph of  y = g(x)   

 in Fig. 4  have horizontal tangent lines? 
 
 

 

Example 1: Fig. 5 is the graph of the  

 height of a rocket at time t.  Sketch the graph of the velocity of the rocket  

 at time t.  (Velocity is the slope of the tangent to the graph of position  

 or height.) 
 

 

 

Solution: The lower graph in Fig. 6  shows the velocity of the rocket. 

 

 

 

Practice 3: Fig. 7 shows the temperature during a summer day  

in Chicago.  Sketch the graph of the rate at which the temperature  

is changing.  (This is just the graph of the slopes of the lines which  

are tangent to the temperature graph.) 
 
 
 

The function  m(x) , the slope of the line tangent to 

the graph of f(x),  is called the   derivative of f(x) .  

We have used the idea of the slope of the tangent 

line throughout Chapter 1.  In the Section 2.1, we 

will formally define the derivative of a function 

and begin to examine some of the properties of the 

derivative function, but first lets see what we can 

do when we have a formula for  f(x).   
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Tangents to y = x2   
 
When we have a formula for a function, we can determine the slope  

of the tangent line at a point  ( x, f(x) ) by  calculating  the slope of 

the secant line through the points  ( x, f(x) )  and  ( x+h, f(x+h) ),   
 

msec = 
f(x+h) – f(x)
(x+h) – (x)    ,  and then taking the limit of   msec    

as  h approaches 0  (Fig. 8) :  
 

 mtan =  

! 

lim
h"0

 msec   = 

! 

lim
h"0

 
f (x + h) # f (x)

(x + h) # (x)
 . 

 
Example 2: Find the slope of the line tangent to the graph of  y = f(x) = x2  at the point (2,4).  (Fig. 9). 
 

Solution: In this example  x = 2 , so  x + h = 2 + h  and  f(x + h) = f(2+h) = (2+h)2 
.   

  The slope of the tangent line at  (2,4)  is    
  

  mtan =  

! 

lim
h"0

  msec  =  

! 

lim
h"0

 
f (2 + h) # f (2)

(2 + h) # (2)
  

 

  =  

! 

lim
h"0

 
(2 + h)

2
# (2)

2

(2 + h) # (2)
    =  

! 

lim
h"0

 
4 + 4h + h

2
# 4

h
  

 

  =  

! 

lim
h"0

 
4h + h

2

h
 = 

! 

lim
h"0

 
h(4 + h)

h
  =  

! 

lim
h"0

 (4 + h)  =  4 .  

 The tangent line to the graph of  y = x2  at the point (2,4) has slope  4 . 

 
 We can use the point–slope formula for a line to find the equation of the tangent line: 
  y – yo = m(x – xo)   so  y – 4 = 4(x – 2)  and  y = 4x – 4. 

 
Practice 4: Use the method of Example 2  to show that the slope of the line tangent to the graph of  
 y = f(x) = x2  at the point (1,1) is  mtan = 2.   Also find the values of  mtan at  (0,0) and  (–1,1). 
 
It is possible to find the slopes of the tangent lines one point at a time, but that is not very efficient.   

You should have noticed in the Practice 4 that the algebra for each point was very similar, so let's do all the 

work once for an arbitrary point  ( x, f(x) ) = ( x, x2 )  and then use the general result for our particular 

problems.  The slope of the line tangent to the graph of  y = f(x) = x2  at the arbitrary point  ( x, x2 )  is 
 

 mtan =  

! 

lim
h"0

 
f (x + h) # f (x)

(x + h) # (x)
 =  

! 

lim
h"0

 
(x + h)

2
# (x)

2

(x + h) # (x)
  =  

! 

lim
h"0

 
x

2
+ 2xh + h

2
# x

2

h
  

 = 

! 

lim
h"0

 
2xh + h

2

h
  =   

! 

lim
h"0

 
h(2x + h)

h
  =  

! 

lim
h"0

 (2x + h)  =  2x . 
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The slope of the line tangent to the graph of y = f(x) = x2  at the point  (x, x2)  is  mtan = 2x.  We can use 

this general result at any value of x without going through all of the calculations again.  The slope of the 
line tangent to y = f(x) = x2  at the point  (4, 16) is  mtan = 2(4) = 8  and  the slope at  (π, π2 )  is  

mtan = 2(π) = 2π .  The value of x determines where we are on the curve ( at y = x2 )  as well as the slope 

of the tangent line,  mtan = 2x , at that point.  The slope mtan = 2x  is a function of  x  and is called the 

derivative of y =  x2 . 
 

Simply knowing that the slope of the line tangent to the graph of  y = x2   is  mtan = 2x  at a point  (x,y)  

can help us quickly find the equation of the line tangent to the graph of  y = x2  at any point and answer a 

number of difficult–sounding questions. 
 
Example 3: Find the equations of the lines tangent to y = x2  at  (3, 9)  and  (p, p2). 
 
Solution:  At  (3, 9), the slope of the tangent line is  2x = 2(3) = 6, and the equation of the line is 
  y – yo = m(x – xo)   so  y – 9 = 6(x – 3)  and  y = 6x – 9. 

  At  (p, p2), the slope of the tangent line is  2x = 2(p) = 2p,  and the equation of the line is 
  y – yo = m(x – xo)   so  y – p2 = 2p(x – p)  and  y = 2px – p2. 

 

Example 4: A rocket has been programmed to follow the path  y = x2   in  

 space  (from left to right along the curve), but an emergency has arisen and  

 the crew must return to their base which is located at coordinates  (3,5).  At  

 what point on the path  y = x2  should the captain turn off the engines so the  

 ship will coast along the tangent to the curve to return to the base?  (Fig. 10) 
 

Solution:  You might spend a few minutes trying to solve this problem  
 without using the relation   mtan = 2x, but the problem is much  

 easier if we do use that result. 
 

 Lets assume that the captain turns off the engine at the point  (p,q)  on 

the curve  y = x2 , and then try to determine what values  p  and  q must have so that the resulting 

tangent line to the curve will go through the point  (3,5).  The point  (p,q)  is on the curve  y = x2 , so   

 q = p2 ,  and the equation of the tangent line, found in Example 3,  is  y  =  2px – p2  .  

 

 To find the value of  p  so that the tangent line will go through the point  (3,5),  we can substitute the 

values  x = 3  and  y = 5  into  

 the equation of the tangent line and solve for  p : 
 
 y  =  2px – p2    so  5 = 2p(3) – p2   and   p2 – 6p + 5 = 0. 
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 The only solutions of  p2 – 6p + 5 = (p – 1)(p – 5) = 0  are   

 p = 1  and  p = 5, so the only possible points are  (1,1)  and  

(5,25).  You can verify that the tangent lines to  y = x2  at  (1,1)  

and  (5,25)  go through the base at the point (3,5)  (Fig. 11).  

Since the ship is moving from left to right along the curve, the 

captain should turn off the engines at the point  (1,1).  Why not 

at  (5,25)? 
 

Practice 5: Verify that if the rocket engines in Example 4 are 

shut off at  (2,4), then the rocket will go through the 

point  (3,8). 
 

PROBLEMS  
 
1. Use the function in Fig. 12 to fill in the table  and then graph  m(x). 

 x y = f(x) m(x)  =  the estimated slope of the tangent 
  line to y=f(x) at the point (x,y) 
                                                            

0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

 
2. Use the function in Fig. 13 to fill in the table  and then graph  m(x). 

 x y = g(x) m(x)  =  the estimated slope of the tangent 
  line to y=g(x) at the point (x,y) 
                                                           
0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

 
3. (a) At what values of  x  does the graph of  f  in Fig. 14  have a 

horizontal tangent line? 

 (b) At what value(s)  of  x  is the value of  f  the largest?  smallest? 

 (c) Sketch the graph of  m(x) = the slope of the line tangent to the graph  

  of  f  at the point  (x,y). 
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4. (a) At what values of  x  does the graph of  g  in Fig. 15  have a  

  horizontal tangent line? 

 (b) At what value(s)  of  x  is the value of  g  the largest?  smallest? 

 (c) Sketch the graph of  m(x) = the slope of the line tangent to the  

  graph of  g  at the point  (x,y). 
 
 

5. (a) Sketch the graph of  f(x) = sin(x)  for  –3 ≤ x ≤ 10. 

 (b) Sketch the graph of  m(x) = slope of the line tangent to the graph of  sin(x)  at the point (x, sin(x)). 

 (c) Your graph in part (b) should look familiar.  What function is it? 
 

6. Match the situation descriptions with the corresponding time–velocity graphs in Fig. 16. 

 (a) A car quickly leaving from a stop sign.  

 (b) A car sedately leaving from a stop sign. 

 (c) A student bouncing on a trampoline.  

 (d) A ball thrown straight up. 

 (e) A student confidently striding across campus  

  to take a calculus test. 

 (f) An unprepared student walking across campus  

  to take a calculus test. 
 
 
Problems  7 – 10  assume that a rocket is following the path  y = x2 , from left to right. 
 
7. At what point should the engine be turned off in order to coast along the tangent line to a base at (5,16)?  
 
8. At what point should the engine be turned off in order to coast along the tangent line to a base at (3,–7)? 
 
9. At what point should the engine be turned off in order to coast along the tangent line to a base at (1,3)? 
 
10. Which points in the plane can not be reached by the rocket?  Why not? 
 

For each function  f(x)  in problems  11 – 16,  perform steps  (a) – (d): 
 

 (a) calculate  msec = 
f(x+h) – f(x)
(x+h) – (x)      and simplify  (b) determine   mtan   =   

! 

lim
h"0

  msec   

 
 (c) evaluate  mtan  at  x = 2 , (d) find the equation of the line tangent to the graph of  f  at  (2, f(2) ) 
 
11. f(x) = 3x – 7 12. f(x) = 2 – 7x 13. f(x) = ax + b   where  a  and  b  are constants 
 
14. f(x) =  x2  + 3x 15. f(x) =  8 – 3x2   16. f(x) = ax2 + bx + c  where a, b and c are constants 
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In problems 17  and  18, use the result that if  f(x) = ax2 + bx + c  then  mtan  = 2ax + b . 
 
17. f(x) =  x2  + 2x .  At which point(s)   (p, f(p) ) does the line tangent to the graph at that point also go  

 through the point  (3, 6) ? 
 
18. (a)  If  a ≠ 0 ,  then what is the shape of the graph of  y = f(x) = ax2 + bx + c ? 

 (b)  At what value(s) of  x  is the line tangent to the graph of  f(x)  horizontal? 

 

 
Section 2.0 PRACTICE  Answers 
 
Practice 1: Approximate values of  m(x)  are in the table below.  Fig. 17 is a graph of m(x). 
 

x y = f(x) m(x)  =  the estimated SLOPE of the tangent 

   line to y=f(x) at the point (x,y) 
                                                                           
0 2 –1  
1 1 –1  
2 1/3 0  
3 1 1  
4 3/2 1/2  
5 1 –2  

 
 
 
 

 

Practice 2: The tangent lines to the graph of  g  are horizontal (slope = 0) when  x ≈ –1, 1, 2.5, and 5. 
 

Practice 3: Fig. 18 is a graph of the approximate rate of temperature change  (slope). 
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Practice 4: y = x2.   

At (1,1),  mtan  =  

! 

lim
h"0

 
f (1+ h) # f (1)

(1+ h) # (1)
 =  lim

h"0
 
(1+ h)

2
# (1)

2

h
 =  lim

h"0
 
{1+ 2h + h

2
}#1

h
  

 

  =  

! 

lim
h"0

 
2h + h

2

h
 =  lim

h"0
 
h(1+ h)

h
 =   lim

h"0
 (2 + h)  =  2  

 

At (0,0),  mtan  =  

! 

lim
h"0

 
f (0 + h) # f (0)

(0 + h) # (0)
 =  lim

h"0
 
(0 + h)

2
# (0)

2

h
 =  

! 

lim
h"0

 
h

2

h
 =  

! 

lim
h"0

  h   =  0 . 

 

At (–1,1),  mtan  =  

! 

lim
h"0

 
f (#1+ h) # f (#1)

(#1+ h) # (#1)
   =  

! 

lim
h"0

 
{1# 2h + h

2
}#1

h
 =  

! 

lim
h"0

 
#2h + h

2

h
 =  –2 .

  
 
Practice 5: From Example 4 we know the slope of the tangent line is  mtan = 2x  so the slope of the 

tangent line at  (2,4)  is  mtan = 2x = 2(2) = 4.  The tangent line has slope  4  and goes through the point  

(2,4)  so the equation of the tangent line (using  y – yo = m(x – xo) ) is  y – 4 = 4(x – 2)  or  y = 4x – 4.  

The point  (3,8)  satisfies the equation  y = 4x – 4  so the point  (3,8)  lies on the tangent line. 
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2.1   THE DEFINITION OF DERIVATIVE 
 

The graphical  idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic 

definition of the derivative of a function.  We will use this definition to calculate the derivatives of several 

functions and see that the results from the definition agree with our graphical understanding.  We will also look 

at several different interpretations for the derivative, and derive a theorem which will allow us to easily and 

quickly determine the derivative of any fixed power of x. 
 

In the last section we found the slope of the tangent line  

to the graph of the function  f(x) = x2  at an arbitrary  

point  (x, f(x) ) by  calculating  the slope of the secant  

line through the points  (x, f(x) )  and  (x+h, f(x+h) ),   
 

 msec  =   
f(x+h) – f(x)
(x+h) – (x)    ,   

 
and then by taking the limit of   msec   as  h approached 0  (Fig. 

1).   That approach to calculating slopes of tangent lines is the 

definition of the derivative of a function. 

 
 

 Definition of the Derivative: 
   
  The derivative of a function  f  is a new function,  f '  (pronounced "eff prime"),   
 

  whose value at  x  is  f '(x) =  

! 

lim
h"0

 
f (x + h) # f (x)

h
   if the limit exists and is finite. 

     
 

This is the  definition of differential calculus, and you must know it and understand what it says.  The rest of 

this chapter and all of Chapter 3 are built on this definition as is much of what appears in later chapters.  It is 

remarkable that such a simple idea  (the slope of a tangent line)  and such a simple definition  (for the 

derivative  f ' )  will lead to so many important ideas and applications. 
 

 Notation: There are three commonly used notations for the derivative of  y = f(x): 

  f '(x) emphasizes that the derivative is a function related to  f 

  D( f ) emphasizes that we perform an operation on  f  to get the derivative of  f 

  
df
dx    emphasizes that the derivative is the limit of  

∆f
∆x   =  

f(x+h) – f(x)
h    . 

 
We will use all three notations so you can get used to working with each of them. 
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f '(x)  represents the slope of the tangent line to the graph of    

y = f(x)  at the point  (x, f(x) )  or  the instantaneous rate of 

change of the function  f  at the point  (x, f(x)). 

 

If, in Fig. 2,  we let  x  be the point  a+h,  then   

h = x – a.  As  h→0,  we see that  x→a  and   
 

! 

lim
h"0

 
f (a + h) # f (a)

h
 =   

! 

lim
x"a

 
f (x) # f (a)

x # a
 so    

 

f '(a) =  

! 

lim
h"0

 
f (a + h) # f (a)

h
 =  

! 

lim
x"a

 
f (x) # f (a)

x # a
 . 

We will use whichever of these two forms is more convenient algebraically. 
 
Calculating Some Derivatives Using The Definition 
 

Fortunately, we will soon have some quick and easy ways to calculate most derivatives, but first we will have 

to use the definition to determine the derivatives of a few basic functions.  In Section 2.2 we will use those 

results and some properties of derivatives to calculate derivatives of combinations of the basic functions.  Let's 

begin by using the graphs and then the definition to find a few derivatives. 
 

Example 1:  Graph  y = f(x) = 5  and estimate the slope of the tangent line at each point on the graph.  Then 

use the definition of the derivative to calculate the exact slope of the tangent line at each point.  Your 

graphic estimate and the exact result from the definition should agree. 
 

Solution: The graph of  y = f(x) = 5  is a horizontal line  (Fig. 3) which has  

  slope 0 so we should expect that its tangent line will also have slope 0. 
 
Using the definition:   Since  f(x) = 5, then  f(x+h) = 5,  so 
 

 D( f(x) ) ≡   

! 

lim
h"0

 
f (x + h) # f (x)

h
 =  

! 

lim
h"0

 
5 # 5

h
 =    

! 

lim
h"0

 
0

h
 =  0 . 

 
Using similar steps,  it is easy to show that the derivative of any constant function is 0. 
 

 Theorem: If  f(x) = k,  then  f '(x) = 0 . 
    
 
Practice 1: Graph  y = f(x) = 7x  and estimate the slope of the tangent line at each point on the graph.   

 Then use the definition of the derivative to calculate the exact slope of the tangent line at each point. 
 
Example 2: Determine the derivative of  y = f(x) = 5x3  graphically and using the definition.  Find  

 the equation of the line tangent to  y = 5x3  at the point  (1,5). 
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Solution:   It appears that the graph of  y = f(x) = 5x3  (Fig. 4)  is increasing  so 

the slopes of  the tangent lines are positive except perhaps at  x = 0 

 where the graph seems to flatten out. 
 

Using the definition:  Since  f(x) = 5x3,  then  

 f(x+h) = 5(x+h)3 = 5(x3 + 3x2h + 3xh2 + h3 )  so 
 

f '(x) ≡   

! 

lim
h"0

 
f (x + h) # f (x)

h
  the definition 

 

 =

! 

lim
h"0

 
5(x

3
+ 3x

2
h + 3xh

2
+ h

3
) # 5(x

3
)

h
  eliminate  5x3 – 5x3  

 

 =  

! 

lim
h"0

 
15x

2
h +15xh

2
+ 5h

3

h
  

 =

! 

lim
h"0

 
h(15x

2
+15xh + 5h

2
)

h
  divide by  h 

   
 =  

! 

lim
h"0

 (15x
2

+15xh + 5h
2
)  =  15x2 + 0 + 0  =  15x2   

 
 so  D( 5x3 ) = 15x2  which is positive except when x=0,  and then 15x2 = 0. 
 

f '(x) = 15x2  is the slope of the line tangent to the graph of  f  at the point  ( x , f(x) ).  At the point (1,5), 

the slope of the tangent line is  f '(1) = 15(1)2 = 15.  From the point–slope formula, the equation of the 

tangent line to  f  is   y – 5 = 15( x – 1)  or  y = 15x – 10 . 
 

Practice 2: Use the definition to show that the derivative of  y = x3  is  
dy
dx   = 3x2 .  Find the equation of 

the line tangent to the graph of  y = x3  at the point  ( 2, 8 ). 
 

If  f  has a derivative at x, we say that  f  is  differentiable at  x.  If we have a point on the graph of a 

differentiable function and a slope (the derivative evaluated at the point), it is easy to write the equation of the 

tangent line. 
 

 Tangent Line Formula 

  If f  is differentiable at  a 

  then the equation of the tangent line to  f  at the point  (a ,f(a) ) is  y = f(a) + f '(a)(x – a) . 
     

 
Proof: The tangent line goes through the point  ( a , f(a) )  with slope  f '(a)  so, using the point–slope  

 formula,  y – f(a) = f '(a) (x – a)  or  y = f(a)  +  f '(a) (x – a).  
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Practice 3:  The derivatives  D( x ) = 1 , D( x2 ) = 2x , D( x3 ) = 3x2  exhibit the start of a pattern.  Without 

using the definition of the derivative,  what do you think the following derivatives will be?   D( x4 ) , 

D( x5 ) , D( x43 ) ,  D( x  ) = D( x1/2 )  and D( xπ ) .   

 (Just make an intelligent "guess" based on the pattern of the previous examples. )  
 

Before going on to the "pattern" for the derivatives of powers of x and the general properties of derivatives, 

let's try the derivatives of two functions which are not powers of x:  sin(x)  and  | x | . 
 

 Theorem: D( sin(x) )  =  cos(x) . 
    
 

The graph of  y = f(x) = sin(x)  is well–known  

(Fig. 5).  The graph has horizontal tangent lines  

(slope = 0) when  x = ± 
π
2   and  x = ± 

3π
2    and  

so on.  If 0 < x < 
π
2  , then the slopes of the 

tangent lines to the graph of y = sin(x)  are 

positive.  Similarly, if  
π
2  < x <  

3π
2   , then the slopes of the tangent lines are negative.  Finally, since the graph 

of y = sin(x)  is periodic, we expect that the derivative of  y = sin(x)  will also be periodic. 
 
Proof of the theorem:  Since  f(x) = sin(x),  f(x+h) = sin(x+h) = sin(x)cos(h) + cos(x)sin(h)     so 

 

f '(x) ≡   

! 

lim
h"0

 
f (x + h) # f (x)

h
   

 

=

! 

lim
h"0

 
{sin(x)cos(h) + cos(x)sin(h)}#{sin(x)}

h
  this limit looks formidable, but if we  

 just collect the terms containing  sin(x)  

 and then those containing  cos(x) we get 
 

= 

! 

lim
h"0

 sin(x) #
cos(h) $1

h
  +  cos(x) #

sin(h)

h

% 
& 
' 

( 
) 
* 

 now calculate the limits separately 

 

=

! 

lim
h"0

 sin(x)
# 
$ 
% 

& 
' 
( 
) lim
h"0

 
cos(h) *1

h

# 
$ 
% 

& 
' 
( 

 +  lim
h"0

 cos(x)
# 
$ 
% 

& 
' 
( 
) lim
h"0

 
sin(h)

h

# 

$ 
+ 

% 
+ 

& 

' 
+ 

( 
+ 

 the first and third limits do not  

 depend on  h,  and we calculated the  

 second and fourth limits in Section 1.2 
=  sin(x).(0)  +  cos(x).(1)   =  cos (x).      

 

So  D( sin(x) ) = cos(x) ,  and the various properties we expected of the derivative of  y = sin(x)  by examining 

its graph are true of  cos(x). 
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Practice 4:   Use the definition to show that  D( cos(x) ) = – sin(x) .  (This is similar to the situation for  f(x) = 

sin(x).  You will need the formula  cos(x+h) = cos(x).cos(h) – sin(x).sin(h).  Then collect all the terms 

containing  cos(x) and all the terms with  sin(x).  At that point you should recognize and be able to evaluate the 

limits.) 
 

Example 3:  For  y = |x|  find  dy/dx . 
 

Solution:   The graph of  y = f(x) = | x |   (Fig. 6)  is a "V" with its vertex  

 at the origin.  When  x > 0, the graph is just  y = |x| = x  which is a line  

 with slope  +1  so we should expect the derivative of |x| to be  +1.  When  

 x < 0, the graph is  y = |x| = –x   which is a line with slope  –1, so we  

 expect the derivative of |x|  to be  –1.  When x = 0, the graph has a corner,  

 and we should expect the derivative of  |x|  to be undefined at x = 0. 
 

Using the definition:  It is easiest to consider 3 cases in the definition of | x | :   x > 0,  x < 0  and   x = 0. 
 

If  x > 0,  then, for small values of h,  x + h > 0  so  Df(x) ≡  

! 

lim
h"0

 
| x + h |# | x |

h
 =  lim

h"0

 
h

h
 =  1. 

  

If  x < 0,  then, for small values of h, we also know that  x + h < 0  so  Df(x)  =   

! 

lim
h"0

 
#h

h
 =  –1.  

When  x = 0, the situation is a bit more complicated and 
 

Df(x) ≡ 

! 

lim
h"0

 
f (x + h) # f (x)

h
 =  lim

h"0
 
| 0 + h |# | 0 |

h
 =  lim

h"0
 
| h |

h
   which is undefined 

 

since   

! 

lim
h"0

+
 
| h |

h
 = +1  and   

! 

lim
h"0

#
 
| h |

h
 = –1 .    D( |x| ) =  



 +1 if  x > 0
 undefined if  x = 0
 –1 if  x < 0

 . 

 
Practice 5: Graph  y = | x – 2 |  and  y = | 2x | and use the graphs to determine  D( |x – 2| ) and D( | 2x | ). 
 

 
 
INTERPRETATIONS OF THE DERIVATIVE 
 

So far we have emphasized the derivative as the slope of the line tangent to a graph .  That interpretation is very 

visual and useful when examining the graph of a function,  and we will continue to use it.  Derivatives, however, 

are used in a wide variety of fields and applications, and some of these fields use other interpretations.  The 

following are a few interpretations of the derivative which are commonly used. 
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General  

Rate of Change f '(x)  is the rate of change of the function at x.  If the units for  x  are years and the units for  

f(x)  are people, then the units for   
df
dx   are  

people
year    ,  a rate of change in population. 

Graphical 

Slope f '(x) is the slope of the line tangent to the graph of f at the point ( x, f(x) ). 
 
Physical 

Velocity If  f(x)  is the position of an object at time  x, then f '(x) is the velocity of the object at time x.  

If the units for  x  are hours and  f(x)  is distance measured in miles, then the units for  

  f '(x) = 
df
dx   are  

miles
hour   ,  miles per hour, which is a measure of velocity. 

 

Acceleration   If  f(x) is the velocity of an object at time  x, then f '(x) is the acceleration of the object at time 

x.  If the units are for  x  are hours and  f(x)  has the units  
miles
hour   , then the units for  the 

acceleration f '(x)  = 
df
dx    are   

miles/hour
hour    =  

miles
hour2

  , miles per hour per hour. 

 

Magnification f '(x)  is the magnification factor of the function  f  for points which are close to  x.    

 If  a  and  b  are two points very close to x, then the distance between  f(a) and f(b) will be 

 close to  f '(x)  times the original distance between  a  and  b:  f(b) – f(a)   ≈  f '(x) ( b – a ) . 
  
Business 

Marginal Cost  If  f(x) is the total cost of  x  objects, then  f '(x) is the marginal cost, at a production level of  

x.  This marginal cost is approximately the additional cost of making one more object once we 

have already made x  objects.  If  the units for  x  are bicycles and the units for  f(x)  are 

dollars,  then the units for  f '(x) =  
df
dx    are  

dollars
bicycle  ,  the cost per bicycle. 

 

Marginal Profit If f(x) is the total profit from producing and selling  x  objects, then  f '(x)   is the marginal 

profit, the profit to be made from producing and selling one more object. 

 If  the units for  x  are bicycles and the units for  f(x)  are dollars,  then the units for  

f '(x) =  
df
dx    are  

dollars
bicycle  ,  dollars per bicycle, which is the profit per bicycle. 

 
In business contexts, the word "marginal" usually means the derivative or rate of change of some quantity. 

 

One of the strengths of calculus is that it provides a unity and economy of ideas among diverse applications.  The 

vocabulary and problems may be different, but the ideas and even the notations of calculus are still useful. 
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Example 4: A small cork is bobbing up and down,  

 and at time  t  seconds it is  h(t) = sin(t)  feet above  

 the mean water level  (Fig. 7).  Find the height, 

 velocity and acceleration of the cork when t = 2 seconds. 

 (Include the proper units for each answer.) 
 
 

Solution:  h(t) = sin(t)   represents the height of the cork at any time  t , so the height of the cork when   

 t = 2 is  h(2) = sin(2) ≈ 0.91 feet. 
 

The velocity is the derivative of the position, so  v(t) = 
d h(t)

dt    =  
d sin(t)

dt    = cos(t).   The derivative of 

position is the limit of  (∆h)/(∆t) , so the units are (feet)/(seconds).  After  2  seconds the velocity is  v(2) = 

cos(2) ≈ –0.42 feet per second = –0.42 ft/s . 
 

The acceleration is the derivative of the velocity, so   a(t) =  
d v(t)

dt    =   
d cos(t)

dt    = – sin(t) .  The derivative 

of velocity is the limit of  (∆v)/(∆t) , so the units are  (feet/second) / (seconds) or  feet/second2.  After  2  

seconds the acceleration is  a(2) = – sin(2) ≈ –0.91 ft/s2 . 
 
Practice 6:  Find the height, velocity and acceleration of the cork in the previous example after 1 second? 

 
A MOST USEFUL FORMULA:  D( xn )  
 
Functions which include powers of  x  are very common (every polynomial is a sum of terms which include  

powers of  x), and, fortunately, it is easy to calculate the derivatives of such powers.  The "pattern"  emerging 

from the first few examples in this section is, in fact, true for all powers of x.  We will only state and prove the 

"pattern" here for positive integer powers of x, but it is also true for other powers as we will prove later. 
 

 Theorem:   If  n  is a positive integer, then  D( xn ) = n.xn–1  . 
    
 

This theorem is an example of the power of generality and proof in mathematics.  Rather than resorting to  

the definition when we encounter a new power of  x  (imagine using the definition to calculate the derivative of  

x307 ), we can justify the pattern for all positive integer exponents n , and then simply apply the result for 

whatever exponent we have.  We know, from the first examples in this section, that the theorem is true for  n= 1, 

2 and 3 ,  but no number of examples would guarantee that the pattern is true for all exponents.  We need a proof 

that what we think is true really is true. 
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Proof of the theorem: Since  f(x) = xn , then  f(x+h) = (x+h)n ,  and in order to simplify   

 f(x+h) – f(x) = (x+h)n – xn , we will need to expand  (x+h)n.  However, we really only need to know the 

first two terms of the expansion and to know that all of the other terms of the expansion contain a power 

of h of at least 2.  The Binomial Theorem from algebra says  (for n > 3)  that 
 

(x+h)n =  xn + n.xn–1h + a.xn–2h2 + b.xn–3h3 + ... + hn   where  a  and  b   represent numerical coefficients.  

(Expand  (x+h)n  for at least a few different values of n to convince yourself of this result.) 
 

Then  D( f(x) )   ≡   

! 

lim
h"0

 
f (x + h) # f (x)

h
 =  

! 

lim
h"0

 
(x + h)

n
# x

n

h
  then expand to get 

 

= 

! 

lim
h"0

 
x
n + n # xn$1

h + a # xn$2
h

2 + b # xn$3
h

3 +  ... +  h
n{ }$ xn

h
  eliminate  xn – xn 

 

= 

! 

lim
h"0

 
n # x

n$1
h + a # xn$2

h
2 + b # xn$3

h
3 +  ... +  h

n{ }
h

   factor h out of the numerator 

 

= 

! 

lim
h"0

 
h # n # x

n$1 + a # xn$2
h + b # xn$3

h
2 +  ... +  h

n$1{ }
h

  divide by the factor h 

 
=  

! 

lim
h"0

 { n.xn–1 + a.xn–2h + b.xn–3h2 + ... + hn–1 } separate the limits 

 
=  n.xn–1  +  

! 

lim
h"0

 { a.xn–2h + b.xn–3h2 + ... + hn–1 } each term has a factor of h, and h→0 

 
=  n.xn–1  + 0   =  n.xn–1   so   D( xn ) =  n.xn–1  . 

 

Practice 7: Use the theorem to calculate  D( x5 ) ,  
d
dx ( x2 )  ,  D( x100 ) ,  

d
dt ( t31 )  ,  and  D( x0 ) .  

 

We will occasionally use the result of the theorem for the derivatives of all constant powers of x even though it 

has only been proven for positive integer powers, so far.  The result for all constant powers of  x  is proved in 

Section 2.9 
 

Example 5:  Find  D( 1/x )  and  
d
dx (  x  )  . 

 

Solution: D( 
1
x  ) = D(x–1) = –1x(–1)–1 = –1x–2 =  

–1
x2  .  

d
dx ( x )  = D( x1/2 ) = (1/2)x–1/2 = 

1
2 x  . 

 
These results can be obtained by using the definition of the derivative,  but the algebra is slightly awkward. 

 

Practice 8: Use the pattern of the theorem to find  D( x3/2 ) ,  
d
dx ( x1/3 )  ,  D( 

1
x  )  and   

d
dt ( t

π ) . 
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Example 6: It costs  x    hundred dollars to run a training program for  x  employees. 

(a)  How much does it cost to train  100  employees?  101 employees?   If you already need to train  100  

employees, how much additional will it cost to add 1 more employee to those being trained? 

(b)  For   f(x) = x   , calculate  f '(x)  and evaluate  f '  at  x = 100.  How does  f '(100)  compare with the 

last answer in part (a)? 
 

Solution: (a) Put  f(x) = x   = x1/2 hundred dollars,  the cost to train  x  employees.  Then  f(100) = $1000 

  and  f(101) = $1004.99 , so it costs  $4.99  additional to train the 101st employee. 
 

 (b) f '(x) = 
1
2   x–1/2  =  

1
2 x    so  f '(100) =  

1
2 100   =  

1
20    hundred dollars  =  $5.00 . 

  Clearly  f '(100) is very close to the actual additional cost of training the 101st  employee. 
 

 
 
IMPORTANT DEFINITIONS AND RESULTS 
 
 

Definition of Derivative: f '(x)  ≡   

! 

lim
h"0

 
f (x + h) # f (x)

h
  if the limit exists and is finite. 

 

Notations For The Derivative:    f '(x),  Df(x) ,  
d f(x)

dx     
 
Tangent Line Equation:  The line  y = f(a) + f '(a).( x – a )  is tangent to the graph of  f  at  ( a , f(a) ) . 
 

Formulas: D( constant ) = 0 

 D( xn ) =  n.xn-1         (proven for  n = positive integer: true for all constants  n) 

D( sin(x) ) = cos(x) and   D( cos(x) ) = –sin(x) 
 

D( |x| ) =  


  +1         if x > 0 
undefined    if x = 0

–1         if x < 0
   . 

 

Interpretations of  f '(x): Slope of a line tangent to a graph 

 Instantaneous rate of change of a function at a point 

 Velocity or acceleration 

 Magnification factor 

 Marginal change 
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PROBLEMS 
 

1. Match the graphs of the three functions in Fig. 8  2. Fig. 9 shows six graphs, three of which are  

 with the graphs of their derivatives.  derivatives of the other three.  Match the  

 functions with their derivatives. 
 
 

 

 

 

 

 

 

 
In problems 3 –  6,  find the slope   msec   of the secant line through the two given points and then  
calculate  mtan  =    

! 

lim
h"0

 msec . 

3. f(x) =  x2     (a)  (–2,4), (–2+h, (–2+h)2  ) (b)  (0.5, 0.25), (0.5+h, (0.5+h)2  ) 
 
4. f(x) = 3 + x2   (a)  (1,4), (1+h, 3+(1+h)2  ) (b)   (x, 3 + x2  ),  (x+h , 3 + (x+h)2  ) 
 
5. f(x) = 7x – x2   (a)  (1, 6), (1+h, 7(1+h) – (1+h)2 ) (b)  (x, 7x – x2  ), (x+h, 7(x+h) – (x+h)2 ) 
    
6. f(x) = x3 + 4x (a)  (1, 5),  (1+h, (1+h)3 + 4(1+h) ) (b)  (x, x3 + 4x),  (x+h, (x+h)3 + 4(x+h) ) 
 

7. Use the graph in Fig. 10 to estimate the values of these limits.  (It helps 

to recognize what the limit represents.) 
 

 (a) 

! 

lim
h"0

 
f (0 + h) # f (0)

h
  (b) 

! 

lim
h"0

 
f (1+ h) # f (1)

h
 (c) 

! 

lim
h"0

 
f (2 + h) #1

h
  

(d) 

! 

lim
w"0

 
f (3 + w) # f (3)

w
  (e)

! 

lim
h"0

 
f (4 + h) # f (4)

h
 (f) 

! 

lim
s"0

 
f (5 + s) # f (5)

s
  

  
8. Use the graph in Fig. 11 to estimate the values of these limits. 
 

 (a) 

! 

lim
h"0

 
g(h) # g(0)

h
  (b) 

! 

lim
h"0

 
g(1+ h) # g(1)

h
  (c)

! 

lim
h"0

 
g(2 + h) # 2

h
 

  

 (d) 

! 

lim
w"0

 
g(3+ w) # g(3)

w
  (e) 

! 

lim
h"0

 
g(4 + h) # g(4)

h
 (f) 

! 

lim
s"0

 
g(5 + s) # g(5)

s
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In problems  9 – 12 , use the Definition of the derivative to calculate  f '(x)  and then evaluate  f '(3). 

9. f(x) = x2  + 8 10. f(x) = 5x2  – 2x 
11. f(x) = 2x3 – 5x 12. f(x) = 7x3 + x 
 
13. Graph   f(x) = x2  ,  g(x) = x2  + 3  and  h(x) = x2  – 5 .  Calculate the derivatives of  f, g, and h. 
 
14. Graph  f(x) = 5x , g(x) = 5x + 2  and  h(x) = 5x – 7.  Calculate the derivatives of  f, g, and h. 
 

In problems 15 – 18, find the slopes and equations of the lines tangent to  y = f(x)  at the given points. 

15. f(x) = x2  + 8   at  (1,9) and (–2,12) 16.  f(x) = 5x2  – 2x  at  (2, 16) and (0,0) 

17. f(x) = sin(x)  at  (π, 0) and (π/2,1) 18. f(x) = | x + 3 |  at  (0,3) and (–3,0) 
 
19. (a) Find the equation of the line tangent to the graph of y = x2 + 1 at the point  (2,5). 
 (b) Find the equation of the line perpendicular to the graph of y = x2  + 1 at  (2,5). 
 (c) Where is the tangent to the graph of  y = x2  + 1  horizontal? 
 (d) Find the equation of the line tangent to the graph of y = x2 + 1  at the point  (p,q). 

(e) Find the point(s)  (p,q)  on the graph of  y = x2 + 1  so the tangent line to the curve at  (p,q)  goes 

through the point  (1, –7). 
 
20. (a) Find the equation of the line tangent to the graph of y = x3  at the point  (2,8). 
 (b) Where, if ever, is the tangent to the graph of  y = x3   horizontal? 
 (c) Find the equation of the line tangent to the graph of y = x3  at the point  (p,q). 

(d) Find the point(s)  (p,q)  on the graph of  y = x3  so the tangent line to the curve at  (p,q)  goes 

through the point  (16,0). 
 

21. (a) Find the angle that the tangent line to  y = x2  at  (1,1)  makes with the  x–axis. 

 (b) Find the angle that the tangent line to  y = x3  at  (1,1)  makes with the  x–axis. 

(c) The curves  y = x2  and  y = x3  intersect at the point  (1,1).  Find the angle of intersection of the 

two curves (actually the angle between their tangent lines) at the point  (1,1) . 
 

22. Fig. 12  shows the graph of  y = f(x).  Sketch the graph of  y = f '(x). 
 
23. Fig. 13  shows the graph of the height of an object at time  t.  Sketch the graph of the  

 object's upward velocity.  What are the units for each axis on the velocity graph? 
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24. Fill in the table with the appropriate units for  f '(x). 

 units for  x units for  f(x) units for  f '(x)          
hours miles 
people automobiles 
dollars pancakes 
days trout 
seconds miles per second 
seconds gallons 
study hours test points 

 
25. A  rock dropped into a deep hole will drop  d(x) = 16x2  feet in  x  seconds. 

(a) How far into the hole will the rock be after 4 seconds?  5 seconds? 

(b) How fast will it be falling at exactly  4  seconds?  5 seconds?  x seconds? 
 
26. It takes  T(x) = x2  hours to weave  x  small rugs.  What is the marginal production time to weave  

 a rug?  (Be sure to include the units with your answer.) 
 
27. It costs  C(x) = x   dollars to produce  x  golf balls.  What is the marginal production cost to make  

 a golf ball?  What is the marginal production cost when  x = 25?  when x= 100?  (Include units.) 
 

28. Define  A(x)  to be the area bounded by the  x  and  y  axes, the  

 line  y = 5, and a vertical line at  x  (Fig. 14).    
 
(a)  Evaluate  A(0), A(1), A(2)  and  A(3). 
 
 (b) Find a formula for  A(x)  for  x ≥ 0:  A(x) = ? 
 

 (c) Determine  
d A(x)

dx    . (d) What does   
d A(x)

dx     represent? 
  

 

29. Define  A(x)  to be the area bounded by the x–axis,  

 the line  y = x, and a vertical line at  x  (Fig. 15).    
 
 (a)  Evaluate  A(0), A(1), A(2)  and  A(3). 
 
 (b) Find a formula which represents  A(x)  for all  x ≥ 0:  A(x) = ? 
 

 (c) Determine  
d A(x)

dx    . (d) What does   
d A(x)

dx     represent? 
 
 

30. Find  (a)  D( x12  )          (b)  
d
dx ( 

7
x  )  (c)  D( 

1
x3  ) (d)  

d xe 
dx    (e)  D( | x–2 | ) 

31. Find  (a)  D( x9  ) (b)  
d x2/3

dx   (c)  D( 
1
x4  ) (d)  D( xπ  ) (e)  

d | x+5 |
dx   
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In problems 32 – 37, find a function  f  which has the given derivative. (Each problem has several correct 

answers, just find one of them.) 
 
32. f '(x) = 4x + 3 33. f '(x) = 3x2 + 8x 34. D( f(x) ) = 12x2 – 7  
 

35. 
d f(t)

dt    =  5 cos(t) 36. 
d f(x)

dx    = 2x – sin(x) 37. D( f(x) ) =  x + x2  

 
Section 2.1 PRACTICE  Answers 
 
Practice 1: The graph of  f(x) = 7x is a line through the origin.  The slope of the line is  7. 
 

For all x,  mtan =  

! 

lim
h"0

 
f (x + h) # f (x)

h
 =  

! 

lim
h"0

 
7(x + h) # 7x

h
 =  

! 

lim
h"0

 
7h

h
 =  

! 

lim
h"0

7  =  7 .     

 
Practice 2: f(x) = x3  so  f(x + h) = (x + h)3 = x3 + 3x2h + 3xh2 + h3  . 
 

 
dy
dx    =  

! 

lim
h"0

 
f (x + h) # f (x)

h
 =  

! 

lim
h"0

 
x

3 + 3x
2
h + 3xh

2 + h3{ }# xn

h
 

 

  =  

! 

lim
h"0

 
3x

2
h + 3xh

2
+ h

3

h
= 

! 

 lim
h"0

 (3x
2

+ 3xh + h
2
)   =  3x2 . 

 
 At the point  (2,8), the slope of the tangent line is  3(2)2 = 12  so the equation of the tangent  

 line is  y – 8 = 12(x – 2)   or  y = 12x –16. 
 

Practice 3: D( x4 ) = 4x3 ,  D( x5 ) = 5x4 ,  D( x43 ) = 43x42 ,  D( x1/2 ) = 
1
2  x–1/2 ,  D( xπ ) = πxπ–1 

 

Practice 4: D( cos(x) ) =  

! 

lim
h"0

 
cos(x + h) # cos(x)

h
 =  

! 

lim
h"0

 
cos(x)cos(h) # sin(x)sin(h) # cos(x)

h
  

  

 =  

! 

lim
h"0

  cos(x) 
cos(h) – 1

h   – sin(x) 
sin(h)

h     →  cos(x).(0) – sin(x).(1)  =  – sin(x)  . 

 

 
Practice 5: See Fig. 16  for the graphs of  y = | x – 2 |  and  y = | 2x |. 
 

 D( | x – 2 | ) =  


 +1 if x > 2
 undefined if x = 2
 –1 if x < 2

  

 

 D( | 2x | ) =  


 +2 if x > 0
 undefined if x = 0
 –2 if x < 0
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Practice 6: h(t) = sin(t)  so  h(1) = sin(1) ≈ 0.84  feet, 

 v(t) = cos(t)  so  v(1) =cos(1) ≈ 0.54  feet/second. 

 a(t) = –sin(t)  so  a(1) = –sin(1) ≈ –0.84  feet/second2 . 

 

Practice 7: D( x5 ) = 5x4,    
d x2

dx    = 2x1 = 2x ,    
d x100

dx    = 100x99 ,    
d t31

dt    =  31t30 ,   
  
 D( x0 ) = 0x–1 = 0  or  D( x0 ) = D( 1 ) = 0. 
 

Practice 8: D( x3/2 ) = 
3
2  x1/2 ,    

d x1/3

dx    =  
1
3  x–2/3 ,    D( x–1/2 ) = 

–1
2   x–3/2 ,    

d tπ
dt    =  π tπ–1  . 



2.2 Derivatives:  Properties and Formulas Contemporary  Calculus  
1 

2.2  DERIVATIVES:  PROPERTIES AND FORMULAS 
 

This section begins with a look at which functions have derivatives.  Then we'll examine how to calculate 

derivatives of elementary combinations of basic functions.  By knowing the derivatives of some basic 

functions and just a few differentiation patterns, you will be able to calculate the derivatives of a 

tremendous variety of functions.  This section contains most, but not quite all, of the general differentiation 

patterns you will ever need. 

 
WHICH FUNCTIONS HAVE DERIVATIVES? 
 

 Theorem:   If  a function is differentiable at a point,   

  then   it is continuous at that point. 
    
 

The contrapositive form of this theorem tells about some functions which do not have derivatives: 
 

 Contrapositive Form of the Theorem:   

  If f  is  not  continuous at a point, 

  then f  is  not  differentiable at that point. 
    
 
Proof of the Theorem: We assume that the hypothesis , f is differentiable at the point  c , is true  so  
  

  

! 

lim
h"0

 
f (c + h) # f (c)

h
 exists and equals  f '(c).  We want to show that  f  must necessarily be 

continuous at  c : 

! 

lim
h"0

 f (c + h)  =  f (c)  . 

 Since  f(c + h)  can be written as 

! 

f (c + h)  =  f (c) +
f (c + h) " f (c)

h

# 
$ 
% 

& 
' 
( 
) h ,  we have 

 

! 

lim
h"0

 f (c + h)  =  

! 

lim
h"0

 f (c) +
f (c + h) # f (c)

h

$ 
% 
& 

' 
( 
) 
* h

+ 

, 
- 

. 

/ 
0  

       =  

! 

lim
h"0

f (c)  +  lim
h"0

 
f (c + h) # f (c)

h

$ 
% 
& 

' 
( 
) 
* lim
h"0

(h)  =  f(c)  +  f '(c). 0  =  f(c) .    

 
Therefore  f  is continuous at  c . 

 
   

It is important to clearly understand what is meant by this theorem and what is not meant:  If the function is 

differentiable at a point, then the function is automatically continuous at that point.  If the function is 

continuous at a point, then the function may or may not have a derivative at that point.   

If the function is not continuous at a point, then the function is not differentiable at that point. 

 
Example 1: Show that  f(x) = [ x ] = INT(x) is not continuous and not differentiable at  2  (Fig. 1).   
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Solution: The one–sided limits, 

! 

lim
x"2

+
 INT(x) = 2  and   

 

! 

lim
x"2

#
 INT(x) = 1 ,  have different values  so  

! 

lim
x"2

 INT(x)  does not 

exist,  and   INT(x)  is not continuous at 2.  Since  f(x) = INT(x)  is  

 not continuous at 2,  it is not differentiable there. 
 

Lack of continuity is enough to imply lack of differentiability, but the  

next two examples show that continuity is not enough to guarantee 

differentiability. 
 
Example 2:  Show that  f(x) = | x |  is continuous  but  not  differentiable  

 at x = 0  (Fig. 2) 
 
Solution: 

! 

lim
x"0

 |x|  =  0  = |0|  so  f  is continuous at 0,  but  we showed in  

 Section 2.1  that  the absolute value function was not differentiable at  x = 0.   
 

 A function is not differentiable at a  cusp or a"corner." 
 

Example 3:  Show that  f(x) = 3
x    = x1/3  is continuous  but  not  differentiable at x = 0  (Fig. 3) 

 
Solution: 

! 

lim
x"0

#
 x

3  =  

! 

lim
x"0

+
 x

3  =  0  so   

 

! 

lim
x"0

 x
3 = 0 = 0   ,  and  f  is continuous at  0. 

 

f '(x) = 
1
3  x –(2/3)  =  

1
3 x 2/3 

    which is undefined  

 at  x = 0  so  f  is not differentiable at 0. 

 

 

 A function is not differentiable where its tangent line is vertical. 
 

Practice 1: At which integer values of  x  is the graph of  f  in Fig. 4  continuous?    differentiable?   
 

 Graphically,  a function is continuous if and only if its graph  

           is connected and does not have any holes or breaks.   
 

 Graphically, a function is differentiable if and only if it is  

            continuous and its graph is smooth with no  

            corners or vertical tangent lines.  
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DERIVATIVES OF ELEMENTARY COMBINATIONS OF FUNCTIONS 
 

Example 4: The derivative of  f(x) = x  is  Df(x)  = 1,  and the derivative of  g(x) = 5  is Dg(x) = 0.   

  What are the derivatives of their elementary combinations:  3f, f + g, f – g, f.g  and  f/g ? 
 
Solution: D( 3 f(x) ) = D( 3x ) = 3 = 3 D( f(x) ).   

 D( f(x) + g(x) ) = D( x + 5 ) = 1 =  D( f(x) ) + D( g(x) ) . 

D( f(x) – g(x) ) = D( x – 5 ) = 1  =  D( f(x) ) – D( g(x) ) . 
 
Unfortunately,  the derivatives of  f.g  and  f/g  don't follow the same easy patterns: 

D( f(x) . g(x) ) = D( 5x ) = 5  but   D( f(x) ) . D( g(x) ) = (1).(0)  = 0 ,  and 

D( f(x) / g(x) ) = D( x / 5 ) = 1/5  but  D( f(x) ) / D( g(x) )  is undefined. 

 These two very simple functions show that, in general,  D( f. g ) ≠ D( f ) . D( g ) and  D( f/g ) ≠ D( f ) / D( g ). 
 
 
The Main Differentiation Theorem below states the correct patterns for differentiating products and quotients. 
 
Practice 2:   For  f(x) = 6x + 8  and  g(x) = 2 , what are the derivatives of   3f, f+g, f–g, f. g  and  f/g  ?   
 

The following theorem says that the simple patterns in the example for constant multiples of functions and 

sums and differences of functions are true for all differentiable functions.  It also includes the correct 

patterns for derivatives of products and quotients of differentiable functions. 
 

 Main Differentiation Theorem: If  f and  g  are differentiable at  x ,  then 
 
  (a) Constant Multiple Rule: D( kf(x) )  =  kD( f(x) )  =  kDf       

    or  ( kf(x) ) ' = k f '(x) 
 
  (b) Sum Rule: D( f(x) + g(x) ) = D( f(x) ) + D( g(x) )  =  Df + Dg   

    or  ( f(x) + g(x) ) ' = f '(x) + g '(x) 
 
  (c) Difference Rule: D( f(x) – g(x) ) = D( f(x) ) – D( g(x) )   =  Df – Dg 

    or  ( f(x) – g(x) ) ' = f '(x) – g '(x) 
 
  (d) Product Rule: D( f(x). g(x) ) =  f(x) . D( g(x) ) + g(x).  D( f(x) ) = f Dg + g Df 

    or  ( f(x). g(x) ) '  =  f(x). g '(x) + g(x). f '(x) 
 

  (e) Quotient Rule: D( 
 f(x) 
g(x)   ) =  

 g(x).D( f(x) ) – f(x).D( g(x) ) 
 (g(x))2     

 

     =  
 gDf – fDg 

g2      or    
g(x).f '(x) – f(x).g '(x)

g2(x)     

      (provided  g(x) ≠ 0 ) 
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The proofs of parts (a), (b), and (c) of this theorem are straightforward, but parts (d) and (e) require some 

clever algebraic manipulations.  Lets look at an example first. 
 

Example 5: Recall that D( x2 ) = 2x  and D( sin(x) ) = cos(x).  Find D( 3sin(x) ) and 
d
dx ( 5x2 – 7sin(x) ) . 

 
Solution: D( 3sin(x) )  is an application of part (a) of the theorem with  k = 3  and  f(x) = sin(x)  so   

 D( 3sin(x) ) = 3 D( sin(x) ) = 3 cos(x). 
 
d
dx ( 5x2 – 7sin(x) )   uses part (c) of the theorem with  f(x) = 5x2  and  g(x) = 7sin(x)  so  

 
d
dx( 5x2 – 7sin(x) )  =   

d
dx( 5x2 )  – 

d
dx( 7sin(x) )  =  5 

d
dx( x2 )  – 7 

d
dx( sin(x) )  

   =  5( 2x ) – 7( cos(x) ) = 10x – 7 cos(x) . 
   

Practice 3: Find  D( x3 – 5sin(x) )   and   
d
dx( sin(x) – 4x3 )   . 

 
Practice 4: Fill in the values in the table for  D( 3f(x) ), D( 2f(x)+g(x) ), and D( 3g(x) – f(x) )  
 

x f(x) f '(x) g(x) g '(x) D( 3f(x) ) D( 2f(x) + g(x) ) D( 3g(x) – f(x) ) 
          
0 3 –2 –4 3  
1 2 –1 1 0 
2 4 2 3 1 

 

Proof of the Main Derivative Theorem  (a) and (c):  The only general fact we have about derivatives is the 

definition as a limit,  so our proofs here will have to recast derivatives as limits and then use some results about 

limits.  The proofs are applications of the definition of the derivative and results about limits. 
 

(a) D( kf(x) ) ≡ 

! 

lim
h"0

 
k # f (x + h) $ k # f (x)

h
= lim

h"0
 k #

f (x + h) $ f (x)

h
= 

! 

k " lim
h#0

 
f (x + h) $ f (x)

h
=  k.D(f(x)). 

(c) D( f(x) – g(x) ) =  

! 

lim
h"0

 
f (x + h) # g(x + h){ }# f (x) # g(x){ }

h
             

 =

! 

lim
h"0

 
f (x + h) # f (x){ }# g(x + h) # g(x){ }

h
= 

! 

lim
h"0

 
f (x + h) # f (x)

h
 #  lim

h"0
 
g(x + h) # g(x)

h
  

 
 =  D( f(x) )  –  D( g(x) ) . 

The proof of part (b)  is very similar to these two proofs, and is left for you as the next Practice Problem. 

The proof for the Product Rule and Quotient Rules will be given later. 
 
Practice 5: Prove part (b) of the theorem, the Sum Rule:  D( f(x) + g(x) )  = D( f(x) ) + D( g(x) ) . 

 
Practice 6: Use the Main Differentiation Theorem and the values in the table to fill in the rest of the table. 
 

x f(x) f '(x) g(x) g '(x) D( f(x).g(x) ) D( f(x)/g(x) ) D( g(x)/f(x) ) 
                      
0 3 –2 –4 3  
1 2 –1 1 0 
2 4 2 3 1 
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Example 6: Determine   D( x2 .sin(x) )  and    
d
dx ( 

x3

sin(x)  )  . 

Solution:  (a) We can use the Product Rule with  f(x) = x2  and  g(x) = sin(x) : 
 

 D( x2.sin(x) ) =  D( f(x).g(x) )  =  f(x).D( g(x) )  +  g(x).D( f(x) ) 

  =  ( x2 ).D( sin(x) )  +  sin(x).D(  x2 ) 

  =  ( x2 ).( cos(x) )  +  sin(x).( 2x )  =  x2.cos(x)  +  2x.sin(x) 
 

(b) We can use the Quotient Rule  with  f(x) =  x3   and  g(x) = sin(x) : 
 

  
d
dx ( 

x3

sin(x)  )  =  
g(x).D( f(x) ) – f(x).D( g(x) )

g2(x)
   =  

 sin(x).D( x3 ) – x3.D( sin(x) )
( sin(x) )2

   

 

 =  
sin(x).(3x2) – x3.cos(x)

sin2(x)
    =   

3x2 sin(x) – x3 cos(x)
sin2(x)

  

 

Practice 7: Determine   D( (x2 + 1)(7x – 3) ) ,  
d
dt (  

3t – 2
5t + 1  )    and  D( 

cos(x)
x    ) . 

 
Proof of the Product Rule:  The proofs of parts (d) and (e) of the theorem are complicated but only  

 involve elementary techniques, used in just the right way.  Sometimes we will omit such computational 

proofs, but the Product and Quotient Rules are fundamental techniques you will need hundreds of times. 
  

By the hypothesis, f and g are differentiable so  

! 

lim
h"0

 
f (x + h) # f (x)

h
= f '(x)  and  

! 

lim
h"0

 
g(x + h) # g(x)

h
= g '(x). 

Also, both f  and  g  are continuous (why?)  so   

! 

lim
h"0

 f(x+h) = f(x)  and   

! 

lim
h"0

 g(x+h) = g(x). 

 
 (d) Product Rule:  Let  P(x) = f(x).g(x).  Then  P(x+h)  = f(x+h).g(x+h). 
 

D( f(x).g(x) ) =  D( P(x) ) =  

! 

lim
h"0

 
P(x + h) # P(x)

h
=  

! 

lim
h"0

 
f (x + h)g(x + h) # f (x)g(x)

h
   

 

 =

! 

lim
h"0

 
f (x + h)g(x + h) + # f (x)g(x + h) + f (x)g(x + h){ }# f (x)g(x)

h
 adding and subtracting   

     f(x)g(x+h) 
 

=

! 

lim
h"0

 
f (x + h)g(x + h) # f (x)g(x + h)

h
 +  lim

h"0
 
f (x)g(x + h) # f (x)g(x)

h
 regrouping the terms 

 

=

! 

lim
h"0

  g(x + h)  ( )  .( f(x+h) – f(x)
h   )  +  (  f(x) ).( 

g(x+h) – g(x)
h   ) finding common factors 

  ↓ ↓ ↓ ↓ taking  limit as  h → 0 

  ( g(x)) . ( f '(x) )  + ( f(x) ) . ( g '(x) )  =  g Df  +  f Dg . 
 
(e) The steps for a proof of the Quotient Rule are shown in Problem 55. 
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USING THE DIFFERENTIATION RULES 
 

You definitely need to memorize the differentiation rules, but it is vitally important that you also know how 

to use them.  Sometimes it is clear that the function we want to differentiate is a sum or product of two 

obvious functions, but we commonly need to differentiate functions which involve several operations and 

functions.  Memorizing the differentiation rules is only the first step in learning to use them. 
 
Example 7: Calculate  D( x5 + x.sin(x) ) . 

Solution:  This function is more difficult because it involves both an addition and a multiplication.  Which 

rule(s)  should we use, or, more importantly, which rule should we use first? 
 

 D( x5 + x.sin(x) ) =  D( x5 ) + D( x.sin(x) ) applying the Sum Rule and trading  

   one derivative for two easier ones 
 
 =  5x4   + { x.D( sin(x) ) + sin(x).D( x ) } applying the product rule to D( x.sin(x) ) 
 
 =  5x4   + x.cos(x)  +  sin(x)        this expression has no more derivatives so we are done. 
 

If you were evaluating the function  x5 + x sin(x)  for some particular value of  x,  you would  (1) raise  x  to 

the  5th power, (2) calculate  sin(x), (3)  multiply  sin(x) by  x, and (4) your FINAL evaluation step, SUM the 

values of   x5  and  x sin(x).   
 

 The FINAL step of your evaluation of  f  indicates  

 the FIRST rule to use to calculate the derivative of  f. 
 

Practice 8: Which differentiation rule should you apply  FIRST  for each of the following: 
 

 (a) x.cos(x) – x3.sin(x) (b) (2x – 3).cos(x) (c) 2cos(x) – 7x2  (d) 
cos(x) + 3x

x    

 

Practice 9: Calculate  D(  
x2 – 5
sin(x)    )   and    

d
dt (  

t2 – 5
t.sin(t)  )   . 

 

Example 8: A weight attached to a spring is oscillating up and down.   

 Over a period of time, the motion becomes "damped" because of  

 friction and air resistance  (Fig. 5), and its height at time  t  seconds 

 is  h(t) = 5 +  
sin(t)
1 + t    feet.   

 What are the height and velocity of  the weight after 2 seconds? 
  
Solution: The height is   
 

 h(2) = 5 +  
sin(2)
1 + 2    = 5 +  

.909
3    =  5.303  feet above the ground.   
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 The velocity is  h '(2) .   
 

 h '(t) = 0 +   
(1+t).D( sin(t) ) – sin(t).D( 1+t )

(1 + t)2
   =  

(1 + t).cos(t) – sin(t)
(1 + t)2

  

 

so  h '(2) =  
3 cos(2) – sin(2)

9    =  
–2.158

9    ≈  – 0.24 feet per second . 
 

Practice 10: What are the height and velocity of the weight in the previous example after 5  

 seconds?  What are the height and velocity of the weight be after a "long time" ? 
 
Example 9: Calculate  D( x.sin(x).cos(x) )  . 

Solution:  Clearly we need to use the Product Rule since the only operation in this function is multiplication, 

but the Product Rule deals with a product of two functions and we have the product of three ;  x  and  

sin(x)  and  cos(x) .  However,  if we think of our two functions as  f(x) = x.sin(x)  and  g(x) = cos(x), then 

we do have the product of two functions  and  
 
 D( x.sin(x).cos(x) ) =  D( f(x).g(x) )  =  f(x).D( g(x) )  +  g(x).D( f(x) ) 

   =  x sin(x).D( cos(x) )  +  cos(x).D( x sin(x) ) 
 

 We are not done, but we have traded one hard derivative for two easier ones.  We know that  

 D( cos(x) ) =  –sin(x),  and we can use the Product Rule (again)  to calculate D( x sin(x) ).  Then the 

last line of our calculation becomes 
 

  = x sin(x).( –sin(x) )  + cos(x).{ x D( sin(x) ) + sin(x) D( x ) } 
 
  = –x sin2(x) + cos(x) { x cos(x)  +  sin(x) (1)} = –x sin2(x) + x cos2(x) + cos(x) sin(x) . 
 

EVALUATING A DERIVATIVE AT A POINT 
 
The derivative of a function  f  is a new function  f '(x)  which gives the slope of the line tangent to the  

graph of  f  at each point  x.  To find the slope of the tangent line at a particular point  ( c, f(c) )  on the graph  

of  f,  we should first calculate the derivative  f '(x)  and then evaluate the function  f '(x)  at the point   

x = c  to get the number  f '(c).  If you mistakenly evaluate  f  first, you get a number  f(c), and the derivative 

of a constant is always equal to  0. 
 

Example 10: Determine the slope of the line tangent to  f(x) = 3x + sin(x)  at (0, f(0) ) and (1, f(1 )): 
 

Solution: f '(x) = D( 3x + sin(x) ) = D(3x) + D( sin(x) ) = 3 + cos(x).  When  x = 0, the graph of   

 y = 3x + sin(x)  goes through the point  ( 0, 3(0)+sin(0) )  with slope  f '(0) = 3 + cos(0) = 4.  When  

x = 1, the graph goes through the point  ( 1, 3(1)+sin(1) ) = (1, 3.84)  with slope  

f '(1) = 3 + cos(1) ≈ 3.54.  
 
Practice 11: Where do  f(x) = x2 – 10x + 3  and  g(x) = x3 – 12x have a horizontal tangent lines ? 
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IMPORTANT RESULTS OF THIS SECTION 
 
Differentiability and Continuity: If a function is differentiable then it must be continuous. 

If a function is not continuous then it cannot be differentiable. 

A function may be continuous at a point and not differentiable there. 
 

Graphically: CONTINUOUS  means  connected.   

 DIFFERENTIABLE  means  continuous, smooth and not vertical. 

 
Differentiation Patterns: D( kf(x) ) =  k.D( f(x) )  

D( f + g ) =  Df  +  Dg 

D( f – g ) =  Df  –  Dg 

D( f.g ) =  f.Dg  +  g.Df 
 

D( f/g ) =  
g.Df  –  f.Dg

g2   

 
The FINAL STEP used to evaluate f  indicates the FIRST RULE to use to differentiate f.  
 

To evaluate a derivative at a point,  first differentiate and then evaluate. 
 
 
 
PROBLEMS 
 
 
1. The graph of  y = f(x)  is given in Fig. 6. 

 (a)  At which integers is  f  continuous?  

 (b)  At which integers is  f  differentiable? 
 
 
2. The graph of  y = g(x)  is given in Fig. 7. 

 (a)  At which integers is  g  continuous?  

 (b)  At which integers is  g  differentiable? 

 
 
3. Use the values given in the table to determine the values of  f.g , D( f.g ) , f/g  and  D( f/g ) . 
 

x f(x) f '(x) g(x) g '(x) f(x).g(x) D( f(x).g(x) ) f(x)/g(x) D( f(x)/g(x) ) 
           

0 2 3 1 5 
1 –3 2 5 –2 
2 0 –3 2 4 
3 1 –1 0 3 
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4. Use the values given in the table to determine the values of  f.g , D( f.g ) , f/g  and  D( f/g ) . 
 

x f(x) f '(x) g(x) g '(x) f(x).g(x) D( f(x).g(x) ) f(x)/g(x) D( f(x)/g(x) ) 
           
0 4 2 3 –3 
1 0 3 2 1 
2 –2 5 0 –1 
3 –1 –2 –3 4 

 

 

5.   Use the information in Fig. 8  to plot the values of the functions   

 f + g, f.g and  f/g  and their derivatives  at  x = 1, 2  and  3 .  

 

6. Use the information in Fig. 8  to plot the values of the functions   

 2f, f – g  and  g/f  and their derivatives at  x = 1, 2  and  3 .  
 

 
 
7. Calculate  D( (x – 5)(3x + 7) )  by  (a)  using the product rule  and  (b)  expanding the product and  

 then differentiating.  Verify that both methods give the same result. 
 

8. Calculate  D( x  .sin(x) ) . 9. Calculate  
d
dx ( 

cos(x)
x2 

 )  . 

 
10. Calculate  D( sin(x) + cos(x) ) . 11. Calculate  D( sin2(x) )   and  D( cos2(x) ) . 
 

12. Calculate  D( sin(x) ),  
d
dx ( sin(x) + 7 ) ,  D( sin(x) – 8000 )  and  D( sin(x)  +  k ). 

 
13. Find values for the constants  a, b  and  c  so that the parabola  f(x) = ax2  + bx + c  has  f(0) = 0,  

 f '(0) = 0  and  f '(10) = 30. 
 
14. If  f  is a differentiable function,  

 (a)  how are the graphs of  y = f(x)  and   y = f(x) + k  related?   

 (b)  how are the derivatives of  f(x)  and  f(x) + k  related? 
 
15. If  f  and  g  are differentiable functions which always differ by a constant  ( f(x) – g(x) = k  for  

 all  x ),  then what can you conclude about their graphs and their derivatives? 
 
16. If  f  and  g  are differentiable functions whose sum is a constant  ( f(x) + g(x) = k for all  x), then what  

 can you conclude about  (a)   their graphs?   (b)  their derivatives? 
 

17. If the product of  f  and  g  is a constant  (  f(x)g(x) = k  for all  x), then how are   
D( f(x) )

f(x)     

 and   
D( g(x) )

g(x)     related? 
 
18. If the quotient of  f  and  g  is a constant  ( f(x)/g(x) = k  for all x), then how are  g.f '  and  f.g ' related? 
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In problems  19 – 28,  (a) calculate  f '(1)  and  (b) determine when  f '(x) = 0. 
  
19. f(x) =  x2  – 5x + 13 20. f(x) = 5x2  – 40x + 73 21. f(x) =  3x – 2cos(x) 
 
22. f(x) = | x + 2 | 23. f(x) =  x3  + 9x2  + 6 24. f(x) =  x3 + 3x2 + 3x  – 1 
 

25. f(x) =  x3  + 2x2  + 2x  – 1 26. f(x) =  
7x

x2  + 4
     

27. f(x) =  x.sin(x)  and  0 ≤ x ≤ 5.  (You may need to use the Bisection Algorithm or the "trace" option  

 on a calculator to approximate where  f '(x) = 0.) 
 
28. f(x) =  A x2  + B x  + C       A, B  and  C  are constants and  A ≠ 0.  
 
29. f(x) = x3  +  A x2  + B x  + C  with constants  A, B  and  C.  Can you find conditions on the  

 constants  A, B  and  C which will guarantee that the graph of  y = f(x)  has two distinct "vertices"? 

(Here a "vertex" means a place where the curve changes from increasing to decreasing or from 

decreasing to increasing.) 
 
Where are the functions in problems  30 – 37  differentiable? 
 

30. f(x) = |x| cos(x) 31. f(x) =   
x – 5
x + 3  32. f(x) = tan(x)  

 

33. f(x) =   
x2 + x
x2 – 3x

    34. f(x) =  | x2  – 4 | 35. f(x) =  |  x3  – 1 | 

 

36. f(x) =  { 0 if x < 0
 sin(x) if x ≥ 0   37. f(x) =  { x if x < 0

 sin(x) if x ≥ 0   

 

38. For what value(s) of  A  is  f(x) =  
 Ax – 4 if x < 2
 x2 + x if x ≥ 2    differentiable at  x = 2? 

 

39. For what values of A and B  is  f(x) =  
 Ax + B if x < 1
 x2 + x if x ≥ 1  differentiable at  x = 1? 

 
40. An arrow shot straight up from ground level with an initial velocity of  128 feet per second will be at 

height  h(x) = –16x2 + 128x  feet at  x  seconds.  (Fig.9) 

 (a) Determine the velocity of the arrow when  x = 0, 1 and 2 seconds. 

 (b) What is the velocity of the arrow, v(x), at any time  x? 

 (c) At what time  x  will the velocity of the arrow be  0?  

 (d) What is the greatest height the arrow reaches? 

 (e) How long will the arrow be aloft? 

 (f) Use the answer for the velocity in part (b) to determine the  

  acceleration, a(x) = v '(x), at any time  x. 
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41. If an arrow is shot straight up from ground level on the moon with an initial velocity of 128 feet  

 per second, its height will be  h(x) = –2.65x2 + 128x  feet at  x  seconds.  Do parts (a) – (e) of problem 

40 using this new equation for  h. 
 
42. In general, if an arrow is shot straight upward with an initial velocity of 128 feet per second from  
 ground level on a planet with a constant gravitational acceleration of  g  feet per second2 , then its 

height will be h(x) = – 
g
2  x2 + 128x  feet at  x  seconds.  Answer the questions in problem 40 for 

arrows shot on Mars and Jupiter  (Use the values in Fig. 10). 
 
43. If an object on Earth is propelled upward from ground level with  
 an initial velocity of  v0  feet per second, then its height at  x   

 seconds will be  h(x) = –16x2 +v0x  .   

 (a) What will be the object's velocity after  x  seconds?  

 (b) What is the greatest height the object will reach? 

 (c) How long will the object remain aloft? 
 
44. In order for a  6 foot tall basketball player to dunk the ball, the player  

 must achieve a vertical jump of about  3  feet.  Use the information  

 in the previous problems to answer the following questions. 

 (a) What is the smallest initial vertical velocity the player can  

  have to dunk the ball? 

 (b) With the initial velocity achieved in part (a), how high would the player jump on the moon? 
 
45. The best high jumpers in the world manage to lift their centers of mass approximately  6.5  feet.   

 (a) What is the initial vertical velocity these high jumpers attain? 

 (b) How long are these high jumpers in the air? 

 (c) With the initial velocity in part (a), how high would they lift their centers of mass on the moon? 
 
 

46. (a) Find the equation of the line  L  which is tangent to the curve  y = 
1
x   at  

  the  point (1,1) . 
 
 (b) Determine where  L  intersects the  x–axis  and the  y–axis. 
 
 (c) Determine the area of the region in the first quadrant bounded by  L, the   

  x–axis  and the y–axis. (Fig. 11) 
  

 

47. (a) Find the equation of the line  L  which is tangent to the curve  y = 
1
x   at the  point (2, 

1
2  ) . 

 (b) Graph  y = 1/x  and L  and determine where  L  intersects the  x–axis  and the  y–axis. 

 (c) Determine the area of the region in the first quadrant bounded by  L, the  x–axis  and the y–axis. 

Object      g  (ft/sec   )    g (cm/sec   )

Mercury        11.8             358

Venus           20.1             887

Earth            32.2             981

      moon       5.3             162

Mars             12.3            374

Jupiter           85.3           2601

Saturn           36.6           1117

Uranus          34.4           1049

Neptune         43.5          1325

Pluto              7.3            221

Fig. 10:  Values of  g

Source:  CRC Handbook of   

                Chemistry and Physics 

22
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48. (a) Find the equation of the line  L  which is tangent to the curve  y = 
1
x   at the  point (p, 

1
p  ) ,  p ≥ 0. 

 (b) Determine where  L  intersects the  x–axis  and the  y–axis. 

 (c) Determine the area of the region in the first quadrant bounded by  L, the  x–axis  and the y–axis. 

 (d) How does the area of the triangle in part (c) depend on the initial point   (p, 
1
p  ) ? 

 
49. Find values for the coefficients  a, b  and  c  so that the parabola  f(x) = ax2 + bx + c  goes  

 through the point  (1,4)  and is tangent to the line  y = 9x – 13  at the point  (3, 14). 
 
50. Find values for the coefficients  a, b  and  c  so that the parabola  f(x) = ax2 + bx + c  goes  

 through the point  (0,1)  and is tangent to the line  y = 3x – 2  at the point  (2,4). 
 
51. (a) Find a function  f  so that  D( f(x) ) = 3x2 . 

 (b) Find another function  g  so that  D( g(x) ) = 3x2 . 

 (c) Can you find more functions whose derivatives are  3x2 ?  
 
52. (a) Find a function  f  so that  f '( x ) = 6x + cos(x) . 

 (b) Find another function  g  so that  g '( x ) = 6x + cos(x) . 
 
53. The graph of  y = f '(x)  is given in Fig. 12.  

 (a)  Assume  f(0) = 0  and sketch the graph of  y = f(x) .   

 (b)  Assume  f(0) = 1  and graph y = f(x) . 
 
54. The graph of  y = g '(x)  is given in Fig. 13.  Assume that  g  is  continuous. 

 (a)  Assume  g(0) = 0  and sketch the graph of  y = g(x) .   

 (b)  Assume  g(0) = 1  and graph y = g(x) . 
 
55.  Assume that  f  and  g  are differentiable functions and that  g(x) ≠ 0.  State why  

 each step in the following proof of the Quotient Rule is valid. 
 

 D(  
f(x)
g(x)   ) =   

! 

lim
h"0

 
1

h

f (x + h)

g(x + h)
#
f (x)

g(x)

$ 
% 
& 

' 
( 
) 

  =  

! 

lim
h"0

 
1

h

f (x + h)g(x) # g(x + h) f (x)

g(x + h)g(x)

$ 
% 
& 

' 
( 
) 

  

 

 =  

! 

lim
h"0

 
1

g(x + h)g(x)

f (x + h)g(x) + # f (x)g(x) + f (x)g(x)( ) # g(x + h) f (x)

h

$ 
% 
& 

' 
( 
) 

 

 

 =  

! 

lim
h"0

 
1

g(x + h)g(x)
 g(x)

f (x + h) # f (x)

h
# f (x)

g(x + h) # g(x)

h

$ 
% 
& 

' 
( 
) 

 

 

 = 

! 

1

g
2
(x)

g(x) " f '(x) # f (x) " g'(x){ }  =  
g(x) " f '(x) # f (x) " g'(x)

g
2
(x)

. 
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Section 2.2 PRACTICE  Answers 

 
Practice 1: f  is continuous at  x = –1, 0, 2, 4, 6, and 7.  f  is differentiable at  x = –1, 2, 4, and 7. 
 
Practice 2: f(x) = 6x + 8  and  g(x) = 2  so  D( f(x) ) = 6  and  D( g(x) ) = 0. 

 D( 3f(x) ) = 3D( f(x) ) = 3(6) = 18,    D( f(x) + g(x) ) = D( f(x) ) + D( g(x) ) = 6 + 0 = 6 

 D( f(x) – g(x) ) = D( f(x) ) – D( g(x) ) = 6 – 0 = 6 

 D( f(x)g(x) ) = f(x)D( g(x) ) + g(x)D( f(x) )  = (6x + 8)(0) + (2)(6) = 12 

 

 D( f(x)/g(x) ) =  
g(x)D( f(x) )  – f(x)D( g(x) )

( g(x) )2
   =  

(2)(6) – (6x + 8)(0)
22    =  

12
4    =  3 

 
Practice 3: D( x3 – 5sin(x) ) =  D( x3 ) – 5D( sin(x) )  =  3x2 – 5cos(x)    
  

 
d 
dx  (sin(x) – 4x3 )   =  

d 
dx  sin(x) –  4 

d 
dx  x3  = cos(x) – 12x2   

 
Practice 4:  
 

x f(x) f '(x) g(x) g '(x) D( 3f(x) ) D( 2f(x) + g(x) ) D( 3g(x) – f(x) ) 
          
0 3 –2 –4 3 –6 –1  11 
1 2 –1 1 0 –3 –2  1 
2 4 2 3 1 6 5  1 

 
Practice 5:  

 D( f(x) + g(x) ) =  

! 

lim
h"0

 
f (x + h) + g(x + h){ }# f (x) + g(x){ }

h
 

   =  

! 

lim
h"0

 
f (x + h) # f (x)  +  g(x + h) # g(x)

h
 

 

  = 

! 

lim
h"0

 
f (x + h) # f (x)

h

$ 

% 
& 

' 

( 
) + lim

h"0
 
g(x + h) # g(x)

h

$ 

% 
& 

' 

( 
)   =  D( f(x) )  +  D( g(x) ) . 

 
Practice 6: 
 

x f(x) f '(x) g(x) g '(x) D( f(x).g(x) ) D( f(x)/g(x) ) D( g(x)/f(x) ) 
                       

0 3 –2 –4 3 3.3+(–4)(–2)=17 
–4(–2)–(3)(3)

(–4)2
   = 

–1
16  

(3)(3)–(–4)(–2)
32    =  

1
9  

1 2 –1 1 0 2.0+1(–1) = –1 
1(–1)–(2)(0)

12    =  –1 
2(0)–1(–1)

22    =  
1
4  

2 4 2 3 1 4.1 + 3.2 = 10 
3(2)–(4)(1)

32    =  
2
9  

4(1) – 3(2)
42    =  

–2
16  
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Practice 7: 

D((x2 + 1)(7x – 3)) = (x2 + 1)D( 7x – 3 ) + (7x – 3)D( x2 + 1 ) = (x2 + 1)(7) + (7x – 3)(2x) = 21x2 – 6x + 7  

 or  D((x2 + 1)(7x – 3)) =  D( 7x3 – 3x2 + 7x ) =  21x2 – 6x + 7 

 
d

 dt (  
3t – 2
5t + 1  )  = 

(5t + 1)D( 3t – 2 )  – (3t – 2)D( 5t + 1 )
(5t + 1)2

   = 
(5t + 1)(3) – (3t – 2)(5)

(5t + 1)2
   =  

13
(5t + 1)2

  

 

D(  
cos(x)

x    ) =  
xD( cos(x) ) – cos(x)D( x )

(x)2
   =  

x(–sin(x) ) – cos(x)(1)
x2    =  

–x.sin(x) – cos(x)
x2     

 

Practice 8: (a)  difference rule (b)  product rule  (c)  difference rule (d)  quotient rule 

 

Practice 9:  

D(  
x2 – 5
sin(x)   ) =  

sin(x)D( x2 – 5 ) – (x2 – 5)D( sin(x) )
( sin(x) )2

   =    
sin(x)(2x) – (x2 – 5)cos(x)

sin2(x)
    

 

d 
dt (  

t2 – 5
t.sin(t)  )  =  

t.sin(t)D(t2 – 5) – (t2 – 5)D(t.sin(t))
( t.sin(t) )2

    =  
t.sin(t)(2t) – (t2 – 5){ t.cos(t) + sin(t) }

t2.sin2(t)
   

 

Practice 10: (a) h(5) = 5 +  
sin(5)
1+5    ≈  4.84  ft.  v(5) = h '(5) = 

(1+5)cos(5) – sin(5)
(1+5)2

    ≈  0.074  ft/sec. 

 

 "long time": 

! 

lim
t"#

 h(t) = 

! 

lim
t"#

  5 + 
sin(t)
1 + t   =  5 feet.    

 

  

! 

lim
t"#

 h '(t) =  

! 

lim
t"#

 
(1+ t)cos(t) $ sin(t)

1+ t( )
2

 = 

! 

lim
t"#

 
cos(t)

1+ t
$

sin(t)

1+ t( )
2

% 
& 
' 

( ' 

) 
* 
' 

+ ' 
=  0  ft/sec. 

 

Practice 11: f '(x) = 2x – 10.  f '(x) = 0 when  2x – 10 = 0 so when  x = 5 . 

 g '(x) = 3x2 – 12.  g '(x) = 0 when  3x2 – 12 = 0 so  x2 = 4  and  x = –2, +2 . 
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2.3  MORE DIFFERENTIATION PATTERNS 
 

Polynomials are very useful, but they are not the only functions we need.  This section uses the ideas of the 

two previous sections to develop techniques for differentiating powers of functions, and to determine the 

derivatives of some particular functions which occur often in applications, the trigonometric and 

exponential  functions. 
 

As you focus on learning how to differentiate different types and combinations of functions, it is important 

to remember what derivatives are and what they measure.  Calculators and personal computers are 

available to calculate derivatives.  Part of your job as a professional will be to decide which functions need 

to be differentiated and how to use the resulting derivatives.  You can succeed at that only if you 

understand what a derivative is and what it measures. 

 
A POWER RULE FOR FUNCTIONS:   D( fn(x) ) 
 
If we apply the Product Rule to the product of a function with itself, a familiar pattern emerges. 
 

D( f2 ) = D( f.f ) = f.D( f ) + f.D( f ) = 2f.D(f). 
 
D( f3 ) = D( f2.f ) = f2.D(f) + f.D(f2) = f2.D(f) + f { 2f.D(f) } = f2.D(f) + 2f2.D(f) = 3 f2.D(f). 
 
D( f4 ) = D( f3.f ) = f3.D(f) + f.D(f3) = f3.D(f) + f{ 3f2.D(f)} = f3.D(f) + 3f3.D(f) = 4 f3.D(f). 

 
Practice 1: What is the pattern here?  What do you think the results will be for D( f5 )  and  D( f13 ) ? 
 

We could keep differentiating higher and higher powers of f(x) by writing them as products of lower 

powers of f(x) and using the Product Rule, but the Power Rule For Functions guarantees that the pattern we 

just saw for the small integer powers also works for all constant powers of functions. 
 

 Power Rule For Functions:   If   n  is any constant, 

     then   D( f
n

(x) ) = n f
n–1

(x) . D( f(x) ) . 
     

 
The Power Rule for Functions is a special case of a more general theorem, the Chain Rule,  which we will  

examine in Section 2.4.  The Power Rule For Functions will be proved after the Chain Rule. 
 
Example 1: Use the Power Rule for Functions to find 

 (a)  D( (x3 – 5)2 )     (b)  
d
dx ( 2x + 3x5 )    (c)   D( sin2(x) ) = D( ( sin(x) )2 ) . 

  
Solution: (a) To match the pattern of the Power Rule for  D( (x3 – 5)2 ) , let  f(x) = x3 – 5 and  n = 2. 

 

  Then  D( (x3 – 5)2 )  = D( f
n

(x) ) = n f
n–1

(x).D( f(x) )   
 
 = 2(x3 – 5)1D( x3 – 5 ) = 2( x3 – 5 ) (3x2) =  6x2(x3 – 5). 
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(b) To match the pattern for  
d
dx ( 2x + 3x5 )  = 

d
dx ( (2x + 3x5)1/2 )  ,  we  can let  f(x) = 2x + 3x5   

 and  take  n = 1/2 .  Then 
    

d
dx ( (2x + 3x5)1/2 )   =  

d
dx ( f

n
(x) )  = n f

n–1
(x).

d
dx ( f(x) )   =  

1
2 (2x + 3x5) –1/2 

d
dx ( 2x + 3x5 )  

 

 =  
1
2 (2x + 3x5) –1/2 (2 + 15x4 )  =  

2 + 15x4

2 2x + 3x5  . 

  
(c) To match the pattern for  D( sin2(x) ) ,  Let  f(x) = sin(x)  and  n = 2.  Then 

 

D( sin2(x) )  =  D( f
n

(x) ) = n f
n–1

(x).D( f(x) )  =  2sin1(x) D( sin(x) )  =  2 sin(x) cos(x) . 
 

  
Practice 2: Use the Power Rule for Functions to find 

 (a)  
d
dx ( (2x5 – π)2 ) ,   (b)  D( x + 7x2  ),  (c)  D( cos4(x) ) = D( ( cos(x) )4 ) . 

 
Example 2: Use calculus to show that the line tangent to the circle  x2 + y2 = 25  at the point  (3,4)   

 has slope  –3/4 . 
 

Solution: The top half of the circle is the graph of  y = f(x) =  25 – x2    so  f '(x) =  D( (25 – x2)1/2  )   
 

 =  
1
2  (25 – x2) –1/2 D( 25 – x2 ) =  

– x

25 – x2     and   f '(3) =  
– 3

25 – 32   =  
– 3
4    .  

 As a check, you can verify that the slope of the radial line through the center of the circle (0,0)  and the 

point  (3,4)  has slope  4/3  and is perpendicular to the tangent line which has a slope of  –3/4. 

 
DERIVATIVES OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS 
 

We have some general rules which apply to any elementary combination of differentiable functions, but in  

order to use the rules we still need to know the derivatives of each of the particular functions.  Here we will 

add to the list of functions whose derivatives we know. 

 
Derivatives of the Trigonometric Functions 
 
We know the derivatives of the sine  and  cosine functions, and each of the other four trigonometric  

functions is just a ratio involving sines or cosines.  Using the Quotient Rule, we can differentiate the rest of 

the trigonometric functions. 
 

 Theorem: D( tan(x) ) =  sec2(x) D( sec(x) ) =  sec(x) tan(x) 

  D( cot(x) ) = –  csc2(x) D( csc(x) ) = –  csc(x) cot(x)  . 
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Proof:  From trigonometry we know  tan(x) = 
sin(x)
cos(x)  , cot(x)  = 

cos(x)
sin(x)  , sec(x)  =  

1
cos(x)  , and  csc(x) =  

1
sin(x)  

, 

 and we know  D( sin(x) ) =  cos(x)  and  D( cos(x) ) =  – sin(x) .  Using the Quotient Rule, 
 

D( tan(x) ) =   D(  
sin(x)
cos(x)  )  =  

cos(x).D( sin(x) ) – sin(x).D( cos(x) )
( cos(x) )2

  

 

 =  
cos(x) cos(x) – sin(x){ –sin(x) }

cos2(x)
  =  

cos2(x) + sin2(x)
cos2(x)

    =  
1

cos2(x)
   =  sec2(x) . 

 

D( sec(x) )  = D( 
1

cos(x)  )  =   
 cos(x) D( 1 ) –  1 D( cos(x) ) 

cos2(x)
  

 

 =   
 cos(x) ( 0 ) – 1 { – sin(x) }

cos2(x)
    =  

 sin(x) 
cos2(x)

   =   
sin(x)
cos(x)   

1
cos(x)    =   tan(x).sec(x) . 

 
 Instead of the Quotient Rule, we could have used the Power Rule to calculate  D( sec(x) ) = D( (cos(x))–1 ) . 
 

Practice 3: Use the Quotient Rule on  f(x) = cot(x) =   
 cos(x) 
sin(x)     to prove that  f '(x)   =  –csc2(x). 

Practice 4: Prove that  D( csc(x) )  =  – csc(x).cot(x) .  The justification of this result is very similar to 

the justification for  D( sec(x) ). 
 

Practice 5: Find   (a)  D( x5.tan(x) ) ,   (b)  
d
dt ( 

sec(t)
t  )   and    (c)  D( cot(x) – x    ) . 

 

Derivative of   ex     
 
We can use graphs of exponential functions to estimate the slopes of their 

tangent lines or we can numerically approximate the slopes. 

 

Example 3: Estimate the derivative of  f(x) =  2x  at the point   

 ( 0, 20 ) = ( 0, 1 )  by approximating the slope of  

 the line tangent to  f(x) =  2x  at that point. 
 

Solution:  We can get estimates from the graph of  f(x) =  2x  by carefully 

graphing  f(x) =  2x  for small values of  x, sketching secant lines,  

 and then measuring the slopes of the secant lines  (Fig. 1).   

 

We can also find the slope numerically by using the definition of the derivative,   
 

f '(0) ≡  

! 

lim
h"0

 
f (0 + h) # f (0)

h
 =   

! 

lim
h"0

 
2

0+h
# 2

0

h
 = 

! 

lim
h"0

 
2
h
#1

h
 ,  and evaluating  

 2h – 1
h      

for some very small values of  h. 
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h 
2h – 1

h   
3h – 1

h   
eh – 1

h   
    

 0.1 0.717734625    
 –0.1 0.669670084 
 
 0.01 0.69555    
 –0.01 0.690750451 
 
 0.001 0.6933874 
 –0.001 0.69290695  
 
 ↓ ↓ ↓ ↓  

 0 ≈ 0.693 ≈ 1.099 1 
  

From the table we can see that  f ' (0) ≈ .693 . 
 

Practice 6:  Fill in the table for  
3h – 1

h   ,  and  show that the slope of the line 

tangent to  g(x) = 3x   at  (0,1)  is approximately  1.099 .  (Fig. 2) 
 

At  (0,1), the slope of the tangent to y = 2x  is less than  1 ,  and the slope of 

the tangent to y = 3x  is slightly greater than  1.  (Fig. 3)  There is a number,  

denoted  e,  between  2  and  3  so that the slope of the tangent to  y = ex  

 is exactly  1: 

! 

lim
h"0

 
e
h
#1

h
 = 1 .  The number  e ≈ 2.71828182845904 .   

e is irrational and is very important and common in calculus and  applications. 
 

Once we grant that   

! 

lim
h"0

 
e
h
#1

h
 = 1,  it is relatively straightforward to  

calculate  D( ex  ). 
 
  
 Theorem: D( ex )  =  ex . 
    
 

Proof:  D( ex ) ≡  

! 

lim
h"0

 
e
x+h

# e
x

h
 =  lim

h"0

 
e
x
$ e

h
# e

x

h
 

 

  = 

! 

lim
h"0

 e
x( ) #

e
h $1

h

% 

& 
' 

( 

) 
*  

 

  = 

! 

lim
h"0

 e
x( ) # lim

h"0

 
e
h $1

h

% 

& 
' 

( 

) 
* =  ( ex )( 1 ) =  ex . 

 

The function  f(x) =  ex  is its own derivative:  f '(x) = f(x).  The height of  f(x) =  ex  at any point and the  

slope of the tangent to f(x) =  ex  at that point are the same:  as the graph gets higher, its slope gets steeper. 
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Example 4: Find  (a)  
d
dt ( t.e

t )  ,   (b)  D(  ex /sin(x) )  and  (c)  D( e5x ) = D( (ex)5 )  

Solution:  (a)  Using the Product Rule with  f(t) = t  and  g(t) = et , 

 
d
dt ( t.e

t )  =  t.D( et )  +  et .D( t )  =  t.et  +  et.(1)  =  t.et  +  et   =  (t + 1) et . 
 
(b)  Using the Quotient Rule with  f(x) = ex   and  g(x) = sin(x), 

 D( 
ex

sin(x)  )  =   
 sin(x) D( ex )  –  ex D( sin(x) ) 

 sin2(x) 
    =   

 sin(x) ex  –  ex cos(x) 
 sin2(x) 

   . 

(c)  Using the Power Rule for Functions  with  f(x) = ex  and  n = 5, 

 D( ( ex )5 ) = 5( ex  )4.D( ex  ) = 5( ex  )4 . ex   = 5 e4x ex =  5 e5x . 
 

Practice 7: Find  (a)  D( x3 ex  )    and  (b)  D( ( ex )3 ) . 

 
Higher Derivatives:  Derivatives of Derivatives 
 

The derivative of a function  f  is a new function  f ' , and we can calculate the derivative of this new 

function to get the derivative of the derivative of  f, denoted by  f ''  and called the second derivative of f.  

For example,  if  f(x) = x5  then  f '(x) = 5x4  and  f''(x) = ( f '(x) ) ' = ( 5x4 ) ' = 20x3  . 

 
 
 Definitions: The first derivative of  f  is f '(x) ,  the rate of change of  f. 

  The second derivative of  f  is  f ''(x) = ( f '(x) ) ' ,  the rate of change of  f ' . 

  The third derivative of  f  is f '''(x) = ( f ''(x) ) ' ,  the rate of change of  f '' . 
 
  

For  y = f(x),  f '(x) =  
dy
dx    ,   f ''(x) =  

d
dx ( 

dy
dx )  = 

d2y
dx2 

   , f '''(x) =  
d
dx ( 

d2y
dx2 )  = 

d3y
dx3 

   ,  and so on. 

 
Practice 8: Find  f ', f '', and  f '''  for  f(x) = 3x7 ,  f(x) = sin(x),  and  f(x) = x cos(x). 
 

If  f(x)  represents the position of a particle at time  x,  then  v(x) =  f '(x)  will represent the velocity (rate of 

change of the position)  of the particle  and  a(x) = v '(x) = f ''(x)  will represent the acceleration (the rate of 

change of the velocity) of the particle. 
 
Example 5: The height (feet) of a particle at time  t  seconds  is  t3 – 4t2 + 8t .  Find the height,  

 velocity and acceleration of the particle when  t = 0, 1, and 2 seconds. 
 
Solution:  f(t) = t3 – 4t2 + 8t  so  f(0) = 0 feet, f(1) = 5 feet,  and  f(2) = 8 feet. 

 The velocity is  v(t) = f '(t) = 3t2 – 8t + 8  so  v(0) = 8 ft/s , v(1) = 3 ft/s,  and  v(2) = 4 ft/s.  At each of 

these times the velocity is positive and the particle is moving upward, increasing in height. 

 The acceleration is  a(t) = 6t – 8  so  a(0) = –8 ft/s2 ,  a(1) = –2 ft/s2  and  a(2) = 4  ft/s2 . 
 
We will examine the geometric meaning of the second derivative later. 
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A REALLY  "BENT"  FUNCTION    
 

In Section 1.2  we saw that the "holey"  function  h(x)  =  { 2 if  x  is a rational number
 1 if  x  is an irrational number   

is discontinuous at every value of x, so at every x   h(x) is not differentiable.  We can create graphs of 

continuous functions that are not differentiable at several places just by putting corners at those places, but 

how many corners can a continuous function have?  How badly can a continuous function fail to be 

differentiable? 
 

In the mid–1800s, the German mathematician  Karl Weierstrass surprised and even shocked the  

mathematical world by creating a function which was continuous everywhere but differentiable 

nowhere –– a function whose graph was everywhere connected and everywhere bent!  He used techniques 

we have not investigated yet, but we can start to see how such a function could be built. 
 
Start with a function  f1  (Fig. 4)  which zigzags between the values  +1/2  and  –1/2  and has a "corner" at 

each integer.  This starting function  f1 is continuous everywhere and is differentiable everywhere except at 

the integers.  Next create a list of functions  f2 , f3 , f4 , . . . ,  each of which 

is a lot shorter but with many more "corners" than the previous ones.   For 
example, we might make  f2  zigzag between the values  +1/4  and  –1/4  

and have  "corners"  at  ± 1/2, ±3/2, ±5/2, etc.,  and  f3  zigzag between  

+1/9  and  –1/9  and have "corners"  at  ±1/3, ±2/3, ±4/3, etc.  If we add  f1  

and  f2 , we get a continuous function (since the sum of two continuous 

functions is continuous) which will have corners at  0, ±1/2, ±1, ±3/2, . . .  
If we then add  f3  to the previous sum, we get a new continuous function 

with even more corners.  If we continue adding the functions in our list 

"indefinitely", the final result will be a continuous function which is 

differentiable nowhere. 
 
 

We haven't developed enough mathematics here to precisely describe what it means to add an infinite 

number of functions together or to verify that the resulting function is nowhere differentiable, but we will.  

You can at least start to imagine what a strange, totally "bent" function it must be. 
 

Until  Weierstrass created his "everywhere continuous, nowhere differentiable" function, most 

mathematicians thought a continuous function could only be "bad" in a few places, and Weierstrass' function 

was (and is) considered "pathological", a great example of how bad something can be.  The mathematician 

Hermite expressed a reaction shared by many when they first encounter Weierstrass' function: 
 

"I turn away with fright and horror from this lamentable evil of functions which do not have derivatives." 
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IMPORTANT RESULTS 
 

 Power Rule For Functions:      D( f
n

(x) ) = n.f
n–1

(x) . D( f(x) )  

 
 Derivatives of the Trigonometric Functions:  

 D( sin(x) ) =    cos(x) D( tan(x) )  = sec2(x) D( sec(x) )  = sec(x) tan(x) 

  D( cos(x) ) = – sin(x) D( cot(x) )  = – csc2(x) D( csc(x) )  = – csc(x) cot(x) 
 

 Derivatives of the Exponential Function:       D( ex )  =  ex  
 

 
PROBLEMS 
 
1. Let f(1) = 2  and  f '(1) = 3.  Find the values of  D( f2(x) ) ,  D( f5(x) ),  and  D( f(x)  ) at x=1. 
 

2. Let f(2) = –2  and  f '(2) = 5.  Find the values of  D( f2(x) ) , D( f–3(x) ) , and  
d
dx ( f(x) )  at x=2. 

 
3. Estimate the values of  f(x)  and  f '(x)  in Fig. 5  and determine 
 

(a) 
d
dx ( f2(x) )   at  x = 1 and 3  (b) D( f3(x) )  at  x = 1 and 3  

 
(c) D( f5(x) )  at  x = 1 and 3 . 
 
4. Estimate the values of  f(x)  and  f '(x)  in Fig. 5  and determine 
 

(a) D( f2(x) )  at  x = 0 and 2 (b) 
d
dx ( f3(x) )   at  x = 0 and 2  

 

(c) 
d
dx ( f5(x) )   at  x = 0 and 2. 

 
In problems  5 –  10 , find the derivative of each function. 
 
5. f(x) = (2x – 8)5   6. f(x) = (6x – x2)10     7. f(x) = x .(3x + 7)5    
 

8. f(x) = (2x + 3)6.(x – 2)4   9. f(x) =  x2 + 6x – 1  10. f(x)  =   
x – 5

(x + 3)4
    

11. A weight attached to a spring is at a height of  h(t) = 3 – 2sin(t)  feet above the floor  t  seconds after it 

is released. (a) Graph  h(t) (b) At what height is the weight when it is released? 

(c) How high does the weight ever get above the floor and how close to the floor does it ever get? 

(d) Determine the height, velocity and acceleration at time  t. (Be sure to include the correct units.) 

(e) Why is this an unrealistic model of the motion of a weight on a real spring? 
 

12. A weight attached to a spring is at a height of  h(t) = 3 – 
2sin(t)

1 + 0.1t2
    feet above the floor  t  seconds 

after it is released. (a) Graph  h(t) (b) At what height is the weight when it is released? 
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(c) Determine the height and velocity at time  t. 

(d) What happens to the height and the velocity of the weight after a "long time?" 
 

13. The kinetic energy  K  of an object of mass  m  and velocity  v  is  
1
2  m.v2 . 

(a)  Find the kinetic energy of an object with mass  m  and height  h(t) = 5t feet at  t = 1 and 2 seconds. 

(b)  Find the kinetic energy of an object with mass  m  and height  h(t) = t2  feet at  t = 1 and 2 seconds. 
 
14. An object of mass m is attached to a spring and has height  h(t) = 3 + sin(t)  feet  at time  t  seconds. 

(a) Find the height and kinetic energy of the object when  t = 1, 2, and 3 seconds. 

(b) Find the rate of change in the kinetic energy of the object when  t = 1, 2, and 3 seconds. 

(c) Can  K  ever be negative?  Can  dK/dt  ever be negative?  Why? 
 
In problems  15 – 20, find the derivatives df/dx . 
 

15. f(x) = x.sin(x) 16. f(x) = sin5(x) 17. f(x) = ex – sec(x)  
 

18. f(x) = cos(x) + 1    19. f(x) = e–x + sin(x) 20. f(x) = x2 – 4x + 3     
In problems 21 – 26, find the equation of the line tangent to the graph of the function at the given point. 
 

21. f(x) = (x – 5)7   at  (4, –1) 22. f(x) = ex   at  (0,1) 23. f(x) = 25 – x2   at  (3,4)  
 
24. f(x) = sin3(x)  at  (π,0) 25. f(x) = (x – a)5  at  (a,0) 26. f(x) = x.cos5(x)   at  (0, 0) 
 
27. Find the equation of the line tangent to  f(x) = ex   at the point  (3, e3 ).  Where will this tangent line 

intersect the x–axis?  Where will the tangent line to  f(x) = ex   at the point  (p, ep )  intersect the x–axis? 
 
In problems 28 – 33, calculate  f '  and  f ''. 
 
28. f(x) = 7x2 + 5x – 3 29. f(x) = cos( x ) 30. f(x) = sin( x )  
 
31. f(x) = x2.sin( x ) 32. f(x) = x.sin(x) 33. f(x) = ex.cos(x) 
 
34. Calculate the first 8 derivatives of  f(x) = sin(x).  What is the pattern?   

 What is the 208th derivative of sin(x)? 
 
35. What will the 2nd derivative of a quadratic polynomial be?  The 3rd derivative?  The  4th derivative? 
 
36. What will the 3rd derivative of a cubic polynomial be?  The 4th derivative? 
 
37. What can you say about the nth and (n+1)st derivatives of a polynomial of degree  n? 
 
In problems 38 – 42, you are given  f '.  Find a function  f  with the given derivative. 
 

38. f '(x) = 4x + 2 39. f '(x) = 5ex 40. f '(x) = 3.sin2(x).cos(x) 
 
41. f '(x) = 5(1 + ex )4.ex   42. f '(x) =  ex + sin(x) 
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43. The function  f(x) =  
 x.sin( 1/x ) if  x ≠ 0
 0 if  x = 0  in Fig. 6  is continuous at  0  since 

 

! 

lim
h"0

  f(x) = 0 = f(0) .  Is  f  differentiable at 0?  (Use the definition of  f '(0)  and consider 

 

! 

lim
h"0

 
f (0 + h) # f (0)

h
.) 

  

44. The function  f(x) =  
 x2.sin( 1/x ) if  x ≠ 0
 0 if  x = 0  in Fig. 7  is continuous at 0 since   

 

! 

lim
h"0

 f(x) = 0 = f(0) .  Is  f  differentiable at 0?  (Use the definition of  f '(0)  and consider   

 

! 

lim
h"0

 
f (0 + h) # f (0)

h
.) 

 
The number  e  appears in a variety of unusual situations.  Problems 45 – 48 illustrate a few of them. 
 

45. Use your calculator to examine the values of  ( 1 + 
1
x   )x   when  x  is relatively large, for example,  

 x = 100, 1000, and 10000.  Try some other large values for  x.  If  x  is large, the value of 

 ( 1 + 
1
x   )x  is close to what number? 

 
46. If you put  $1  into a bank which pays 1% interest per year and compounds the interest  x  times a  

 year, then after one year you will have earned  ( 1 + 
.01
x   )x  dollars in the bank. 

(a) How much money will you have after 1 year if the bank calculates the interest once a year? 

(b) How much money will you have after 1 year if the bank calculates the interest twice a year? 

(c) How much money will you have after 1 year if the bank calculates the interest 365 times a year? 

(d) How does your answer in part  (c)  compare with  e.01 ? 
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47. (a) Calculate the value of the sums  s1  = 1 + 
1
1!  ,  s2  = 1 + 

1
1!  + 

1
2!  , s3  = 1 + 

1
1!   + 

1
2!  + 

1
3!  ,   

  s4  = 1 + 
1
1!   + 

1
2!  + 

1
3!  + 

1
4!   ,  s5  = 1 + 

1
1!   + 

1
2!  + 

1
3!  + 

1
4!   + 

1
5!  ,  and   

  s6  = 1 + 
1
1!   + 

1
2!  + 

1
3!  + 

1
4!   + 

1
5!   + 

1
6!    . 

 (b) What value do the sums in part (a)  seem to be approaching?  Calculate  s7  and  s8 . 

 (n! = product of all positive integers from 1 to n.  For example, 2! = 1.2 = 2, 3! = 1.2.3 = 6, 4! = 24.) 
 
48. If it is late at night and you are tired of studying calculus, try the following experiment with a friend.   

 Take the 2 through 10 of hearts from a regular deck of cards and shuffle these 9 cards well.  Have your 

friend do the same with the 2 through 10 of spades.  Now compare your cards one at a time.  If there is 

a match, for example you both play a 5, then the game is over and you win.  If you make it through the 

entire 9 cards with no match, then your friend wins.  If you play the game many times,  then the ratio    
total number of games played

number of times your friend wins     will be approximately equal to  e. 

 

 

 

 

 

Section 2.3 PRACTICE  Answers 

 

Practice 1: The pattern is  D( f
n

(x) ) = n f
n–1

(x).D( f(x) ).  D( f
5
 ) = 5f4 D(f)  and  D( f

13
 ) = 13f12D(f).   

 

Practice 2: 
d
dx (2x5 – π) 2  =  2(2x5 – π)1 D( 2x5 – π )  =  2(2x5 – π)1 (10x4) = 40x9 – 20πx4 . 

 

  D( (x + 7x2)1/2 )  = 
1
2 (x + 7x2) –1/2 D( x + 7x2 )  = 

1 + 14x

2 x + 7x2   . 

  D( (cos(x) )4 )  =  4( cos(x) )3D( cos(x) )  = 4( cos(x) )3 ( –sin(x) ) = –4cos3(x)sin(x) . 

 

Practice 3: D(  
cos(x)
sin(x)    )  =  

sin(x)D( cos(x) ) – cos(x)D( sin(x) )
( sin(x) )2

  

 

  =  
sin(x)( –sin(x) ) – cos(x)( cos(x) )

sin2(x)
   =  

–( sin2(x) + cos2(x) )
sin2(x)

    = 
–1

sin2(x)
   = –csc2(x) . 

 

Practice 4: D( csc(x) )  =  D(  
1

sin(x)   )  =  
sin(x)D( 1 ) – 1D( sin(x) )

sin2(x)
    

 

   =  
sin(x)(0) – cos(x)

sin2(x)
   =  – 

cos(x)
sin(x)  

1
sin(x)   = – cot(x)csc(x) . 
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Practice 5: D( x5.tan(x) )  =  x5D( tan(x) ) + tan(x)D( x5 )  = x5 sec2(x) + tan(x)(5x4) . 

 

  
d
dt (  

sec(t)
t   )   =  

tD( sec(t) )  – sec(t)D( t )
t2

   =  
t.sec(t).tan(t) – sec(t)

t2
   . 

 

  D( (cot(x) – x )1/2 )  =  
1
2 (cot(x) – x ) –1/2 D( cot(x) – x )   

     =  
1
2 (cot(x) – x ) –1/2 ( –csc2(x) – 1)  =  

–csc2(x) – 1
2 cot(x) – x   . 

 

Practice 6:  
 

h 
2h – 1

h   
3h – 1

h   
eh – 1

h   
    

 0.1 0.717734625 1.16123174 1.051709181  
 –0.1 0.669670084 1.040415402 0.9516258196 
 
 0.01 0.69555 1.104669194 1.005016708 
 –0.01 0.690750451 1.092599583 0.9950166251 
 
 0.001 0.6933874 1.099215984 1.000500167 
 –0.001 0.69290695 1.098009035 0.9995001666 
 
 ↓ ↓ ↓ ↓  

 0 ≈ 0.693 ≈ 1.099 1 
  

 

Practice 7: D( x3ex )  = x3 D( ex ) + ex D( x3 ) = x3 ( ex ) + ex ( 3x2 ) = x2.ex.( x + 3 ) . 

 

  D( ( ex )3 )  =  3( ex )2 D( ex  )  = 3( ex )2 ( ex  ) = 3e2x.ex  =  3 e3x   or 

 

   D( ( ex )3 )  =  D( e3x  )  =  e3x D( 3x )  =  3 e3x . 

 

Practice 8: f(x) = 3x7 f(x) = sin(x) f(x) = x.cos(x) 

  f '(x) = 21x6 f '(x) = cos(x) f '(x) = –x.sin(x) + cos(x) 

  f ''(x) = 126x5 f ''(x) = –sin(x) f ''(x) = –x.cos(x) – 2sin(x)  

  f '''(x) = 630x4 f '''(x) = –cos(x) f '''(x) = x.sin(x) – 3cos(x) 
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2.4   THE CHAIN RULE 
 
The Chain Rule is the most important and most used of the differentiation patterns.  It enables us to 

differentiate composites of functions such as  y = sin( x2 ).  It is a powerful tool for determining the derivatives of 

some new functions such as logarithms and inverse trigonometric functions.  And it leads to important 

applications in a variety of fields.  You  will need the Chain Rule hundreds of times in this course, and practice 

with it now will save you time and points later.  Fortunately, with some practice, the Chain Rule is also easy to use. 
 

We already know how to differentiate the composition of some functions. 
 
Example 1: For  f(x) = 5x – 4  and  g(x) = 2x + 1,  find  f°g(x)  and  D( f°g(x) ) . 

Solution:  f°g(x) = f( g(x) ) = 5( 2x+1) – 4 = 10x + 1,  so D( f°g(x) ) = D( 10x + 1 ) = 10. 

Practice 1: For  f(x) = 5x – 4  and  g(x) = x2  ,  find  f°g(x), D( f°g(x) ) , g°f(x) , and  D( g°f(x) ) . 
 

Some compositions, however, are still very difficult to differentiate.  We know the derivatives of  g(x) = x2   

and  h(x) = sin(x),  and we know how to differentiate some combinations of these functions such as  

x2 + sin(x) , x2.sin(x) , and even sin2(x) ,  but the derivative of the simple composition    
f(x) = h°g(x) = sin( x2 )  is hard –– until we know the Chain Rule.  To see just how hard, try using the 

definition of derivative on it. 
 
Example 2: 

(a) Suppose amplifier  Y  doubles the strength of the output signal from amplifier U,  and  U  triples the 

strength of the original signal  x.  How does the final signal out of  Y  compare with the signal  x? 
  original signal x  →  amplifier U   →  amplifier Y   →  final signal 
 
(b) Suppose  y  changes twice as fast as  u,  and  u  changes three times as fast as  x.  How does the rate of  

 change of  y  compare with the rate of change of  x? 
 
Solution:  In each case we are comparing the result of a composition, and the answer to each question is 6,  

 the product of the two amplifications or rates of change.   
  

In (a), we have that    
signal out of Y

signal  x     =   
signal out of Y
signal out of U  . 

signal out of U
signal  x     =  (2)(3)  = 6. 

In (b),   
∆y
∆x   =   

∆y
∆u  . 

∆u
∆x   =  (2)(3)  = 6. 

 
These examples are simple cases of the Chain Rule for differentiating a composition of functions.   

 

THE CHAIN RULE 
 

 Chain Rule  (Leibniz notation form) 
 
  If y  is a differentiable function of  u,  and  u  is a differentiable function of  x, 
 

  then y  is a differentiable function of  x  and    
dy
dx   =  

dy
du  . 

du
dx   . 
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Idea for a proof: 
dy
dx   = 

! 

lim
"x#0

 
"y

"u
$
"u

"x
        (if   "u % 0)    

  

 = 

! 

lim
"x#0

 
"y

"u

$ 

% 
& 

' 

( 
) * lim

"x#0

 
"u

"x

$ 

% 
& 

' 

( 
)      u is continuous, so ∆x→0  implies  ∆u→0 

 

 =  

! 

dy

du
"
du

dx
  

 

Although this nice short argument gets to the heart of why the Chain Rule works, it is not quite valid.  If  

du/dx ≠ 0, then it is possible to show that  ∆u ≠ 0  for all very small values of  ∆x , and the "idea for a 

proof" is a real proof.  There are, however, functions for which  ∆u = 0 for lots of small values of  ∆x, 

and these create problems for the previous argument.  A justification which is true for ALL cases is much 

more complicated. 
 

The symbol  
dy
du   is a single symbol  ( as is 

du
dx   ) , and we  cannot eliminate  du  from the product   

dy
du   . 

du
dx    in the Chain Rule.  It is, however, perfectly fine to use the idea of eliminating  du  to help you 

remember the statement of the Chain Rule. 
 
Example 3: y = cos(x2 + 3)  is  y = cos(u)  with  u = x2 + 3 .  Find  dy/dx. 
 
Solution:  y = cos(u)  so  dy/du = –sin(u).  u = x2 + 3  so  du/dx = 2x.   Finally, using the Chain Rule, 
 

dy
dx   = 

dy
du  . 

du
dx   =  –sin(u) . 2x  =  –2x . sin(x2 + 3) . 

 
Practice 2: Find  dy/dx  for  y = sin(4x + ex ) . 
 
There is also a composition of functions form of the Chain Rule.  The notation is different, but it means  

precisely the same as the Leibniz form. 
 

 Chain Rule ( composition form) 

  If  g  is differentiable at x  and  f  is differentiable at  g(x),   
 
  then  the composite  f°g  is differentiable at  x , and   ( f°g ) '(x) = D(  f( g(x) ) ) = f '( g(x) ) . g '(x) . 
     
 
You may find it easier to think of the composition form of the Chain Rule in words: 

( f( g(x) ) '  = "the derivative of the outside function (with respect to the original inside function) times 

the derivative of the inside function"  where f is the outside function and g is the inside function.   
 
Example 4: Differentiate  sin( x2 ) . 
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Solution:  The function  sin( x2 )  is the composition  f°g  of two simple functions:  f(x) = sin(x)  and   

 g(x) = x2 :  f°g (x) = f( g(x) ) = f(  x2 ) = sin(  x2 )  which is the function we want.  Both  f and  g  are 

differentiable functions with derivatives  f '(x) = cos(x)  and  g '(x) = 2x, so, by the Chain Rule, 
 
D( sin( x2 ) ) = ( f°g ) '(x) =  f '( g(x) ).g '( x ) = cos( g(x) ).2x = cos( x2 ).2x  =  2x cos(x2 ) . 
 

If you tried using the definition of derivative to calculate the derivative of this function at the beginning of 

the section,  you can really appreciate the power of the Chain Rule for differentiating compositions. 

 
Example 5: The table gives values for  f , f ' , g  and g '  at a number of points.  Use these values to  
 determine   ( f°g )(x)  and  ( f°g ) '(x)   at  x = –1  and  0. 

 x f(x) g(x) f '(x) g '(x) ( f°g )(x) ( f°g ) '(x) 
                                                                                                

 –1 2 3 1 0 
 0 –1 1 3 2 
 1 1 0 –1 3 
 2 3 –1 0 1 
 3 0 2 2 –1 
 

Solution:   ( f°g )(–1)  =  f( g(–1) )  =  f( 3 )  =  0  and  ( f°g )(0)  =  f( g(0) )  =  f( 1 )  =  1. 

 ( f°g ) '(–1)  =  f '( g(–1) ).g '( –1 )  =  f '( 3 ).(0)  =  (2)(0)  = 0   and  

 ( f°g ) '( 0 )  =  f '( g( 0 ) ).g '( 0 )  =  f '( 1 ).( 2 )  =  (–1)(2)  = –2 .  
 
Practice 3: Fill in the table in Example 5  for  ( f°g )(x)  and  ( f°g ) '(x)   at  x = 1, 2  and  3. 
 

Neither form of the Chain Rule is inherently superior to the other –– use the one you prefer.  The Chain 

Rule will be used hundreds of times in the rest of this book, and it is important that you master its usage.  

The time you spend now mastering and understanding how to use the Chain Rule will be paid back tenfold 

in the next several chapters. 
 
Example 6: Determine  D( ecos(x)  ) using each form of the Chain Rule. 

 
Solution: Using the Leibniz notation:  y = eu   and  u = cos(x).  dy/du = eu   and  du/dx = – sin(x)  so 

 dy/dx  =  ( dy/du ).( du/dx ) = ( eu ).( – sin( x ) )  = – sin( x ) . ecos(x)  . 
 
 The function  ecos(x)  is also the composition of  f(x) = ex  with   g(x) = cos(x) , so 

 D( ecos(x) ) =   f '( g(x) ).g '( x )  by the Chain Rule 
 
   =  eg(x).( –sin( x )  ) since D( ex ) = ex  and  D(cos(x) ) = –sin(x)  
 
   =  – sin( x ) . ecos(x) . 

 
 

Practice 4: Calculate  D( sin( 7x – 1 ) ) , 
d
dx ( sin( ax + b) )  , and  

d
dt ( e

3t  )  . 
 



2.4   Chain Rule Contemporary  Calculus  
4 

 

Practice 5: Use the graph of  g  in Fig. 1  and the Chain 

Rule to estimate  D( sin( g(x) ) ) and   

 D( g( sin(x) ) )   at  x = π . 
 
 

The Chain Rule is a general differentiation pattern, and it can 

be used with the other general patterns such as the Product and 

Quotient Rules. 
 
 

Example 7: Determine  D( e3x . sin(5x + 7) )   and  
d
dx ( cos( x . ex ) )  . 

 

Solution:  (a)  e3x  sin(5x + 7)  is a product of two functions so we need the product rule first: 

D( e3x . sin(5x + 7) ) =  e3x . D( sin(5x + 7) )  +  sin(5x + 7) . D( e3x ) 
 
 =  e3x cos(5x +7) . 5  +  sin(5x + 7) e3x . 3 = 5 e3x cos(5x + 7) + 3 e3x sin(5x + 7) . 
 

(b)  cos( x . ex )  is a composition of  cosine  with a product so we need the Chain Rule first: 
 

 
d
dx ( cos( x . ex ) )  = – sin( x . ex ) . 

d
dx ( x . ex )   

 

  = – sin( x ex ).{ x . 
d
dx ( ex )   +  ex . 

d
dx ( x )  } = – sin(x ex ) . { x ex  + ex }. 

 

Sometimes we want to differentiate a composition of more than two functions.  We can do so if we proceed 

in a careful,  step–by–step way. 
 

Example 8: Find   D( sin( x3 + 1  )  )        
 

Solution: The function   sin( x3 + 1  )  can be considered as a composition  f°g  of   

 f(x) = sin(x)  and  g(x) =  x3 + 1   .  Then 
 

( sin( x3 + 1   ) ) ' =  f '( g(x) ).g '(x)  =  cos( g(x) ).g '(x) =  cos( x3 + 1   ) D( x3 + 1   ) 

 

For the derivative of   x3 + 1   , we can use the Chain Rule again or its special case, the Power Rule:  
 

D(  x3 + 1   )  = D( (x3 + 1)1/2 )  =  
 1 
2  (x3 + 1) –1/2 D( x3 + 1 ) =  

 1 
2  (x3 + 1) –1/2 3x2 . 

 

Finally,  ( sin( x3 + 1  ) ) ' =   cos(  x3 + 1   ) D(  x3 + 1   )   
 

  =  cos(  x3 + 1   )  
1
2 ( x3 + 1 ) –1/2 ( 3x2 )  =   

3x2 cos( x3 + 1 )

2 x3 + 1
   . 
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This example was more complicated than the earlier ones, but it is just a matter of applying the Chain 

Rule twice, to a composition of a composition.  If you proceed step–by–step and don't get lost in the 

problem, these multiple applications of the Chain Rule are relatively straightforward.  
 

We can also use the Leibniz form of the Chain Rule for a composition of more than two functions.  If 
 

y = sin( x3 + 1  ) , then  y = sin(u)  with  u = w     and  w =  x3 + 1.  The Leibniz form of the Chain  
 

Rule is   
dy
dx   =   

dy
du  . 

du
dw  . 

dw
dx   ,  so   

dy
dx   =  cos(u) 

1
2 w   3x2  =  cos( x3 + 1  ) . 

1

2 x3 + 1
  . 3x2 . 

 
Practice 6: (a) Find  D(  sin( cos( 5x ) ) ) .  (b)  For  y = e cos(3x)  ,  find  dy/dx . 

 
CHAIN RULE AND TABLES OF DERIVATIVES 
 

With the Chain Rule, the derivatives of all sorts of strange and wonderful functions are available.  If we know  

f '  and  g ', then we also know  the derivatives of their composition:   ( f( g(x) ) ' = f '( g(x) ) g '(x) . 
 

Example 9: Given D( arcsin( x ) ) =  
1

 1 – x2   ,  find  D( arcsin( 5x ) )  and   
d( arcsin( ex ) )

dx    . 

Solution:  (a)  arcsin( 5x )  is the composition of  f(x) = arcsin(x)  with  g(x) = 5x.  We know  g '(x) = 5, 
 

 and  f '(x) = 
1

 1 – x2    so  f '( g(x) ) =  
1

 1 – ( g(x) )2
    =   

1

 1 – 25x2 
   . 

  

 Then  D( arcsin( 5x ) ) =  f '( g(x) ).g '(x)  =   
1

 1 – 25x2 
  .( 5 ) =   

5

 1 – 25x2 
   . 

 

(b) y = arcsin( ex )  is   y = arcsin( u )  with  u = ex .  We know  dy/du =   
1

 1 – u2    and  du/dx = ex 

  

 so  
dy
dx   =  

dy
du  . 

du
dx   =   

1

 1 – u2   . ex  =   
1

 1 – ( ex )2
   . ex  =   

ex

 1 –  e2x 
     

 
 

In general,   D( arcsin( f(x) ) ) =  
f '(x)

 1 – ( f(x) )2
     and    

d( arcsin( u ) ) 
dx     =   

1

 1 – u2   . 
du
dx  . 

 

Practice 7: D( arctan( x ) ) =   
 1 

 1 + x2 
   .  Find  D( arctan( x3 ) )  and  

d( arctan( ex ) )
dx   . 

 
Appendix B in the back of this book shows the derivative patterns for a variety of functions.  You may not  

know much about some of the functions, but with the differentiation patterns given and the Chain Rule you 

should be able to calculate derivatives of compositions.  It is just a matter of following the pattern. 
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Practice 8: Use the patterns  D( sinh(x) ) = cosh(x)  and   D( ln(x) ) = 1/x  to determine 

 (a)  D( sinh( 5x – 7) )  (b)  
d
dx ( ln( 3 + e2x) )   (c)  D( arcsin( 1 + 3x ) ) . 

 

Example 10: If  D( F(x) ) = ex . sin(x),  find  D( F(5x) )  and   
d( F( t3 ) )

dt   

Solution: (a)   D( F(5x) ) = D( F( g(x) )  with  g(x) = 5x .  F '(x) = ex . sin(x)  so 
  
  D( F(5x) ) = F '( g(x) ) . g '(x) = eg(x) . sin( g(x) ) . 5  =  e5x . sin( 5x ) . 5 . 
 

 (b) y = F( u )  with  u = t3 .   
dy
du   =  eu . sin(u)  and   

du
dt    = 3t2  so  

  
dy
dt    =   

dy
du  . 

du
dt    =  eu . sin(u) . 3t2  =  e(t3) . sin( t3 ) . 3t2   

 
Proof of the Power Rule For Functions 
 
We started using the Power Rule For Functions in section 2.3.  Now we can easily prove it. 
 

Power Rule For Functions: If y = fn(x)  and  f  is differentiable,  then   
dy
dx   =  n . fn–1(x) . f '(x). 

 

Proof: y = fn(x)  is  y = un  with  u = f(x).  Then  
dy
du   =  n . un–1  and  

du
dx   =  f '(x)  so by the Chain  

 Rule,    
dy
dx   =  

dy
du  . 

du
dx   =  n . un–1 . f '(x)  =   n . fn–1(x) . f '(x). 

 
PROBLEMS 
 
In problems  1 – 6 ,  find two functions  f  and  g  so that the given function is the composition of  f and  g. 
 

1. y = ( x3 – 7x )5    2. y = sin4( 3x – 8 ) 3. y = ( 2 + sin(x) )5    
 

4. y = 
1

 x2  + 9 
  5. y = |  x2  – 4  | 6. y = tan( x  ) 

 
7. For each function in problems  1 – 6,  write  y  as a function of  u  for some u which is a function of  x. 
 
Problems 8 and 9 refer to the values given in this table: 

 x f(x) g(x) f '(x) g '(x) ( f°g )(x) ( f°g )' (x) 
                                                          
 –2 2 –1 1 1 
 –1 1 2 0 2 
 0 –2 1 2 –1 
 1 0 –2 –1 2 
 2 1 0 1 –1 

 
8. Use the table of values to determine  ( f°g )(x)  and  ( f°g )' (x)  at  x = 1  and  2. 
 
9. Use the table of values to determine  ( f°g )(x)  and  ( f°g )' (x)  at  x = –2, –1  and  0. 
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10. Use Fig. 2  to estimate the values of  g(x), g '(x),  

 (f°g)(x), f '( g(x) ), and ( f°g ) '( x )  at  x = 1. 

 
11. Use Fig. 2  to estimate the values of  g(x), g '(x),  

 (f°g)(x), f '( g(x) ), and ( f°g ) '( x )  for  x = 2. 
 
 
In problems  12 - 20,  differentiate each function. 
 

12. D( ( x2  + 2x + 3 )87  ) 13. D( ( 1 – 
3
x   )4  ) 14. 

d
dx ( x + 

1
x ) 5    

 

15. D(  
5

2 + sin(x)   ) 16. 
d
dt  t.sin( 3t + 2 ) 17. D( x2.sin( x2  + 3 )  )  

18. 
d
dx  sin( 2x ).cos( 5x + 1 ) 19. D(  

7
cos( x3  – x )

   ) 20. 
d
dt 

5
3 + et  

 

21. D( ex + e–x )  22. 
d
dx ( ex – e–x  )  

 
 
23. An object attached to a spring is at a height of  h(t) =  3 – cos( 2t )  feet above the floor  t  seconds  

 after it is released. (a)  At what height was it released?  

(b) Determine its height, velocity and acceleration at any time t. 

(c) If the object has mass  m, determine its kinetic energy  K = 
1
2  mv2  and  dK/dt  at any time  t. 

 
24. A manufacturer has determined that an employee with d days of production experience will be able 

to  

 produce approximately   P(d) = 3 + 15( 1 – e–0.2d )  items per day.  Graph  P(d). 

 (a) Approximately how many items will a beginning employee be able to produce each day? 

 (b) How many items will an experienced employee be able to produce each day? 

(c) What is the marginal production rate of an employee with 5 days of experience?  (What are the 

units of your answer, and what does this answer mean?) 
 
 
25. The air pressure  P(h) , in pounds per square inch, at an altitude of  h  feet above sea level is  

 approximately  P(h) = 14.7 e–0.0000385h  .   

(a)  What is the air pressure at sea level?  What is the air pressure at an altitude of 30,000 feet? 

(b)  At what altitude is the air pressure 10 pounds per square inch? 

(c)  If you are in a balloon which is 2000 feet above the Pacific Ocean and is rising at 500 feet per 

minute,  how fast is the air pressure on the balloon changing? 

(d)  If the temperature of the gas in the balloon remained constant during this ascent, what would 

happen to the volume of the balloon? 
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Find the derivatives in problems  26 – 33 . 
 

26. D(  
( 2x + 3 )2

( 5x – 7 )3
   ) 27. 

d
dz 1 + cos2( z )  28. D(  sin( 3x + 5 )  ) 

 

29. 
d
dx   tan( 3x + 5 )   30. 

d
dt   cos( 7t2  ) 31. D(  sin( x + 1  )  ) 

  

32. D(  sec( x + 1  )  ) 33. 
d
dx ( esin(x) )   

 

In problems  34 –  37 , calculate  
d f(x)

dx     and   
d x(t)

dt     when  t = 3  and  use these values to determine the 

value of  
d f( x(t) )

dt    when  t = 3. 
 

34. f( x ) =  cos( x ) ,  x = t2 – t + 5 35. f( x ) = x    ,  x =  2 + 
21
t    

 
36. f( x ) =  ex  ,   x  =  sin( t ) 37. f( x ) =  tan3( x )  ,  x  =  8 
 

In problems  38 – 43,  find a function which has the given function as its derivative.  (You are given   

f '(x)   in each problem and are asked to  find a function  f(x). ) 
 
38. f '(x) = ( 3x + 1 )4   39. f '(x) = ( 7x – 13 )10   40. f '(x) = 3x – 4     
 
41. f '(x) = sin( 2x – 3 ) 42. f '(x) = 6e3x   43. f '(x) = cos(x).esin(x)   
  

If two functions are equal, then their derivatives are also equal.  In problems  44 – 47 , differentiate each 

side of the trigonometric identity to find a new identity. 
 

44. sin2( x ) = 
1
2   –  

1
2  cos( 2x ) 45. cos( 2x ) =  cos2( x )  –  sin2( x ) 

 
46. sin( 2x ) = 2 sin( x ) cos( x ) 47. sin( 3x ) = 3 sin( x )  –  4 sin3( x ) 
 

Derivatives of Families of Functions  
 
So far we have emphasized derivatives of particular functions, but sometimes we want to look at the  

derivatives of a whole family of functions.  In problems  48 –71, the letters A–D represent constants and 

the given formulas describe families of functions. 
 

For problems 48 – 65, calculate  y ' = 
d y
d x  . 

 
48. y = Ax3 – B  49. y = Ax3 + Bx2 + C  50. y = sin( Ax + B )  
 

51. y = sin( Ax2 + B )  52. y = Ax3 + cos( Bx ) 53. y = A + Bx2    
 

54. y = A – Bx2   55. y = A – cos( Bx ) 56. y = cos( Ax + B ) 
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57. y = cos( Ax2 + B )  58. y = A.eBx  59. y = x.eBx  
 

60. y = eAx + e–Ax  61. y = eAx – e–Ax  62. y = 
sin( Ax )

x   

63. y = 
Ax

sin( Bx )  64. y = 
1

Ax + B  65. y = 
Ax + B
Cx + D   

 
 

In problems 66 – 71,  (a) find  y ',  (b)  find the value(s) of  x  so that  y ' = 0, and  (c) find  y " . 

Typically your answer in part (b) will contain  As, Bs and (sometimes) Cs. 
 
66. For  y = Ax2 + Bx + C,  (a) find  y ', (b) find the value(s) of  x  so that  y ' = 0, and  (c) find  y ". 

 (You should recognize the part (b) answer from intermediate algebra.  What is it?) 

 
67. y = Ax(B – x) = ABx – Ax2. 68. y = Ax(B – x2) = ABx – Ax3. 
 

69. y = Ax2(B – x) = ABx2 – Ax3. 70. y = Ax2 + 
B
x  . 71. y =  Ax3 + Bx2 + C . 

 
 

Use the given differentiation patterns to differentiate the composite functions in problems  72 – 83 .  We 

have not derived the derivatives for these functions (yet), but if you are handed the derivative pattern for a 

function then you should be able to take derivatives of a composition involving that function. 

 

Given:       D( arctan( x ) ) =   
1

1 + x2   ,  D( arcsin( x ) ) =   
1

1–x2   ,     D( ln( x ) ) =   
1
x   . 

 

72. D( arctan( 7x ) )  73. 
d
dx ( arctan( x2 ) )   74. 

d
dt ( arctan( ln(t) ) )   75. D( arctan( ex ) )  

 

76. 
d

dw ( arcsin( 4w ) )  77. D( arcsin( x3 ))  78. D( arcsin( ln(x) ) )  79. 
d
dt ( arcsin( et ) )  

 

80. D( ln( 3x + 1) )  81. 
d
dx ( ln( sin(x) ) )   82. D( ln( arctan(x) ) )  83. 

d
ds ( ln( es ) )   
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Section 2.4 PRACTICE  Answers 
 
Practice 1: f(x) = 5x – 4  and  g(x) = x2  so  f '(x) = 5  and  g '(x) = 2x.  f°g(x) = f( g(x) ) = f( x2 ) = 5x2 – 4. 
 
 D( f°g(x) ) = f '( g(x) ).g '(x)  =  5.2x = 10x  or  D( f°g(x) ) =  D( 5x2 – 4 ) =  10x . 
 
 g°f(x) = g( f(x) ) = g( 5x – 4 ) = (5x – 4)2 = 25x2 – 40x + 16. 

  D( g°f(x) ) = g '( f(x) ).f '(x)  = 2(5x – 4).5  = 50x – 40  or   

  D( g°f(x) ) =  D( 25x2 – 40x + 16 ) =  50x – 40 . 
 

Practice 2: 
d
dx ( sin(4x + ex) )   =  cos(4x + ex).D( 4x + ex )  =  cos(4x + ex).( 4 + ex )   

 
Practice 3: Fill in the table in Example 6  for  ( f°g )(x)  and  ( f°g ) '(x)   at  x = 1, 2  and  3. 
 

 x f(x) g(x) f '(x) g '(x) ( f°g )(x) ( f°g ) '(x) = f '( g(x) ).g '(x) 
                                                                                              

 –1 2 3 1 0 0 0 
 0 –1 1 3 2 1 –2 
 1 1 0 –1 3 –1 f '( g(1) ).g '(1) = f '( 0 ).(3) = (3)(3) = 9 
 2 3 –1 0 1 2 f '( g(2) ).g '(2) = f '( –1 ).(1) = (1)(1) = 1 
 3 0 2 2 –1 3 f '( g(3 ).g '(3) = f '( 2 ).(–1) = (0)(–1) = 0 

 
 

Practice 4: D( sin(7x – 1) ) =  cos(7x – 1)D( 7x – 1 ) = 7.cos(7x – 1) . 
 

 
d
dx  sin(ax + b) =  cos(ax + b) D( ax + b ) = a.cos(ax + b)  

d
dt ( e

3t )   =  e3t 
d
dt( 3t )   =  3.e3t  

 
 Practice 5: D( sin( g(x) ) )  = cos( g(x) ).g '(x).  At x = π,  cos( g(π) ).g '(π) ≈ cos( 0.86 ).(–1) ≈ –0.65 . 
 
 D( g( sin(x) ) )  = g '( sin(x) ).cos(x).  At x = π, g '( sin(π) ).cos(π) = g '( 0 ).(–1) ≈ –2 
 Practice 6:  

D( sin( cos(5x) ) ) = cos( cos(5x) ).D( cos(5x) ) = cos( cos(5x) ).( –sin(5x) ).D( 5x ) = – 5.sin(5x).cos( cos(5x) ) 
 
d
dx   ecos(3x)   =  ecos(3x) D( cos(3x) )  =  ecos(3x) ( –sin(3x) )D( 3x ) = –3.sin(3x).ecos(3x) . 
 

 Practice 7: D( arctan( x3 ) )   = 
1

1 + ( x3 )2
   D( x3 )  =  

3x2

1 + x6  

 
d
dx ( arctan( ex ) )   =  

1
1 + ( ex )2

  D( ex )  =    
ex

1 + e2x   

 Practice 8: D( sinh(5x – 7) )  = cosh(5x – 7) D( 5x – 7 )    = 5.cosh(5x – 7)  
 

 
d
dx   ln(3 + e2x )  =  

1
3 + e2x  D( 3 + e2x )  =  

2e2x

3 + e2x    

 D( arcsin(1 + 3x) )  =  
1

1 – (1 + 3x)2
   D( 1 + 3x )  =  

3

1 – (1 + 3x)2
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2.5 SOME APPLICATIONS OF THE CHAIN RULE 
 

The Chain Rule will help us determine the derivatives of logarithms and exponential functions  ax .  We will 

also use it to answer some applied questions and to find slopes of graphs given by parametric equations. 
 

DERIVATIVES OF LOGARITHMS 
 
 

 D( ln(x) ) =  
 1 
x       and   D( ln( g(x) ) )  =    

g '(x) 
g(x)   . 

    
 
Proof: We know that the natural logarithm  ln(x)  is the logarithm with base  e, and  eln(x)  = x  for x > 0.   

 We also know that  D( ex ) = ex ,  so using the Chain Rule we have  D( ef(x) ) = ef(x) f '(x).  

Differentiating each side of the equation  eln(x)  = x , we get that 

  D( eln(x) )  = D( x )   use    D( ef(x) ) = ef(x) .f '(x)  with  f(x) = ln(x) 

  eln(x) .D( ln(x) ) = 1  replace  eln(x)  with  x 

  x .D( ln(x) ) = 1 and solve for  D( ln(x) )   to get   D( ln(x) ) =   
 1 
x    . 

 
 The function  ln( g(x) )  is the composition  of  f(x) = ln(x)  with  g(x), so by the Chain Rule, 
  

 D( ln( g(x) ) =  D( f( g(x) ) ) =  f '( g(x) ) .g '(x)  =  
1

 g(x)   .g '(x)  =  
 g '(x) 

g(x)    . 
 
Example 1: Find  D( ln( sin(x) ) )   and  D( ln( x2 + 3 ) ) . 
 

Solution:  (a)  Using the pattern   D( ln( g(x) ) =    
 g '(x) 

g(x)     with  g(x) = sin(x), then 
 

 D( ln( sin(x) ) ) =    
 g '(x) 

g(x)    =  
D( sin(x) )

sin(x)    =   
cos(x)
sin(x)    =  cot(x). 

 

(b)  Using the pattern  with  g(x) = x2 + 3, we have   D( ln( x2 + 3 ) ) =     
 g '(x) 

g(x)    =   
2x

x2 + 3
   . 

  

We can use the Change of Base Formula from algebra to rewrite any logarithm as a natural logarithm, and 

then we can differentiate the resulting natural logarithm. 
 

Change of Base Formula for logarithms:  loga  x  =   
 logb x 
 logb a      for all positive a, b and x. 

 
Example 2: Use the Change of Base formula and your calculator to find  logπ 7  and log2 8. 
 

Solution: logπ 7  =  
 ln 7 
 ln π    ≈  

 1.946 
 1.145   ≈ 1.700 .  (Check that  π1.7  ≈ 7)  log2 8  =   

 ln 8 
 ln 2    = 3. 

 
Practice 1: Find the values of  log9 20 , log3 20 and  logπ e . 
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Putting  b = e  in the Change of Base Formula,  loga  x  =   
 loge x 
 loge a    =  

 ln x 
 ln a    ,  so any logarithm can be 

written as a natural logarithm divided by a constant.  Then any logarithm is easy to differentiate. 

 
 

 D( loga( x )  ) =   
 1 

 x ln(a)       and  D( loga( f(x) )  ) =    
f '(x) 
f(x)    . 

1
ln(a)  

  
 

Proof: D( loga( x )  ) = D(  
 ln x 
 ln a     ) =   

1
ln(a)   .D( ln x )  =   

1
ln(a)  . 

 1 
x    =   

 1 
 x ln(a)    . 

 The second differentiation formula follows from the Chain Rule. 
 
Practice 2: Calculate  D( log10 ( sin(x) )  )  and  D( logπ ( ex ) ) . 
 

The number  e  might seem like an "unnatural" base for a natural logarithm, but of all the logarithms to 

different bases, the logarithm with base  e  has the nicest and easiest derivative.  The natural logarithm is even 

related to the distribution of prime numbers.  In 1896, the mathematicians Hadamard and Valle–Poussin 

proved the following conjecture of Gauss: (The Prime Number Theorem)  For large values of x,   

{number of primes less than x} ≈ 
 x 

ln(x)   . 
 

DERIVATIVE OF  ax   
 
Once we know the derivative of  ex  and the Chain Rule, it is relatively easy to determine the derivative  

of  ax  for any  a > 0. 
 
 
 D( ax  ) =  ax . ln a    for  a > 0. 
     
 

Proof: If  a > 0, then  ax > 0  and  ax =  eln( ax )  =  ex . ln a  . 
 

D( ax ) =  D(  eln( ax )  ) =  D( ex . ln a  )  =  ex . ln a .D( x . ln a )  =  ax . ln a . 
 

Example 3: Calculate  D( 7x )   and   
d
dt (  2 sin(t) )   

 

Solution:  (a)  D( 7x )  = 7x  ln 7  ≈  (1.95) 7x  . 
 

(b)  We can write  y = 2 sin(t)  as   y = 2u  with  u = sin(t).  Using the Chain Rule, 
 

 
dy
dt    =  

dy
du  . 

du
dt     =  2u .ln(2).cos(t)  =  2sin(t) .ln(2).cos(t)  . 

 

Practice 3: Calculate  D( sin( 2x ) )   and   
d
dt ( 3

( t2 ) )  . 
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SOME APPLIED PROBLEMS 
 
Now we can examine applications which involve more complicated functions. 
 
Example 4: A ball at the end of a rubber band  (Fig. 1) is oscillating up and down, and its height  

  (in feet) above the floor at time  t  seconds  is  h(t) = 5 + 2 sin( t/2 ) .  (t  is in radians) 

 (a) How fast is the ball travelling after  2  seconds?  after 4 seconds?  after 60 seconds? 

 (b) Is the ball moving up or down after  2 seconds?  after 4 seconds?  after 60 seconds? 

 (c) Is the vertical velocity of the ball ever 0 ? 
 

Solution:  (a)  v(t)  = D( h(t) ) = D( 5 + 2 sin( t/2 ) )  

 = 2 cos( t/2 ) D( t/2 )  = cos( t/2 )  feet/second  so    

 v( 2 ) = cos( 2/2 ) ≈ 0.540 ft/s ,  v( 4 ) = cos( 4/2 ) ≈ –0.416 ft/s , and  

 v( 60 ) = cos( 60/2 ) ≈ 0.154  ft/s. 
    
 

 (b)  The ball is moving upward when  t = 2  and  60  seconds, downward when  t = 4. 
 

 (c)  v( t ) = cos( t/2 )  and  cos( t/2 ) = 0  when  t = π  ± n.2π   (n = 1, 2, . . . ) . 
 
Example 5:  If 2400 people now have a disease, and the number of people with the disease appears to  

 double every  3  years, then the number of people expected to have the disease in t  years is y = 2400 . 2t/3 .  

 (a)  How many people are expected to have the disease in 2 years? 

 (b)  When are  50,000 people expected to have the disease? 

 (c)  How fast is the number of people with the disease expected to grow now and 2 years from now? 
 
Solution:  (a)  In 2 years,  y = 2400 . 22/3 ≈ 3,810 people. 

(b) We know  y = 50,000 , and we need to solve  50,000 = 2400 . 2t/3  for  t.  Taking logarithms of  

 each side of the equation,  ln(50,000) = ln( 2400.2t/3 ) = ln(2400) + (t/3) . ln(2)  so 10.819 = 7.783 + .231t   

and  t ≈ 13.14  years.  We expect 50,000 people to have the disease about 13.14  years from now. 

(c) This is asking for  dy/dt  when  t = 0 and 2 years.  
dy
dt    =   

d( 2400.2t/3 )
dt    =  2400.2t/3 . ln(2).(1/3)  

 ≈ 554.5 . 2t/3 .  Now, at t = 0, the rate of growth of the disease is approximately  554.5.20 ≈ 554.5 

people/year.  In 2 years the rate of growth will be approximately  554.5 . 22/3 ≈ 880  people/year. 
 
 

Example 6: You are riding in a balloon, and at time  t  (in minutes) you  

 are   h(t) = t + sin(t)  feet high.  If the temperature at an elevation  h   is   

 T(h) = 
72

1 + h    degrees Fahrenheit, then how fast is your temperature  

 changing when  t = 5 minutes?  (Fig. 2) 
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Solution: As  t  changes, your elevation will change, and, as your elevation changes, so will your  

 temperature.  It is not difficult to write the temperature as a function of time, and then we could 

calculate  
d T(t)

dt    = T '(t)  and evaluate  T '(5),  or we could use the Chain Rule: 
 

 
d T(t)

dt    =  
d T( h(t) )

d h(t)    . 
d h(t)

dt     =  
d T( h )

d h    . 
d h(t)

dt    =  
– 72

(1 + h)2
   . ( 1 + cos( t ) ) . 

 

 When  t = 5, then  h( t ) = 5 + sin( 5 ) ≈ 4.04  so  T '(5) ≈ 
– 72

(1 + 4.04)2
  .(1 + .284) ≈ –3.64 o/minute. 

 
Practice 4: Write the temperature  T  in the previous example as a function of the variable  t  alone   

  and  then differentiate  T  to determine the value of  dT/dt  when  t = 5 minutes. 
 
Example 7: A scientist has determined that, under optimum conditions, an initial population of 40  

  bacteria will grow "exponentially" to  f(t) = 40.et/5  bacteria after  t  hours.  

(a) Graph  y = f(t)  for  0 ≤ t ≤ 15 .  Calculate  f(0), f(5), f(10) .   

(b) How fast is the population increasing at time  t?  (Find  f '(t) .)    

(c) Show that the rate of population increase, f '(t), is proportional to the population, f(t), 

at any time  t.   (Show  f '(t) = K.f(t)  for some constant K.) 
 
 
Solution: (a) The graph of  y = f(t)  is given in Fig. 3 .   

 f(0) =  40 .e0/5  = 40  bacteria.  f(5) = 40 .e5/5 ≈ 109  bacteria,   

 and  f(10) = 40 .e10/5 ≈ 296 bacteria. 
 

 (b) f '(t) = 
d
dt ( f(t) )  = 

d
dt (  40.et/5 )   =  40.et/5 

d
dt( t/5 )   

 = 40.et/5 ( 1/5 ) = 8.et/5 bacteria/hour. 
 

(c) f '(t) = 8.et/5 = 
1
5  .( 40.et/5 ) = 

1
5  f(t)   so  f '(t) = K.f(t)  with  K = 1/5 . 

 
 
PARAMETRIC EQUATIONS  
 
Suppose a robot has been programmed to move in the xy–plane so at time  t  its  x  coordinate will be   

sin(t)  and its  y coordinate will be  t2 .  Both  x  and  y  are functions of the independent parameter t,  x(t) = 

sin(t)  and  y(t) = t2 ,  and the path of the robot (Fig. 4)  can be found by plotting   

(x,y) = ( x(t), y(t) ) for lots of values of  t. 
 
     t x(t) = sin(t) y(t) = t2 plot point at  
       
 0 0 0 (0, 0) 
 .5 .48 .25 (.48, .25) 
 1.0 .84 1 (.84, 1) 
 1.5 1.00 2.25 (1, 2.25) 
 2.0 .91 4 (.91, 4)  
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Typically we know  x(t)  and  y(t)  and need to find  dy/dx, the slope of the 

tangent line to the graph of  ( x(t), y(t) ).  The Chain Rule says that 

 
dy
dt    =  

dy
dx  . 

dx
dt    , so , algebraically solving for   

dy
dx   ,  we get  

dy
dx   =  

dy/dt
dx/dt   . 

 

If we can calculate  dy/dt  and  dx/dt, the derivatives of  y  and  x  with  

respect to the parameter  t, then we can determine dy/dx, the rate of change  

of  y  with respect to  x. 

 

     

     If         x = x(t)  and  y = y(t)  are differentiable with respect to  t , and  
dx
dt     ≠ 0, 

     then     
dy
dx    =  

 dy/dt 
 dx/dt    . 

    
 
Example 8: Find the slope of the tangent line to the graph of  (x,y) = ( sin(t), t2 )  when  t = 2? 

Solution:  dx/dt = cos(t)  and  dy/dt = 2t .  When  t = 2, the object is at the point ( sin(2),  22 ) ≈ ( .91 , 4 )  

 and  the slope of the tangent line to the graph is  
dy
dx    =  

 dy/dt 
 dx/dt    =  

2t
cos(t)   =  

2.2
cos(2)   ≈  

4
–.42   ≈ –9.61 . 

  
Practice 5: Graph  (x,y) = ( 3cos(t), 2sin(t) ) and find the slope of the tangent line when t = π/2. 
 

When we calculated 

! 

dy

dx
 , the slope of the tangent line to the graph of ( x(t), y(t) ), we used the derivatives 

! 

dx

dt
  and  

! 

dy

dt
, and each of these derivatives also has a geometric meaning: 

! 

dx

dt
 measures the rate of change of  x(t) with respect to t -- it tells us whether the x-coordinate is 

increasing or decreasing as the t-variable increases. 

! 

dy

dt
 measures the rate of change of  y(t) with respect to t. 

Example 9:   For the parametric graph in Fig. 5, tell whether 

! 

dx

dt
,  
dy

dt
 and  

dy

dx
  

 is positive or negative when t=2. 

Solution: As we move through the point B (where t=2) in the direction of increasing  

 values of t, we are moving to the left so  x(t) is decreasing and 

! 

dx

dt
 is negative.   

 Similarly, the values of  y(t) are increasing so 

! 

dy

dt
 is positive.  Finally, the slope of the tangent  

 line, 

! 

dy

dx
 , is negative.   

 (As check on the sign of 

! 

dy

dx
 we can also use the result 

! 

dy

dx
 =  

dy /dt

dx /dt
 =  

positive

negative
 = negative.) 
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Practice 6:  For the parametric graph in the previous example, tell whether 

! 

dx

dt
,  
dy

dt
 and  

dy

dx
  

 is positive or negative when t=1  and when  t=3.   

 
Speed 
 
If we know the position of an object at every time, then we can determine its speed.  The formula for  

speed comes from the distance formula and looks a lot like it, but with derivatives. 
 
 
 
 If x = x(t)  and  y = y(t)  give the location of an object at time  t 

  and are differentiable functions of  t, 
     

 then the speed of the object is   ( dx
dt  )2

  +  ( dy
dt  )2

    . 

     
 

Proof:  The speed of an object is the limit, as ∆t → 0,  of   
change in position

change in time    .    (Fig. 6 ) 
    

     
change in position

change in time   =  
 (∆x)2 + (∆y)2

∆t     =    
(∆x)2 + (∆y)2

(∆t)2
     

 

          =   ( ∆x
∆t  )2

 + ( ∆y
∆t  )2

   

  

              →     ( dx
dt  )2

  +  ( dy
dt  )2

      as  ∆t → 0 . 

 
 

Exercise 10: Find the speed of the object whose location at time  t  is  (x,y) = ( sin(t), t2 )  when   

 t = 0  and  t = 1. 
 

Solution:  dx/dt = cos(t)  and  dy/dt = 2t  so  speed =  (cos(t))2 + (2t)2    =   cos2(t) + 4t2   . 
  

 When  t = 0,  speed =   cos2(0) + 4(0)2    =   1 + 0    =  1 .   When  t = 1, 
 

 speed =   cos2(1) + 4(1)2    =   0.29 + 4    ≈  2.07 . 
 
Practice 7: Show that an object whose location at time  t  is  (x,y) = ( 3sin(t), 3 cos(t) )  has a  

  constant speed.  (This object is moving on a circular path.) 
 

Practice 8: Is the object whose location at time  t  is  (x,y) = ( 3cos(t), 2sin(t) )  travelling faster at the 

 top of the ellipse ( at  t = π/2)  or  at the right edge of the ellipse  (at  t = 0)? 
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PROBLEMS  
 

Differentiate the functions in problems 1 – 19. 

1.  ln( 5x ) 2.  ln( x2 ) 3.  ln( xk ) 4.  ln( xx ) = x.ln(x) 5.  ln( cos(x) )  
 
6.  cos( ln(x) ) 7.  log2  5x 8.  log2  kx 9.  ln( sin(x) ) 10. ln( kx ) 
 
11.  log2 ( sin(x) )  12.  ln( ex ) 13.  log5  5x 14.  ln( ef(x) )  15.  x.ln( 3x )  
 

16.  ex .ln(x) 17.   
ln(x)

x   18.  x + ln(3x)   19.  ln( 5x – 3  ) 
 

20. 
d
dt  ln( cos(t) ) 21. 

d
dw   cos( ln( w ) ) 22. 

d
dx   ln( ax + b )  

 

 23. 
d
dt   ln( t + 1  ) 24. D( 3x )  25. D( 5sin(x) )  

 

26. D( x.ln(x) – x )  27. 
d
dx   ln( sec(x) + tan(x) )  

 
28. Find the slope of the line tangent to  f(x) = ln( x )  at the point  ( e , 1 ).  Find the slope of the line  

 tangent to  g(x) = ex  at the point  ( 1, e).  How are the slopes of  f  and  g  at these points related? 
 
29. Find a point  P  on the graph of  f(x) = ln(x)  so the tangent line to  f  at  P  goes through the origin. 
 
30. You are moving from left to right along the graph of   

 y = ln( x )  (Fig. 7) . 

(a)  If the x–coordinate of your location at time  t  

seconds  is  x(t) = 3t +2 ,  then how fast is your 

elevation increasing? 

(b)  If the x–coordinate of your location at time  t  

seconds is  x(t) = et , then how fast is your elevation increasing? 
  
31. Rumor.  The percent of a population, p(t),  who have heard a rumor by time  t  is often modeled  

 p(t)  =  
100

1 + Ae–t   = 100 (1 + Ae–t )–1  for some positive constant  A.  Calculate how fast the rumor is 

spreading,  
d p(t)

dt    . 
 
32. Radioactive decay.  If we start with  A  atoms of a radioactive material which has a "half–life"  (the  

 amount of time for half of the material to decay)  of  500  years,  then the number of radioactive atoms 

left after  t  years is  r(t) = A.e–Kt  where  K =   
ln(2)
500    .  Calculate  r '(t)  and show that  r '(t) is 

proportional to  r(t)  ( r '(t) =  b.r(t)  for some constant  b). 
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In problems 33 – 41 , find a function with the given derivative. 
 

33.  f '(x) =  
8
x  34.  h '(x) =   

3
3x + 5  35.  f '(x) =   

cos(x)
3 + sin(x)   

 

36.  g '(x) =   
x

1 + x2 
  37.  g '(x) =  3e5x  38.  h '(x) =   e2 

 

39.  f '(x) =  2x.e(x2)   40.  g '(x) =  cos(x) .esin(x)  41.  h '(x) =   
cos(x)
sin(x)   

 
 

42. Define  A(x)  to be the area bounded between the  x–axis, the  

 graph of  f(x), and a vertical line at x  (Fig. 8).  The area under  

 each "hump" of  f  is  2 square inches. 
 
 (a) Graph  A(x)  for  0 ≤ x ≤ 9.  
 
 (b) Graph  A '(x)  for  0 ≤ x ≤ 9. 

 
 
Problems  43 – 48  involve parametric equations.   
 
43. At time  t  minutes,  robot A is at ( t, 2t + 1)  and robot  B is at ( t2, 2t2 + 1).   

(a) Where is each robot when  t=0  and  t = 1? 

(b) Sketch the path each robot follows during the first minute.   

(c) Find the slope of the tangent line, dy/dx , to the path of each robot at  t = 1 minute. 

(d) Find the speed of each robot at  t = 1 minute. 

(e) Discuss the motion of a robot which follows the path  ( sin(t), 2sin(t) + 1 )  for  20  minutes. 
 
44. x(t) = t + 1  , y(t) = t2 .  (a)   Graph  ( x(t), y(t) )  for  –1 ≤ t ≤ 4.   

 (b) Find  dx/dt,  dy/dt, the tangent slope dy/dx , and  speed when  t = 1  and  t = 4. 
 
 
45. For the parametric graph in Fig. 9, 46. For the parametric graph in Fig. 10, 

 determine whether 

! 

dx

dt
,  
dy

dt
 and  

dy

dx
   determine whether 

! 

dx

dt
,  
dy

dt
 and  

dy

dx
 

 are positive, negative or zero when   are positive, negative or zero when 

 t = 1 and  t = 3.  t = 1 and  t = 3. 
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47. x(t) =  R.(t – sin(t) ), y(t) = R.(1 – cos(t) ) .  (a)  Graph  ( x(t), y(t) )  for  0 ≤ t ≤ 4π . 

 (b) Find  dx/dt,  dy/dt, the tangent slope dy/dx , and  speed when  t = π/2  and  π.   

 (The graph of  ( x(t), y(t) ) is called a cycloid and is the path of a light attached to the edge of a rolling 

wheel with radius  R.) 
  
48. Describe the motion of two particles whose locations at time t are ( cos(t), sin(t) )  and  ( cos(t), –sin(t) ).  
 
49. Describe the path of a robot whose location at time  t  is   

 (a) ( 3.cos(t), 5.sin(t) ) (b) ( A.cos(t), B.sin(t) ) 

(c) Give the parametric equations so the robot will move along the same path as in part (a) but in the 

opposite direction. 
 
50. After  t  seconds, a projectile hurled with initial velocity  v and angle θ will be at   x(t) = v.cos(θ).t feet  

and  y(t) =  v.sin(θ).t – 16t2 feet.  (Fig. 11)  (This formula neglects air resistance.) 

(a) For an initial velocity of 80 feet/second  and an angle of  π/4, find  t > 0  so  y(t) = 0.  What does 

this value for  t  represent physically?  Evaluate  x(t). 

(b) For   v and  θ  in part  (a), calculate  dy/dx.  Find  t  so dy/dx  = 0  at  t, and evaluate  x(t).  What 

does  x(t) represent physically? 

(c) What initial velocity is needed so a ball hit at an angle of  π/4 ≈ 0.7854  will go over a 40 foot 

high fence 350 feet away? 

(d) What initial velocity is needed so a ball hit at an angle of  0.7   will go over a 40 foot high fence 

350 feet away? 
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Section 2.5 PRACTICE  Answers 
 

Practice 1: log9 20 =  
log(20)
log(9)    ≈  1.3634165 ≈  

ln( 20 )
ln( 9 )    ,  log3 20  =  

log(20)
log(3)    ≈  2.726833 ≈  

ln( 20 )
ln( 3 )       

 

 logπ e  =  
log(e)
log(π)   ≈  0.8735685  ≈  

ln(e)
ln(π)    =  

1
ln(π)    

 

Practice 2: D( log10 ( sin(x) ) ) =  
1

sin(x).ln(10)   D( sin(x) )   =   
cos(x)

sin(x).ln(10)  
 

 D( logπ ( ex ) )  =  
1

ex.ln(π)
   D( ex  )  =  

ex

ex.ln(π)
   =  

1
ln(π)    

 
Practice 3: D( sin( 2x ) )  =  cos( 2x ) D( 2x )  =   cos( 2x ).2x.ln(2) 
 

 
d
dt   3

(t2)   =   3(t2)  ln(3) D( t2 )  =   3(t2)  ln(3).2t 
 

Practice 4: T = 
72

1 + h    =  
72

1 + t + sin(t)   . 

 
d T
dt    =  

( 1 + t + sin(t) ).D( 72 ) – 72.D( 1 + t + sin(t) ) 
( 1 + t + sin(t) )2

   =  
–72( 1 + cos(t))
( 1 + t + sin(t) )2

  

 

 When  t = 5,  
d T
dt    =    

–72( 1 + cos(5))
( 1 + t + sin(5) )2

   ≈  –3.63695  . 

 
Practice 5: x(t) = 3cos(t)  so  dx/dt = –3sin(t) .  y(t) = 2sin(t)   
 

 so  dy/dt = 2cos(t). 
dy
dx   =  

 dy/dt 
 dx/dt    =  

2cos(t)
–3sin(t)   . 

 

 When  t = π/2,  
dy
dx   =  

2cos( π/2 )
–3sin( π/2 )   =  

2.0
–3.1   = 0  . (See Fig. 12) 

 
Practice 6:  When x=1:  pos., pos., pos.     When x=3:  pos.,  neg., neg. 
 
Practice 7: x(t) = 3sin(t)  and  y(t) = 3cos(t)  so  dx/dt = 3cos(t)  and  dy/dt = –3sin(t) .  Then 
 

 speed =   ( dx/dt )2  +  ( dy/dt )2    =   (3cos(t) )2  + ( –3sin(t) )2     
 

  =   9.cos2(t) + 9.sin2(t)   =    9    =  3 , a constant. 
 
Practice 8: x(t) = 3cos(t)  and  y(t) = 2sin(t)  so  dx/dt = –3sin(t)  and  dy/dt = 2cos(t) .  Then 
 

 speed =   ( dx/dt )2 + ( dy/dt )2    =   (–3sin(t) )2  + ( 2cos(t) )2    =   9sin2(t) + 4cos2(t)   . 
 

 When  t = 0,  the speed is   9.(0)2 + 4.(1)2    = 2 . 
 

 When  t = π/2,  the speed is   9.(1)2 + 4.(0)2    = 3  (faster). 
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2.6   RELATED  RATES:  An Application of Derivatives 
 

In the next several sections we'll look at more uses of derivatives.  Probably no single application will be of 

interest or use to everyone,  but at least some of them should be useful to you.  Applications also reinforce 

what you have been practicing; they require that you recall what a derivative means and use the techniques 

covered in the last several sections.  Most people gain a deeper understanding and appreciation of a tool as 

they use it,  and differentiation is both a powerful concept and a useful tool. 

 
The Derivative As A Rate of Change 
 

In Section 2.1, several interpretations were given for the derivative of a function.  Here we will examine 

how the "rate of change of a function"  interpretation can be used.  If several variables or quantities are 

related to each other and some of the variables are changing at a known rate, then we can use derivatives to 

determine how rapidly the other variables must be changing. 
 

Example 1: Suppose we know that the radius of a circle is increasing at a rate of  

 10 feet each second  (Fig. 1) , and we want to know how fast the area of  

 the circle is increasing when the radius is 5 feet.  What can we do? 
 
Solution: We could get an approximate answer by calculating the area of the circle  

 when the radius is 5  feet  ( A = πr2 = π(5 feet)2 ≈ 78.6 feet2 )  and  1 second later 

when the radius is 10 feet larger than before  (  A = πr2 = π(15 feet)2 ≈ 706.9 feet2 ) 

and then finding   ∆Area/∆time = (706.9 ft2 – 78.6 ft2)/(1 sec) = 628.3 ft2/sec.  This 

approximate answer represents the average change in area during the 1 second period when the radius 

increased from 5 feet to 15 feet.  It is the slope of the secant line through the points  P  and  Q  in  

 Fig. 2 , and it is clearly not a very good approximation of the instantaneous rate of change of the area, the 

slope of the tangent line at the point  P. 
 

We could get a better approximation by calculating  ∆A/∆t  over a 

shorter time interval, say  ∆t = .1 seconds.  Then the original area 

was  78.6 ft2 , the new area is  A = π(6 feet)2 ≈ 113.1 feet2  (Why is 

the new radius 6 feet?) so    

∆A/∆t = (113.1 ft2 – 78.6 ft2)/(.1 sec) = 345 ft2/sec.  This is the 

slope of the secant line through the point  P  and  R  in Fig. 3, and it 

is a much better approximation of the slope of the tangent line at  P, 

but it is still only an approximation.  Using derivatives, we can get 

an exact answer without doing very much work. 
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We know that the two variables in this problem, the radius  r  and 

the area  A,  are related to each other by the formula  A = πr2  ,  

and we know that both  r  and  A  are changing over time so each 

of them is a function of an additional variable  t = time.  We will 

continue to write  the radius and area variables as  r  and  A, but it 

is important to remember that each of them is really a function of 

t,  r = r(t)  and  A = A(t).  The statement that "the radius is 

increasing at a rate of 10 feet each second" can be translated into a 

mathematical statement about the rate of change, the derivative of 

r with respect to time:   
dr
dt   = 10 ft/sec .  The question about the 

rate of change of the area is a question about  
dA
dt   .  Collecting all of this information, we have 

 
 Variables:  r(t) = radius at time t ,  A(t) = area at time t  
 

 We Know:  r = 5 feet  and  
d r(t)

dt    =  10 ft/sec. 
 

 We Want:    
d A(t)

dt     when  r = 5 
 

 Connecting Equation:  A = πr2    or   A(t) = πr2(t)  . 

 

Finally, we are ready to find  
dA
dt     ––  we just need to differentiate each side of the equation  A = πr2   

with respect to the independent variable  t. 
 

dA
dt    =  

d (πr2 )
dt    =  π

dr2
dt    =  π 2r 

dr
dt    .  The last piece,  

dr
dt   ,  appears in the derivative because  r  is a 

function of t  and we must use the differentiation rule for a function to a power (or the Chain Rule):    
 

d
dt  f

n(t) = nfn-1(t). 
df(t)

dt  . 
 

We know from the problem that  
dr
dt  = 10 ft/sec  so  

dA
dt   =  π 2r 

dr
dt    = π2r(10 ft/s)  = 20πr  ft/s.  This 

answer tells us that the rate of increase of the area of the circle,  
dA
dt    , depends on the value of the radius  

r  as well as on the value of  
dr
dt  .  Since  r = 5 feet, the area of the circle will be increasing at a rate of  

 
dA
dt   = 20πr ft/s = 20π(5 feet ) ft/s = 100π  ft2 /s ≈ 314.2  square feet per second. 
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The key steps in finding the exact rate of change of the area of the circle were to: 

• write the known information in a mathematical form, expressing rates of change as 

derivatives   ( r = 5 feet  and  dr/dt = 10 ft/sec ) 
 
• write the question in a mathematical form     ( dA/dt = ? ) 
 
• find an equation connecting or relating the variables      ( A = πr2  ) 
 

• differentiate both sides of the equation relating the variables,  remembering that the variables 

are functions of t      ( dA/dt = 2πr dr/dt ) 
 
• put all of the known values into the equation in the previous step and solve for the desired part 

in the resulting equation     ( dA/dt = 2π(5 ft)(10 ft/sec) = 314.2 ft2/sec ) 
 

Example 2: Divers lives depend on understanding situations involving related rates.  In water, the  

 pressure at a depth of  x  feet is approximately  P(x) = 15( 1 + 
x
33  )  pounds per square inch  

(compared to approximately  15 pounds per square inch at sea level  =  P(0) ).  Volume is 

inversely proportional to the pressure , v = k/p ,  so doubling the pressure will result in half the 

original volume.  Remember that volume is a function of the pressure:  v = v(p). 

(a)  Suppose a diver's lungs, at a depth of 66 feet, contained 1 cubic foot of air , and the diver 

ascended to the surface without releasing any air, what would happen?    

(b) If a diver started at a depth of 66 feet and ascended at a rate of  2 feet per second,  how fast 

would the pressure be changing? 

(Dives deeper than 50 feet also involve a risk of the "bends" or decompression sickness if the ascent 

is too rapid.  Tables are available which show the safe rates of ascent from different depths.) 
 

Solution: (a)  The diver would risk getting ruptured lungs.  The  1 cubic foot of air at a depth of 66 feet  

 would be at a pressure of  P(66) = 15(1 + 
66
33  ) =  45 pounds per square inch (psi).  Since the pressure at 

sea level , P(0) = 15 psi , is only 1/3 as great, each cubic foot of air would expand to 3 cubic feet, and the 

diver's lungs would be in danger.  Divers are taught to release air as they ascend to avoid this danger. 

(b)  The diver is ascending at a rate of  2 feet/second so the rate of change of the diver's depth  x(t)  is  
d
dt 

 x(t) = – 2 ft/s.  The pressure , P = 15( 1 + 
x
33  ) = 15 + 

15
33  x ,  is a function of x (or x(t) )  so  

d
dt  P  = 

d P
dx    . 

d x
dt    = ( 

15
33   psi/ft ).( – 2 ft/sec ) = – 

30
33   psi/sec ≈ –0.91 psi/sec. 

 
 

Example 3: The height of a cylinder is increasing at 7 meters per second and  

 the radius is increasing at 3 meters per second.  How fast is the volume  

 changing when the cylinder is 5 meters high and has a radius of 6  

 meters?  (Fig. 4) 



2.6 Related  Rates Contemporary  Calculus  
4 

Solution: First we need to translate our known information into a mathematical format.  The height and 

radius are given:  h = height = 5 m  and  r = radius = 6 m.  We are also told how fast  h  and  r  are 

changing:   dh/dt = 7 m/s  and  dr/dt = 3 m/s.  Finally, we are asked to find  dV/dt, and we should 

expect the units of dV/dt  to be the same as  ∆V/∆t  which are  m3/s. 
 

 Variables:  h(t)  = height at time t ,  r(t) = radius at t ,  V(t) = volume at t. 
 

 Know:   h = 5 m ,   
d h(t)

dt    =  7 m/s ,   r = 6 m ,   
d r(t)

dt    =  3 m/s . 
 

 Want:   
d V(t)

dt    
 

 We also need an equation which relates the variables  h, r  and  V  (all of which are functions of  

 time t)  to each other:   
 

 Connecting Equation:  V = π r2 h   or   V(t)  = π r2(t) h(t)  
 

 Then, differentiating each side of this equation with respect to t (remembering that  h, r and V are  

 functions), we have 
 

   
dV
dt    =  

d(πr2h)
dt    =  π 

d(r2h)
dt    = π{ r2 

dh
dt    +  h 

dr2
dt   }  by the Product Rule 

 
 

 = π{r2 
dh
dt   + h(2r)

dr
dt   } by the Power Rule for functions. 

 
 The rest is just substituting values and doing some arithmetic: 

 

   = π{(6 m)2 (7 m/s) + (5 m)2(6 m)(3 m/s)} 

   = π{ 252 m3/s  +  180 m3/s } 

   = 432π m3/s  ≈  1357.2 m3/s . 
 

 The volume of the cylinder is increasing at a rate of 1357.2  cubic meters per second.  (It is always  

 encouraging when the units of our answer are the ones we expect.) 
 
 
Practice 1: How fast is the surface area of the  

 cylinder changing in the previous example?  

(Assume that  h,  r,  dh/dt,  and  dr/dt  have the 

same values as in the example and use Fig. 5   

 to help you determine an equation relating the 

surface area of the cylinder to the variables  h   

 and  r.  The cylinder has a top and bottom.) 
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Practice 2: How fast is the volume of the cylinder in the previous example changing if the radius is  

 decreasing at a rate of  3  meters per second?  (The height, radius and rate of change of the height 

are the same as in the previous example: 5 m, 6 m  and 7 m/s  respectively.) 
 
Usually, the most difficult part of Related Rate problems is to find an equation which relates or connects all of  

the variables.  In the previous problems, the relating equations required a knowledge of geometry and formulas 

for areas and volumes (or knowing where to find them).  Other Related Rates problems may require other 

information about similar triangles, the Pythagorean formula, or trigonometry –– it depends on the problem. 
 

It is a good idea, a very good idea, to draw a picture of the physical situation whenever possible.  It is also a 

good idea, particularly if the problem is very important (your next raise depends on getting the right 

answer), to calculate at least one approximate answer as a check of your exact answer. 
 

Example 4: Water is flowing into a conical tank at a rate of  5 m3/s.  If the radius  

 of the top of the cone is 2 m (see Fig. 6), the height is 7 m,  and the depth of the  

 water is 4 m, then how fast is the water level rising? 
 

Solution: Lets define our variables to be  h = height (or depth) of the water in the 

cone  and  V = the volume of the water in the cone.  Both  h  and  V  are 

changing, and both of them are functions of time t.  We are told in the problem 

that  h = 4 m  and   dV/dt = 5 m3/s, and we are asked to find  dh/dt.  We expect 

that the units of  dh/dt  will be the same as  ∆h/∆t which are  meters/second. 
 

 Variables: h(t) = height at t , r(t) = radius of the top surface of the water at t,  

  V(t) = volume of water at time t 
 

 Know:   h = 4 m ,  
d V(t)

dt    =  5 m3/s 
 

 Want:   
d h(t)

dt     
 

 Unfortunately, the equation for the volume of a cone,  V = 
1
3  πr2h , also involves an additional variable  

r, the radius of the cone at the top of the water .  This is a situation in which the picture can be a great 

help by suggesting that we have a pair of similar triangles so  r/h = (top radius)/(total height) =  

 (2 m)/(7 m) = 2/7  and  r = 
2
7  h .  Then we can rewrite the volume of the cone of water, V =  

1
3  πr2h , 

as a function of the single variable h:   
 

 Connecting Equation:  V =  
1
3  πr2h =  

1
3  π( 

2
7  h )2h  =  

4
147  πh3 .   
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 The rest of the solution is straightforward. 
 

   
dV
dt    =  

d( 
4

147 πh3 )
dt     =   

4
147  π 

d(h3)
dt    =  

4
147  π 3h2 

dh
dt   remember,  h is a function of t 

 

  =   
4

147  π 3(4 m)2 
dh
dt    ≈ (4.10 m2) 

dh
dt    .   

 

 We know that  
dV
dt    =   5 m3/s  and   

dV
dt    =  (4.10 m2) 

dh
dt      so it is easy to solve for   

 

  
dh
dt    =  

dV/dt
(4.10 m2)

   =  
5 m3/s

4.10 m2   ≈  1.22 m/s . 

 
 This example was a little more difficult than the others because we needed to use similar triangles to get  

 an equation relating  V  to  h  and because we eventually needed to do a little arithmetic to solve for  dh/dt.   
 

Practice 3: A rainbow trout has taken the fly at the end of a 60 foot line, and the line is being reeled in 

at a rate of 30 feet per minute.  If the tip of the rod is 10 feet above the water and the trout is at the 

surface of the water, how fast is the trout being pulled toward the angler?  (Suggestion:  Draw a 

picture and use the Pythagorean formula.) 
 

Example 5: When rain is falling vertically, the amount (volume) of  

 rain collected in a cylinder is proportional to the area of the  

 opening of the cylinder.  If you place a narrow cylindrical  

 glass and a wide cylindrical glass out in the rain  (Fig. 7) ,   

 (a)  which glass will collect water faster,  and   

 (b)  in which glass will the water level rise faster? 
  

 

Solution:  Let's assume that the smaller glass has a radius of  r  and the larger has a radius of R, R > r , so 

the areas of their openings are  π.r2  and  π.R2  respectively.   

(a)  The smaller glass will collect water at the rate    
dv
dt    = K.π.r2 , and  the larger at the rate   

  
dV
dt     = K.π.R2  so   

dV
dt    >  

dv
dt    , and  the larger glass will collect water faster than the smaller glass. 

(b)  The volume of water in each glass is a function of the radius of the glass and the height of the water in the 

glass:  v = π r2 h  and  V = π R2 H  where  h  and  H  are the heights of the water levels in the smaller and 

larger glasses, respectively.  The heights h  and  H  vary with t  (are functions of t)   so     
  

 
dv
dt    =  

d( π r2 h )
dt    = π r2 

dh
dt     and  

dh
dt    =  

dv/dt
π r2

   =  
 Kπ r2 
π r2

   =  K   (we got  dv/dt =  Kπ r2  in part (a) ). 
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 Similarly,   
dV
dt    =  

d( π R2 H )
dt    = π R2 

dH
dt       so    

dH
dt    =  

dV/dt
π R2    =  

 Kπ R2 
π R2    =  K .   

 

 Then   
dh
dt    = K =  

dH
dt     so the water level in each glass is rising at the same rate.  In a one minute  

 period, the larger glass will collect more rain, but the larger glass also requires more rain to raise its 

water level by each inch.  How do you think the volumes and water levels would change if we 

placed a small glass and a large plastic box side by side in the rain? 

 

 
PROBLEMS 
 
1. An expandable sphere is being filled with liquid at a constant rate from a tap  (imagine a water balloon  

 connected to a faucet).  When the radius of the sphere is 3 inches, the radius is increasing at  2 inches 

per minute.  How fast is the liquid coming out of the tap?   ( V = 
4
3  π r3 ) 

 

2. The 12 inch base of a right triangle is growing at 3 inches per hour,  and the 16 

inch height is shrinking at 3 inches per hour  (Fig. 8)  

       (a) Is the area increasing or decreasing?  

  (b) Is the perimeter increasing or decreasing?  

  (c) Is the hypotenuse increasing or decreasing? 
  
 

3. One hour later the right triangle in Problem 2  is 15 inches long and 13 inches high  

 (Fig. 9),  and the base and height are changing at the same rate as in Problem 2. 

     (a) Is the area increasing or decreasing now? 

  (b) Is the hypotenuse increasing or decreasing now?  

  (c) Is the perimeter increasing or decreasing now? 
 
 
 

4. A young woman and her boyfriend plan to elope, but she must rescue him from 

his mother who has locked him in his room.  The young woman has placed a 20 

foot long ladder against his house and is knocking on his window when his 

mother begins pulling the bottom of the ladder away from the house at a rate of 

3 feet per second  (Fig. 10).  How fast is the top of the ladder (and the young 

couple) falling when the bottom of the ladder is   

 (a)  12 feet from the bottom of the wall?     

 (b)  16 feet from the bottom of the wall?   

 (c)  19 feet from the bottom of the wall? 
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5. The length of a  12 foot by  8 foot  rectangle is increasing at a rate of  3 

feet per second and the width is decreasing at 2 feet per second  (Fig. 11). 

 (a) How fast is the perimeter changing?  

 (b) How fast is the area changing? 
 

6.  A circle of radius  3 inches is inside a square with  

 12 inch sides (Fig. 12).  How fast is the area between the circle and square  

 changing if the radius is increasing at  4  inches per minute and the sides are  

 increasing at  2  inches per minute? 
 

7. An oil tanker in Puget Sound has sprung a leak, and a  

 circular oil slick is forming  (Fig. 13).  The oil slick is  4  

 inches thick everywhere, is 100 feet in diameter, and the  

 diameter is increasing at 12 feet per hour.  Your job, as  

 the Coast Guard commander or the tanker's captain, is to  

 determine how fast the oil is leaking from the tanker. 
 

8. A mathematical species of slug has a semicircular cross section and is always 5 times as long as it is 

high  (Fig. 14).  When the slug is 5 inches long, it is growing at .2 inches per week. 

 (a) How fast is its volume increasing? 

 (b) How fast is the area of its "foot"  (the part of the slug in  

  contact with the ground)  increasing? 
 
 
 

 

9. Lava flowing from a hole at the top of a hill is forming a conical mountain whose  

 height is always the same as the width of its base  (Fig. 15).  If the mountain is  

 increasing in height at 2 feet per hour when it is 500 feet high,  how fast is the lava  

 flowing (how fast is the volume of the mountain increasing)?   ( V =  
1
3  πr2h ) 
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10. A six foot tall person is walking away from a 14 foot tall 

lamp post at 3 feet per second  (Fig. 16).  When the person is 

10 feet from the lamp post, 

 (a) How fast is the length of the person's shadow changing? 

 (b) How fast is the tip of the shadow moving away from  

  the lamp post? 
 

11. Answer parts (a) and (b) in Problem 10  for when the person is 20 feet from 

the lamp post. 
 

12. Water is being poured at a rate of 15 cubic feet per minute into a conical 

reservoir which is 20 feet deep and has a top radius of 10 feet (Fig. 17).  

(a) How long will it take to fill the empty reservoir? 

 (b) How fast is the water level rising when the water is 4 feet deep? 

 (c) How fast is the water level rising when the water is 16 feet deep? 
 
 

13. The string of a kite is perfectly taut and always makes  

 an angle of 35o above horizontal  (Fig. 18).    

 (a) If the kite flyer has let out 500 feet of string, how high is the kite? 

 (b) If the string is let out at a rate of 10 feet per second, how fast is the  

 kite's height increasing? 
 

 

14. A small tracking telescope is viewing a  hot air balloon rise from a  

 point 1000 meters away from a point directly under the balloon  (Fig. 19).   

 (a) When the viewing angle is 20o  , it is increasing at a rate of 3o  per  

 minute.  How high is the balloon, and how fast is it rising? 

(b) When the viewing angle is 80o  , it is increasing at a rate of 2o  per  

 minute.  How high is the balloon, and how fast is it rising? 
 

15. The 8 foot diameter of a spherical gas bubble is increasing at  2 feet  

 per hour, and the 12 foot long edges of a cube containing the bubble are 

increasing at 3 feet per hour.  Is the volume contained between the 

spherical bubble  and the cube increasing or decreasing?  At what rate? 
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16. In general, the strength  S  of an animal is proportional to the cross–sectional area of its muscles, and  

 this area is proportional to the square of its height H, so the strength  S  =  aH2 .  Similarly, the weight  

W  of the animal is proportional to the cube of its height, so  W = bH3 .  Finally, the relative strength  

R  of an animal is the ratio of its strength to its weight.  As the animal grows, show that its strength and 

weight increase, but that the relative strength decreases. 
 

 
17. The snow in a hemispherical pile melts at a rate proportional to its exposed surface area (the surface  

 area of the hemisphere).  Show that the height of the snow pile is decreasing at a constant rate. 
 
18. If the rate at which water vapor condenses onto a spherical raindrop is proportional to the surface area of  

 the raindrop, show that the radius of the raindrop will increase at a constant rate. 
 

19. Define  A(x)  to be the area  bounded by the  x  and  y  axes, the horizontal line  y = 5, and a vertical 

line at  x  (Fig. 20).   

 (a) Find a formula for  A  as a function of  x.  

(b) Determine  
d A(x)

dx     when  x = 1, 2, 4  and  9. 

(c) Suppose  x  is a function of time,  x(t) = t2 ,  and find a formula for   

 A  as a function of  t. 

(d) Determine  
d A
 dt     when  t = 1, 2, and  3.   

(e) Suppose  x(t) = 2 + sin(t).  Find a formula for  A(t)  and determine  
d A
dt   . 

 

20. The point  P  is going around the circle  x2 + y2 = 1  twice a minute   

 (Fig. 21).  How fast is the distance between the point P  and the  

 point  (4,3) changing   

 (a)  when  P = (1,0)?   (b)  when  P = (0,1)?   (c)  when  P = ( .8, .6)? 

 (Suggestion:  Write x and y as parametric functions of time t.) 
 
 

21. You are walking along a sidewalk toward a 40 foot wide sign which is 

adjacent to the sidewalk and perpendicular to it  (Fig. 22).   

(a) If your viewing angle θ is 10o , then how far are you from the 

nearest corner of the sign? 

(b) If your viewing angle is  10o  and you are walking at  25 feet  

 per minute, then how fast is your viewing angle changing? 

(c) If your viewing angle is 10o  and is increasing at 2o  per minute, 

then how fast are you walking? 
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Section 2.6 PRACTICE  Answers 

 

Practice 1: The surface area of the cylinder is  SA = 2πrh + 2πr2 .  From the Example, we know that  

h ' = 7 m/s  and  r ' = 3 m/s, and we want to know how fast the surface area is changing 

when  h = 5 m  and  r = 6 m. 
 

   
d SA

dt      =  2πr.h' + 2π.r'.h + 2π.2r.r ' 
 
   = 2π(6 m)( 7 m/s) + 2π(3 m/s)(5 m) + 2π(2.6 m)(3 m/s) = 186π  m2/s   
 
   ≈  584.34 square meters per second.  (Note that the units represent a rate of change of area.) 

 

Practice 2: The volume of the cylinder is  V = (area of the bottom)(height) = πr2h.  We are told that  

r ' = –3 m/s, and that h = 5 m, r = 6 m, and  h ' = 7 m/s. 
 

  
d V
dt     = πr2.h ' + π.2r.r '.h  =  π(6 m)2(7 m/s) + π(2.6 m)(–3 m/s)(5 m) =  72π  m3/s 

  ≈ 226.19  cubic meters per second.  (Note that the units represent a rate of change of volume.) 

 

Practice 3: Fig. 23  represents the situation described in this problem.  We are told that  L ' = –30 ft/min .  The 

variable  F  represents the distance of the fish from the angler, and we are asked to find F ', the rate of 

change of  F when  L = 60 ft. 
 

Fortunately, the problem contains a right triangle so there is a formula (the  

Pythagorean formula)  connecting  F  and  L:  F2 + 102 = L2  so   
 

 F =  L2 – 100   . 
 

Then   F '  =  
1
2 (L2 – 100) –1/2  

d (L2 – 100)
dt     =  

2L.L '

2 L2 – 100
   . 

 

 When  L = 60 feet,  F ' =  
2(60 ft)(–30 ft/min)

2 (60 ft)2 – (10 ft)2
    ≈  

–3600 ft2/min
118.32 ft     ≈  –30.43  ft/min. 

 

We could also find  F '  implicitly:  F2 = L2 – 100  so, differentiating each side, 
 

 2F.F ' = 2L.L '  and  F ' = 
L.L '

F    .   
 

Then we could use the given values for  L  and  L ' and value of  F  (found using the Pythagorean 

formula)  to evaluate  F '.  
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2.7  NEWTON'S METHOD FOR FINDING ROOTS   
 

Newton's method is a process which can find roots of functions whose graphs cross or just kiss the x–axis.  

Although this method is a bit harder to apply than the Bisection Algorithm, it often finds roots that the 

Bisection Algorithm misses, and it usually finds them faster. 

 
Off On A Tangent 
 
The basic idea of Newton's Method is remarkably simple and graphic (Fig. 1):   
 

at a point  ( x, f(x) )  on the graph of f, the tangent line to the  

graph of  f   "points toward" a root of  f, a place where the  

graph touches the x–axis. 
 
If we want to find a root of f , all we need to do is pick a starting value  x0, 

 go up or down to the point  (x0 , f(x0 )) on the graph of f, build a tangent  

line there, and follow the tangent line to where it crosses the x–axis, say at x1.   

If  x1  is a root of  f , then we are done.  If  x1  is not a root of f,  then  x1 is usually closer to the root  

than  x0  was, and we can repeat the process, using  x1  as our new starting point.  Newton's method is an 

iterative procedure, that is, the output from one application of the method becomes the starting point for 

the next application. 

 

Let's start with a differentiable function  f(x) = x2 – 5,  (Fig. 2)  whose roots we 

already know,  x = ± 5  ≈  ± 2.236067977 ,  and illustrate how Newton's method 
works.  First we pick some value for x0 , say  x0 = 4  for this example,  and move 

to the point  (x0 , f(x0) ) = ( 4 , 11 )  on the graph of  f.   

 

At  ( 4 , 11 ) ,  the graph of  f  "points to"  a 

location on the  x–axis which is closer to the root 

of  f  (Fig. 3).   We can calculate this location  

on the x–axis by finding the equation of the  

line tangent to the graph of  f  at the point   

( 4 , 11 )  and then finding where this tangent line 

intersects the  x–axis: 

 

At the point  ( 4 , 11 ), the line tangent to f  has slope  m = f '(4) = 2(4) = 8 ,  

so the equation of the tangent line is  y – 11 = 8(x – 4).  Setting  y = 0 ,  we 

can find where the tangent line crosses the x–axis:    

                0 –11 = 8(x – 4) , so  x = 4 – 
11
8    = 

21
8    =  2.625 .   
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Call this new value  x1 :  x1 = 2.625 . 
 

The point  x1 = 2.625  is closer to the actual root , but it certainly does not 

equal the actual root.  If Newton's method stopped after one step with the 

estimate of 2.625, it would not be very useful.  Instead, we can use this new 
value for  x ,  x1 = 2.625 ,  to repeat the procedure  (Fig. 4):   
 

(i) move to the point  ( x1, f(x1) ) = ( 2.625 , 1.890625 )  on the graph,   

(ii) find the equation of the tangent line at the point  ( x1, f(x1) ):   

           y–1.890625 = 5.25(x– 2.625 )   

(iii) find the new value where the tangent line intersects the x–axis and 
call it  x2. ( x2 =  2.262880952 ) 

When we continue repeating this process, (Fig. 5)  using each new estimate 

for the root of  f(x) = x2 – 5 as the beginning point for calculating the next 

estimate, we get: 

 
Beginning estimate: x0 = 4 ( 0 correct digits) 
after 1 iteration: x1 = 2.625 ( 1 correct digit) 
after 2 iterations: x2 = 2.262880952 ( 2 correct digits) 
after 3 iterations: x3 = 2.236251252 ( 4 correct digits) 
after 4 iterations: x4 = 2.236067985 ( 8 correct digits) 

 

It only took 4 iterations to get an approximation of  5   which is within 0.000000008  of the exact value.  
One more iteration gives an approximation  x5  which has 16 correct digits.  If we start with  x0 = –2  (or 

any negative number), then the values of  xn  approach  – 5   ≈  – 2.23606 . 
 
 
Fig. 6  shows the process for Newton's Method, starting with  x0 and 

graphically finding the locations on the x–axis of  x1, x2, and  x3 .  
 
 

Practice 1: Find where the tangent line to  f(x) = x3 + 3x – 1   

  at  (1, 3)  intersects the x–axis. 
 
 

Practice 2: A starting point and a graph of  f  are given in  Fig. 7.   

 Label the approximate locations of the next two points  

 on the x–axis which are found by Newton's method. 
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The Algorithm for Newton's Method 
 

Rather than deal with each particular function and starting point, let's find a pattern for a general function  f.  
For the starting point x0 ,  the slope of the tangent line at the point  ( x0 , f(x0) )  is  f '(x0)  so the equation of 

the tangent line is   y – f(x0)  =  f '(x0) ( x – x0 ) .   This line intersects the x–axis when  y = 0,  so   

0 – f(x0) =  f '(x0) ( x – x0 )  and   x1  =  x =   x0 –  
f(x0)
f '(x0)   .  Starting with  x1  and repeating this process we 

have  x2  = x1 –  
f(x1)
f '(x1)   ;  starting with  x2 , we get  x3  = x2 –  

f(x2)
f '(x2)   ; and so on. 

 
In general, if we start with  xn ,  the line tangent to the graph of  f  at the point  ( xn , f(xn) )  intersects the 

x–axis at the  point    xn+1  =   xn –  
f(xn)
f '(xn)   , our new estimate for the root of  f . 

 

 Algorithm for Newton's Method:  
  (1) Pick a starting value  x0  (preferably close to a root of  f). 

  (2) For each estimate  xn ,  calculate a new estimate  xn+1  =  xn –  
f(xn)
f '(xn)   . 

  (3) Repeat step (2)  until the estimates are  "close enough"  to a root or until the method "fails". 
    
 

When the algorithm for Newton's method is used with  f(x) = x2 – 5, the function at the beginning of this 

section, we have  f '(x) = 2x  so 
 

 xn+1 =  xn –  
f(xn)
f '(xn)   =  xn –  

xn
2– 5

2xn      =  
2xn

2– (xn
2– 5)

2xn     

 

  =  
xn

2 + 5
2xn    =  

1
2  { xn +  

5
xn   }  . 

 
The new approximation,  xn+1 , is the average of the previous approximation, xn ,  and  5  divided by the previous 

approximation,  5/xn .  Problem 16 asks you to show that this pattern, called Heron's method, approximates the 

square root of any positive number.  Just replace the  "5"  with the number whose square root you want. 
 
 
Example 1: Use Newton's method to approximate the root(s) of   f(x) =  2x  + x sin(x+3) – 5. 

Solution:  f '(x) = 2 + x cos(x+3) + sin(x+3)  so 
 

 xn+1  =  xn  –  
f(xn)
f '(xn)   =  xn  –  

2xn  + xn sin(xn+3) – 5
2 + xn cos(xn+3) + sin(xn+3)  

 
The graph of  f(x)  for  –4 ≤ x ≤ 6  (Fig. 8)  indicates only one root of  f, and that root is near   
x = 3  so pick   x0  = 3.  Then Newton's method yields the values  x0 = 3 ,  x1  =  2.96484457 ,   

x2  =  2.96446277 ,  x3  =  2.96446273    (the underlined digits agree with the exact root). 
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If we had picked  x0 = 4 ,  Newton's method would have required  4  iterations to get 9 digits of accuracy.  

If  x0 = 5 , then  7  iterations are needed to get 9 digits of accuracy.  If  we pick  x0 = 5.1, then the values 

of  xn  are not close to the actual root after even 

100 iterations,  x100 ≈  –49.183 .  Picking a good 

value for x0  can result in values of  xn  which 

get close to the root quickly.  Picking a poor 
value for x0  can result in  xn  values which take 

longer to get close to the root or which don't 

approach the root at all.   

 

 
   Note:  An examination of the graph of the function can help you pick a "good"  x0 . 

 
Practice 3:  Put  x0 = 3  and use Newton's method to find  

 the first two iterates, x1 and x2 , for the  

 function  f(x) =  x3 – 3x2 + x – 1 . 
 

Example 2: The function in Fig. 9 has roots at  x = 3   
 and  x = 7.  If we pick x0 = 1 and apply 

Newton's method, which root do the iterates,  
 the xn  , approach? 
 
Solution: The iterates of  x0 = 1  are labeled in Fig. 10. They are approaching the root at  7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Practice 4: For the function in Fig. 11, which root do the iterates of Newton's method approach  
 if  (a)  x0 = 2 ?  (b)  x0 = 3?    (c) x0 = 5? 

 
Iteration 
 

We have been emphasizing the geometric nature of Newton's method, but Newton's method is also an 

example of iterating a function.  If  N(x) = x –  
f(x)
f '(x)   , the "pattern" in the algorithm,  then  
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x1  =  x0 – 
f(x0)
f '(x0)   =  N( x0 ),   

x2  =  x1 – 
f(x1)
f '(x1)   =  N( x1 )  =  N( N( x0 ) )  =  N ° N( x0 ) , 

x3  =  N( x2 )  = N ° N ° N( x0 ) ,  and , in general,   

xn  = N( xn–1 ) =  nth  iteration of N  starting with  x0. 

At each step, we are using the output from the function  N  as the next input into  N .  
 
What Can Go Wrong? 
 
When Newton's method works, it usually works very well and the values of the  xn  approach a root of  f   

very quickly, often doubling the number of correct digits with each iteration.  There are, however,  several 

things which can go wrong. 
 
One obvious problem with Newton's method is that  f '(xn)  can be 0.  Then we are trying to divide  

by 0  and   xn+1  is undefined.  Geometrically,  if  f '(xn) = 0, then the tangent line to the graph of  f  at  xn  

is horizontal and does not intersect the x–axis at one point (Fig. 12).  If  f '(xn) = 0, just pick another 

starting value x0 and begin again.  In practice, a second or third choice of  x0 usually succeeds. 
 
There are two other less obvious difficulties that are not as easy to overcome –– the values of the iterates  
xn  may become locked into an infinitely repeating loop (Fig. 13), or they may actually move farther away 

from a root (Fig. 14). 
 
 
 
 
 
 
 
 
 
 

 
Example 3: Put  x0 = 1  and use Newton's method to find the first two iterates, x1 and x2 , for the 

function  f(x) =  x3 – 3x2 + x – 1 . 
 
Solution:  This is the same function as in the previous Practice problem, but we are using a different  
 starting value for  x0 .  f '(x) =  3x2 – 6x + 1  so 

 x1 = x0 –  
f(x0)
f '(x0)    = 1 –  

f(1)
f '(1)   = 1 –  

–2
–2   = 0   and  x2 = x1 – 

f(x1)
f '(x1)   = 0 –  

f(0)
f '(0)   = 0 – 

–1
1    = 1 

 
 which is the same as  x0 , so   x3 = x1 = 0  and  x4 = x2 = 1.  The values of  xn  alternate  

 between  1 and 0  and do not approach a root. 
 

 Newton's method behaves badly at only a few starting points for this particular function.  For most  

 starting points Newton's method converges to the root of this function. 
 
There are some functions which defeat Newton's method for almost every starting point. 



2.7   Newton's Method Contemporary  Calculus  
6 

Practice 5: For  f(x) = 
3

 x    = x1/3  and  x0 = 1, verify that  x1 = –2, x2 = 4, x3 = –8.  Also try   

 x0 = –3, and verify that the same pattern holds:  xn+1 = –2xn .  Graph  f  and explain why 

the Newton's method iterates get farther and farther away from the root at  0. 
 

Newton's method is powerful and quick and very easy to program on a calculator or computer.  It usually 

works so well that many people routinely use it as the first method they apply.  If Newton's method fails for 

their particular function, they simply try some other method. 

 
Chaotic Behavior and Newton's Method 
 
An algorithm leads to chaotic behavior  if two starting points which are close together generate iterates  
which are sometimes far apart and sometimes close together:  | a0 – b0 | is small  but  | an – bn |  is large for 

lots (infinitely many) of values of n  and  | an – bn |  is small for lots of values of n. 
 
The iterates of the next simple algorithm exhibit chaotic behavior.   
 
A Simple Chaotic Algorithm:  Starting with any number between 0 and 1,  double the number and 
 keep the fractional part of the result:  x1  is the fractional part of 2x0 , x2  is the fractional part of 

2x1   , and in general,   xn+1  = 2xn – [ 2xn ] = 2xn – INT( 2xn ). 
 
If  x0 = 0.33, then the iterates of the algorithm are  0.66, 0.32 (= fractional part of 2.0.66), 0.64, 0.28, 0.56,  . . .    

The iterates for two other starting values close to .33 are given below as well as the iterates of 0.470 and 0.471 : 
start  = x0  0.32 0.33 0.34 0.470 0.471  

x1  0.64 0.66 0.68 0.940 0.942 
x2  0.28 0.32 0.36 0.880 0.884 
x3  0.56 0.64 0.72 0.760 0.768 
x4  0.12 0.28 0.44 0.520 0.536 
x5  0.24 0.56 0.88 0.040 0.072 
x6  0.48 0.12 0.76 0.080 0.144 
x7  0.96 0.24 0.56 0.160 0.288 
x8  0.92 0.48 0.12 0.320 0.576 
x9  0.84 0.96 0.24 0.640 0.152 

 
There are starting values as close together as we want whose iterates are far apart infinitely often. 
 

Many physical, biological, and business phenomena exhibit chaotic behavior.  Atoms can start out within 

inches of each other and several weeks later be hundreds of miles apart.  The idea that small initial differences 

can lead to dramatically diverse outcomes is sometimes called the "Butterfly Effect" from the title of a talk 

("Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?") given by 

Edward Lorenz, one of the first people to investigate chaos.  The "butterfly effect" has important implications 

about the possibility, or rather the impossibility, of accurate long–range weather forecasting.  Chaotic 

behavior is also an important aspect of studying turbulent air and water flows, the incidence and spread of 

diseases, and even the fluctuating behavior of the stock market. 
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Newton's method often exhibits chaotic behavior, and, since it is a relatively easy to study, is often used as a 

model to study the properties of chaotic behavior.  If we use Newton's method to approximate the roots of  

f(x) = x3 – x  (with roots  0, +1 and –1) ,  then starting points which are very close together can have iterates 

which converge to different roots.  The iterates of  .4472  and .4473  converge to the roots  0  and  +1,  

respectively.  The iterates of the middle point  .44725  converge to the root  –1,  and the iterates of another 

nearby point,  1/5  ≈ .44721 , simply cycle between  – 1/5   and  + 1/5   and do not converge at all. 
 
Practice 6: Find the first 4 Newton's method iterates of x0 = .997  and  x0 = 1.02  for  f(x) = x2 + 1.  Try 

 two other starting values very close to 1 (but not equal to 1) and find their first 4 iterates.  Use the graph 

of  f(x) = x2 + 1 to explain how starting points so close together can quickly have iterates so far apart. 

 
PROBLEMS  
  
1. The graph of y = f(x)  is given in Fig. 15.    Estimate the locations of  x1   

 and  x2  when Newton's method is applied to  f  with the given starting value x0  

. 
 
2. The graph of y = g(x)  is given in Fig. 16.   Estimate the locations of  x1   

 and  x2  when Newton's  starting value  x0 .  
 
 

3. The function in Fig. 17  has several roots.  Which root do the iterates of  
 Newton's method converge to if we start with  x0  = 1 ?   x0  = 5 ?  

 

 
 
 

 

 

4. The function in Fig. 18  has several roots.   

 Which root do the iterates of Newton's method  
 converge to if we start with  x0  = 2 ?   x0  = 6 ?  
 
 

5. What happens to the iterates if we apply Newton's method  
 to the function in Fig. 19 and start with   x0  = 1 ?   x0  = 5 ? 
 
 

6. What happens if we apply Newton's method to a function  f  and 
start with  x0 = a root of  f? 

 
7. What happens if we apply Newton's method to a function  f  and start with  x0 = a maximum of  f? 
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In problems  8 and 9, a function and a value for x0  are given.  Apply Newton's method to find  x1  and  x2. 

8. f(x) =  x3  + x  –  1  and  x0 = 1 9. f(x) = x4  – x3  – 5   and  x0 = 2 
 
 
In problems  10  and 11, use Newton's method to find a root or solution, accurate to 2 decimal places, of the  

given functions using the given starting points. 
 
10. f(x) = x3  – 7   and  x0 = 2 11. f(x) = x – cos(x)   and  x0 = 0.7 
 
 
In problems 12 – 15, use Newton's method to find all roots or solutions, accurate to 2 decimal places.  It is  
helpful to examine a graph of the function to determine a "good" starting value  x0 . 

12. 2 + x = ex 13. 
x

x + 3   = x2 – 2 14. x = sin(x) 15. x = 
5

 3   
 
16. Show that if Newton's method is applied to  f(x) = x2 – A  to approximate the square root of  A,  then   

 xn+1 =  
1
2 ( xn  + 

A
xn )   so  the new estimate of the square root is the average of the previous estimate and  

A  divided by the previous estimate.  This method of approximating square roots is called Heron's method. 
 
17. Use Newton's method to devise an algorithm for approximating the cube root of a number  A. 
 
18. Use Newton's method to devise an algorithm for approximating the nth  root of a number  A. 
 
 
 
Problems  19 – 22 involve chaotic behavior.  
 
19. The iterates of numbers using the Simple Chaotic Algorithm have a number of properties. 

 (a) Verify that the iterates of  x = 0  are all equal to  0. 

(b) Verify that if   x = 1/2, 1/4, 1/8, and , in general, 1/2n , then the nth iterate of  x  is 0 (and so are 

all of the iterates beyond the nth iterate.) 
 

20. When Newton's method is applied to  f(x) = x2 + 1,  most starting values for  x0  lead to chaotic xn .   

 Find a value for  x0  so the iterates alternate:  x1 = – x0  and  x2 = –x1 = x0 . 
 

21. f(x) = { 2x if 0 ≤ x < 1/2
 2 – 2x if 1/2 ≤ x ≤ 1  is called a  "stretch and fold"  function. 

(a) Describe what  f  does to the points in the interval  [ 0, 1].   

(b) Examine and describe the behavior of the iterates of  2/3, 2/5, 2/7,  and  2/9. 

(c) Examine and describe the behavior of the iterates of .10, .105, and .11 . 

(d) Do the iterates of  f  lead to chaotic behavior? 
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22. (This problem requires a computer or programmable calculator.) 

 For each of the following functions start with x = .5 . 

(a)  If f(x) = 2x(1–x), then what happens to the iterates of f after many iterations?  ("many" = 50 is fine.) 

(b)  If f(x) = 3.3x(1–x), then what happens to the iterates of f after many iterations? 

(c)  If f(x) = 3.83x(1–x), then what happens to the iterates of f after many iterations? 

(d)  What do you think happens to the iterates of f(x) = 3.7x(1–x)?  What actually does happen. 

(e)  Repeat parts (a)–(d) with some other starting values for  x strictly between 0 and 1 (0<x<1).  Does 

the starting value seem to effect the eventual behavior of the iterates?  

(The behavior of the iterates of f depends in a strange way on the numerical value of the leading 

coefficient.  The behavior exhibited in part (d) is an example of "chaos".)  
 
 
Section 2.7 PRACTICE  Answers 
 

Practice 1: f(x) = x3 + 3x + 1  so  f '(x) = 3x2 + 3  and the slope of the tangent line at the point (1,3)  

is  f '(1) = 6.  Using the point–slope form for the equation of a line, the equation of the tangent line is   

 y – 3 = 6(x – 1)  or  y = 6x – 3. 
 
 The y–coordinate of a point on the x–axis is  0  so we need to put  y = 0  and solve the linear equation  

 for  x:  0 = 6x – 3  so  x = 1/2.  
 

The line tangent to the graph of  f(x) = x3 + 3x + 1  at the point  (1,3)  intersects the x–axis at  

the point  ( 1/2, 0). 
 
Practice 2: The approximate locations of  x1  and  x2  are shown in Fig. 20. 
 

Practice 3: f(x) = x3 – 3x2 + x – 1   so  f '(x) = 3x2 – 6x + 1.   x0 = 3 . 
 

 x1 = x0 –  
f(x0)
f '(x0)   =  3 –  

f(3)
f '(3)   =  3 – 

2
10   = 2.8 . 

 x2 = x1 –  
f(x1)
f '(x1)   =  2.8 –  

f(2.8)
f '(2.8)   =  2.8 – 

0.232
7.72    ≈ 2.769948187  

  x3  =  x2 –  
f(x2)
f '(x2)   ≈  2.769292663 . 

 
Practice 4: Fig. 21 shows the first iteration of Newton's Method for  x0 = 2, 3, and 5.   

 If  x0 = 2, the iterates approach the root at  a.   

 If  x0 = 3, the iterates approach the root at  c.   

 If  x0 = 5, the iterates approach the root at  a.   
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Practice 5: f(x) = x1/3  so  f '(x) = 
1
3  x–2/3 . 

 

If x0 = 1, then x1 = 1 –  
f(1)
f '(1)   =  1 – 

1
1/3   = 1 – 3 = –2 ,   

 

 x2 = –2 –  
f(–2)
f '(–2)   = –2  –  

(–2)1/3

1
3 (–2)–2/3   =  –2 – 

–2
1/3   = 4 ,   

 

 x3 = 4 –  
f(4)
f '(4)   = 4  –  

(4)1/3

1
3 (4)–2/3   =  4 – 

4
1/3   = –8 , and so on. 

 

If x0 = –3, then x1 = –3 –  
f(–3)
f '(–3)   =  –3 – 

(–3)1/3

1
3 (–3)–2/3   = –3 + 9 = 6 , 

 

 x2 = 6 –  
f(6)
f '(6)   = 6  –  

61/3

1
3 6–2/3   =  6 – 

6
1/3   = –12 . 

The graph of the cube root  f(x) =  x1/3  has a shape similar to Fig. 14, and the behavior of the iterates is 
similar to the pattern in that figure.  Unless x0 = 0 (the only root of  f)  the iterates alternate in sign and 

double in magnitude with each iteration:  they get progressively farther from the root with each iteration. 

 
Practice 6: If x0 = 0.997, then x1 ≈ –0.003 , x2 ≈ 166.4  , x3 ≈ 83.2  , x4 ≈ 41.6 . 
  
 If x0 = 1.02, then x1 ≈ 0.198 , x2 ≈ –25.2376  , x3 ≈ –12.6  , x4 ≈ –6.26 . 



2.8 Linear Approximation Contemporary  Calculus  1 

2.8  Linear Approximation and Differentials  
 

Newton's method used tangent lines to "point toward" a root of the function.  In this section we examine 

and use another geometric characteristic of tangent lines: 
 
  

 If   f  is differentiable at  a  and  x is close to a,   

 then  the tangent line  L(x)  is close to  f(x).  (Fig. 1) 

    
 

This idea is used to approximate the values of some commonly used functions 

and to predict the "error" or uncertainty in a final calculation if we know the 

"error" or uncertainty in our original data.  Finally, we define and give some 

examples of a related concept called the differential of a function. 

 
Linear Approximation 
 

Since this section uses tangent lines frequently, it is worthwhile to recall how we find the equation of the 

line tangent to  f  at a point  x = a.  The line tangent to  f  at  x = a  goes through the point  (a, f(a)) and has 
slope  f '(a), so, using the point–slope form  y – y0 = m(x – x0) for linear equations, we have 

 y – f(a) = f '(a).(x – a)  and  y = f(a) + f '(a).(x – a) . 
 

This final result is the equation of the line tangent to  f  at  x = a. 
 
 
 If   f  is differentiable at  x = a, 

 then the equation of the line  L  tangent to  f  at  x = a  is 

   L(x) = f(a) + f '(a).(x – a) . 
     

 
Example 1: Find the equation of the line L(x) which is tangent to the graph of  f(x) = x   at  the point   

 (9,3).  Evaluate  L(9.1)  and  L(8.88)  to approximate 9.1   and  8.88   . 
 

Solution:  f(x) = x   =  x1/2   and  f '(x) = 
1
2   x–1/2  =  

1
2 x    so    f(9) = 3  

and  f '(9) =  
1

2 9   =  
1
6   .  Then 

 L(x) = f(9) + f '(9).(x – 9) = 3 + 
1
6 (x – 9) .  If x is close to 9, then the 

value of  L(x) is a good approximation of the value of  x (Fig. 2) .  

The number  9.1 is close to 9 so 

 9.1   = f(9.1) ≈ L(9.1) = 3 + 
1
6 (9.1 – 9)   = 3.016666.   
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Similarly,     
 

 8.88   = f(8.88) ≈ L(8.88) = 3 + 
1
6 (8.88 – 9)    = 2.98.  In fact,  9.1   ≈ 3.016621, so our estimate, 

using  L(9.1),  is within 0.000045 of the exact answer.   8.88  ≈ 2.979933  (accurate to 6 decimal 

places)  and our estimate is within  0.00007 of the exact answer.   
 
 In each example, we got a good estimate of a square root with very little work.  The graph indicates  

 the tangent line L(x) is slightly above  f(x), and each estimate is slightly larger than the exact value. 
 

Practice 1: Find the equation of the line L(x)  tangent to the graph of   

 f(x) = x   at  the point  (16,4)  (Fig. 3).  Evaluate  L(16.1)  and   

 L(15.92)  to approximate  16.1   and  15.92   .  Are your  

 approximations using  L  larger or smaller than the exact values of  

 the square roots? 
 
Practice 2: Find the equation of the line L(x)  tangent to the graph of   

 f(x) = x3  at the point  (1,1)  and use  L(x) to approximate   

 (1.02)3  and  (0.97)3  .  Do you think your approximations  

 using  L  are larger or smaller than the exact values? 
 
The process we have used to approximate square roots and cubics can be used to approximate any  

differentiable function, and the main result about the linear approximation follows from the two statements 

in the boxes.  Putting these two statements together, we have the process for Linear Approximation. 
 
 
 Linear Approximation Process:   (Fig. 4) 
 
 If f is differentiable at  a  and  x is close to a, 
  
 then (geometrically) the graph of the tangent line  L(x)  is close to the  

          graph of f(x), and 

  (algebraically) the values of the tangent line function    

   L(x) = f(a) + f '(a).(x – a)  approximate the values of  f(x):   

    f(x) ≈ L(x) = f(a) + f '(a).(x – a) . 
     
 

Sometimes we replace  "x – a" with  "∆x" in the last equation, and 

the statement becomes  f(x) ≈  f(a) + f '(a).∆x. 

 
 

Example 2: Use the linear approximation process to 

approximate  the value of  e0.1 . 
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Solution: f(x) = ex   so  f '(x) = ex .  We need to pick a value a  near  x = 0.1  for which we know the 

exact value of  f(a)  and  f '(a), and  a = 0  is the obvious choice.  Then     
 
      e0.1 = f(0.1) ≈  L(0.1)  = f(0) + f '(0).(0.1 – 0)   
 
  = e0  +  e0.(0.1) = 1 + 1.(0.1)  =  1.1  . 

 This approximation is within  0.0052  of the exact value of  e0.1 . 
 

Practice 3: Approximate the value of  (1.06)4 , the amount $1  becomes after  4  years in a bank which  

 pays  6% interest compounded annually.  (Take  f(x) = x4  and  a = 1.) 
 
Practice 4: Use the linear approximation process and the values in the table to estimate the value  

 of  f  when  x = 1.1, 1.23  and  1.38 . 
 x f(x) f '(x) 
     
 1  0.7854 0.5 
 1.208761 0.4098 
 1.4 0.9505 0.3378 
 
We can also approximate functions as well as numbers. 
 

Example 3: Find a linear approximation formula  L(x)  for  1 + x    when  x is small.  Use your result 

to approximate  1.1   and  .96   . 
 

Solution:  f(x) =  1 + x  = (1 + x)1/2  so f '(x) = 
1
2 (1 + x) –1/2  =  

1
2 1+x  .  Since  "x is small" ,  we know 

that  x  is close to 0 ,  and we can pick  a = 0.  Then  f(a) = f(0) = 1  and  f '(a) = f '(0) = 
1
2   so 

    1 + x   ≈ L(x) = f(0) + f '(0).(x – 0)  = 1 + 
1
2  x = 1 + 

x
2  . 

 

If  x  is small, then  1 + x  ≈ 1  + 
x
2  .    1.1   = 1 + 0.1   ≈ 1 + 

0.1
2    =  1.05   and  

 0.96  = 1 + (–.04)   ≈ 1 + 
–.04

2   = 0.98  .  Use your calculator to determine by how much each 

estimate differs from the true value. 
 

Applications of Linear Approximation to Measurement "Error" 
 
Most scientific experiments involve using instruments to take measurements, but the instruments are not  

perfect, and the measurements we get from them are only accurate up to a certain level.  If we know the 

level of accuracy of our instruments and measurements, we can use the idea of linear approximation to 

estimate the level of accuracy of results we calculate from our measurements. 
 

If we measure the side  x  of a square to be  8 inches, then, of course, we would calculate its area to be  

A(x) = x2 = 64 square inches.  Suppose, as is reasonable in a real measurement, that our measuring instrument 

could only measure or be read to the nearest 0.05 inches.  Then our measurement of 8 inches would really 
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mean some number between  8–0.05 = 7.95 inches and 8+0.05 = 8.05 inches, and the true area of the square 

would be between   A(7.95) = 63.2025  and  A(8.05) = 64.8025  square inches.  Our possible "error" or 

"uncertainty", because of the limitations of the instrument, could be as much as  64.8025 – 64 = 0.8025 square 

inches so we could report the area of the square to be  64 ± 0.8025 square inches.  We can also use the linear 

approximation method to estimate the "error" or uncertainty of the area.  (For a function as simple as the area 

of a square, this linear approximation method really isn't needed, but it is used to illustrate the idea.) 
 

For a square with side  x, the area is  A(x) = x2  and  A '(x) = 2x .  If  ∆x  represents the "error" or uncertainty 

of our measurement of the side,  then, using the linear approximation technique for  A(x) ,   

A(x) ≈ A(a) + A '(a).∆x   so  the uncertainty of our calculated area is  A(x ) – A(a) ≈ A '(x).∆x.  In this example,  

a = 8 inches and  ∆x = 0.05 inches so   
 
 A(8.05) ≈ A(8) + A '(8).(0.05)  = 64 + 2(8).(0.05) = 64.8 square inches,  

and the uncertainty in our calculated area is approximately   
 
 A(8 + 0.05) – A(8) ≈ A '(8).∆x = 2(8 inches)(0.05 inches) = 0.8 square inches. 
 

This process can be summarized as: 
 

 Linear Approximation Error: 

  If  the value of the x–variable is measured to be  x = a  with an "error" of  ∆x  units, 

  then  ∆f, the "error"  in estimating  f(x),  is   ∆f = f(x) – f(a) ≈ f '(a).∆x . 
    
 

Practice 5: If we measure the side of a cube to be  4  cm with an uncertainty of 0.1  cm, what is the  

      volume of the cube and the uncertainty of our calculation of the volume?  (Use linear approximation.) 

Example 4: We are using a tracking telescope to follow a small rocket.  Suppose  

 we are 3000 meters from the launch point of the rocket, and, 2 seconds after  

 the launch, we measure the angle of the inclination of the rocket to be  64o   

 with a possible "error" of 2o  (Fig. 5).  How high is the rocket and what is the  

 possible error in this calculated height? 
 
Solution:  Our measured angle is  x =1.1170 radians and  ∆x = 0.0349 radians (all of our  

 trigonometric work is in radians), and the height of the rocket at an angle x  is   

 f(x) = 3000.tan( x )   so  f(1.1170) ≈ 6151 m.  Our uncertainty in the height is 
   
   ∆f(x) ≈ f '(x).∆x ≈ 3000.sec2 (x).∆x = 3000 sec2 (1.1170).(0.0349) = 545 m. 

 

If our measured angle of 64o  can be in error by as much as 2o , then our calculated height of  6151 m 

can be in error by as much as  545 m.  The height is  6151 ± 545  meters. 
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Practice 6: Suppose we measured the angle of inclination of in the previous Example to be  43o ± 1o .   

 Estimate the height of the rocket in the form   "height ± error ." 
 

In some scientific and engineering applications,  the calculated result must be within some given specification.  

You might need to determine how accurate the initial measurements must be in order to guarantee the final 

calculation is within the specification.  Added precision usually costs time and money, so it is important to 

choose a measuring instrument which is good enough for the job but not too good or too expensive. 
 

Example 5: Your company produces ball bearings (spheres) with a volume of  10 cm3,  and the volume 

must be accurate to within 0.1 cm3.  What radius should the bearings have and what error can you 

tolerate in the radius measurement to meet the accuracy specification for the volume?  (V = 
4
3  π r3 ) 

 

Solution:  Since we want  V = 10,  we can solve  10 = 
4
3  π r3  for r  to get  r = 1.3365 cm. 

 V(r) = 
4
3  π r3  and  V '(r) = 4π r2    so  ∆V  ≈ V '(r).∆r .  In this case we have been given that 

 ∆V = 0.1 cm3,  and we have calculated  r = 1.3365 cm  so  0.1 cm3 = V '(1.3365 

cm).∆r = (22.45 cm2).∆r. 

 Solving for  ∆r, we get  ∆r ≈ 0.0045 cm.  To meet the specifications for the 

allowable error in the volume, we must allow no more than 0.0045 cm  

variation in the radius.  If we measure the diameter of the sphere rather than the 

radius, then we want  d = 2r = 2(1.3365 ± 0.0045) = 2.673 ± 0.009  cm . 
 

 

Practice 7: You want to determine the height of the rocket to within 10 meters 

when it is  4000 meters high  (Fig. 6).  How accurate must your angle  

 measurement be?  (Do your calculations in radians.) 

 

Relative Error  and  Percentage Error 
 

The "error" we have been examining is called the absolute error to distinguish it from two other commonly  

used terms, the relative error and the percentage error  which compare the absolute error with the magnitude 

of the number being measured.  An "error" of 6 inches in measuring the circumference of the earth would be 

extremely small, but a 6 inch error in measuring your head for a hat would result in a very bad fit. 

 
 

 Definitions: The Relative Error  of  f  is    
error of  f
value of  f   =   

∆f
f     

 

   The Percentage Error of  f  is  
∆f
f   .(100) . 
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Example 6: If the relative error in the calculation of the area of a circle must be less than  0.4 ,   then 

what relative error can we tolerate in the measurement of the radius? 
 
Solution:  A(r) = π r2  so  A '(r) = 2π r  and  ∆A ≈ A '(r) ∆r = 2π r ∆r.  The Relative Error of  A  is 

  

 
∆A
A   ≈  

2π r ∆r
π r2

   =  2 
∆r
r    .  We can guarantee that the Relative Error of  A ,  

∆A
A   , is less than 0.4   

 

 if the Relative Error of r ,  
∆r
r    =  

1
2  
∆A
A   , is less than  

1
2 ( 0.4)  = 0.2  . 

 

Practice 8: If you can measure the side of a cube with a percentage error less than 3%, then what will  

 the percentage error for your calculation of the surface area of the cube be? 
 

The Differential of  f  
 

In Fig. 7, the change in value of the function  f  near the point  

( x, f(x) ) is  ∆f = f(x + ∆x) – f(x)  and the change along the 

tangent line is  f '(x).∆x.  If  ∆x  is small, then we have used the 

approximation that  ∆f ≈ f '(x).∆x .  This leads to the definition  

of a new quantity, df, called the differential of f. 

 
 
 Definition: The differential of f  is   df ≡  f '(x).dx where  dx  is any real number. 
    
 

The differential of  f  represents the change in  f  , as x changes from  x  to  x + dx,  along the tangent line to 

the graph of f at the point  ( x, f(x) ) .  If we take  dx  to be the number  ∆x, then the differential is an 

approximation of  ∆f:  ∆f ≈ f '(x).∆x = f '(x).dx = df . 
 

Example 7: Determine the differential  df  of each of  f(x) = x3 – 7x , g(x) = sin(x), and  h(r) = πr2  . 

Solution: df = f '(x).dx = (3x2 – 7) dx,  dg = g '(x).dx = cos(x)  dx, and  dh = h '(r) dr =  2πr  dr . 
 

Practice 9: Determine the differentials of   f(x) = ln( x ),  u = 1 – 3x   , and  r = 3 cos( θ )  . 
 

We will do little with differentials for a while, but are used extensively in integral calculus.  



2.8 Linear Approximation Contemporary  Calculus  7 

The Linear Approximation "Error"   | f(x) – L(x) | 
 

An approximation is most valuable if we also have have some measure of the size of the "error", the distance  

between the approximate value and the value being approximated,.  Typically, we will not know the exact 

value of the error (why not?), but it is useful to know that the error must be less than some number.  For 

example, if one scale gives the weight of a gold pendant as 10.64 grams with an error less than .3 grams  

(10.64 ± .3 grams)  and another scale gives the weight of the same pendant as 10.53 grams with an error less 

than .02 grams (10.53 ± .02 grams), then we can have more faith in the second approximate weight because 

of the smaller "error" guarantee.  Before finding a guarantee on the size of the error of the linear 

approximation process, we will check how well the linear approximation process approximates some 

functions we can compute exactly.  Then we will prove one bound on the possible error and state a somewhat 

stronger bound. 

 

Example 8: Let  f(x) = x2 .  Evaluate  f(2+∆x), L(2+∆x)  and  | f(2+∆x) – L(2+∆x) | for   

 ∆x = 0.1, 0.05, 0.01, 0.001  and for a general value of  ∆x . 

 

Solution: f(2+∆x) = (2+∆x)2  = 22 + 4∆x + (∆x)2  and  L(2+∆x) = f(2) + f '(2).∆x = 22 + 4.∆x .  Then 

 

 ∆x f(2+∆x) L(2+∆x) | f(2+∆x) – L(2+∆x) | 

        

 0.1 4.41 4.4 0.01   

 0.05 4.2025 4.2 0.0025   

 0.01 4.0401 4.04 0.0001   

 0.001 4.004001 4.004 0.000001  

  

 Cutting the value of  ∆x  in half makes the error 1/4 as large.  Cutting  ∆x  to 1/10  as large makes the 

error  1/100  as large.  In general,  | f(2+∆x) – L(2+∆x) | = | (22 + 4.∆x + (∆x)2) – (22 + 4.∆x) | = (∆x)2 .  

   

 

This function and error also have a nice geometric interpretation  (Fig. 8):  

f(x) = x2   is the area of a square of side  x  so  f(2+∆x)  is the area of a 

square of side  2+∆x,  and that area is the sum of the pieces with areas  22 

, 2.∆x, 2.∆x, and (∆x)2 .  The linear approximation  L(2+∆x) = 22 + 4.∆x  

to the area of the square includes the 3 largest pieces 22 , 2.∆x and  2.∆x , 

but it omits the small square with area  (∆x)2 so the approximation is in 

error by the amount (∆x)2 . 
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Practice 10: Let  f(x) = x3 .  Evaluate  f(4+∆x), L(4+∆x)  and   

 | f(4+∆x) – L(4+∆x) |  for  ∆x = 0.1, 0.05, 0.01, 0.001  and for a 

general value of  ∆x.  Use  Fig. 9  to give a geometric interpretation of  

f(4+∆x), L(4+∆x) and  | f(4+∆x) – L(4+∆x) | . 

 

In both the example and practice problem, the error  | f(a+∆x) – L(a+∆x) |  

turned out to be very small, proportional to (∆x)2 , when  ∆x  was small.   

In general,  the error approaches  0  as  ∆x  approaches  0. 

 

 

 

 

 

Theorem : If   f(x)  is differentiable at  a  and  L(a+∆x) = f(a) + f '(a).∆x ,   

 
  then   

! 

lim
"x#0

 | f(a+∆x) – L(a+∆x) | = 0    and    

 

   

! 

lim
"x#0

 |  f (a + "x) $ L(a + "x)  |
"x

= 0  

 

Proof:   | f(a+∆x) – L(a+∆x) |  = |  f(a+∆x) – f(a) – f '(a).∆x |  = { 
 f(a+∆x) – f(a) 

∆x    – f '(a) }. ∆x.  But  f  is 

differentiable at x=a  so  

! 

lim
"x#0

 f (a + "x) $ f (a)
"x

 = f '(a)   and 

! 

lim
"x#0

 f (a + "x) $ f (a)
"x

$ f '(a)
% 
& 
' 

( 
) 
* 

= 0 . 

  

 Then   

! 

lim
"x#0

 | f (a + "x) $ L(a + "x) |    =  

! 

lim
"x#0

 f (a + "x) $ f (a)
"x

$ f '(a)
% 
& 
' 

( 
) 
* 
+ lim
"x#0

 "x = 0 + 0  = 0  

   

Not only does the difference  f(a+∆x) – L(a+∆x)   approach 0, but this difference approaches  0  so fast 

that we can divide it by  ∆x, another quantity approaching  0,  and the quotient still approaches  0. 

 

In the next chapter we can prove that the error of the linear approximation process is  

proportional to  (∆x)2  .  For now we just state the result. 
 

Theorem: If f  is differentiable at  a  and  | f ''(x) |  ≤ M  for all  x  between  a  and  a+∆x 

  then  | "error" | = | f(a+∆x) – L(a+∆x) |  ≤ 
1
2  M.(∆x)2 . 
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Problems  
 

1. Fig. 10  shows the tangent line to a function  g  at the point (2,2) and  

 a line segment  ∆x  units long.  On the figure, label the locations of   

 (a)  2 + ∆x  on the x–axis,  (b)  the point  ( 2 + ∆x,  g(2 + ∆x) ),  and   

 (c)  the point  (2 + ∆x, g(2) + g '(2).∆x ).   

 (d)  How large is the "error",  ( g(2) + g '(2).∆x ) – ( g(2+∆x) )? 

 

2. In Fig. 11  is the linear approximation  L(a + ∆x)   larger or smaller than the 

value of  f(a + ∆x)  when    

 (a)  a = 1 and  ∆x = 0.2?  (b)  a = 2  and  ∆x = –0.1?   (c)  a = 3  and  ∆x = 0.1?    

 (d)  a = 4  and  ∆x = 0.2?  and  (e)  a = 4  and  ∆x = –0.2? 

 

 

In problems 3 and 4, find the equation of the tangent line  L  to the given function   f  at the given point   

( a, f(a) ).  Use the value  L(a + ∆x)  to approximate the value of  f(a + ∆x). 
 
3. (a) f(x) = x   ,  a = 4, ∆x = 0.2 (b) f(x) = x   ,  a = 81, ∆x = –1 (c) f(x) = sin(x) ,  a = 0, ∆x = 0.3 
 
4. (a) f(x) = ln(x),  a = 1,  ∆x = 0.3 (b) f(x) = ex , a = 0, ∆x = 0.1 (c) f(x) = x5 , a = 1, ∆x = 0.03 

 

5. Show that (1 + x)n ≈ 1 + nx  if  x  is "close to" 0.  (Suggestion:  Put  f(x) = (1+x)n , a = 0, and  ∆x = x.) 

 

In problems 6 and 7, use the Linear Approximation Process to derive each approximation formula  

for  x  "close to"  0. 
 
6. (a) (1 – x)n ≈ 1 – nx (b) sin(x) ≈ x (c) ex  ≈ 1 + x 
 
7. (a) ln(1 + x)  ≈ x (b) cos(x)  ≈ 1 (c) tan(x)  ≈ x (d) sin( π/2 + x )  ≈ 1 

 

8. The height of a triangle is exactly 4 inches, and the base is  

 measured to be 7 ± 0.5 inches  (Fig. 12).  Shade a part of the  

 figure which represents the "error" in the calculation of the  

 area of the triangle. 
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9. A rectangle has one side on the x–axis, one side on the y–axis, and a corner  

 on the graph of  y = x2 + 1  (Fig. 13).   

 (a) Use Linear Approximation of the area formula to estimate the increase in  

  the area of the rectangle if the base grows from  2  to  2.3  inches. 

 (b) Calculate exactly the increase in the area of the rectangle as the  

  base grows from  2  to  2.3  inches.  
 

10. You can measure the diameter of a circle to within  0.3 cm.   

(a) How large is the "error" in the calculated area of a circle with a measured 

diameter of 7.4  cm?   

(b) How large is the "error" in the calculated area of a circle with a measured diameter of 13.6  cm? 

(c) How large is the percentage error in the calculated area of a circle with a measured diameter of  d? 
 

11. You are minting gold coins which must have a volume of  47.3 ± 0.1  cm3 .  If you can manufacture  

 the coins to be exactly  2  cm high,  how much variation can you allow for the radius? 
 

12. If F is the fraction of carbon–14 remaining in a plant sample Y years after it died, then  Y =   
5700

ln(0.5)   .ln(F). 

 (a) Estimate the age of a plant sample in which  83±2 % (0.83 ± 0.02)  of the carbon–14  remains. 

 (b) Estimate the age of a plant sample in which  13±2 % (0.13 ± 0.02)  of the carbon–14  remains. 
 

13. Your company is making dice (cubes) and the specifications require that their volume be  87 ± 2 cm3.   

 How long should each side be and how much variance can a side have in order to meet the 

specifications? 
 

14. If the specifications require a cube with a surface area of  43 ± 0.2  cm2 ,  how long should each side be  

 and how much variance can a side have in order to meet the specifications? 
 

15. The period  P, in seconds,  for a pendulum to make one complete swing and return to the release point is  

P = 2π L/g   where  L  is the length of the pendulum in feet and  g is 32 feet/sec2 . 

 (a) If  L = 2 feet, what is the period of the pendulum? 

 (b) If  P = 1 second, how long is the pendulum? 

 (c) Estimate the change in  P  if  L increases from  2  feet to  2.1  feet. 

(d) The length of a 24 foot pendulum is increasing  2  inches per hour.  Is the period getting longer or 

shorter?  How fast is the period changing? 
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16. A ball thrown at an angle θ with an initial velocity  v  will land   
v2

g   .sin(2θ)  feet from the thrower. 

(a) How far away will the ball land if  θ = π/4  and  v = 80 feet/second? 

(b) Which will result in a greater change in the distance:  a 5% error in the angle θ  or a 5% error in 

the initial velocity  v? 
 

17. For the function in Fig. 14, estimate the value of  df  when   

(a) x = 2  and  dx = 1 (b) x = 4  and  dx = –1  

(c) x = 3  and  dx = 2 
 

18. For the function in Fig. 15, estimate the value of  df  when   

(a) x = 1  and  dx = 2 (b) x = 2  and  dx = –1  

(c) x = 3  and  dx = 1 
 

19. Calculate the differentials  df  of the following functions: 

(a) f(x) = x2 – 3x (b) f(x) = ex 

(c) f(x) = sin( 5x ) (d) f(x) = x3 + 2x  with  x = 1  and  dx = 0.2 

(e) f(x) = ln(x)  with  x = e  and  dx = – 0.1 (f) f(x) = 2x + 5    with  x = 22 and  dx = 3 . 
 

 

Section 2.8 PRACTICE  Answers 
 

Practice 1: f(x) = x1/2  so  f '(x) = 
1

2 x   .  At the point (16,4) on the graph of  f, the slope of the 

tangent line is  f '(16) =  
1

2 16  = 
1
8  .  The equation of the tangent line is   

 y – 4 = 
1
8 (x – 16)   or  y =  

1
8  x + 2 :  L(x) = 

1
8  x + 2 .  Then 

 16.1   ≈  L(16.1)  = 
1
8(16.1)  + 2 = 4.0125  and  15.92   ≈  L(15.92)  = 

1
8(15.92)  + 2 = 3.99 

 

Practice 2: f(x) = x3  so  f '(x) = 3x2.  At  (1,1), the slope of the tangent line is  f '(1) = 3.  The 

equation of the tangent line is  y – 1 = 3(x – 1)  or  y = 3x – 2:  L(x) = 3x – 2.  Then 

 (1.02)3 ≈ L(1.02) = 3(1.02) – 2 = 1.06  and  (0.97)3  ≈ L(0.97) = 3(0.97) – 2 = 0.91 . 
 

Practice 3: f(x) = x4  so  f '(x) = 4x3.  a = 1  and  ∆x = 0.06. 

  (1.06)4 = f(1.06) ≈ L(1.06) = f(1) + f '(1).(0.06) = 14 + 4(1)3.(0.06) = 1.24 . 
 

Practice 4: f(1.1) ≈  f(1) + f '(1).(0.1) = 0.7854 + (0.5).(0.1) = 0.8354 . 

 f(1.23) ≈ f(1.2) + f '(1.2).(0.03) = 0.8761 + (0.4098).(0.03) = 0.888394 . 

 f(1.38) ≈ f(1.4) + f '(1.4).(–0.02) = 0.9505 + (0.3378).(–0.02) = 0.943744 . 
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Practice 5: x = 4 cm  and  ∆x = 0.1 cm.  f(x) = x3  so  f '(x) = 3x2  and  f(4) = 43 = 64 cm3 .  Then 

 "error"  ∆f ≈  f '(x)∆x = 3x2 .∆x.   When  x = 4  and  ∆x = 0.1, "error" ∆f ≈ 3(4)2(0.1) = 4.8 cm3 . 
 

Practice 6: 43 ± 1o  is  0.75049 ± 0.01745 radians.  f(x) = 3000.tan(x)  so   

 f(0.75049) = 3000.tan(0.75049) ≈ 2797.5  m.   f '(x) = 3000 sec2(x)  so 

 ∆f(x) ≈ f '(x).∆x = 3000.sec2(x).∆x  = 3000.sec2(0.75049).(0.01745) =  97.9 m . 

 The height of the rocket is  2797.5 ± 97.9 m . 
  

Practice 7: f(θ) = 2000.tan(θ)  so  f '(θ) = 2000.sec2(θ).  We know  4000 = 2000.tan(θ)  so 

 tan(θ) = 2  and  θ ≈ 1.10715  (radians).  f '(θ) = 2000.sec2(θ)  so  f '(1.10715) = 2000.sec2(1.10715) ≈ 10,000. 

 Finally,  "error" ∆f ≈ f '(θ).∆θ   so  10 ≈  10,000.∆θ   and  ∆θ  ≈ 10/10,000 = 0.001 (radians) ≈ 0.057o. 
 

Practice 8: A(r) = 6r2  so  A '(r) = 12r  and  ∆A ≈ A '(r).∆r = 12r.∆r .  We are also told that  ∆r/r < 0.03 . 

 Percentage error is    
∆A
A   .100 =  

12r.∆r
6r2

  .100 =  
2.∆r

r   .100 < 200.(0.03)  = 6 . 

 

Practice 9: f(x) = ln(x) df = f '(x).dx = 
1
x  dx 

 u = 1 – 3x  du = 
du
dx  .dx = 

–3
2 1 – 3x   .dx 

 r = 3cos(θ) dr = 
dr
dθ  .dθ  = –3 sin(θ) .dθ       

 

Practice 10: f(x) = x3 , f '(x) = 3x2 , and  L(4 + ∆x) = f(4) + f '(4)∆x = 43 + 3(4)2∆x = 64 + 48.∆x . 
 

  ∆x f(4 + ∆x) L(4 + ∆x) | f(4+∆x) – L(4+∆x) |    

0.1 68.921 68.8 0.121 

0.05 66.430125 66.4 0.030125 

0.01 64.481201 64.48 0.001201 

0.001 64.048012 64.048 0.000012 

 

f(4+∆x)  is the actual volume of the cube with side length  4+∆x. 
 

L(4+∆x)  is the volume of the cube with side length 4  (v = 64) plus the volume of  

 the 3  "slabs" (v = 3.42.∆x) 
 

| f(4+∆x)–L(4+∆x) |  is the volume of the "leftover" pieces from L:  the 3 "rods" (v = 3.4.(∆x)2)  

 and the tiny cube (v = (∆x)3). 
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2.9 IMPLICIT  and LOGARITHMIC DIFFERENTIATION 
 

This short section presents two final differentiation techniques.  These two techniques are more specialized 

than the ones we have already seen and they are used on a smaller class of functions.  For some functions, 

however, one of these may be the only method that works.  The idea of each method is straightforward, but 

actually using each of them requires that you proceed carefully and practice. 

 
Implicit Differentiation 
 

In our work up until now, the functions we needed to differentiate were either given explicitly,  such as  

y = f(x) = x2 + sin(x) , or it was possible to get an explicit formula for them, such as solving   

y3 – 3x2 = 5  to get  y = 
3

 5 + 3x2   .  Sometimes, however,  we will have an equation relating  x  and  y  

which is either difficult or impossible to solve explicitly for  y , such as  y2 + 2y = sin(x) + 4  or   

y + sin(y) = x3 – x .  In any case, we can still find  y ' = f '(x)  by using implicit differentiation. 
 

The key idea behind implicit differentiation is to assume that  y  is a function of  x  even if we cannot 

explicitly solve for  y.  This assumption does not require any work, but we need to be very careful to treat  y  

as a function when we differentiate and to use the Chain Rule or the Power Rule for Functions. 
 
Example 1: Assume that  y  is a function of  x .   

 Calculate (a)  D( y3 ),   (b)  
d
dx ( x3y2 ) , and   (c)  ( sin(y) )'  

 
Solution: (a) We need the Power Rule for Functions since  y  is a function of x:  

    D( y3 )  =  3 y2 . D( y )  = 3 y2.y ' . 

 (b) We need to use the product rule and the Chain Rule:   

  
d
dx ( x3y2 )  = x3 .

d
dx ( y2  )  + y2 .

d
dx ( x3 )  = x3 2y.dy

dx   + y2.3x2  = 2x3y.dy
dx  + 3x2y2 . 

 (c) We just need to know that  D( sin(x) ) = cos(x)  and then use the Chain Rule: 

  ( sin( y ) )' = cos( y ) . y ' . 
 

Practice 1:  Assume that  y  is a function of  x.  Calculate  (a)  D( x2 + y2 )  and  (b)  
d
dx ( sin(2 + 3y) )  . 

 

 IMPLICIT DIFFERENTIATION:    

  To determine    y ' ,  differentiate each side of the defining equation, treating  y   

  as a function of  x ,  and then algebraically solve for   y '. 
     
 
Example 2:   Find the slope of the tangent line to the circle  x2 + y2 = 25  at the point  (3,4)  with and  

 without implicit differentiation. 
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Solution: 

Explicitly:  We can solve the equation of the circle for  y = +  25 – x2   or  y = –  25 – x2   . 
  

   Since the point  (3,4)  is on the top half of the circle (Fig. 1), y = +  25 – x2   and 
 

D( y ) =  D( +  25 – x2  )  = 
1
2  ( 25 – x2 ) –1/2 D(  25 – x2  )  =  

–x

 25 – x2  

Replacing  x  with  3,  we have  y' =  
–3

 25 – 32   = – 3/4  . 

 

Implicitly:  We differentiate each side of the equation  x2 + y2 = 25   and then 

solve for  y' . D( x2 + y2 )  =  D( 25 )   so  2x + 2y.y' = 0.   
 

Solving for  y', we have  y'  = –  
 2x 
2y    = – x/y , and, at the point  (3,4),   

 
y' = – 3/4 ,  the same answer we found explicitly. 

 
 

Practice 2: Find the slope of the tangent line to  y3 – 3x2 = 15  at the point (2,3)  with and without  

implicit differentiation. 
 

In the previous example and practice problem, it was easy to explicitly solve for  y ,  and then we could 

differentiate  y  to  get  y '.  Because we could explicitly solve for  y ,  we had a choice of methods for 

calculating   y '.  Sometimes, however, we can not explicitly solve for  y , and the only way of determining  

y '  is implicit differentiation. 
 
Example 3: Determine  y '  at  (0,2)  for  y2 + 2y = sin(x) + 8 . 
 
Solution:  Assuming that  y  is a function of x  and differentiating each side of the equation,  we get 
 

D( y2 + 2y  )  = D( sin(x) + 8 )   so  2y y' + 2 y' = cos(x)   and  (2y + 2) y'  = cos(x).  
  

Then   y'  = 
cos(x)

 2y + 2     so , at the point  (0,2),  y'  =  
cos(0)

 2(2) + 2    =  1/6 . 
 
Practice 3: Determine  y '  at  (1,0)  for  y + sin(y) = x3 – x . 
 

In practice, the equations may be rather complicated, but if you proceed carefully and step–by–step, 

implicit differentiation is not difficult.  Just remember that  y  must be treated as a function so every time 

you differentiate a term containing a  y  you should get something which has a  y' .  The algebra needed to 

solve for y' is always easy -- if you differentiated correctly the resulting equation will be a linear equation 

in the variable  y'. 
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Example 4: Find the equation of the tangent line  L  to the "tilted' parabola in Fig. 1  at the point  

(1, 2). 
 
Solution:    The line goes through the point  (1, 2) so we need to find  

 the slope there. Differentiating each side of the equation,  we get 
 
 D( x2 + 2xy + y2 + 3x – 7y + 2 ) = D( 0 )   so 
  
 2x + 2x y ' + 2y + 2y y ' + 3 – 7y ' = 0  and   

 (2x + 2y – 7) y ' = –2x – 2y – 3 .    

 

 Solving for  y ',   y ' =  
–2x – 2y – 3
2x + 2y – 7    ,  so the slope at  (1,2)  is  m =  y ' =  

–2 – 4 – 3
2 + 4 – 7    = 9. 

 
 Finally, the equation of the line is  y – 2 = 9(x – 1)  so   y = 9x – 7. 
 

Practice 4: Find the points where the graph in Fig. 2  crosses the y–axis, and find the slopes of the 

tangent lines at those points. 
 

Implicit differentiation is an alternate method for differentiating equations which can be solved explicitly 

for the function we want, and it is the only method for finding the derivative of a function which we cannot 

describe explicitly. 

 
Logarithmic Differentiation 
 

In section  2.5  we saw that  D( ln( f(x) ) ) =   
 f '(x) 
 f(x)  .  If we simply multiply each side by  f(x) , we have   

f '(x) = f(x) . D( ln( f(x) ) ) .  When the logarithm of a function is simpler than the function itself,  it is often 

easier to differentiate the logarithm of  f  than to differentiate  f  itself. 
 

 Logarithmic Differentiation: f '(x) = f(x) .D( ln( f(x) ) ) .  
    
 

The derivative of  f  is  f  times the derivative of the natural logarithm of  f.  Usually it is easiest to proceed 

in three steps:   (i) calculate  ln( f(x) ) and simplify,   

 (ii) calculate  D( ln( f(x) ) )   and simplify, and   

 (iii) multiply the result in step (ii)  by  f(x). 
 

Let's examine what happens when we use this process on an "easy" function,  f(x) = x2, and a "hard" one, 

f(x) = 2x.  Certainly we don't need to use logarithmic differentiation to find the derivative of  f(x) = x2 , but 

sometimes it is instructive to try a new algorithm on a familiar function.  Logarithmic differentiation is the 

easiest way to find the derivative of  f(x) = 2x . 
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                      f(x) = x2 

 
                    f(x) = 2x 

(i) ln( f(x) ) = ln( x2 ) = 2.ln(x) (i) ln( f(x) ) = ln( 2x ) = x .ln(2) 

(ii) D( ln( f(x) ) )  = D( 2.ln(x) )  =  
2
x  (ii) D( ln( f(x) ) )  = D( x .ln(2) )  =  ln(2) 

(iii) f '(x) = f(x). D( ln( f(x) ) )  = x2 . 
2
x   =  2x (iii) f '(x) = f(x). D( ln( f(x) ) )  = 2x.ln(2)  

 
 
Example 5: Use the pattern  f '(x) = f(x) .D( ln( f(x) ) )  to find the derivative of  f(x) = (3x+7)5.sin(2x). 
 
Solution: (i) ln( f(x) ) = ln( (3x+7)5.sin(2x) ) = 5.ln(3x+7) + ln( sin(2x) )  so 

 

 (ii) D( ln( f(x) ) ) = D( 5.ln(3x+7) + ln( sin(2x) ) ) = 5. 3
3x+7   +  

 2 cos(2x) 
sin(2x)    . 

 

 Then (iii) f '(x) = f(x).D( ln( f(x) ) ) =  (3x+7)5.sin(2x) ( 
15

3x+7   +  
 2 cos(2x) 

sin(2x)    )  
 
  =  15 (3x+7)4 sin(2x) + 2 (3x+7)5cos(2x), 
 

 the same result we would obtain using the product rule. 
 

Practice 5: Use logarithmic differentiation to find the derivative of  f(x) = (2x+1)3 .(3x2 – 4)7 .(x+7)4 . 
 

We could have differentiated the functions in the example and practice problem without logarithmic 

differentiation.  There are, however, functions for which logarithmic differentiation is the only method we 

can use.  We know how to differentiate  x  to a constant power,  D( xn ) = n .xn–1  , and a constant to the 

variable power, D( cx ) = cx .ln(c),  but the function  f(x) = xx  has both a variable base and a variable 

power so neither differentiation rule applies to  xx.  We need to use logarithmic differentiation. 
 
Example 6: Find  D( xx )   (x > 0). 
 

Solution: (i) Ln( f(x) = ln( xx  ) =  x.ln( x )    

 (ii) D( ln( f(x) ) ) = D( x .ln( x ) ) = x .D( ln( x ) )  + ln(x) .D( x ) = x ( 
1
x  ) + ln(x) (1) = 1 + ln(x).   

Then (iii)  D( xx )  = f '(x)  =  f(x) .D( ln( f(x) ) )  =  xx .( 1 + ln(x) ) . 
 
Practice 6: Find  D( xsin(x) )   (x > 0). 
 

Logarithmic differentiation is an alternate method for differentiating some functions such as products and 

quotients, and it is the only method we've seen for differentiating some other functions such as variable 

bases to variable exponents. 
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PROBLEMS 
 
In problems  1 – 10  find  dy/dx  in two ways:  (a)  by differentiating implicitly   and  (b)  by explicitly  

solving for  y  and then differentiating.  Then find the value of  dy/dx  at the given point using your results 

from both the implicit and the explicit differentiation. 
 
1. x2 + y2 = 100 ,  point (6, 8) 2. x2 + 5y2 = 45 ,  point (5, 2) 
 
3. x2 – 3xy + 7y = 5  ,  point  (2,1) 4. x   +  y   = 5  ,  point  (4,9) 
 

5. 
x2

9    +  
y2

16   =  1  ,  point  (0,4) 6. 
x2

9    +  
y2

16   =  1  ,  point  (3,0) 
 
7. ln(y) + 3x – 7 = 0   ,  point  (2,e) 8. x2 – y2 =  16  ,  point  (5,3) 
 
9. x2 – y2 =  16  ,  point  (5, –3) 10. y2 + 7x3 – 3x = 8   ,  point  (1,2) 
 
 

11. Find the slopes of the lines tangent to the graph in Fig. 3  at 

the points  (3,1), (3,3), and  (4,2) . 
 

12. Find the slopes of the lines tangent to the graph in Fig. 3  

where the graph crosses the y–axis. 
  
 

13. Find the slopes of the lines tangent to the graph in Fig. 4  

 at the points  ((5,0),  (5,6),  and  (–4,3). 
 

14. Find the slopes of the lines tangent to the graph in Fig. 4   

 where the graph crosses the y–axis. 
 
 

In problems  15 – 22 ,  find  dy/dx  using implicit differentiation  

and then find the slope of the line tangent to the graph of the  

equation at the given point. 
 
15. y3 – 5y = 5x2 + 7   ,   point  (1,3) 16. y2 – 5xy + x2 + 21 =  0 ,  point  (2,5) 
 
17. y2 + sin(y) = 2x – 6   ,  point  (3,0) 18. y + 2x2y3 = 4x + 7  ,  point  (3,1) 
 
19. ey + sin(y) = x2 – 3,  point  (2,0) 20. ( x2 + y2 + 1)2 – 4x2 = 81 ,  point  (0, 2 2  ) 
 
21. x2/3  +  y2/3  =  5 ,  point  (8,1) 22. x + cos(xy) = y + 3  ,  point  (2,0) 
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23. Find the slope of the line tangent to the ellipse in  Fig. 5  at 

the point  (1, 2). 
 

24. Find the slopes of the tangent lines at the points where the 

ellipse in  Fig. 5  crosses the y–axis. 
 
25. Find  y '  for  y = Ax2 + Bx + C   and   

 for  x = Ay2 + By + C . 
 
26. Find  y '  for  y = Ax3 + B   and  for  x = Ay3 + B . 
 
27. Find  y '  for  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. 

 
 

28. In chapter 1  we assumed that the tangent line to a circle at a point was  

 perpendicular to the radial line through the point and the center of the circle.   

 Use implicit differentiation to prove that the line tangent to the circle   

 x2 + y2 = r2  (Fig. 6)  at  (x,y)  is perpendicular to the line through  (0,0)   

 and  (x,y). 
 
 
 

29. Find the coordinates of point  A  where the tangent line to the ellipse in  Fig. 5 is horizontal. 
 
30. Find the coordinates of point  B  where the tangent line to the ellipse in  Fig. 5 is vertical. 
 
31. Find the coordinates of points  C  and  D on the ellipse in  Fig. 5.. 
 

In problems  32 – 40  find  dy/dx  in two ways:  (a)  by using the "usual"  

differentiation patterns   and  (b)  by using logarithmic differentiation. 
 

32. y = x.sin(3x) 33. y = (x2 + 5)7 .(x3 – 1)4   34. y =   
sin(3x – 1)

x + 7     
 
35. y =  x5 .(3x + 2)4    36. y =  7x 37. y =  esin(x) 
 

38. y =  cos7(2x + 5) 39. y = 25 – x2  40. y =   
x.cos(x)
x2 + 1

  

 
In problems  41 –  46 ,  use logarithmic differentiation to find  dy/dx . 
 

41. y =  xcos(x) 42.   y =  ( cos(x) )x   43. y = x4 .(x – 2)7 .sin(3x) 
 

44. y =  
x + 10

 (2x + 3)3 .(5x – 1)7
  45. y =  (3 + sin(x) )x   46. y =     

x2 + 1
x2 – 1
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In problems 47 – 50, use the values in each table to calculate the values of the derivative in the last column. 
 
47. Use Table 1. 48. Use Table 2 49. Use Table 3. 50. Use Table 4. 
 

Table 1 
 

 x f(x) ln( f(x) ) D( ln( f(x) ) )  f '(x) 
 1 1 0 1.2  
 2 9 2.2 1.8  
 3 64 4.2 2.1  
 

Table 2 
 

 x g(x) ln( g(x) ) D( ln( g(x) ) )  g '(x) 
 0 5 1.6 0.6 
 1 10 2.3 0.7 
 2 20 3.0 0.8 
 

 

Table 3 
 

 x f(x) ln( f(x) ) D( ln( f(x) ) )  f '(x) 
 1 5 1.6 –1  
 2 2 0.7 0  
 3 7 1.9 2  
 

Table 4 
 

 x g(x) ln( g(x) ) D( ln( g(x) ) )  g '(x) 
 2 1.4 0.3 1.2 
 3 3.3 1.2 0.6 
 7 13.6 2.6 0.2 
 

Problems  51 – 55  illustrate how logarithmic differentiation can be used to verify some differentiation 

patterns we already know  (51 and 52)  and to derive some new patterns  (53 – 55).  Assume that all of the 

functions are differentiable and that the function combinations are defined. 
 
51. Use logarithmic differentiation on  f.g  to rederive the product rule:   D( f.g ) = f.g ' + g.f ' . 
 

52. Use logarithmic differentiation on  f/g  to rederive the quotient rule:  D( f/g ) =     
g.f ' – f.g '

g2   . 

53. Use logarithmic differentiation on   f.g.h  to derive a product rule for three functions:  D( f.g.h  ) . 
 
54. Use logarithmic differentiation on the exponential function  ax  to determine its derivative:  D( ax ) . 
 
55. Use logarithmic differentiation to determine a pattern for the derivative of  f g :  D( f g ) . 

 

Section 2.9 PRACTICE  Answers 
Practice 1: D( x2 + y2 ) =  2x + 2y.y' 

  
d
dx ( sin(2 + 3y) )  =  cos(2 + 3y).D( 2 + 3y ) = cos(2 + 3y).3y'    

 

Practice 2: Explicitly:  y = (3x2 + 15)1/3   so  y' = 
1
3 (3x2 + 15) –2/3.D( 3x2 + 15 ) =  

1
3 (3x2 + 15) –2/3.(6x) . 

   When  (x,y) = (2,3) ,  y' = 
1
3 ( 3(2)2 + 15 ) –2/3 .(6.2) = 4 ( 27 )–2/3  =  

4
9   . 

 

  Implicitly: D( y3 – 3x2 ) = D( 15 )   so  3y2.y' – 6x = 0  and  y' = 
2x
y2   . 

   When  (x,y) = (2,3) ,  y' = 
2.(2)
(3)2

   =  
4
9   . 
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Practice 3: y + sin(y) = x3 – x 

  D( y + sin(y) ) = D( x3 – x )  differentiating each side 

  y' + cos(y).y' = 3x2 – 1 

  y'.( 1 + cos(y) ) = 3x2 – 1  
 

  y'  =  
3x2 – 1

1 + cos(y)   
 

  Then when  (x,y) = (1,0),  y' = 
3(1)2 – 1
1 + cos(0)   =  1 . 

 

Practice 4: To find where the parabola crosses the y–axis, we can set  x = 0  and solve for the values of y. 

  Replacing  x  with  0  in  x2 + 2xy + y2 + 3x – 7y + 2 = 0, we have  y2  – 7y + 2 = 0 so 

  y =  
7 ±   (–7)2 – 4(1)(2)

2(1)    =  
7 ±  41

2    ≈  0.3  and 6.7 .  The parabola crosses the  y–axis  

 approximately at the points  (0, 0.3)  and  (0, 6.7). 
 

 From  Example 4, we know that   y ' = 
–2x – 2y – 3
2x + 2y –7    , so   

 at the point  (0, 0.3),  the slope is approximately    
0 – 0.6 – 3
0 + 0.6 – 7    ≈  0.56 ,  and   

 at the point  (0, 6.7),  the slope is approximately    
0 – 13.4 – 3
0 + 13.4 – 7    ≈ –2.56 . 

 
Practice 5: f '(x) = f(x).D( ln( f(x) ) )  and  f(x) = (2x + 1)3 (3x2 – 4)7 (x + 7)4  
 

(i) ln( f(x) ) = 3.ln(2x + 1) + 7.ln(3x2 – 4) + 4.ln(x + 7). 

(ii) D( ln( f(x) ) ) =  
3

2x + 1 (2)  + 
7

3x2 – 4
 (6x)   +  

4
x + 7 (1)  

(iii) f '(x) = f(x).D( ln( f(x) ) )  =  (2x + 1)3 (3x2 – 4)7 (x + 7)4.{ 
2.3

2x + 1   +  
7.6x

3x2 – 4
   +  

4
x + 7   }. 

 
Practice 6: f '(x) = f(x).D( ln( f(x) ) )  and  f(x) =  xsin(x)   so   
 

(i) ln( f(x) ) = ln( xsin(x) )  =  sin(x).ln( x ) 

(ii) D( ln( f(x) ) ) = D( sin(x).ln( x ) ) = sin(x).D( ln(x) ) + ln(x).D( sin(x) ) =  sin(x). 
1
x   +  ln(x).cos(x) 

(iii)  f '(x) = f(x).D( ln( f(x) ) )  =  xsin(x) .{  sin(x). 
1
x   +  ln( x ).cos(x)  }    
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Chapter Two 
 
Section 2.0  
1.  x y = f(x) m(x)  =  the estimated slope of the tangent 
    line to y=f(x) at the point (x,y)          

0 1 1 
0.5 1.4 1/2 
1.0 1.6 0 
1.5 1.4 –1/2 
2.0 1 –2 
2.5 0 –2 
3.0 –1 –2 
3.5 –1.3 0 
4.0 –1 1 

3. (a)  At  x  = 1, 3, and 4. (b)  f  is largest at  x = 4.  f is smallest at  x = 3. 

5. (a)  Graph (b)  Graph (c)  m(x) = cos(x) 
 
7. The solution is similar to the method used in Example 4.  Assume we turn off the engine at the point  

 (p,q) on the curve  y = x2, and then find values of  p  and  q  so the tangent line to  y = x2  at the point  

(p,q)  goes through the given point  (5,16).  (p,q)  is on  y = x2 so  q = p2.  The equation of the tangent 

line to y = x2 at  (p, p2 ) is  y = 2px – p2  so, substituting  x = 5 and y = 16, we have  16 = 2p(5) – p2 .  

Solving  p2 – 10p + 16 = 0  we get  p = 2  or p = 8.  The solution we want (moving left to right along the 

curve) is  p = 2, q = p2 = 4.  ( p = 8, q = 64  would be the solution if we were moving right to left.) 
 
9. Impossible.  The point  (1, 3)  is "inside" the parabola. 
 

11. (a)  msec = 
f(x+h) – f(x)
(x+h) – (x)      =  

{ 3(x + h) – 7 } – { 3x – 7 }
(x + h) – x    =  

3h
h    =  3. 

 (b)  mtan   =   

! 

lim
h"0

 m
sec

 = lim
h"0

 3 =  3.               (c)  At  x = 2,  mtan   =  3.  

 (d)  f(2) = – 1  so the tangent line  is  y – (–1) = 3(x – 2)   or  y = 3x – 7 . 
 

13. (a)  msec = 
f(x+h) – f(x)
(x+h) – (x)      =  

{ a(x + h) + b } – { ax + b}
(x + h) – x    =  

ah
h    =  a. 

 (b)  mtan   =   

! 

lim
h"0

 m
sec

 = lim
h"0

 a  =  a       (c)  At  x = 2,  mtan   =  a.  

 (d)  f(2) = 2a + b  so the tangent line  is  y – (2a + b) = a(x – 2)   or  y = ax + b.. 
 

15. (a)  msec = 
f(x+h) – f(x)
(x+h) – (x)      =  

{ 8 – 3(x + h)2 } – { 8 – 3x2 }
(x + h) – x    =  

–6xh – 3h2

h    =  –6x – 3h. 
 (b)  mtan   =   

! 

lim
h"0

 m
sec

 = lim
h"0

 # 6x # 3h  =  # 6x    (c)  At  x = 2,  mtan   =  –6(2)  = –12. 

 (d)  f(2) = –4  so the tangent line  is  y – (–4) = –12(x – 2)   or  y = –12x + 20... 
 
17. a = 1, b = 2, c = 0,  so  mtan   =  (2)(1)(x) + 2 = 2x + 2.  The problem is to find  p  for which 

  6 – (p2 + 2p) = (2p + 2)(3 – p). 
 This reduces to  p2 – 6p = 0  so  p = 0 or  6  and the required points are  (0, 0)  and  (6, 48). 
 



Odd Answers Contemporary  Calculus 2 

Section 2.1  
1.  (a)  derivative of  g  (b)  derivative of h (c)  derivative of  f 
3. (a)  msec  = h – 4,   mtan  =    

! 

lim
h"0

 msec = –4. (b)  msec  = h + 1,   mtan  =    

! 

lim
h"0

 msec = 1. 

5. (a)  msec  = 5 – h,   mtan  =    

! 

lim
h"0

 msec = 5. (b)  msec  = 7 – 2x – h,   mtan  =  

! 

lim
h"0

 msec = 7 – 2x. 

7. (a) –1    (b) –1     (c) 0     (d) +1     (e) DNE     (f) DNE 

9. f '(x) = 

! 

lim
h"0

 
f (x + h) # f (x)

h
= lim

h"0
 

(x + h)
2 + 8{ }# x

2 + 8{ }
h

=

! 

lim
h"0

 
2xh + h

2

h
= lim

h"0

 2x + h = 2x . f '(3)=6. 

11. f '(x) =  

! 

lim
h"0

 
2(x + h)

3
# 5(x + h){ }# 2x

3
# 5x{ }

h
=

! 

lim
h"0

 
6x

2
h + 6xh

2
+ 2h

3
# 5h

h
= 6x

2
# 5 .  f '(3) = 49. 

13. For any constant  C, if  f(x) = x2 + C, then 

 f '(x)  = = 

! 

lim
h"0

 
f (x + h) # f (x)

h
=  

! 

lim
h"0

 
(x + h)

2 + C{ }# x
2 + C{ }

h
=  

! 

lim
h"0

 
2xh + h

2

h
=  

! 

lim
h"0

 2x + h  = 2x. 

 The graphs of   f(x) = x2  ,  g(x) = x2  + 3  and  h(x) = x2  – 5 are  "parallel" parabolas:  g  is  f  
shifted up 3 units, and  h  is  f  shifted down  5  units. 

 
15. f '(x) = 2x.  Then  f '(1) = 2  and the equation of the tangent line at (1,9)  is  y – 9 = 2(x – 1)   
 or  y = 2x + 7.    
 f '(–2) = – 4  and the equation of the tangent line at (–2,12)  is  y – 12 = –4(x + 2)  or  y = –4x + 4. 
 
17. f '(x) = cos(x).  Then  f '(π) = cos(π) = –1  and the equation of the tangent line at (π,0)  is   
 y – 0 = –1(x – π)  or  y = –x + π.    
 f '(π/2) = cos(π/2) = 0  and the equation of the tangent line at (π/2,1)  is  y – 1 = 0(x – π/2)  or  y = 1 . 
 
19. (a)  y – 5 = 4(x – 2)  or  y = 4x – 3 (b)  x + 4y = 22  or  y = –0.25x + 5.5 
 (c)  f '(x) = 2x  so the tangent line is horizontal when  x = 0:  at the point  (0,1). 
 (d)  f '(p) = 2p  (the slope of the tangent line)  so  y – q = 2p(x – p)  or  y = 2px + (q – 2p2). 
      Since  q = p2 + 1, the equation of the tangent line becomes  y = 2px + (p2 + 1 – 2p2) = 2px – p2 + 1. 
 (e)  We need  p  such that  –7 = 2p(1) – p2 + 1  or  p2 – 2p – 8 = 0.  Then  p = –2, 4.  There are two  
       points with the property we want:  (–2, 5)  and  (4, 17). 
21. (a)  y ' = 2x , so when  x = 1, y ' = 2.  Angle = arctan(2) ≈ 1.107 radians ≈ 63o . 
 (b)  y ' = 3x2 , so when  x = 1, y ' = 3.  Angle = arctan(3) ≈ 1.249 radians ≈ 72o . 
 (c)  Angle ≈  1.249 – 1.107 radians = 0.142 radians  (or   angle = 72o – 63o = 9o ) 
 
23. Graph. On the graph of upward velocity, the units on the horizontal axis are "seconds"  and the units on 

the vertical axis are  "feet per second." 
 
25. (a)  d(4) = 256 ft.  d(5) = 400 ft.   (b)  d '(x) = 32x   d '(4) = 128 ft/sec    d '(5) = 160  ft/sec. 
27. C(x) = x    dollars to produce  x  golf balls. 

 Marginal production cost is  C '(x) = 
1

2 x    dollars per golf ball. 

 C '(25) = 
1

2 25   =  
1
10   dollars per golf ball.   C '(100) = 

1
2 100   =  

1
20   dollars per golf ball.  

29. (a)  A(0) = 0, A(1) = 1/2, A(2) = 2  and  A(3) = 9/2. (b)   A(x) = x2/2  (x ≥ 0).    (c)  
d A(x)

dx    = x. 

 (d)  
d A(x)

dx    represents the rate at which  A(x)  is increasing,  the rate at which area is accumulating. 

31. (a)  9x8 (b)  
2

3x1/3  (c)  
–4
x5   (d)  πxπ–1 (e)  1  if  x > –5  and  –1 if x < –5 

33.   f(x) = x3 + 4x2  (plus any constant) 35.    f(x) = 5.sin(t)        37.    f(x) = 
1
2  x2 +  

1
3  x3    
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Section 2.2  
1. (a) Cont. at  0, 1, 2, 3, 5 (b)  Diff. at 0, 3, 5 
3. 

x f(x) f '(x) g(x) g '(x) f(x).g(x) D( f(x).g(x) ) f(x)/g(x) D( f(x)/g(x) ) 
           

0 2 3 1 5 2 13 2 –7 
1 –3 2 5 –2 –15 16 –3/5 4/25 
2 0 –3 2 4 0 –6 0 –3/2 
3 1 –1 0 3 0 3 undef undef 

5.  
x f(x) f '(x) g(x) g '(x) f(x)+g(x) f(x).g(x) f(x)/g(x) D(f(x)+g(x)) D(f(x).g(x)) D(f(x)/g(x)) 
             
1 3 –2 2 2 5 6 3/2 0 2 –10/4 
2 1 0 3 1/2 4 3 1/3 1/2 1/2 –1/18 
3 2 1 2 –1 4 4 1 0 0 1 

 
7. (a) D( (x–5)(3x+7) ) = (x–5)3 + (3x+7)1 = 6x – 8 
 (b) D( 3x2 – 8x – 35 ) = 6x – 8 , the same result as in (a) 
 

9. 
d
dx  

cos(x)
x2   =  

x2( –sin(x) ) – ( cos(x) )( 2x )
( x2 )2

   =  – 
x sin(x) + 2 cos(x)

x3   

 
11. D( sin2(x) ) = sin(x)cos(x) + sin(x)cos(x)  = 2sin(x)cos(x),   
 D( cos2(x) ) = cos(x)( –sin(x) ) + cos(x)( –sin(x) )  = –2sin(x)cos(x) 
 
13. f(x) = ax2 + bx+ c  so  f(0) = c.  Then  f(0) = 0 implies that  c = 0. 
 f '(x) = 2ax + b  so  f '(0) = b  and  f '(0) = 0  implies that  b = 0.   
 Finally,  f '(10) = 20a + b = 20a so  f '(10) = 30  implies that 20a = 30  and  a = 3/2. 

  f(x) = 
3
2  x2 + 0x + 0  has  f(0) = 0, f '(0) = 0,  and  f '(10) = 30. 

 
15. Their graphs are vertical shifts of each other, and their derivatives are equal. 
 
17. f(x)g(x) = k  so  D( f(x)g(x) ) =  D( k ) = 0  and  f(x)g '(x) + g(x)f '(x) = 0.   

 If  f(x) ≠ 0  and  g(x) ≠ 0, then 
f '(x)
f(x)    =  – 

g '(x)
g(x)   . 

 
19. f '(x) = 2x – 5  so  f '(1) = –3.  f '(x) = 0  if  x = 5/2. 
 
21. f '(x) = 3 + 2sin(x)  so  f '(1) = 3 + 2sin(1) ≈ 4.68.  f '(x) never equals 0  since  sin(x) never equals –3/2. 
 
23. f '(x) = 3x2 + 18x = 3x(x + 6)  so  f '(1) = 21.  f '(x) = 0  if  x = 0 or –6. 
 
25. f '(x) = 3x2 + 4x + 2    so  f '(1) = 9.  f '(x) = 0  for no values of  x (the discriminant 42 – 4(3)(2) < 0). 
 
27. f '(x) = x.cos(x) + sin(x)  so  f '(1) = 1.cos(1) + sin(1) ≈ 1.38 .  The graph of  f '(x)  crosses the x–axis 

infinitely often.  The root of  f '  at  x = 0  is easy to see (and verify).  Other roots of  f ',  such as near  
 x = 2.03  and  4.91  and  –2.03, can be found numerically using the Bisection algorithm or graphically using 

the "zoom" or "trace" features on some calculators. 
 
29. f '(x) = 3x2 + 2Ax + B.  The graph of  y = f(x)  has two distinct "vertices" if  f '(x) = 0  for two distinct 

values of  x.  This occurs if the discriminant of   3x2 + 2Ax + B is greater than  0:  (2A)2 – 4(3)(B) > 0. 
 
31. Everywhere except at  x = –3. 33. Everywhere except at  x = 0 and 3. 



Odd Answers Contemporary  Calculus 4 

 
 
35. Everywhere except at  x = 1. 
 
37. Everywhere.  The only possible difficulty is at  x = 0, and the definition of the derivative gives  f '(0) = 1.  

The derivatives of the "two pieces" of   f  match at  x = 0  to give a differentiable function there. 
 
39. Continuity of  f  at  x = 1  requires  A + B = 2.  The "left derivative"  of  f  at  x = 1  is  D( Ax + B ) = A  

and the "right derivative" of  f  at  x = 1 is  3 ( if  x > 1 then  D( x2 + x )  = 2x + 1 )  so to achieve 
differentiability  A = 3  and  B = 2 – A = –1. 

 
41. h(x) = 128x – 2.65x2   ft. 
 (a) h '(x) = 128 – 5.3x  so  h '(0) = 128 ft/sec, h '(1) = 122.7 ft/sec,  and  h '(2) = 117.4 ft/sec. 
 (b) v(x) = h '(x) = 128 – 5.3 x  ft/sec. (c) v(x) = 0  when  x = 128/5.3 ≈  24.15  sec. 
 (d) h(24.15) ≈  1,545.66  ft. (e) about 48.3 seconds: 24.15 up and 24.15 down 
 
43. h(x) = vox – 16x2   ft. 
 (a) h '(x) = vo – 32x  ft/sec 

 (b) Max height when  x = vo/32:  max height = h(vo/32) = vo(vo/32) – 16(vo/32)2  = (vo)2/64  feet. 
 (c) Time aloft = 2(vo/32) = vo/16  seconds. 
 
45. (a) (vo)2/64 = 6.5 , so  vo = 8 6.5   ≈  20.396  ft/sec. 

 (b) 2( vo/32 ) = 
8 6.5

16     ≈  1.27  seconds. 

 (c) Max height  =   
(vo)2

2g     =   
 ( 8 6.5 )2

2(5.3)     =  
416
10.6   ≈  39.25  feet. 

 

47. (a) y ' = – 
1
x2   ;  y '(2) = –1/4   so  y – 1/2 = (–1/4)(x – 2)  or  y = (–1/4)x + 1. 

 (b) x–intercept  at  x = 4,  y–intercept  at  y = 1 (c)   A = 
1
2 (base)(height)  = 

1
2 (4)(1)   = 2. 

 
49. Since  (1,4)  and  (3,14)  are on the parabola, we need    a + b + c = 4   and   9a + 3b + c = 14.    
 Then, subtracting the first equation from the second,  8a + 2b = 10. 
 f '(x) = 2ax + b  so  f '(3) = 6a + b = 9, the slope of  y = 9x – 13.  Now solve the system  8a + 2b = 10 
 and  6a + b = 9  to get  a = 2  and  b = –3.  Then use  a + b + c = 4  to get  c = 5.  a = 2, b = –3, c = 5. 
 
51. (a) f(x) = x3   (b) g(x) = x3  + 1   

 (c)   If  h(x) = x3  + C  for any constant  C, then   D( h(x) ) = 3x2 . 
 
53. (a) For  0 ≤ x ≤ 1,  f '(x) = 1  so  f(x) = x + C.  Since  f(0) = 0, we know  C = 0  and  f(x) = x. 

  For  1 ≤ x ≤ 3,  f '(x) = 2 – x   so  f(x) = 2x – 
1
2  x2  + K.  Since  f(1) = 1, we know   

   K = –1/2  and  f(x) = 2x – 
1
2  x2 – 

1
2   . 

  For  3 ≤ x ≤ 4,  f '(x) = x – 4  so  f(x) = 
1
2  x2  – 4x + L.  Since  f(3) = 1, we know  L = 17/2   

   and   f(x) =  
1
2  x2 – 4x + 

17
2   . 

 (b) This graph is a vertical shift, up 1 unit, of the graph in part (a). 
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Section 2.3  
1. D( f2(x) ) = 2.f1(x).f '(x).  At  x = 1,  D( f2(x) ) =  2(2)(3) = 12. 

 D( f5(x) ) = 5.f4(x).f '(x).  At  x = 1,  D( f5(x) ) =  5(2)4(3) = 240. 

 D( f1/2(x) ) = (1/2).f–1/2(x).f '(x).  At  x = 1,  D( f1/2(x) ) =  (1/2)(2)–1/2(3) = 
3

2 2   = 
3 2

4  . 

 
3. x f(x) f '(x) D( f2(x) )  D( f3(x) )  D( f5(x) )  
 1 1 –1 –2  –3  –5 
 3 2 –3 –12  –36  –240 
 
5. f '(x) = 5.(2x – 8)4.(2)  
 
7. f '(x) = x.5.(3x + 7)4.3 + 1.(3x + 7)5   = (3x + 7)4 { 15x + (3x + 7) }  =  (3x + 7)4.( 18x + 7) 
 

9. f '(x) = 
1
2 (x2 + 6x – 1) –1/2.(2x + 6)  =  

x + 3

x2 + 6x – 1
    

11. (a) graph  h(t) = 3 – 2sin(t)  (b) When  t = 0,  h(0) = 3  feet. 
 (c) Highest = 5 feet above the floor.  Lowest = 1 foot above the floor. 
 (d) h(t) = 3 – 2sin(t)  feet,  v(t) = h '(t) = –2cos(t)  ft/sec,  and  a(t) = v '(t) = 2sin(t)  ft/sec2  . 
 (e) This spring oscillates forever.  The motion of a real spring would "damp out" due to friction. 
 

13. K = 
1
2  mv2     (a)  If  h(t) = 5t,  then  v(t) = h '(t) = 5.  Then  K(1) = K(2) = 

1
2  m(5)2   =  12.5m. 

 (b)  If  h(t) = t2  , then v(t) = h '(t) = 2t  so  v(1) = 2  and  v(2) = 4.  Then  K(1) = 
1
2  m(2)2 = 2m   

  and  K(2) = 
1
2  m(4)2 = 8m . 

15. 
df
dx   =  x .D( sin(x) ) + sin(x) .D( x ) = x.cos(x) + sin(x) 

 
17. f '(x) = ex – sec(x).tan(x) 19. f '(x) = –e–x + cos(x) 
 
21. f '(x) = 7(x – 5)6(1)   so  f '(4) = 7(–1)6(1)  = 7.  Then  y – (–1) = 7(x – 4)  and  y = 7x – 29. 
 

23. f '(x) =  
1
2 (25 – x2) –1/2 (–2x)  =  

–x

25 – x2    so  f '(3) =  
–3
4    .  Then  y –4 = –

3
4 (x – 3)   or  3x + 4y = 25. 

 
25. f '(x) = 5(x – a)4(1)   so  f '(a) = 5(a – a)4(1) = 0.  Then  y – 0 = 0(x – a)   or  y = 0. 
 
27. f '(x) = ex   so  f '(3) = e3 .  Then  y – e3 = e3 (x – 3) . 
 x–intercept  (y=0):  0  – e3 = e3 (x – 3)  so  –1 = x – 3  and  x = 2. 
 ( y–intercept  (x=0):  y  – e3 = e3 (0 – 3)  so  y = –3e3 + e3 = –2e3 . ) 
 
 At  (p, ep),  f '(p) = ep   so  y – ep  = ep (x – p) . 
 x–intercept  (y=0):  0 – ep  = ep (x – p)  so  –1 = x – p  and  x = p – 1. 
 
29. f '(x) = –sin(x),  f "(x) = –cos(x)  
 
31. f '(x) = x2 cos(x) + 2x sin(x),   
 f "(x) = –x2 sin(x) + 2x cos(x) + 2x cos(x) + 2 sin(x) = – x2 sin(x) + 4x cos(x) + 2sin(x) 
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33. f '(x) = ex.cos(x) – ex.sin(x),  f "(x) = –2 ex.sin(x) 
 
35. q ' = linear,  q " = constant,  q ''' = q(4) = q(5) = ... = 0 
 
37. p(n) = constant,   p(n+1)  = 0 39. f(x) = 5ex 41. f(x) = (1 + ex)5    
 

43. No.    

! 

lim
h"0

 
f (0 + h) # f (0)

h
=  

! 

lim
h"0

 

(0 + h) # sin
1

0 + h

$ 

% 
& 

' 

( 
) * 0

h
= 

! 

lim
h"0

 sin
1

h

# 

$ 
% 
& 

' 
(  

  which does not exist. 
 (To see that this last limit does not exist, graph  sin( 1/h ) for  –1 ≤ h ≤ 1, or evalaute  sin( 1/h )  for lots of small 

values of  h, e.g., h 0.1, 0.01, 0.001,  ... ) 
 

45. ( 1 + 
1
x  ) x  ≈  2.718 ...  =  e  when  x  is  large. 

47. (a)  s2 = 2.5,  s3 ≈ 2.67,  s4 ≈ 2.708,  s5 ≈ 2.716, s6 ≈ 2.718 , s7 ≈ 2.71825,  s8 ≈ 2.718178 
 (b)  They are approaching  e . 
 
 
Section 2.4  
1. If  f(x) = x5 and  g(x) = x3 – 7x , then  f°g(x) = ( x3 – 7x )5    
 
3. If  f(x) = x5/2 and  g(x) = 2 + sin(x) , then  f°g(x) = 

( 2 + sin(x) )5    (The pair  f(x) = x  and  g(x) = (2 + sin(x) )5  also work.)  
 
5. If  f(x) = | x |  and  g(x) = x2 – 4 , then  f°g(x) = |  x2  – 4  |  
 
7. (1) y = u5 , u = x3 – 7x (2) y = u4 , u = sin(3x – 8)  
 (3) y = u5/2 , u = 2 + sin(x) (4) y = 1/ u   , u = x2 + 9 
 (5) y = | u | , u = x2 – 4 (6) y = tan(u) , u = x    
 
8. & 9.  

 x f(x) g(x) f '(x) g '(x) ( f°g )(x) ( f°g )' (x) 
                                                          
 –2 2 –1 1 1 1 0 
 –1 1 2 0 2 1 2 
 0 –2 1 2 –1 0 1 
 1 0 –2 –1 2 2 2 
 2 1 0 1 –1 –2 –2 

 
11. g(2) ≈ 2, g '(2) ≈ –1, (f°g)(2) = f( g(2) ) ≈ f( 2 ) ≈ 1 

 f '( g(2) ) ≈ f '( 2 ) ≈ 0, (f°g) '(2) = f '( g(2) ). g '(2) ≈ 0 
 

13. D( ( 1 – 
3
x   )4  ) = 4(  1 – 

3
x   )3  (  

3
x2  )  

 

15. D(  
5

2 + sin(x)   )  =  5( 
–1
2   )( 2 + sin(x) ) –3/2 cos(x)  =  

–5 cos(x)
2( 2 + sin(x) )3/2   

 
17. D( x2.sin( x2  + 3 )  )  =  x2{ cos(x2 + 3) }(2x) + { sin(x2 + 3) }(2x)  = 2x{ x2.cos(x2 + 3) + sin(x2 + 3) } 
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19. D(  
7

cos( x3  – x )
   ) =  D(  7 sec( x3  – x )  ) = 7(3x2 – 1).sec(x3 – x).tan(x3 – x) 

21. D( ex + e–x )  =  ex – e–x  
 
 
23. h(t) = 3 – cos( 2t )  feet. (a)  h(0) = 2 feet above the floor. 
 (b) h(t) = 3 – cos( 2t )  feet,  v(t) = h '(t) = 2 sin( 2t )  ft/sec ,  a(t) = v '(t) = 4cos( 2t ) ft/sec2  

 (c) K = 
1
2  mv2 =  

1
2  m( 2sin( 2t ) )2   = 2m.sin2( 2t ) ,  dK/dt = 8m.sin( 2t ).cos( 2t ) 

 
25. P(h) = 14.7 e–0.0000385h  .  (a)  P(0) = 14.7  psi  (pounds per square inch),  P(30,000) ≈ 4.63 psi 

 (b) 10  = 14.7 e–0.0000385h  so  
10

14.7   =  e–0.0000385h   and  h = 
1

–0.0000385  ln( 
10

14.7  ) ≈ 10,007 ft. 

 (c) dP/dh = 14.7( –0.0000385 ) e–0.0000385h   psi/ft 

  At h = 2,000 feet,  dP/dh = 14.7( –0.0000385 ) e–0.0000385( 2,000)   psi/ft  ≈ –0.000524 psi/ft. 
  Finally,  dP/dt = 500( –0.000524 ) ≈ –0.262  psi/minute 
 (d) If the temperature is constant, then  (pressure)(volume)  is a constant (from physics!)  so a decrease in 

 pressure results in an increase in volume. 
 

27. 
d
dz 1 + cos2( z )      =  

2cos(z){ –sin(z) }

2 1 + cos2(z)
    =  

–sin( 2z )

2 1 + cos2(z)
    

29. 
d
dx   tan( 3x + 5 )  = 3.sec2( 3x + 5 ) 

 

31. D(  sin( x + 1  )  )  =  { cos( x + 1  ) 
1

2 x + 1    

 

33. 
d
dx ( esin(x) )   =   esin(x) .cos(x) 

 

35. f(x) = x   so  
d f(x)

dx    =  
1

2 x  .   x(t) = 2 + 
21
t     so  

d x(t)
dt    =  – 

21
t2

   . 

 At  t = 3,  x = 9  and  
d x(t)

dt    =  – 
21
9    =  – 

7
3    so   

d (f∞x)
dt    =  ( 

1
2 9   )( – 

7
3  )  =  – 

7
18   . 

 

37. f(x) = tan3(x)   so  
d f(x)

dx    = 3.tan2(x).sec2(x).   x(t) = 8  so  
d x(t)

dt    = 0 . 

 At  t = 3,  x = 8  and  
d x(t)

dt    = 0  so   
d (f∞x)

dt    =  0 . 
 

39. f(x) = 
1
77 ( 7x – 13 ) 11 41. f(x) =  – 

1
2  cos( 2x – 3 ) 43. f(x) =  esin(x)    

 
45.   Then  –2sin( 2x ) = 2cos(x){–sin(x)} – 2sin(x).cos(x)   or  sin( 2x ) = 2sin(x).cos(x) . 
 
47. 3cos( 3x ) = 3cos(x) – 12sin2(x).cos(x)   
 so  cos( 3x ) = cos(x){ 1 – 4sin2(x) } = cos(x){ 1 – 4 + 4cos2(x) }  =  4cos3(x) – 3cos(x) 
 

49. y ' = 3Ax2 + 2Bx 51. y ' = 2Ax.cos( Ax2 + B ) 53. y ' = 
Bx

A + Bx2   

55. y ' = B.sin( Bx ) 57. y ' = –2Ax.sin(Ax2 + B) 59. y ' = x( B.eBx ) + eBx = (Bx+1).eBx  
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61. y ' = A.eAx + A.e–Ax   63. y ' = 
A.sin(Bx) – Ax.B.cos(Bx)

sin2(Bx)
  

 

65. y ' = 
(Cx+D)A – (Ax+B)C

(Cx+D)2
   =  

AD – BC
(Cx+D)2

    

 

67. (a)  y ' = AB – 2Ax , (b)  x = 
AB
2A   =  

B
2  , (c)  y '' = –2A. 

 
69. (a)  y ' = 2ABx – 3Ax2 = Ax.(2B – 3x) , (b)  x = 0, 2B/3 ,  (c)  y '' = 2AB – 6Ax . 
 

71. (a)  y ' = 3Ax2 + 2Bx = x.(3Ax + 2B) ,  (b)  x = 0, 
–2B
3A    ,  (c)  y '' = 6Ax + 2B . 

 

73. 
d
dx ( arctan( x2 ) )  =  

2x
1 + x4  75. D( arctan(ex) ) =  

1
1 + (ex)2

  .ex  =  
ex

1 + e2x   

 

77. D( arcsin( x3 )) =  
3x2

1 – x6    79. 
d
dt ( arcsin(et) )   =  

1

1 – (et)2
  .et =  

et

1 – e2t  

 

81. 
d
dx ( ln( sin(x) ) )   =  

1
sin(x)   cos(x)  =  cot(x) 83. 

d
ds ( ln(es) )  = 

1
es  .e

s = 1, or 
d
ds (ln( es ))  = 

d
ds ( s )  = 1 

 
 
Section 2.5  

1. D( ln(5x) ) = 
1
5x  5 = 

1
x  3. D( ln( xk ) ) =  

1
xk   k xk–1  =  

k
x   

 

5. D( ln( cos(x) ) ) =  
1

cos(x) (– sin(x) )  = – tan(x) 7. D( log2(5x) ) =  
1

5x ln(2) (5)  =  
1

x ln(2)   
 

9. D( ln( sin(x) ) ) =  
1

sin(x)  ( cos(x) )  = cot(x) 
 

11. D( log2( sin(x) ) ) =  
1

sin(x) 
1

ln(2) ( cos(x) )  = 
cot(x)
ln(2)   13. D( log5( 5x ) ) =  D( x ) =  1 

 

15. D( x ln( 3x ) ) = x. 
1
3x  .3 + ln( 3x ) = 1 + ln( 3x ) 17. D( 

ln(x)
x   ) =  

x. 
1
x – ln(x).1

x2     =  
1 – ln(x)

x2     

 

19. D( ln( (5x–3)1/2 ) ) = 
1

(5x–3)1/2  .D( (5x–3)1/2 ) = 
1

(5x–3)1/2  . 
1
2  .(5x–3)–1/2.D( 5x–3 ) = 

5
2  . 

1
5x–3  . 

 

21. 
d

dw ( cos( ln(w) ) )   =  { – sin( ln(w) ) } 
1
w   =  

–sin( ln(w) )
w     

 

23. 
d
dt ( ln( t +1 ) )   =  

1
2(t + 1)    25. D( 5sin(x) ) =  5sin(x) ln(5) cos(x) 

 

27. 
d
dx   ln( sec(x) + tan(x) )  =  

1
sec(x) + tan(x)  ( sec(x)tan(x) + sec2(x) )   =  sec(x) 
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29. f(x) = ln(x),  f '(x) =  
1
x  .   Let  P = (p, ln(p) ).   Then we must satisfy  y – ln(p) = 

1
p (x – p)   with  x = 0  and 

y = 0:  – ln(p) = – 1  so  p = e  and  P = (e, 1). 

31. p(t) = 100( 1 + Ae–t )–1  .  
d
dt   p(t)  =  100 (–1) ( 1 + Ae–t )–2  ( Ae–t (–1) ) =  

100 Ae–t

( 1 + Ae–t )2
   . 

33. f(x) = 8 ln(x)  +  any constant 35. f(x) = ln( 3 + sin(x) )  +  any constant 

37. g(x) = 
3
5  e5x    +  any constant 39. f(x)  =  ex2

    +  any constant 
41. h(x) = ln( sin(x) )  +  any constant 
 
43. A:  ( t, 2t + 1 ) ,  B:  ( t2 , 2t2 + 1 ) 
 (a) When  t = 0,  A  is at  (0,1)  and  B  is at  (0,1). When t = 1, A is at (1,3), B is at (1,3) 
 (b) graph 
 (c) dy/dx = 2  for each, since  y = 2x + 1. 

 (d) A:  dx/dt = 1, dy/dt = 2  so  speed = 12 + 22    =  5    

  B:  dx/dt = 2t ,  dy/dt =  4t  so  speed =  (2t)2 + (4t)2   =  2 5  t.  At t=1, B's speed is  2 5 . 
 (e) This robot moves on the same path  y = 2x + 1,  but it moves to the right and up for about   
  1.57 minutes, reverses its direction and returns to its starting point, then continues left and  
  down for another 1.57  minutes, reverses, and continues to oscillate. 
 
45. When t=1, dx/dt =  +, dy/dt=  –,  dy/dx=  – .  WHen  t=3, dx/dt = – , dy/dt=  – ,  dy/dx=  + . 
 
47. x(t) = R( t – sin(t) ) (a)  graph 
 y(t) = R( 1 – cos(t) ) 
 

 (b)  dx/dt = R( 1 – cos(t) ), dy/dt  =  R sin(t),  so  
dy
dx   =  

sin(t)
1 – cos(t)  . 

  When  t = π/2 , then  dx/dt = R, dy/dt = R  so  dy/dx = 1  and  speed = R2 + R2   = R 2   

  When  t = π,  dx/dt = 2R,  dy/dt = 0  so  dy/dx  =  0  and  speed  = (2R)2 + 0   =  2R . 
 

49. (a) The ellipse  ( 
x
3  )2  +  ( 

y
5  )2  = 1. 

 (b) The ellipse  ( 
x
A  )2  +  ( 

y
B  )2  = 1  if  A ≠ 0  and  B ≠ 0.      (c)   ( 3.cos(t), –5.sin(t) )  works. 

  If  A = 0, the motion is oscillatory along the  x–axis.   
  If  B = 0, the motion is oscillatory along the  y–axis. 
 
Section 2.6  

1. V = 
4
3  πr3  ( r = r(t) )  so  

d V
dt    = 4πr2 

d r
dt   .   

 When  r = 3 in. , 
d r
dt   = 2 in/min,  so  

d V
dtt    = 4π( 3 in)2(2 in/min)  =  72π in3/min  ≈  226.19 in3/min. 

 

3. b = 15 in., h = 13 in.,  
d b
dt    = 3 in/hr,  

d h
dt    =  –3 in/hr. 

 (a) A = 
1
2  bh  so  

d A
dt    = 

1
2 { b 

d h
dt    +  h 

d b
dt   }  =  

1
2  { (15 in)(–3 in/hr) + (13 in)(3 in/hr) } < 0  so  A  is decreasing. 

 (b) Hypotenuse C = b2 + h2   so  
d C
dt    =  

b 
d b
dt  + h 

d h
dt

b2 + h2     =  
15(3) + 13(–3)

152 + 132    > 0  so  C  is increasing. 

 (c) Perimeter  P  = b + h + C  so  
d P
dt    =  

d b
dt    +  

d h
dt    +  

d C
dt    =  (3) + (–3) +  

6
394   > 0  so  P is increasing. 
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5. (a) P = 2x + 2y  so  
d P
dt    =  2 

dx
dt    +  2 

dy
dt    =  2(3 ft/sec) + 2(–2 ft/sec)  =  2 ft/sec. 

 (b) A = xy  so  
d A
dt    =  x 

dy
dt    +  y 

dx
dt    =  (12 ft)(–2 ft/sec) +  (8 ft)(3 ft/sec)  = 0 ft2/sec. 

 

7. V = πr2 h =  π r2 ( 1/3 )  so  
d V
dt    =  

2π
3   r 

dr
dt   .   

 When  r = 50 ft.  and  
dr
dt  = 6 ft/hr, then    

d V
dt    =  

2π
3  (50 ft)(6 ft/hr)   =  200π ft3/hr  ≈  628.32  ft3/hr. 

 

9. w(t) = h(t)  for all  t  so  
d w
dt    =  

d h
dt    .  V = 

1
3  πr2 h   and  r = w/2 = h/2 so  V = 

1
3  π( h/2 )2 h =  

1
12  π h3   

 and  
d V
dt    =  

1
4  πh2  

dh
dt    .  When  h = 500 ft  and  

dh
dt    =  2 ft/hr, then  

d V
dt    =  

1
4  π(500)2(2)  = 125,000π  ft3/hr. 

 
11. Let  x  be the distance from the lamp post to the person, and L be the length of the shadow, both in feet.  By similar 

triangles,  
L
6   =  

x
8    so  L = 

3
4  x .   

dx
dt    =  3 ft/sec. 

 (a) 
d L
dt    =  

3
4 

dx
dt    =  

3
4 (3 ft/sec)   =  2.25  ft/sec. (b) 

d
dt (x + L)  =  

dx
dt    +  

dL
dt    =  5.25  ft/sec. 

 (The value of  x  does not enter into the calculations.) 
 

13. (a) sin(35o)  =  
h

500    so  h = 500.sin(35o)  ≈  287 ft. 

 (b) L = length of the string  so  h = L.sin(35o)  and  
d h
dt    =  sin(35o) 

dL
dt    =  sin(35o) (10 ft/sec)  ≈  5.7 ft/sec. 

 

15. V = s3  –  
4
3  πr3 .  r = 

1
2(diameter)  = 4 ft,  

dr
dt   =  1 ft/hr ,  s = 12 ft,  

ds
dt   =  3 ft/hr. 

 
d V
dt    =  3s2 

ds
dt   – 4πr2 

dr
dt    =  3(12 ft)2 (3 ft/hr)  – 4π(4 ft)2(1 ft/hr) ≈  1094.94  ft3/hr.  The volume is increasing at 

about  1094.94  ft3/hr. 

17. Given: 
dV
dt    =  k.2πr2   with  k  constant.   We also have  V = 

2
3  πr3  so  

dV
dt    = 2πr2 

dr
dt   . 

 Therefore,  k.2πr2  =  2πr2 
dr
dt     so  

dr
dt   = k .  The radius  r   is changing at a constant rate. 

19. (a)  A = 5x     (b)   
dA
dx   = 5  for all  x > 0.    (c)  A = 5t2   

 (d)  
dA
dt    =  10t .  When  t = 1,  

dA
dt    = 10;  when  t = 2,  

dA
dt    = 20;  when  t = 3,  

dA
dt   = 30. 

 (e)  A = 10 + 5.sin(t) .   
dA
dt    = 5.cos(t) . 

21. (a) tan(10o)  =  
40
x     so  x = 

40
tan(10o)

   ≈  226.9 ft. 

 For parts  (b)  and  (c)  we need to work in radians since our formulas for the derivatives of the trigonometric 
functions assume that the angles are measured in radians:  360o ≈ 2π  radians  so 10o ≈ 0.1745  radians  and  

2o ≈ 0.0349  radians, 

 (b) x = 
40

tan(θ)   = 40 cot( θ )  so  
dx
dt    =  –40 csc2( θ ) 

dθ
dt     and   

  
dθ
dt    =  

sin2(θ) 
dx
dt

–40    =  
sin2(0.1745) (–25)

–40    ≈  
(0.1736)2(–25)

–40    ≈ 0.0188  radians/min  ≈  1.079o /min. 

 (c) 
dx
dt    –40 csc2( θ ) 

dθ
dt     =  –40 

1
sin2(θ)

 
dθ
dt     ≈  –40 

1
(0.1736)2

  (0.0349)   ≈  –46.3  ft/min.   (The  " – "   

  indicates the distance to the sign is decreasing:  you are approaching the sign.)  Your speed is  46.3  ft/min. 
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Section 2.7  
 
1. See Fig. 15  
 
3. xo = 1:  a.     xo = 4:  b.      
 
5. xo = 1:  1, 2, 1, 2, 1, ...          
 xo = 5:  x1  is undefined  since  f '(5) = 0. 
 

7. If  f  is differentiable,  then f '(xo) = 0  and  x1 =  xo –  
f(xo)
f '(xo)    is undefined. 

 
9. f(x)  =  x4 – x3 – 5,  xo = 2.  f '(x) = 4x3 – 3x2  . 

 Then   x1 =  2 –  
3
20   =  

37
20   = 1.85   and    x2 =  1.85  –  

1.854 – 1.853 – 5
4(1.85)3 – 3(1.85)2

   ≈  1.824641  . 

 
11. f(x) =  x – cos(x),  f '(x) = 1 + sin(x),  xo = 0.7  .   Then  x1 =  0.7394364978 ,  x2  =  0.7390851605 , and   root  

≈  0.74  . 
 

13. 
x

x + 3   =  x2 – 2  so we can use  f(x) =  x2 – 2 –  
x

x + 3   .  If   xo = –4 ,  then the iterates  xn  →  –3.3615 .  If  xo 
= –2 ,  then  xn  →  –1.1674 .  If  xo = 2 ,  then the iterates  xn  →  1.5289 . 

 
15. x5 – 3 = 0  and   xo = 1.   Then  xn  →  1.2457 . 
 
17. f(x) =  x3 – A  so  f '(x) = 3x2 .    

 Then  xn+1  =  xn  –  
(xn)3 – A

3(xn )2
   =  xn –  

xn
3    +  

A
3(xn)2

   =  
1
3  { 2xn +  

A
(xn )2

   } . 

 
19. (a) 2(0) – INT( 2(0) )  =  0 – 0 = 0. 

 (b) 2( 1/2 ) – INT( 2( 1/2 ) ) = 1 – 1 = 0.   
  2( 1/4 ) – INT( 2( 1/4 ) ) =  1/2 – 0 = 1/2  →  0. 
  2( 1/8 ) – INT( 2( 1/8 ) ) =  1/4 – 0 = 1/4  →  1/2  →  0. 
  2( 1/2n ) – INT( 2( 1/2n ) ) =  1/2n–1 – 0 =  1/2n–1   →  1/2n–2   →  ...  →  1/4  →  1/2  →  0. 
 
21. (a) If  0 ≤ x ≤ 1/2,  then  f  stretches  x  to twice its value,  2x .   
  If  1/2 < x ≤ 1,  then  f  stretches  x  to twice its value ( 2x )  and "folds" the part above the  
   value  1  ( 2x – 1 )  to below  1:   1 – ( 2x – 1 )  = 2 – 2x . 

 (b) f( 2/3 ) = 2/3 .    
  f( 2/5 ) = 4/5,  f ( 4/5 ) = 2/5 , and the values continues to cycle. 
  f( 2/7 ) = 4/7,  f( 4/7 ) = 6/7, f( 6/7 ) = 2/7, and the values continues to cycle. 
  f( 2/9 ) = 4/9,  f( 4/9 ) = 8/9, f( 8/9 ) = 2/9, and the values continues to cycle. 

 (c) 0.1, 0.2, 0.4, 0.8, 0.4, 0.8,  and the pair of values  0.4  and  0.8  continue to cycle. 
  0.105, 0.210, 0.42, 0.84, 0.32, 0.64, 0.72, 0.56, 0.88, 0.24, 0.48, 0.96, 0.08, 0.16, 0.32 , ... 
  0.11, 0.22, 0.44, 0.88, 0.24, 0.48, 0.96, 0.08, 0.16, 0.32, 0.64, 0.72, 0.56, 0.88, ... 

 (d) Probably so. 
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Section 2.8 
 

1. See Fig. 1. 
 

3. (a) f(4) = 2, f '(4) = 
1

2 4   =  
1
4  .   

  Then  y – 2 = 
1
4 (x – 4)   so  y = 

1
4  x + 1.   

  4.2   =  f(4.2) ≈ 
1
4 (4.2)  + 1 = 2.05 . 

 (b) f(81) = 9,  f '(81) = 
1
18   so   

  y – 9 = 
1
18 (x – 81)   so y = 

1
18 (x – 81)  + 9.   

  80  = f(80) ≈ 
1
18 (80 – 81)  + 9 = 9 – 

1
18  ≈ 8.944. 

 (c) f(0) = 0, f '(0) = 1  so y – 0 = 1(x – 0)  and  y = x.  Then  sin(0.3) = f(0.3) ≈ 0.3 . 

 

4. (a) f(1) = 0, f '(1) = 1  so y – 0 = 1(x – 1).  Then  ln(1.3) = f(1.3) ≈ 1.3 – 1 = 0.3 . 

 (b) f(0) = 1, f '(0) = 1  so  y – 1 = 1(x – 0)  and  y = 1 + x.  Then  e0.1 = f(0.1) ≈ 1.1 . 

 (c) f(1) = 1, f '(1) = 5  so  y – 1 = 5(x – 1)  or  y = 1 + 5(x–1).  Then  (1.03)5  ≈ 1 + 5(0.03) = 1.15 . 

 
5. f(x) = (1 + x)n , f '(x) = n(1 + x)n–1 ,  f(0) = 1  and  f '(0) = n.  Then  y – 1 = n(x – 0)  or  y = 1 + nx. 
  Therefore,   (1 + x)n  ≈  1 + nx   (when  x  is close to 0). 
 

6. (a) f(x) = (1 – x)n , f '(x) = –n(1 – x)n–1 ,  and  f '(0) = –n.  Then  y – 1 = –n(x – 0)  or  y = 1 – nx. 

  Therefore,   (1 – x)n  ≈  1 – nx   (when  x  is close to 0). 

 (b) f(x) = sin(x),  f '(x) = cos(x),  and  f '(0) = 1.  Then  y – 0 = 1(x – 0)  or  y = x.   

  Therefore,  sin(x) ≈ x  for  x  close to 0. 

 (c) f(x) = ex ,  f '(x) = ex  , and  f '(0) = 1.  Then  y – 1 = 1(x – 0) or  y = x + 1.   ex  ≈  x + 1. 

 

7. (a) f(x) = ln(1 + x),  f '(x) = 
1

1+x   , and  f '(0) = 1.  Then  y – 0 = 1(x – 0)  so  y = x  and  ln(1 + x) ≈ x . 

 (b) f(x) = cos(x),  f '(x) = –sin(x) ,  and  f '(0) = 0.  Then  y – 1 = 0(x – 0)  so  y = 1  and  cos(x) ≈ 1. 
 (c) f(x) = tan(x), f '(x) = sec2(x) ,  and  f '(0) = 1.  Then  y – 0 = 1(x – 0)  so  y = x  and  tan(x) ≈ x. 

 (d) f(x) = sin( 
π
2  + x) ,  f '(x) = cos( 

π
2  + x) ,  and  f '(0) = cos( 

π
2  + 0) = 0.  Then  y – 1 = 0(x – 0)  so  y =1   

  and  sin( 
π
2  + x) ≈  1. 

  
9. (a) Area 

! 

  A(x) = (base)(height) = x(x
2

+1) = x
3

+ x.  Then  

! 

A' (x) = 3x
2

+1  so  A' (2) = 13   

         Then   

! 

"A # A' (2) $ "x = (13)(2.3- 2) = 3.9  

 (b) (base)(height) = (2.3)( (2.3)2 + 1 ) = 14.467 .  Then the actual difference = 14.467 – (2)(22+1) = 4.467 . 
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11. V = πr2h = 2πr2  and  ∆V = 2π2r ∆r =  4πr ∆r .  Since  V = 2πr2 = 47.3, we have  r = 47.3/(2π)   ≈ 2.7437 cm. 

 We know  ∆V = ±0.1  so, using   ∆V = 4πr ∆r , we have  ±0.1 = 4π(2.7437)∆r  and 

 ∆r = 
±0.1

4π(2.7437)   ≈  ± 0.0029 cm.   The required tolerance is   ± 0.0029 cm.  (C.W. comment: "A coin 2 cm  

 high is one hell of a coin!  My eyeball estimate is that  47.3  cm3 of gold weighs around 2 pounds.") 

 

13. V = x3 .  When  V = 87,  x ≈ 4.431  cm.  ∆V = 3x2 ∆x  so  ∆x =  
∆V
3x2   ≈  

2
3(4.431)2

   = 0.034  cm. 

 

15. P = 2π  
L
g    with  g = 32 ft/sec2 . (a) P = 2π  

2
32   =  

π
2   ≈  1.57  seconds.  

 (b) 1 = 2π  
L
32     so  L = 

8
π2   ≈  0.81  feet. (c) dP = 

2π
32  

1
2 2   dL  =  

2π
4 2  

1
2 2  (0.1)   ≈  0.039  seconds. 

 (d) 2  in/hr = 1/6  ft/hr  =  
1

21600   ft/sec.    
dP
dt    =  

2π
4 2  

1
2 24  

1
21600   ≈  5.25 x 10–6  . 

 

17. (a)  df = f '(2) dx ≈ (0)(1) = 0    (b)  df = f '(4) dx ≈ (0.3)(–1) =–0.3     (c)  df = f '(3) dx ≈ (0.5)(2) = 1 

 

19. (a) f(x) = x2 – 3x.  f '(x) = 2x – 3.  df = (2x – 3) dx . (b) f(x) = ex .  f '(x) = ex .  df =  ex dx . 

 (c) f(x) = sin(5x).  f '(x) = 5 cos(5x)  .  df = 5 cos(5x) dx . 

 (d) f(x) = x3 + 2x .  f '(x) = 3x2 + 2.  df = (3x2 + 2) dx .  When x = 1  and  dx = 0.2,  df = (3.12 + 2) (0.2) = 1.  

 (e) f '(x) = 1/x  .  df = 
1
x  dx .  When  x = e  and  dx = –0.1,  df = = 

1
e (–0.1)   = – 

1
10e    .  

 (f) f(x)  = 2x + 5  .  f '(x)  =  
1

2x + 5   .   df =  
1

2x + 5   dx .  When x = 22 and dx = 3, df =  
1
49  (3)   = 

3
7   . 

 

 
Section 2.9  
 
1. (a) x2 + y2 = 100  so  2x + 2yy' = 0  and  y' = –x/y .  At  (6,8), y' = –6/8 = –3/4. 

 (b) y = 100 – x2   so  y' = 
–x

100 – x2   .  At  (6,8),  y' = 
–6

100 – 36   =  
–6
8    =  – 

3
4   . 

 

3. (a) x2 – 3xy + 7y = 5  so  2x – 3(y + xy') + 7y' = 0   and  y' = 
3y – 2x
7 – 3x    .  At  (2,1), y' = 

3–4
7–6  = –1. 

 

 (b) y = 
5 – x2

7 – 3x    so  y' = 
(7 – 3x)(–2x) – (5 – x2)(–3)

(7 – 3x)2
   .  At  (2,1),  y' = 

(1)(–4) – (1)(–3)
(1)2

   =  –1. 

 

5. (a) 
x2

9    +  
y2

16   = 1  so  
2x
9    +  

2y
16  y' = 0  and  y' = – 

16
9  

x
y  .  At  (0,4),  y' = 0. 

 (b) y = 4 1 – 
x2

9     = 
4
3 9 – x2    so  y' = 

4
3  

–x

9 – x2   .  At  (0,4),  y'= 0. 
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7. (a) ln(y) + 3x – 7 = 0  so  
1
y  y' + 3 = 0  and  y' = –3y.  At  (2,e),  y' = –3e . 

 (b) y = e7–3x   so  y' = –3 e7–3x  .  At  (2,e),  y' = –3 e7–6 =  –3e . 
 
9. (a) x2 – y2 = 16  so  2x – 2yy' = 0  and  y' = x/y.  At  (5,–3),  y' = –5/3 . 

 (b) The point  (5, –3)  is on the bottom half of the circle so  
 

  y = – x2 – 16   .  Then  y' =  –  
x

x2 – 16
   .  At (5,–3),  y' = – 

5
25 – 16   =  – 

5
3   . 

11. x = 4y – y2  so, differentiating each side,  1 = 4y ' – 2y y '  and  y ' = 
1

4 – 2y  . 

 At  (3,1), y ' =  
1

4 – 2(1)   = 
1
2  .    At  (3,3), y ' =  

1
4 – 2(3)   = –

1
2  .   

 At  (4,2), y ' =  
1

4 – 2(2)   is undefined (the tangent line is vertical). 
 

13. x = y2 – 6y + 5.  Differentiating each side,  1 = 2y y ' – 6 y '  and  y ' = 
1

2y – 6  . 

 At  (5,0),  y ' =  
1

2(0) – 6   =  – 
1
6  .  At  (5,6),  y ' =  

1
2(6) – 6   =  

1
6  . 

 At  (–4,3),  y ' =  
1

2(3) – 6   is undefined (vertical tangent line). 
 

15. 3y2y' – 5y' = 10x  so  y' = 
10x

3y2 – 5
   .  At  (1,3),  m = 10/22  =  5/11 . 

 

17. y2 + sin(y) = 2x – 6  so  2yy' + cos(y)y' = 2  and  y' = 
2

2y + cos(y)   .  At  (3,0),  m = 
2

0+1   = 2. 
 

19. ey + sin(y) = x2 – 3   so  eyy' + cos(y)y' = 2x  and  y' = 
2x

ey + cos(y)
   .  At  (2,0), m = 

4
1+1  = 2. 

21. x2/3 + y2/3 = 5  so  
2
3  x–1/3 + 

2
3  y–1/3y' = 0  and  y' = –(x/y)–1/3.  At  (8,1),  m = –(8/1)–1/3  = – 

1
2  . 

 

23. Using implicit differentiation, 2x + xy ' + y + 2yy ' + 3 – 7y ' = 0  so   y ' =   
–2x – y – 3
x + 2y – 7   . 

 At (1,2),  y ' =  
–2(1) – (2) – 3
(1) + 2(2) – 7    =  

7
2  . 

 
25. y = Ax2 + Bx + C  so  y ' = 2Ax + B.  (explicitly) 

 x = Ay2 + By + C  so (implicitly)  1 = 2Ayy ' + By '  and  y ' =  
1

2Ay + B   . 
 
27. Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. 

 Then  2Ax + Bxy ' + By + 2Cyy ' + D + Ey ' = 0  so  y ' =  
–2Ax – By – D
Bx + 2Cy + E    . 

 

28. x2 + y2 = r2  so  2x + 2yy' = 0  and  y' = – 
x
y  .  The slope of the tangent line  is  –x/y.  The slope of the line 

through the points  (0,0)  and  (x,y)  is  y/x, so the slopes of the lines are negative reciprocals of each other 

and the lines are perpendicular. 
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29. From problem 23,   y ' = 
–2x – y – 3
x + 2y – 7     so  y ' = 0  when  –2x – y – 3 = 0  and  y = –2x – 3. 

 Substituting  y = –2x – 3 into the original equation,  we have 

  x2 + x(–2x – 3) + (–2x – 3)2 + 3x – 7(–2x – 3) + 4 = 0  so 

  3x2 + 26x + 34 = 0  and  x = 
–26 ± 262 – 4(3)(34)

2(3)    =  
–26 ± 268

6    ≈  –1.605  and  –7.062. 

 If  x ≈ –1.605  (point  A) , then  y = –2x – 3 ≈ –2(–1.605) – 3 = 0.21.  Point  A  is  (–1.605, 0.21). 

 If  x ≈ –7.062  (point C), then  y = –2x – 3 ≈ –2(–7.062) – 3 = 11.124.  Point  C  is  (–7.062, 11.124). 
 

31. From the solution to problem 29, point  C  is  (–7.062, 11.124). 

 At  D,  y ' =   
–2x – y – 3
x + 2y – 7     is undefined  so  x + 2y – 7 = 0  and  x = 7 – 2y.   

 Substituting  x = 7 – 2y into the original equation, we have  

  (7–2y)2 + (7–2y)y + y2 + 3(7–2y) – 7y + 4 = 0  so  (simplifying)  3y2 – 34y + 74 = 0.  Then 

  y = 
34 ± 342 – 4(3)(74)

2(3)    =  
34 ± 268

6    ≈  8.398  and  2.938. 

 If  y ≈ 2.938  (point D), then  x = 7 – 2y ≈ 7 – 2(2.938) = 1.124.  Point D is  (1.124, 2.938). 

 Point  B  is  (–9.79, 8.395). 
   

33. (a) y = (x2 + 5)7(x3 – 1)4 . 

  y' = (x2 + 5)7(4)(x3 – 1)3 (3x2)  +  (7)(x2 + 5)6(2x)(x3 – 1)4  

   = (x2 + 5)6(x3 – 1)3(2x){6x3 + 30x + 7x3 – 7 }  =  (x2 + 5)6(x3 – 1)3(2x){13x3 + 30x – 7}. 

 (b) ln(y) = 7ln(x2 + 5) + 4ln(x3 – 1) 

  
y'
y   =  

14x
x2 + 5

   +  
12x2

x3 – 1
    so   

   y' = y {  
14x

x2 + 5
   +  

12x2

x3 – 1
   }  =  (x2 + 5)7(x3 – 1)4{   

14x
x2 + 5

   +  
12x2

x3 – 1
    } and this is the 

 same as in part (a).  (Really it is.) 
 

35. (a)  y = x5 (3x + 2)4 .  y ' = x5 D( (3x + 2)4 ) + (3x + 2)4D( x5 ) = x5 .4(3x + 2)3(3) +  (3x + 2)4 .(5x4)   
 
 (b) ln(y) = 5ln(x) + 4ln(3x + 2) . 

  
y'
y   =  

5
x   +  

12
3x + 2     so  y' = y {  

5
x   +  

12
3x + 2    } =  { x5 (3x + 2)4  } {  

5
x   +  

12
3x + 2   } 

  and this is the same as in part (a). 
 

37. (a) y = esin(x)  so  y' = esin(x)  cos(x) . 

 (b) ln(y) = sin(x)  so  
y'
y   = cos(x)  and  y' = y cos(x) = esin(x)  cos(x) . 

 

39. (a) y = 25 – x2    so  y' = 
–x

25 – x2   . 
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 (b) ln(y) = 
1
2  ln(25 – x2)  so  

y'
y   =  

1
2 

–2x
25 – x2   =  

–x
25 – x2  .  Then   

  y' = y 
–x

25 – x2   =   25 – x2   
–x

25 – x2    =  
–x

25 – x2    . 

 

41. y = xcos(x)  so  ln(y) = cos(x).ln(x)   and  
y'
y   =  cos(x). 

1
x    –  ln(x).sin(x).   

 Then   y' = y { cos(x). 
1
x    –  ln(x).sin(x) }  =  xcos(x) { cos(x). 

1
x    –  ln(x).sin(x) }. 

 

43. y = x4(x – 2)7 sin(3x)  so  ln(y)  = 4ln(x) + 7ln(x – 2) + ln( sin(3x) )  and  
y'
y   =  

4
x   +  

7
x – 2   + 

3cos(3x)
sin(3x)   . 

 Then  y' = y {  
4
x   +  

7
x – 2   + 

3cos(3x)
sin(3x)    }  =  x4(x – 2)7 sin(3x) {  

4
x   +  

7
x – 2   + 

3cos(3x)
sin(3x)    } . 

 

45. ln(y) = x.ln(3 + sin(x) )  so  
y'
y   =  

x cos(x)
3 + sin(x)   +  ln(3 + sin(x) ) .  Then   

 y' =  (3 + sin(x) )x {  
x cos(x)

3 + sin(x)   +  ln(3 + sin(x) )  } . 
 
47.  x f '(x)         49. x f '(x)        
  1 1(1.2) = 1.2  1 5(–1) = –5 
  2 9(1.8) = 16.2  2 2(0) = 0 
  3 64(2.1) = 134.4  3 7(2) = 14 
 

51. ln( f.g ) = ln(f) + ln(g)  so   
D( f.g )

f.g    =  
f '
f    +  

g '
g    .  Then  D( f.g )  = (f.g) {   

f '
f    +  

g '
g    }    = f '.g + g '.f . 

 

52. ln( f/g ) = ln(f) – ln(g)  so   
D( f/g )

f/g    =  
f '
f    –  

g '
g    .  Then   

 D( f/g )  = 
f
g  {   

f '
f    –  

g '
g    }  =  

f '
g    –  

f.g '
g2     =  

f.g '  –  g.f '
g2     . 

 

53. ln( f.g.h ) = ln(f) + ln(g) + ln(h)  so   
D( f.g.h )

f.g.h    =  
f '
f    +  

g '
g   + 

h '
h    .   

 Then  D( f.g.h )  = (f.g.h) {   
f '
f    +  

g '
g    + 

h '
h   }    = f '.g.h + f.g '.h + f.g.h ' . 

54. ln( ax )  = x ln(a)   so   
D( ax )

ax    =  ln(a)   and   D( ax ) =  ax ln(a) . 

 
55. On your own. 



3.1 Finding Maximums and Minimums Contemporary  Calculus  
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3.1 FINDING MAXIMUMS AND MINIMUMS 
 
In theory and applications, we often want to maximize or minimize some quantity.  An engineer may want to  

maximize the speed of a new computer or minimize the heat produced by an appliance.  A manufacturer may 

want to maximize profits and market share or minimize waste.  A student may want to maximize a grade in 

calculus or minimize the hours of study needed to earn a particular grade. 
 

Also, many natural objects follow minimum or maximum principles, so if we want to model some natural 

phenomena we may need to maximize or minimize.  A light ray travels along a "minimum time" path.  The 

shape and surface texture of some animals tend to minimize or maximize heat loss.  Systems reach equilibrium 

when their potential energy is minimized.  A basic tenet of evolution is that a genetic characteristic which 

maximizes the reproductive success of an individual will become more common in a species. 
 

Calculus provides tools for analyzing functions and their behavior and for finding maximums and minimums.   

 
Methods for Finding Maximums and Minimums 
 

We can try to find where a function  f  is largest or smallest by evaluating  f  at lots of values of  x,  a method 

which is not very efficient and may not find the exact place where  f  achieves its extreme value.  However, if we 

try hundreds or thousands of values for  x ,  then we can often find a value of  f  which is close to the maximum 

or minimum.  In general, this type of exhaustive search is only practical if you have a computer do the work. 
 

The graph of a function is a visual way of examining lots of values of  f, and it is a good method, 

particularly if you have a computer to do the work for you.  However, it is inefficient, and we still may not 

find the exact location of the maximum or minimum. 
 

Calculus provides ways of drastically narrowing the number of points we need to examine to find the exact 

locations of maximums and minimums.  Instead of examining  f  at thousands of 

values of x,  calculus can often guarantee that the maximum or minimum must 

occur at one of 3 or 4 values of  x, a substantial improvement in efficiency. 

 
A Little Terminology 
 
Before we examine how calculus can help us find maximums and minimums,  

we need to define the concepts we will develop and use. 
 
  

 Definitions: f has a maximum or global maximum at  a  if  f(a) ≥ f(x) for all x in the domain of f.   

  The maximum value of  f  is  f(a),  and this maximum value of  f  occurs at  a.   

  The maximum point on the graph of  f  is  ( a , f(a) ).  ( Fig. 1) 
 
 
 



3.1 Finding Maximums and Minimums Contemporary  Calculus  
2 

 

 Definition: f  has a local or relative maximum  at  a  if  f(a) ≥ f(x) for all  x  near  a   

  or  in some open interval which contains  a. 
 
Global and local minimums are defined similarly by replacing the  ≥  with  ≤ in the previous definitions. 
 

 Definition: f has a global extreme at  a  if  f(a) is a global maximum or minimum.   

  f has a local extreme at  a  if  f(a)  is a local maximum or minimum. 

 

The local and global extremes of the function in Fig. 2  are labeled.  

You should notice that every global extreme is also a local extreme, 

but there are local extremes which are not global extremes.  If  h(x)  

is the height of the earth above sea level at the location  x,  then the 

global maximum of  h  is  h(summit of Mt. Everest) = 29,028 feet.  

The local maximum of  h  for the United States is  h(summit of Mt. 

McKinley) = 20,320 feet.  The local minimum of  h  for the United 

States is  h(Death Valley) = – 282 feet. 
 

Practice 1: The table shows the annual calculus enrollments at a large university.  Which years had 

relative maximum or minimum calculus enrollments?  What were the global maximum and minimum 

enrollments in calculus? 
 
  year 1980 81 82 83 84 85 86 87 88 89 90   

 enrollment 1257 1324 1378 1336 1389 1450 1523 1582 1567 1545 1571 

 
Finding Maximums and Minimums of a Function 
 
One way to narrow our search for a maximum value of a function  f  is to eliminate those values of x  

which, for some reason, cannot possibly make  f  maximum. 
 

 Theorem : If    f ' (a) > 0 or  f ' (a) < 0 ,  

  then  f(a)  is not a local maximum or minimum.  (Fig. 3) 
     
 

Proof: Assume that  f '(a) > 0.  By definition,  f '(a) =

! 

lim
"x#0

 
f (a + "x) $ f (a)

"x
,  

 so    

! 

lim
"x#0

 
f (a + "x) $ f (a)

"x
> 0  and the right and left limits are both positive: 

 

    

! 

lim
"x#0

+
 
f (a + "x) $ f (a)

"x
 > 0  and    

! 

lim
"x#0

$
 
f (a + "x) $ f (a)

"x
 > 0. 
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Since the right limit, 

! 

"x# 0
+  , is positive, there are values of  ∆x > 0  so   

f(a + ∆x) – f(a)
∆x   > 0.   

Multiplying each side of this last inequality by the positive  ∆x, we have  f(a + ∆x) – f(a) > 0  and   

f(a + ∆x) > f(a)  so  f(a) is not a maximum. 
 

Since the left limit, 

! 

"x# 0
$  , is positive, there are values of  ∆x < 0  so    

f(a + ∆x) – f(a)
∆x   > 0.   

Multiplying each side of the last inequality by the negative  ∆x, we have that  f(a + ∆x) – f(a) < 0  and  

f(a + ∆x) < f(a)  so  f(a) is not a minimum. 
 

The proof for the  "f '(a) < 0"  case is similar. 

 
When we evaluate the derivative of a function  f  at a point  x = a, there are only four possible outcomes:   

f '(a) > 0,  f '(a) < 0 , f '(a) = 0  or  f '(a) is undefined.  If we are looking for extreme values of  f, then we can 

eliminate those points at which  f '  is positive or negative, and only two possibilities remain:  f '(a) = 0  or  f 

'(a) is undefined. 
 

 Theorem : If f  is defined on an open interval,  and  f(a)  is a local extreme of  f , 

  then either    f '(a) = 0   or   f  is not differentiable at  a. 
    
 
Example 1: Find the local extremes of  f(x) = x3  – 6x2  + 9x + 2  for all values of  x. 
 
Solution:  An extreme value of  f  can occur only where  f '(x) = 0 or where  f  is not differentiable.  

 f '(x) = 3x2 – 12x + 9  =  3(x2 – 4x + 3) = 3(x – 1)(x – 3) so  f '(x) = 0 only at  x = 1  and  x = 3.  f ' is 

a polynomial,  so  f   is differentiable for all x. 
 

 The only possible locations of local extremes of  f  are at  

  x = 1  and  x =3.  We don't know yet whether  f(1) or   

 f(3) is a local extreme of f,  but we can be certain that no 

other point is a local extreme.  The graph of f  (Fig. 4) 

shows that  (1, f(1) ) = (1, 6)  is a local maximum  and  

(3, f(3) ) = (3, 2) is a local minimum.  This function  

 does not have a global maximum or minimum. 

 

 
 
Practice 2: Find the local extremes of  f(x) = x2  + 4x – 5  and   g(x) = 2x3  – 12x2  + 7  . 
 

It is important to recognize that the conditions  " f '(a) = 0 "  or  " f  not differentiable at a "  do not 

guarantee that  f(a)  is a local maximum or minimum.  They only say that  f(a)  might be a local extreme or 

that  f(a) is a candidate for being a local extreme. 
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Example 2: Find all local extremes of  f(x) = x3 . 
 
Solution:  f(x) = x3  is differentiable for all x, and  f '(x) = 3x2.  The only place where   

 f '(x) = 0 is at  x = 0, so the only candidate is the point  (0,0).  But if  x > 0  then   

 f(x) = x3 > 0 = f(0),  so  f(0)  is not a local maximum.  Similarly,  if  x < 0  then   

 f(x) = x3 < 0 = f(0)  so  f(0) is not a local minimum.  The point  (0,0)  is the only 

candidate to be a local extreme of  f, and this candidate did not turn out to be a local  

 extreme of f.  The function f(x) = x3 does not have any local extremes.  (Fig. 5) 

 

  If   f '(a) = 0  or  f  is not differentiable at  a 

  then the point  ( a , f(a) )  is a candidate to be a local extreme and may or may not  

   be a local extreme. 
 
Practice 3: Sketch the graph of a differentiable function  f  which satisfies the conditions: 

(i) f(1) = 5, f(3) = 1, f(4) = 3 and f(6) = 7, (ii)   f '(1) = 0, f '(3) = 0 , f '(4) = 0 and f '(6) = 0 , 

(iii) the only local maximums of  f  are  at  (1,5)  and  (6,7), and the only local minimum is at   (3,1). 

 
Is  f(a) a Maximum or Minimum or Neither? 
 

Once we have found the candidates  ( a, f(a))  for extreme points of f, we still have 

the problem of determining whether the point is a maximum, a minimum or neither. 
 

One method is to graph  (or have your calculator graph)  the function near  a, and 

then draw your conclusion from the graph.  All of the graphs in Fig. 6 have  f(2) = 

3, and, on each of the graphs,  f '(2) either equals 0 or is undefined.  It is clear from 

the graphs that the point (2,3) is a local maximum in  (a) and (d),  (2,3) is a local 

minimum in (b) and (e), and  (2,3) is not a local extreme in (c) and (f). 

 

In sections 3.3 and 3.4, we will investigate how information about the first and 

second derivatives of  f  can help determine whether the candidate  (a, f(a))  is a 

maximum, a minimum, or neither. 

 
 
Endpoint Extremes 
 

So far we have been discussing finding extreme values of functions over the  

entire real number line or on an open interval, but, in practice, we may need to  

find the extreme of a function over some closed interval  [ c , d ].  If the extreme 

value of  f  occurs at  x = a  between  c  and  d,  c < a < d ,  then the previous 

reasoning and results still apply:  either  f '(a) = 0  or  f  is not differentiable at  a.   
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On a closed interval, however, there is one more possibility:  an extreme can  

occur at an endpoint of the closed interval (Fig. 7),  at  x = c  or  x = d . 
 

Practice 4: List all of the local extremes  ( a , f(a) )  of the function in   

 Fig. 8  on the interval   [1,4]  and state whether  (i)  f '(a) = 0 or   

 (ii)  f is not differentiable at  a  or  (iii)  a  is an endpoint. 
 
Example 3: Find the extreme values of  f(x) = x3 – 3x2 – 9x + 5  for  –2 ≤ x ≤ 6 . 
 

Solution: f '(x) = 3x2 – 6x – 9 = 3(x + 1)(x – 3).  We need to find where  (i)  f '(x) = 0, (ii)  f  is not 

differentiable, and (iii)  the endpoints. 

 (i) f '(x) = 3(x + 1)(x – 3) = 0  when  x = –1  and  x = 3. 

 (ii) f  is a polynomial so it is differentiable everywhere. 

 (iii) The endpoints of the interval are  x = –2  and  x = 6. 

Altogether we have four points in the interval to examine, and any extreme values of  f  can only occur when  

x  is one of those four points:   f(–2) = 3 , f(–1) = 10 , f(3) = –22 , and  f(6) = 59.   The minimum of  f  on  [ –

2, 6]  is  –22 when  x = 3, and the maximum of  f  on  [ –2, 6]  is  59  when x = 6. 

 
Sometimes the function we need to maximize or minimize is more complicated, but the same methods work. 

 

Example 4: Find the extreme values of  f(x) = 
1
3 64 + x2   +  

1
5 ( 10 – x )    for  0 ≤ x ≤ 10 . 

Solution:  This function comes from an application we will examine in section 3.5.  The only possible 

locations of extremes are where  f '(x) = 0 or  f '(x) is undefined  or  where  x is an endpoint of the 

interval  [ 0 , 10 ]. 
 

 f '(x) = D( 
1
3 ( 64 + x2 ) 1/2  +  

1
5 ( 10 – x )  ) = 

1
3 

1
2 ( 64 + x2 ) –1/2 (2x)  –  

1
5    =  

x

3  64 + x2  
   –  

1
5  . 

 To determine where  f '(x) = 0, we need to set the derivative equal to 0 and solve for x. 
 

 If  f '(x)  =  
x

3  64 + x2  
   –  

1
5   = 0   then    

x

3  64 + x2  
   =  

1
5     so   

x2

576 + 9x2    =  
1
25    . 

 

 Then  16x2 = 576  so  x = ± 6 , and the only point in the interval  [0,10]  where  f '(x) = 0  is at  x = 6.  

Putting  x = 6 into the original equation for f  gives  f(6) ≈ 4.13 . 
 

 We can evaluate the formula for  f '(x) for any value of  x , so the derivative is always defined.   

 Finally,  the interval  [ 0 , 10 ]  has two endpoints,  x = 0  and  x = 10.  f(0) ≈ 4.67  and  f(10) ≈ 4.27. 
 

 The maximum of  f  on  [0,10] must occur at one of the points  (0, 4.67),  (6, 4.13) and (10, 4.27) ,  and 

the minimum must occur at one of these three points.   

 The maximum value of  f  is  4.67  at  x = 0 , and the minimum  



3.1 Finding Maximums and Minimums Contemporary  Calculus  
6 

 value of  f  is 4.13 at  x = 6 .  The graph of  f  is shown in Fig. 9. 
 

Practice 5: Find the extreme values of   
 

 f(x) =  
1
3 64 + x2   +  

1
5 ( 10 – x )    for  0 ≤ x ≤ 5 . 

 

Critical Numbers 
 
The points at which a function might have an extreme value are called  critical numbers. 
 

 Definitions: A critical number for a function  f  is a value  x = a  in the domain of  f  so 

   (i) f '(a) = 0, 

  or (ii) f  is not differentiable at  a, 

  or (iii) a   is an endpoint 
     
 

If we are trying to find the extreme values of  f  on an open interval  c < x < d  or on the entire number line, 

then there will not be any endpoints so there will not be any endpoint critical numbers to worry about. 
 

We can now give a very succinct description of where to look for extreme values of a function:  
 

 
 An extreme value of  f  can only occur at a  critical number. 
     

 
 

The critical numbers only give the possible locations of extremes,  

and some critical numbers are not the locations of extremes.  The 

critical numbers are the candidates for the locations of maximums 

and minimums (Fig. 10) .  Section 3.5 is devoted entirely to 

translating and solving maximum and minimum problems. 

 
 
Which Functions Have Extremes? 
 

So far we have concentrated on finding the extreme values of functions, but some functions don't have 

extreme values.  Example 2  showed that  f(x) = x3  did not have a maximum or minimum. 
 
Example 5: Find the extreme values of  f(x) = x . 
 

Solution:  Since  f '(x) = 1 > 0 for all x, the first theorem in this section guarantees that  f  has no extreme 

values.  The function  f(x) = x  does not have a maximum or minimum on the real number line. 
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The difficulty with the previous function was that the domain was so large that we could always make the 

function larger or smaller than any given value.  The next example shows that we can encounter the same 

difficulty even on a small interval. 

Example 6: Show that  f(x) =  
 1 
x    (Fig. 11)  does not have a maximum or minimum on the interval  (0,1). 

 
Solution:  f  is continuous for all  x ≠ 0  so  f  is continuous on the interval  (0,1).   

 For  0 < x < 1, f(x) =  
 1 
x    > 0  (Fig. 11).  For any number  a  strictly between 0  

 and 1, we can show that  f(a)  is neither a maximum nor a minimum of  f  on  (0,1).   

 Pick b to be any number between 0 and a, 0 < b < a.  Then     
 

 f(b) =   
 1 
b    >  

 1 
a    =  f(a) , so  f(a)  is not a maximum.  Similarly, pick  c  to be  

 

 any number between  a  and  1,  a < c < 1.  Then  f(a) =   
 1 
a    > 

 1 
c    = f(c) , so   

 f(a)  is not a minimum.  The interval  (0,1)  is not large, but  f  still does not have an 

extreme value in (0,1). 
 

The Extreme Value Theorem gives conditions so that a function is guaranteed to  

have a maximum and a minimum. 

 

 Extreme Value Theorem: If   f  is  continuous on a closed interval  [a,b], 

  then f  attains both a maximum and minimum on  [a,b]. 
 

 

The proof of this theorem is difficult and is omitted.  Fig. 12  

illustrates some of the possibilities for continuous and 

discontinuous functions on open and closed intervals.  The 

Extreme Value Theorem guarantees that certain functions 

(continuous)  on certain intervals (closed)  must have 

maximums and minimums.  Other functions on other 

intervals  may  or  may not  have maximums and 

minimums. 
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PROBLEMS 
 

1. Label all of the local maximums and minimums of the 

function in Fig. 13.  Also label all of the critical points. 
 
 

2. Label all of the local maximums and minimums of the 

function in Fig. 14.  Also label all of the critical points. 

 

 

In problems  3 – 14,  find all of the critical points and local 

maximums and minimums of each function. 
 
3. f(x) =  x2 + 8x + 7 4. f(x) = 2x2 – 12x + 7 5. f(x) = sin(x)  
 
6. f(x) = x3 – 6x2 + 5 7. f(x) = (x – 1)2 (x – 3)  8. f(x) = ln( x2 – 6x + 11 ) 
 
9. f(x) = 2x3 – 96x + 42 10. f(x) = 5x – 2 11. f(x) = 5x + cos(2x+1)  
 

12. f(x) = 
3

 x   13. f(x) = e–(x – 2)2 14. f(x) = | x + 5 | 

 
15. Sketch the graph of a continuous function  f  so that 

(a) f(1) = 3,  f '(1) = 0 ,  and the point  (1,3)  is a relative maximum of  f . 

(b) f(2) = 1,  f '(2) = 0 ,  and the point  (2,1)  is a relative minimum of  f . 

(c) f(3) = 5,  f  is not differentiable at  3,  and the point  (3,5)  is a relative maximum of  f . 

(d) f(4) = 7,  f  is not differentiable at  4,  and the point  (4,7)  is a relative minimum of  f .   

(e) f(5) = 4,  f '(5) = 0,  and the point  (5,4)  is not a relative minimum or maximum of  f .   

(f) f(6) = 3,  f  is not differentiable at  6,  and the point  (6,3)  is not a relative minimum or  

 maximum of  f . 

 
In problems  16 – 25 ,  find all  critical points and local extremes of each function on the given intervals. 
 
16. f(x) = x2 – 6x + 5   on the entire real number line. 17. f(x) = x2 – 6x + 5   on  [ –2, 5] . 
 
18. f(x) = 2 – x3  on the entire real number line. 19. f(x) = 2 – x3  on  [ –2, 1] . 
 
20. f(x) =  x3 – 3x + 5  on the entire real number line. 21. f(x) =  x3 – 3x + 5   on  [ –2, 1] . 
 
22. f(x) = x5 – 5x4 + 5x3 + 7 on the entire real number line. 23. f(x) = x5 – 5x4 + 5x3 + 7 on  [ 0, 2] . 
 

24. f(x) =   
1

x2 + 1
     on the entire real number line. 25. f(x) =   

1
x2 + 1

     on  [ 1, 3] . 
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26. (a) Find two numbers whose sum is  22  and whose product is as large as 

possible.   (Suggestion:  call the numbers  x  and  22 – x). 

 (b) Find two numbers whose sum is  A > 0  and whose product is as large  

  as possible. 
 
27. Find the coordinates of the point in the first quadrant on the circle  x2 + y2 = 1   

 so that the rectangle formed in Fig. 15  has the largest possible area.  

(Suggestion:  the coordinates of a point on the circle are  ( x, 1 – x2  ) . ) 
 

28. Find the coordinates of the point in the first quadrant on the ellipse   

 9x2 + 16y2 = 144  so that the rectangle formed in Fig. 16  has the  

 largest possible area.  The smallest possible area. 
 
 
 

29. Find the value for  x  so the box in Fig. 17   

 has the largest possible volume?  The  

 smallest volume? 
 
 
 
 

 

30. Find the radius and height of the cylinder that has the largest volume  ( V = π.r2.h )  if the sum of the radius 

and height is  9. 
 
31. Suppose you are working with a polynomial of degree 3 on a closed interval.   

 (a) What is the largest number of critical points the function can have on the interval?    

 (b) What is the smallest number of critical points it can have? 

(c)  What are the patterns for the most and fewest critical points a polynomial of degree  n  on a closed 

interval can have? 
 
32. Suppose you have a polynomial of degree 3 divided by a polynomial of degree 2 on a closed interval.   

 (a) What is the largest number of critical points the function can have on the interval? 

 (b)  What is the smallest number of critical points it can have? 
 
33. Suppose  f(1) = 5  and  f '(1) = 0.  What can we conclude about the point (1,5)  if 

(a) f '(x) < 0 for  x < 1, and  f '(x) > 0 for x > 1? (b) f '(x) < 0 for  x < 1, and  f '(x) < 0 for x > 1? 

(c) f '(x) > 0 for  x < 1, and  f '(x) < 0 for x > 1? (d) f '(x) > 0 for  x < 1, and  f '(x) > 0 for x > 1? 
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34. Suppose  f(2) = 3  and  f  is continuous but not differentiable at  x = 2.  What can we conclude about 

the point (2,3)  if 

(a) f '(x) < 0 for  x < 2 , and  f '(x) > 0 for x > 2? (b) f '(x) < 0 for  x < 2 , and  f '(x) < 0 for x > 2? 

(c) f '(x) > 0 for  x < 2 , and  f '(x) < 0 for x > 2? (d) f '(x) > 0 for  x < 2 , and  f '(x) > 0 for x > 2? 
 
 
35. f is a continuous function, and Fig. 18  shows the graph of  f ' 
.   

 (a)  Which values of  x  are critical points?   

 (b)  At which values of  x  is  f  a local maximum?   

 (c)  At which values of  x  is  f  a local minimum? 
 
36. f is a continuous function, and Fig. 19  shows the graph of  f ' .   

 (a)  Which values of  x  are critical points?   

 (b)  At which values of  x  is  f  a local maximum?   

 (c)  At which values of  x  is  f  a local minimum? 

 
37. State the contrapositive form of the Extreme Value Theorem. 

 
 
38. Imagine the graph of  f(x) = 1 – x.  Does  f  have a maximum value for  x  in the interval I? 

 (a)   I = [ 0, 2] (b)   I = [ 0, 2) (c)   I = ( 0, 2] (d)   I = (0,2) (e)   I = ( 1, π] 
 
39. Imagine the graph of  f(x) = 1 – x.  Does  f  have a minimum value for  x  in the interval I? 

 (a)   I = [ 0, 2] (b)   I = [ 0, 2) (c)   I = ( 0, 2] (d)   I  = (0,2) (e)   I =( 1, π] 
 
40. Imagine the graph of  f(x) = x2.  Does  f  have a maximum value for  x  in the interval I? 

(a) I = [ –2, 3] (b)   I = [ –2, 3) (c)   I = ( –2, 3] (d)   I =[ –2, 1) (e)   I = ( –2, 1] 
 

41. Imagine the graph of  f(x) = x2.  Does  f  have a minimum value for  x  in the following intervals? 

(a) I = [ –2, 3] (b)   I = [ –2, 3) (c)   I = ( –2, 3]  

(d)   I = [ –2, 1) (e)   I = ( –2, 1] 
 

42. Define  A(x)  to be the area  bounded between the  x–axis,  

 the graph of  f,  and a vertical line at  x  (Fig. 20).    

 (a)  At what value of  x  is  A(x)  minimum? 

 (b) At what value of  x  is  A(x)  maximum? 
 

43. Define  S(x)  to be the slope of the line through the points  (0,0)  

and  ( x, f(x) )  in  Fig. 21. 

 (a) At what value of  x  is  S(x)  minimum?  

 (b) At what value of  x  is  S(x)  maximum? 
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Section 3.1 PRACTICE  Answers 
 
Practice 1: The enrollments were relative maximums in '82, '87, and '90.   

 The global maximum was in '87.  The enrollments were relative minimums in '80, '83, and '89.  The 

global minimum occurred in '80. 
 
Practice 2: f(x) = x2 + 4x – 5  is a polynomial so  f  is differentiable for all  x,  and  f '(x) = 2x + 4.   

 f '(x) = 0 when x = –2  so the only candidate for a local extreme is  x = –2.  Since the graph of  f  is 

a parabola opening up, the point  (–2, f(–2)) = (–2, –9)  is a local minimum. 

 

g(x) = 2x3 – 12x2 + 7  is a polynomial so  g  is differentiable for all  x,  and  

 g '(x) = 6x2 – 24x = 6x(x – 4).   g '(x) = 0 when x = 0, 4  so the only candidates for a local extreme 

are  x = 0  and x = 4.  The graph of  g  (Fig. 22)  shows that g has a local maximum at  (0,7)  and a 

local minimum at (4, –57). 
 

Practice 3: x f(x) f '(x) max/min    
  1 5 0 local max 
   see  2 
    Fig. 23 3 1 0 local min 
  4 3 0 neither 
  5 
  6 7 0 local max 
 
 

Practice 4: (1, f(1) ) is a local minimum.  x = 1 is an endpoint. 

  (2, f(2) ) is a local maximum.  f '(2) = 0. 

  (3, f(3) ) is a local minimum.  f  is not differentiable at x = 3. 

  (4, f(4) ) is a local maximum.  x = 4 is an endpoint. 
 

Practice 5: This is the same function that was used in Example 4, but in 

this Practice problem the interval is  [0, 5]  instead of  [0, 10]  in the 

Example.  See the Example for the calculations. 
  
 Critical points: endpoints  x = 0  and  x = 5.   

  f  is differentiable for all  0 < x < 5: none.   

  f '(x) = 0:  none in [ 0, 5 ] . 

  f(0) ≈ 4.67 is the maximum of  f  on  [0, 5].  f(5) ≈ 4.14  is the minimum of  f  on  [0, 5] . 
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3.2 The Mean Value Theorem and Its Consequences 
 

If you averaged 30 miles per hour during a trip, then at some instant 
during the trip you were traveling exactly 30 miles per hour. 

 

That relatively obvious statement is the Mean Value Theorem as it applies to a particular trip.  It may seem 

strange that such a simple statement would be important or useful to anyone, but the Mean Value Theorem is 

important and some of its consequences are very useful for people in a variety of areas.  Many of the results 

in the rest of this chapter depend on the Mean Value Theorem, and one of the corollaries of the Mean Value 

Theorem will be used every time we calculate an "integral" in later chapters.  A truly delightful aspect of 

mathematics is that an idea as simple and obvious as the Mean Value Theorem can be so powerful. 
 

Before we state and prove the Mean Value Theorem and examine some of its consequences, we will consider a 

simplified version called Rolle's Theorem. 
    

Rolle's Theorem 
 

Suppose we pick any two points on the x–axis and think about all of the 

differentiable functions which go through those two points  (Fig. 1) .   

Since our functions are differentiable, they must be continuous and their  

graphs can not have any holes or breaks.  Also, since these functions are 

differentiable, their derivatives are defined everywhere between our two  

points and their graphs can not have any "corners" or vertical tangents.  The  

graphs of the functions in Fig. 1 can still have all sorts of shapes, and it may  

seem unlikely that they have any common properties other than the ones we  

have stated, but Michel Rolle (1652–1719) found one.  He noticed that every  

one of these functions has one or more points where the tangent line is  

horizontal (Fig. 2),  and this result is named after him. 

 

 Rolle's Theorem: 

  If f(a) = f(b), and f(x)  is continuous for  a ≤ x ≤ b  and  differentiable for a < x < b, 

  then there is at least one number  c, between  a  and  b , so that   f '(c) = 0. 
     
 
Proof: We consider two cases: when f(x) = f(a)  for all x in (a,b)  and when f(x) ≠ f(a)  for some x in (a,b). 
 

Case I, f(x) = f(a)  for all x in (a,b) :  If  f(x) = f(a)  for all  x  between  a  and  b, then  f  is a   

 horizontal line segment and  f '(c) = 0  for all values of  c  strictly between  a  and  b. 
 

Case II, f(x) ≠ f(a)  for some x in (a,b):  Since  f  is continuous on the closed interval  [a,b],  we know   

 from the Extreme Value Theorem that  f  must have a maximum value in the closed interval  [a,b]   and a 

minimum value in the interval.  
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If  f(x) > f(a)   for some value of  x  in  [a,b], then the maximum of  f  must occur at some value  c   

strictly between  a  and  b,  a < c < b.  (Why can't the maximum be at  a  or  b?)   Since  f(c)  is a local 

maximum of  f, then  c  is a critical number of  f  and  f '(c) = 0  or  f '(c) is undefined.  But  f  is   

differentiable at all  x  between  a  and  b, so the only possibility left is that f '(c) = 0. 
 

 If  f(x) < f(a)   for some value of  x  in  [a,b], then  f  has a minimum at some value  x = c  strictly  

  between  a  and  b, and  f '(c) = 0. 
 

In either case,  there is at least one value of  c  between  a  and  b  so that  f '(c) = 0. 
 

Example 1: Show that  f(x) = x3 – 6x2 + 9x + 2  satisfies the hypotheses of Rolle's  

 Theorem on the interval  [ 0, 3] and find the value of  c  which the  

 theorem says exists. 
 
Solution:  f  is a polynomial so it is continuous and differentiable everywhere.  f(0) = 2  and   

 f(3) = 2.   f '(x) = 3x2 – 12x + 9 = 3(x – 1)(x – 3)  so  f '(x) = 0  at  1  and  3.  

 The value  c = 1  is between  0  and 3.  Fig. 3  shows the graph of  f. 
 

 
Practice 1: Find the value(s) of  c  for Rolle's 

          Theorem for the functions in  Fig. 4. 
 
 
 

The Mean Value Theorem  
 

Geometrically, the Mean Value Theorem is a "tilted" version of Rolle's 

Theorem  (Fig. 5).  In each theorem we conclude that there is a number  c  so 

that the slope of the tangent line to  f  at  x = c  is the same as the slope of the 

line connecting the two ends of the graph of  f  on the interval  [a,b].  In Rolle's 

Theorem, the two ends of the graph of  f  are at the same height,  f(a) = f(b), so 

the slope of the line connecting the ends is zero.  In the Mean Value Theorem, 

the two ends of the graph of  f  do not have to be at the same height so the line 

through the two ends does not have to have a slope of zero. 

 

 Mean Value Theorem: 

  If f(x)  is continuous for  a ≤ x ≤ b  and  differentiable for  a < x < b, 
 
  then there is at least one number  c, between  a  and  b,  so the tangent line at  c  is  parallel 

   to the secant line through the points (a, f(a))  and  (b,f(b)):   f '(c) =  
f(b) – f(a)

b – a     . 
    
 
Proof: The proof of the Mean Value Theorem uses a tactic common in mathematics:  introduce a new  
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 function which satisfies the hypotheses of some theorem we already know and then use the conclusion 

of that previously proven theorem.  For the Mean Value Theorem we introduce a new function,  h(x) , 

which satisfies the hypotheses of Rolle's Theorem.  Then we can be certain that the conclusion of 

Rolle's Theorem is true for h(x) , and the Mean Value Theorem for  f  follows from the conclusion of 

Rolle's Theorem for  h. 
 

 First, let  g(x) be the straight line through the ends  (a, f(a))  and  (b, f(b))  of the graph of  f.  The  

 function  g  goes through the point  (a, f(a))  so  g(a) = f(a).  Similarly,  g(b) = f(b).  The slope of the linear 

function  g  is   
f(b) – f(a)

 b – a      so  g '(x) =  
f(b) – f(a)

 b – a      for all  x  between  a  and  b, and  g  is continuous and 

differentiable.  (The formula for  g  is  g(x) = f(a) + m(x – a)  with  m = (f(b) – f(a))/(b – a).  ) 
 

 Define  h(x) = f(x) – g(x)  for  a ≤ x ≤ b  (Fig. 6).   The function  h  satisfies  

 the hypotheses of Rolle's theorem: 

 h(a) = f(a) – g(a) = 0  and  h(b) = f(b) – g(b) = 0,  

 h(x) is continuous for  a ≤ x ≤ b since both  f  and  g  are continuous there, and   

 h(x) is differentiable for  a < x < b since both  f  and  g  are differentiable there,  

 so the conclusion of Rolle's Theorem applies to  h: 

  there is a  c , between  a  and  b ,  so that  h '(c) = 0.   
 

 

  

The derivative of  h(x) = f(x) – g(x)  is  h '(x) = f '(x) – g '(x)  so we know that there is a number  c,  between  a  

and  b,  with  h '(c) = 0.  But  0 = h '(c) = f '(c) – g '(c)  so  f '(c) = g '(c) = 
f(b) – f(a)

b – a     . 
 

Graphically, the Mean Value Theorem says that there  

is at least one point  c  where the slope of the tangent  

line, f '(c), equals the slope of the line through the end  

points of the graph segment,  (a, f(a) )  and  (b, f(b) ).   

Fig. 7  shows the locations of the parallel tangent lines  

for several functions and intervals. 
 

The Mean Value Theorem also has a very natural interpretation if  f(x)  represents the position of an object 

at time  x:  f '(x) represents the velocity of the object at the instant  x,  and    
 
f(b) – f(a)

b – a     =  
change in position

change in time       represents the average (mean) velocity of the object during the time 

interval from time  a  to time  b.  The Mean Value Theorem says that there is a time  c , between  a  and  b,  

when the instantaneous velocity,  f '(c) , is equal to the average velocity for the entire trip,    
 
f(b) – f(a)

b – a     .  If your average velocity during a trip is  30 miles per hour, then at some instant during the 

trip you were traveling exactly  30 miles per hour. 
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Practice 2: For  f(x) = 5x2 – 4x + 3   on the interval  [1,3],  calculate  m =   
f(b) – f(a)

b – a      and find the 

value of  c  so that  f '(c) = m. 

 
Some Consequences of the Mean Value Theorem 
 

If the Mean Value Theorem was just an isolated result about the existence of a particular point  c, it would 

not be very important or useful.  However, the Mean Value Theorem is the basis of several results about the 

behavior of functions over entire intervals, and it is these consequences which give it an important place in 

calculus for both theoretical and applied uses. 
 

The next two corollaries are just the first of many results which follow from the Mean Value Theorem. 
 

We already know, from the Main Differentiation Theorem, that the derivative of a constant function  

f(x) = k  is  always 0,  but can a nonconstant function have a derivative which is always  0?  The first 

corollary says no. 
 

 Corollary 1: If  f '(x) = 0 for all  x  in an interval  I,  then  f(x) = K , a constant, for all  x  in  I . 
    
 

Proof: Assume  f '(x) = 0  for all  x  in an interval  I,  and pick  any two points  a  and  b  (a ≠ b) in the 

interval.  Then, by the Mean Value Theorem,  there is a number  c  between  a  and  b  so that   

 f '(c) =  
f(b) – f(a)

b – a     .  By our assumption,  f '(x) = 0 for all  x  in  I  so we know that   

 0 = f '(c) =  
f(b) – f(a)

b – a       and we can conclude that  f(b) – f(a) = 0  and  f(b) = f(a).  But  a  and  b  were 

any two points in  I,  so the value of  f(x)   is the same for any two values of  x  in  I,  and  f  is a 

constant function on the interval  I. 
 

We already know that if two functions are parallel (differ by a constant), then their derivatives are equal, 

but can two nonparallel functions have the same derivative?  The second corollary says no. 
 

 Corollary 2: If   f '(x) = g '(x)  for all  x  in an interval  I,   

  then   f(x) – g(x) = K , a constant, for all  x  in  I,   

   so  the graphs of  f  and  g  are "parallel"  on the interval  I. 
    
 

Proof: This corollary involves two functions instead of just one, but we can imitate the proof of the 

Mean Value Theorem and introduce a new function  h(x) = f(x) – g(x).  The function  h  is 

differentiable,  and  h '(x) = f '(x) – g '(x) =  0  for all  x  in  I,  so, by Corollary 1,  h(x) is a constant 

function  and  K = h(x) = f(x) – g(x)  for all  x  in the interval.  Then  f(x) = g(x) + K. 
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We will use Corollary 2  hundreds of times in Chapters 4 and 5 when we work with "integrals".  Typically 

you will be given the derivative of a function, f '(x) , and asked to find all functions  f  which have that 

derivative.  Corollary 2 tells us that if we can find one function  f  which has the derivative we want, then 

the only other functions which have the same derivative are  f(x) + K :  once you find one function with the 

right derivative, you have essentially found all of them. 
 

Example 2: (a)  Find all functions whose derivatives equal 2x . 

  (b)  Find a function  g(x)  with  g '(x) = 2x  and  g(3) = 5. 
 

Solution:  (a)  We can recognize that if  f(x) = x2  then  f '(x) = 2x  so  

 one function with the derivative we want  is  f(x) = x2 .  Corollary 2   

 guarantees that every function  g  whose derivative is  2x  has the  

 form   g(x) = f(x) + K = x2 + K.  The only functions with derivative   

 2x  have the form x2 + K. 
 

   (b)  Since g '(x) = 2x, we know that  g  must have the form   g(x) = x2 + K,  

 but this is a whole "family"  of functions  (Fig. 8),  and we want to find  

 one member of the family .  We know that  g(3) = 5  so we want to find  

 the member of the family which goes through the  point  (3,5).  All we  

 need to do is replace the  g(x) with 5  and the  x  with 3  in the formula     

 g(x) = x2 + K, and then solve for the value of  K:   5 = g(3) = (3)2 + K   

 so  K = – 4 .  The function we want is  g(x) = x2 – 4 . 
 

Practice 3: Restate Corollary 2 as a statement about the positions and velocities of two cars. 

 

 

PROBLEMS 
 

1. In Fig. 9, find the location of the number(s)  "c"  which  

 Rolle's Theorem promises (guarantees). 
 

For problems 2 – 4, verify that the hypotheses of Rolle's 

Theorem are satisfied for each of the functions on the given 

intervals, and find the value of the number(s)  "c"  which 

Rolle's Theorem promises exists. 

2. (a) f(x) = x2   on  [ –2, 2] (b) f(x) = x2 – 5x + 8  on  [ 0, 5] 

3. (a) f(x) = sin(x)  on  [ 0, π] (b) f(x) = sin(x)  on  [ π, 5π] 

4. (a) f(x) = x3 – x + 3   on  [ –1, 1] (b) f(x) = x.cos(x)   on  [ 0, π/2] 
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5. Suppose you toss a ball straight up and catch it when it comes down.  If  h(t)  is the height of the ball at 

time  t, then what does Rolle's Theorem say about the velocity of the ball?  Why is it easier to catch a 

ball which someone on the ground tosses up to you on a balcony, than for you to be on the ground and 

catch a ball which someone on a balcony tosses down to you? 
 
6. If  f(x) = 1/x2 , then  f(–1) = 1  and  f(1) = 1  but  f '(x) = –2/x3  is never equal to 0.  Why doesn't this  

 function violate Rolle's Theorem? 
 
7. If  f(x) = | x | , then  f(–1) = 1  and  f(1) = 1  but  f '(x)  is never equal to 0.  Why doesn't this function  

 violate Rolle's Theorem? 
 
8. If  f(x) = x2 , then  f '(x) = 2x  is never  0  on the interval  [ 1, 3].  Why doesn't this function violate  

 Rolle's Theorem? 
 

9. If I take off in an airplane, fly around for awhile and land at the same place I took off from, then my  

 starting and stopping heights are the same but the airplane is always moving.  Doesn't this violate 

Rolle's theorem which says there is an instant when my velocity is 0? 
 
10. Prove the following corollary of Rolle's Theorem:  If  P(x)  is a polynomial, then between any two  

 roots of  P  there is a root of  P ' . 

 
11. Use the corollary in problem 10 to justify the conclusion that the  only root of  f(x) = x3 + 5x – 18   

 is  2.  (Suggestion:  What could you conclude about  f '  if  f  had another root?) 

 
 

12. In Fig. 10, find the location(s) of the  "c"  which 

the Mean Value Theorem promises (guarantees). 
 

In problems 13–15, verify that the hypotheses of the 

Mean Value Theorem are satisfied for each of the 

functions on the given intervals, and find the value of a 

number(s)  "c"  which Mean Value Theorem guarantees. 

13. (a) f(x) = x2   on  [ 0, 2] (b) f(x) = x2 – 5x + 8  on  [ 1, 5] 

14. (a) f(x) = sin(x)  on  [ 0, π/2] (b) f(x) = x3  on  [ –1, 3] 

15. (a) f(x) = 5 – x     on  [ 1, 9] (b) f(x) = 2x + 1   on  [ 1, 7] 
 
16. For the quadratic functions in parts (a) and (b) of problem 13, the number  c  turned out to be the  

 midpoint of the interval, c = (a + b)/2.   

(a) For  f(x) = 3x2 + x – 7  on  [ 1, 3] ,  show that  f '(2) =   
f(3) – f(1)

3 – 1     . 

(b) For  f(x) = x2 – 5x + 3  on  [ 2, 5] ,  show that  f '( 7/2 ) =  
f(5) – f(2)

5 – 2     . 

(c) For  f(x) = Ax2 + Bx + C  on  [ a, b],  show that  f '( 
a+b

2    )  =   
f(b) – f(a)

b – a    . 
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17. If  f(x) = | x | , then  f(–1) = 1  and  f(3) = 3  but  f '(x)  is never equal to  
f(3) – f(–1)

3 – (–1)     = 
1
2  .  Why 

doesn't this function violate the Mean Value Theorem? 

 
In problems 18 and 19,  you are a traffic court judge.  In each case, a speeding ticket has been given and  

you need to decide if the ticket is appropriate. 
 

18. The toll taker says, "Your Honor, based on the elapsed time from when the car entered the toll road  

 until the car stopped at my booth, I know the average speed of the car was 83 miles per hour.  I did not 

actually see the car speeding, but I know it was and I gave the driver a speeding ticket." 
 

19. The driver in the next case heard the toll taker and says, "Your Honor, my average velocity on that  

 portion of the toll road was only 17 miles per hour, so I could not have been speeding.  I don't deserve 

a ticket." 
 
20. Find three different functions  f, g and  h  so that  f '(x) = g '(x) = h '(x) = cos(x). 
 
21. Find a function  f  so that  f '(x) = 3x2 + 2x + 5  and  f(1) = 10. 
 
22. Find a function  g  so that  g '(x) = x2 + 3  and  g(0) = 2. 
 
23. Find values for  A  and  B  so that the graph of the parabola  f(x) = Ax2 + B  is  

(a) tangent to the line  y = 4x +5  at the point  (1,9) 

(b) tangent to the line  y = 7 – 2x  at the point  (2,3) 

(c) tangent to the parabola  y = x2 + 3x – 2  at the point  (0,2) 
 
24. Sketch the graphs of several members of the "family" of functions whose derivatives always equal  3.   

 Give a formula which defines every function in this family. 
 
25. Sketch the graphs of several members of the "family" of functions whose  

 derivatives always equal  3x2 .  Give a formula which defines every function 

in this family. 
 
26. At  t  seconds after takeoff, the upward velocity of a helicopter was   

 v(t) = 2t – 7  feet/second.  Two seconds after takeoff, the helicopter was 8 

feet above sea level.  Find a formula for the height of the helicopter at every 

time  t. 
 

27. Assume that a rocket is fired from the ground and has the upward velocity 

shown in Fig. 11.  Estimate the height of the rocket when  t = 1, 2, and 5 

seconds. 
 

28. Fig. 12  shows the upward velocity of a rocket.  Use the information in  

 the graph to estimate the height of the rocket when  t = 1, 2, and 5 seconds. 
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29. Use the following information to determine an equation for  f(x):  f ''(x) = 6, f '(0) = 4, and  f(0) = –5. 
 
30. Use the following information to determine an equation for  g(x):  g ''(x) = 12x, g '(1) = 9,  and  g(2) = 30. 

 

31. Define  A(x)  to be the area  bounded by the x–axis, the line  y = 3, and  

 a vertical line at x  (Fig. 13). 

 (a) Find a formula for  A(x)? (b) Determine  A '(x) 
 

32. Define  A(x)  to be the area  bounded by the x–axis, the line  y = 2x,  

 and a vertical line at x  (Fig. 14). 

 (a) Find a formula for  A(x)? (b) Determine  A '(x)  
 

33. Define  A(x)  to be the area  bounded by the x–axis, the line  y = 2x + 1,  

 and a vertical line at x  (Fig. 15).  

 (a) Find a formula for  A(x)? (b) Determine  A '(x) 
  

 

 

 
In problems  34 – 36, we have a list of numbers  a1 , a2 , a3 , a4 , . . . , and the  

consecutive differences between numbers in the list are  a2 – a1 , a3 – a2 ,  a4 – a3 , . . . 
 
34. If  a1 = 5  and the difference between consecutive numbers in the list is  

 always  0, what can you conclude about the numbers in the list? 

 
35. If a1 = 5  and the difference between consecutive numbers in the list is  

 always  3, find a formula for  an? 

 
36. Suppose the "a" list starts  3, 4, 7, 8, 6, 10, 13, . . ., and there is a "b" list  

 which has the same differences between consecutive numbers as the "a" list.   
(a) If  b1 = 5 ,  find the next six numbers in the "b" list.  How is  bn  related to  an? 

(b) If  b1 = 2 ,  find the next six numbers in the "b" list.  How is  bn  related to  an? 

(c) If  b1 = B ,  find the next six numbers in the "b" list.  How is  bn  related to  an? 
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Section 3.2 PRACTICE  Answers 

 

Practice 1: f '(x) = 0  when  x = 2 and 6  so  c = 2  and  c= 6. 

  g '(x) = 0  when  x = 2, 4, and 6  so  c = 2, c = 4, and c = 6. 

 

Practice 2: f(x) = 5x2 – 4x + 3  on  [1, 3].   f(1) = 4  and  f(3) = 36  so   

 

  m = 
f(b) – f(a)

b – a     =  
36 – 4
3 – 1     =  16. 

 

  f '(x) = 10x – 4  so  f '(c) = 10c – 4 = 16  if   10c = 20  and  c = 2. 

 The graph of  f  and the location of  c  are shown in Fig. 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Practice 3:  

 If  two cars have the same velocities during an interval of time  (f '(t) = g '(t) for t in I) 

 then the cars are always a constant distance apart during that time interval. 
 

(Note:  The "same velocity" means same speed and same direction.  If two cars are traveling at the 

same speed but in different directions, then the distance between them changes and is not constant.) 
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3.3 THE FIRST DERIVATIVE AND THE SHAPE OF  f 
 

This section examines some of the interplay between the shape of the graph of   f  and the behavior of  f '.  

If we have a graph of  f , we will see what we can conclude about the values of  f '.  If we know values  

of  f ', we will see what we can conclude about the graph of  f . 
 

 Definitions: The function  f  is increasing on (a,b)  if  a < x1 < x2 < b  implies  f( x1 ) < f( x2 ). 

  The function  f  is decreasing on (a,b)  if  a < x1 < x2 < b  implies  f( x1 ) > f( x2 ). 
 
  f  is  monotonic on  (a,b) if  f  is  increasing on  (a,b)  or if  f  is decreasing on  (a,b). 
     
 

Graphically,  f  is increasing  (decreasing)  if, as we move from left to right along the graph of f, the height 

of the graph increases  (decreases).  
 

These same ideas make sense if we consider  h(t)  to be the height (in feet)  of a rocket at time  t  seconds.  

We naturally say that the rocket is rising or that its height is increasing if the height  h(t)  increases over a 

period of time, as  t  increases.  
 

Example 1: List the intervals on which the function given  

 in Fig. 1 is increasing or decreasing. 
 

Solution: f  is increasing on the intervals  [0,1] ,  [ 2,3]  and  

 [4,6].  f  is decreasing on  [1,2] and [6,8].  On the interval  

 [3,4]  the function is not increasing or decreasing, it is 

 constant.  It is also valid to say that  f  is increasing on the 

 intervals  [0.3, 0.8]  and  (0.2, 0.5)  as well as many others, 

 but we usually talk about the longest intervals on which  f   

 is monotonic. 
 

Practice 1: List the intervals on which the function given in Fig. 2 is increasing or decreasing. 
 
 

If we have an accurate graph of a function, then it is relatively easy to determine where f is monotonic, but 

if the function is defined by an equation, then a little more work is required.  The next two theorems relate 

the values of the derivative of  f  to the monotonicity of  f.  The first theorem says that if we know where  f  

is monotonic, then we also know something about the values of  f '.  The second theorem says that if we 

know about the values of  f '  then we can draw conclusions about where  f  is monotonic. 
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 First Shape Theorem  

  For a function  f  which is differentiable on an interval  (a,b); 

  (i) if  f  is increasing on  (a,b) ,  then  f '(x) ≥ 0  for all  x  in  (a,b) 

  (ii) if  f  is decreasing on  (a,b) ,  then  f '(x) ≤ 0  for all  x  in  (a,b) 

  (iii) if  f  is constant on  (a,b) ,  then  f '(x) = 0  for all  x  in  (a,b). 
     
 

Proof: Most people find a picture such as Fig. 3 to be a convincing justification of this  

 theorem:  if the graph of  f  increases near a point  (x, f(x)) , then the tangent line is  

 also increasing, and the slope of the tangent line is positive (or perhaps zero at a few  

 places).  A more precise proof, however, requires that we use the definitions of the  

 derivative of f and of "increasing". 
 

   (i) Assume that  f  is  increasing  on  (a,b) .  We know that  f  is differentiable,  so  

 if  x  is any number in the interval  (a,b)  then    
 

  f '(x) = 

! 

lim
h"0

 
f (x + h) # f (x)

h
,  and this limit exists and is a finite value.   

 If  h  is any small enough positive number  so that  x + h  is also in the interval  (a,b),  then  x < x + h  

and  f(x) < f(x + h) .  We know that the numerator,  f(x + h) – f(x) , and the denominator , h ,  are both 

positive so the limiting value, f '(x) , must be positive or zero:  f '(x) ≥ 0.   
 
   (ii)  Assume that  f  is decreasing on  (a,b):  The proof of this part is very similar to part (i).  If  x < x + h, 

  then  f(x) > f(x + h) since  f  is decreasing on (a,b).  Then the numerator of the limit ,  f(x + h) – f(x) , 

will be negative and the denominator, h , will still be positive, so the limiting value , f '(x) , must be 

negative or zero:  f '(x) ≤ 0. 
 
   (iii)  The derivative of a constant is zero, so if  f  is constant on (a,b)  then  f '(x) = 0  for all  x  in  (a,b). 

 

The previous theorem is easy to understand , but you need to pay attention to exactly what it says and what it 

does not say.  It is possible for a differentiable function which is increasing on an interval  to have horizontal 

tangent lines at some places in the interval  (Fig 4).  It is also possible for a 

continuous function which is increasing on an 

interval to have an undefined derivative at some 

places in the interval  (Fig. 4).  Finally, it is 

possible for a function which is increasing on 

an interval to fail to be continuous at some 

places in the interval (Fig. 5). 
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The First Shape Theorem has a natural interpretation in terms of the height  h(t)  and upward velocity  h '(t)  

of a helicopter at time  t.  If  the height of the helicopter is increasing  ( h(t) is increasing ) , then the 

helicopter has a positive or zero upward velocity:  h '(t) ≥ 0.  If the height of the helicopter is not changing, 

then its upward velocity is 0:  h '(t) = 0. 
 

Example 2: Fig. 6 shows the height of a helicopter during a period of 

time.  Sketch the graph of the upward velocity of the 

helicopter, dh/dt. 
 
Solution: The graph of  v(t) = dh/dt is shown in Fig. 7.  Notice  

 that the  h(t)  has a local maximum when  t = 2  and  t = 5,  and  

v(2) = 0  and  v(5) = 0.  Similarly,  h(t)  has a local minimum  

 when  t = 3, and  v(3) = 0.  When  h  is increasing,  v is positive.  

When  h  is decreasing,  v  is negative. 

 

Practice 2: Fig. 8  shows the 

population of rabbits on an island  

during 6 years.  Sketch the graph of 

the rate of population change, dR/dt, 

during those years. 

 

 
Example 3:  The graph of  f  is shown in Fig. 9 .  Sketch the graph of  f ' . 
 

Solution: It is a good idea to look first for the points where  f '(x) = 0 or where  f  is not differentiable, the 

critical points of  f.  These locations are usually easy to spot, and they naturally break the problem into 

several smaller pieces.  The only numbers at which  f '(x) = 0  are  x = –1  and  x = 2,  so the only places 

the graph of  f '(x)  will cross the  x–axis  

 are at  x = –1 and  x = 2 ,  and we can plot the point  (–1,0)  and  (2,0)  on the graph of  f '.   The only 

place that  f  is not differentiable is at the "corner" above  x = 5, so the graph of  f ' will not have a point 

for  x = 5.  The rest of the graph of  f  is relatively easy:   
 

 if  x < –1  then f(x)  is decreasing  so  f '(x)  is negative,   

 if  –1 < x < 2 then  f(x) is increasing  so  f '(x)  is positive, 

 if  2 < x < 5  then f(x) is decreasing  so  f '(x)  is negative, and 

 if  5 < x  then f(x) is decreasing  so  f '(x)  is negative.  
 
The graph of  f '  is shown in Fig. 10.  f(x)  is continuous at  x =5, but   

f   is not differentiable at  x = 5, as is indicated by the "hole" in the graph. 
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Practice 3: The graph of  f  is shown in Fig. 11.  Sketch the 

graph of  f '. (The graph of f has a "corner" at x = 5.) 
 

The next theorem is almost the converse of the First Shape 

Theorem and explains the relationship between the values of the 

derivative and the graph of a function from a different 

perspective.  It says that if we know something about the values 

of  f ' , then we can draw some conclusions about the shape of the graph of  f . 
 

 Second Shape Theorem  

  For a function  f  which is differentiable on an interval I;  

   (i)    if  f '(x) > 0 for all  x  in the interval  I ,  then  f  is increasing on  I, 

   (ii)   if  f '(x) < 0 for all  x  in the interval  I ,  then  f  is decreasing on  I, 

   (iii)  if  f '(x) = 0 for all  x  in the interval  I  ,  then  f  is constant on I. 
    
 
Proof:  This theorem follows directly from the Mean Value Theorem, and part (c) is just a restatement of  

 the First Corollary of the Mean Value Theorem.   
 
  (a)  Assume that  f '(x) > 0 for all  x  in  I  and pick any points  a  and  b  in  I  with  a < b.  Then, by  

 the Mean Value Theorem, there is a point  c  between  a  and  b  so that   
f(b) – f(a)

b – a     = f '(c) > 0, and 

we can conclude that  f(b) – f(a) > 0  and  f(b) > f(a).  Since  a < b implies that  f(a) < f(b), we know 

that  f  is increasing on  I. 
 
  (b)  Assume that  f '(x) < 0 for all x  in  I  and pick any points  a  and  b  in  I  with  a < b.  Then there is  

 a point  c  between  a  and  b so that    
f(b) – f(a)

b – a     = f '(c) < 0,  and we can conclude that 

 f(b) – f(a) = (b–a) f '(c) < 0  so  f(b) < f(a).  Since  a < b  implies that  f(a) > f(b), we know f is 

decreasing on  I. 
 
Practice 4: Rewrite the Second Shape Theorem as a statement about the height  h(t)  and upward  

 velocity  h '(t)  of a helicopter at time  t  seconds. 
 

The value of the function at a number  x  tells us the height of  

the graph of  f  above or below the point  x  on the x–axis.  The  

value of  f '  at a number  x  tells us whether the graph of  f  is 

increasing or decreasing (or neither)  as the graph passes through  

the point  (x, f(x) )  on the graph of  f.  If  f(x) is positive, it is 

possible for  f '(x) to be positive, negative, zero or undefined:  the 

value of  f(x)  has absolutely nothing to do with the value of  f ' .   

Fig. 12  illustrates some of the combinations of values for  f  and  f ' . 
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Practice 5: Graph a continuous function which satisfies the conditions on f  and  f ' given below: 
 
   x –2 –1 0 1 2 3 

   f(x) 1 –1 –2 –1 0 2 

   f '(x) –1 0 1 2 –1 1 
 

The Second Shape Theorem is particularly useful if we need to graph a function  f  which is defined by an 

equation.  Between any two consecutive critical numbers of  f, the graph of  f  is monotonic  (why?).  If we 

can find all of the critical numbers of  f, then the domain of  f  will be naturally broken into a number of 

pieces on which  f  will be monotonic. 
 

Example 4: Use information about the values of  f '  to help graph  f(x) =  x3  – 6x2 + 9x + 1 . 
 

Solution: f '(x) = 3x2 – 12x + 9 = 3(x – 1)(x – 3)  so  f '(x) = 0 only when  x = 1  or  x = 3.  f '  is a 

polynomial so it is always defined.  The only critical numbers for  f  are  x = 1  and  x = 3,  and they 

divide the real number line into three pieces on which  f  is monotonic:  (–∞ , 1) , (1,3)  and  (3, ∞). 

 If  x < 1, then  f '(x) = 3(negative number)(negative number) > 0  so  f  is increasing. 

 If  1 < x < 3, then  f '(x) = 3(positive number)(negative number) < 0 so  f  is decreasing. 

 If  3 < x, then f '(x) = 3(positive number)(positive number) > 0  so  f  is increasing. 

 

Even though we don't know the value of  f  anywhere yet, we do know 

a lot about the shape of the graph of f :  as we move from left to right 

along the  x–axis, the graph of  f  increases until  x = 1, then the graph 

decreases until  x = 3, and then the graph increases again (Fig. 13)  

The graph of  f  makes "turns" when  x = 1  and  x = 3. 
 
 

 
 

 To plot the graph of  f, we still need to evaluate  f  

at a few values of  x, but only at a very few 

values.  f(1) = 5 , and  (1,5)  is a local maximum 

of  f.  f(3) = 1 , and  (3,1) is a local minimum of  

f.  The graph of  f  is shown in Fig. 14. 
 
Practice 6: Use information about the values of  f '  to help graph  f(x) =  x3  – 3x2 – 24x + 5 . 
 

Example 5: Use the graph of  f '  in Fig. 15  to sketch the shape of the graph of  f.   Why isn't the graph 

of  f ' enough to completely determine the graph of  f ? 
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Solution:  Several functions which have the derivative we want are  

 given in Fig. 16 , and each of them is a correct answer.  By the 

 Second Corollary to the Mean Value Theorem, we know there is 

 a whole family of parallel functions which have the derivative 

 we  want,  and each of these functions is a correct answer.  If we 

 had  additional  information about the function such as a point it 

 went through, then only one member of the family would satisfy 

 the  extra condition and that function would be the only correct 

 answer. 
 
 

Practice 7: Use the graph of  g '  in  

 Fig. 17  to sketch the shape of a  

 graph of  g.  
 

 

 

Practice 8: A weather balloon is released from the ground and sends 

back its upward velocity measurements  (Fig. 18).  Sketch a graph 

of the height of the balloon.  When was the balloon highest? 

 

Using the Derivative to Test for Extremes 
 
The first derivative of a function tells about the general shape of the function, and we can use that shape  

information to determine if an extreme point is a maximum or minimum or neither.  

 
 First Derivative Test for Local Extremes 

  Let  f  be a continuous function with  f '(a) = 0  or  f '(a) is undefined. 

  (i) If  f '(left of a) > 0  and  f '(right of a) < 0,  then  (a,f(a))  is a local maximum  (Fig. 19a) 

  (ii) If  f '(left of a) < 0  and  f '(right of a) > 0,  then  (a,f(a))  is a local minimum  (Fig. 19b) 

  (iii) If  f '(left of a) > 0  and  f '(right of a) > 0,  then  (a,f(a))  is not a local extreme  (Fig. 19c) 

  (iv) If  f '(left of a) < 0  and  f '(right of a) < 0,  then  (a,f(a))  is not a local extreme  (Fig. 19d) 
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Practice 9: Find all extremes of  f(x) = 3x2 – 12x + 7  and use the First Derivative Test to determine 

if they are maximums, minimums or neither. 
 

A variant of the First Derivative Test can also be used to determine whether an endpoint gives a maximum 

or minimum for a function. 
 
PROBLEMS 

 

In problems 1–3, sketch the graph of 

the derivative of each function. 
 
1. Use Fig. 20. 
 
2. Use Fig. 21. 
 
3. Use Fig. 22 
 

In problems 4–6, the graph of  

the height of a helicopter is  

shown.  Sketch the graph of  

the upward velocity of the  

helicopter. 
 
4. Use Fig. 23. 5. Use Fig. 24. 6. Use Fig. 25. 

 
7. In Fig. 26, match the graphs of the  

 functions with those of their derivatives. 

 
8. In Fig. 27, match the graphs showing  

 the heights of rockets with those  

 showing their velocities. 

 
9. Use the Second Shape Theorem to show  

 that  f(x) = ln(x)  is monotonic  

 increasing on  ( 0, ∞ ). 
 
10. Use the Second Shape Theorem to show  

 that  g(x) = ex  is increasing on the  

 entire real number line. 
 
11. A student is working with a complicated function  f  and has shown that the derivative of  f  is always  

 positive.  A minute later the student also claims that  f(x) = 2  when  x = 1  and when  x = π.  Without 

checking the student's work, how can you be certain that it contains an error? 
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12. Fig. 28  shows the graph of the derivative of a continuous function  f.   

(a) List the critical numbers of f. 

(b) For what values of  x  does  f  have a local maximum? 

(c) For what values of  x  does  f  have a local minimum? 
 
13. Fig. 29  shows the graph of the derivative of a continuous function  g.   

(a) List the critical numbers of g. 

(b) For what values of  x  does  g  have a local maximum? 

(c) For what values of  x  does  g  have a local minimum? 
 
 

In problems 14–16, the graphs of the upward velocities of several helicopters are shown.  Use each graph to 

determine when each helicopter was at a relatively maximum and minimum height. 
 
14. Use Fig. 30. 15. Use Fig. 31. 16. Use Fig. 32. 

 
In problems  17 – 22 , use information from the derivative of each function to help you graph the function.   

Find all local maximums and minimums of each function. 
 

17. f(x) =  x3 – 3x2 – 9x – 5 18. g(x) = 2x3 – 15x2 + 6 19. h(x) = x4 – 8x2 + 3  
 

20. s(t) = t + sin(t) 21. r(t) =   
2

t2 + 1
  22. f(x) = 

x2 + 3
x   

 
23. f(x) = 2x + cos(x)  so  f(0) = 1.  Without graphing the function, you can be certain that  f  has   

 how many  positive roots?  (zero, one, two, more than two) 
 
24. g(x) = 2x – cos(x)  so  g(0) = –1.  Without graphing the function, you can be certain that  g  has   

 how many  positive roots?  (zero, one, two, more than two)  
 
25. h(x) = x3 + 9x – 10  has a root at  x = 1.  Without graphing h, show that  h  has no other roots. 
 
26. Sketch the graphs of monotonic decreasing functions which have exactly  (a) zero roots, (b) one root,  

 and (c) two roots. 
 
27. Each of the following statements is false.  Give (or sketch) a counterexample for each statement. 

(a) If  f  is increasing on an interval  I,  then  f '(x) > 0 for all x in I. 

(b) If  f  is increasing and differentiable on  I, then  f '(x) > 0 for all  x in I. 

 (c) If cars A and B always have the same speed, then they will always be the same distance apart. 
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28. (a) Give the equations of several different functions  f  which all have the same derivative  f '(x) = 2. 

 (b) Give the equation of the function  f  with derivative  f '(x) = 2  which also satisfies  f(1) = 5. 

 (c) Give the equation of the function  g  with g '(x) = 2 , and the graph of g goes through  ( 2, 1). 
 
29. (a) Give the equations of several different functions  h  which all have the same derivative  h '(x) = 2x. 

 (b) Give the equation of the function  f  with derivative  f '(x) = 2x  which also satisfies  f(3) = 20. 

 (c) Give the equation of the function  g  with g '(x) = 2x , and the graph of g goes through  ( 2, 7). 
 
30. Sketch functions with the given properties to help you determine whether each statement is True or False. 

(a) If  f '(7) > 0  and  f '(x) > 0 for all  x  near  7,  then  f(7)  is a local maximum of  f  on  [1,7]. 

(b) If  g '(7) < 0  and  g '(x) < 0 for all  x  near  7,  then  g(7)  is a local minimum of  g  on  [1,7]. 

(c) If  h '(1) > 0  and  h '(x) > 0 for all  x  near  1,  then  h(1)  is a local minimum of  h  on  [1,7]. 

(d) If  r '(1) < 0  and  r '(x) < 0 for all  x  near  1,  then  r(1)  is a local maximum of  r  on  [1,7]. 

(e) If  s '(7) = 0, then  s(7)  is a local maximum of  s  on  [1,7]. 

 
Section 3.3 PRACTICE  Answers 

 
Practice 1: g  is increasing on  [2, 4]  and  [6, 8].   

  g  is decreasing on  [0, 2]  and  [4, 5]. 

  g is constant on  [5, 6]. 

 

Practice 2: The graph in Fig. 33 shows the rate of population change,  dR/dt. 
 
 
 
Practice 3: The graph of  f '  is shown in Fig. 34.  Notice  

 how the graph of  f '  is  0  where  f  has a maximum and 

minimum. 
 
 
 
Practice 4: The Second Shape Theorem for helicopters: 

(i) If  the upward velocity  h '  is positive during time interval I 

 then the height  h  is increasing during time interval I. 

(ii) If  the upward velocity  h '  is negative during time interval I 

 then the height  h  is decreasing during time interval I. 

(iii) If  the upward velocity  h '  is zero during time interval I 

 then the height  h  is constant during time interval I. 
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Practice 5: A graph satisfying the conditions in the table is shown  

 in Fig. 35. 
 

x –2 –1 0 1 2 3 
f(x) 1 –1 –2 –1 0 2 
f '(x) –1 0 1 2 –1 1 

 
 
 

Practice 6: f(x) = x3 – 3x2 – 24x + 5.  f '(x) = 3x2 – 6x – 24 = 3(x – 4)(x + 2). 
 

f '(x) = 0  if  x = –2, 4. 
 

If  x < –2,  

 then  f '(x) = 3(x – 4)(x + 2) = 3(negative)(negative) > 0  so  f is increasing. 

If –2 < x < 4,  

 then  f '(x) = 3(x – 4)(x + 2) = 3(negative)(positive) < 0  so  f is decreasing. 

If  x > 4,  

 then  f '(x) = 3(x – 4)(x + 2) = 3(positive)(positive) > 0  so  f is increasing. 
 

f  has a relative maximum at  x = –2  and a relative minimum at  x = 4. 

The graph of  f  is shown in Fig. 36. 
 

 

 

Practice 7: Fig. 37 shows several possible graphs for  g.  Each of the  g  

graphs has the correct shape to give the graph of  g '.  Notice that the 

graphs of  g  are "parallel,"  differ by a constant. 

 

 

 

 

 

Practice 8: Fig. 38  shows the height graph for the balloon.  

The balloon was highest at  4 pm  and had a local 

minimum at 6pm. 
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Practice 9:  

 f(x) = 3x2 – 12x + 7  so  f '(x) = 6x – 12.  f '(x) = 0  if  x = 2. 

 If  x < 2,  then  f '(x) < 0  and  f  is decreasing. 

 If  x > 2,  then  f '(x) > 0  and  f  is increasing. 

 From this we can conclude that  f  has a minimum when  x = 2   

  and has a shape similar to Fig. 19(b). 

 

 We could also notice that the graph of the quadratic  

 f(x) = 3x2 – 12x + 7  is an upward opening parabola.   

 The graph of  f  is shown in Fig. 39. 
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3.4  SECOND DERIVATIVE AND THE SHAPE OF  f 
   
The first derivative of a function gives information about the shape of the function, so the second derivative  

of a function gives information about the shape of the first derivative and about the shape of the function.  

In this section we investigate how to use the second derivative and the shape of the first derivative to reach 

conclusions about the shape of the function.  The first derivative tells us whether the graph of  f  is 

increasing or decreasing.  The second derivative will tell us about the "concavity" of  f,  whether  f  is 

curving upward or downward. 
 

Concavity 
 
Graphically, a function is concave up if its graph is curved with the  

opening upward  (Fig. 1a).  Similarly,  a function is concave down if its 

graph opens downward  (Fig. 1b).  The concavity of a function can be 

important in applied problems and can even affect billion–dollar decisions.   

 

An Epidemic: Suppose an epidemic has started, and you, as a member of congress, must decide whether the 

current methods are effectively fighting the spread of the disease or whether more drastic measures and 

more money are needed.  In  Fig. 2,  f(x)  is the number of people who have the disease at time  x,  and 

two different situations are shown.  In both (a)  and  (b),  the number of people with the disease, f(now),  

and the rate at which new people are getting sick, f '(now), are 

the same.  The difference in the two situations is the concavity of  

f, and that difference in concavity might have a big effect  

 on your decision.  In  (a), f  is concave down at  "now", and 

 it appears that the current methods are starting to bring the 

epidemic under control.  In (b),  f  is concave up, and it  

 appears that the epidemic is still out of control. 
 
 

Usually it is easy to determine the concavity of a function by examining its graph, but we also need a 

definition which does not require that we have a graph of the function, a definition we can apply to a 

function described by a formula without having to graph the function.   
 
 Definition: Let  f  be a differentiable function. 

  f  is concave up  at  a  if the graph of  f  is above the tangent line  L  to  f  for all x  close  

   to  a   (but not equal to  a) :  f(x) > L(x) = f(a) + f '(a)(x – a) . 

  f  is concave down  at  a  if the graph of  f  is below the tangent line  L  to  f  for all x  close  

   to  a   (but not equal to  a) :  f(x) < L(x) = f(a) + f '(a)(x – a) . 
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Fig. 3 shows the concavity of a function at several points.  The 

next theorem gives an easily applied test for the concavity of a 

function given by a formula. 
 
 
 
 
 

 The Second Derivative Condition for Concavity 

  (a)  If  f ''(x) > 0 on an interval  I , then  f '(x) is increasing on  I  and  f  is concave up on  I. 

  (b)  If  f ''(x) < 0 on an interval  I , then  f '(x) is decreasing on  I  and  f  is concave down on  I. 

  (c)  If  f ''(a) = 0 , then  f (x)  may be concave up or concave down or neither  at  a. 
        
 
Proof:  (a)  Assume that f ''(x) > 0 for all x in I, and let  a  be any point in  I.  We want to show that  f  is  

concave up at  a  so we need to prove that the graph of  f  (Fig. 4)  is above the 

tangent line to  f  at  a:  f(x) > L(x) = f(a) + f '(a)(x–a)  for  x close to a. 
 

Assume that  x  is in  I ,  and apply the Mean Value Theorem to f  on the interval 

from  a  to  x.  Then there is a number  c  between  a  and  x  so that   
 

  f '(c) =  
f(x) – f(a)

x – a     and  f(x) = f(a) + f '(c)(x–a).   

Since  f '' > 0  between  a  and  x, we know from the Second Shape Theorem that   

    f '  is increasing between  a  and  x.  We will consider two cases:  x > a  and  x < a. 
 

 If  x > a, then  x–a > 0  and  c is in the interval  [a,x]  so  a < c.  Since  f ' is increasing,  a < c  implies 

that  f '(a) < f '(c).  Multiplying each side of the inequality  f '(a) < f '(c)  by the positive amount  x–a, 

we get that   f '(a)(x–a) < f '(c)(x–a).  Adding  f(a)  to each side of this last inequality, we have   L(x) = 

f(a) + f '(a)(x–a) < f(a) + f '(c)(x–a) = f(x). 
 

 If  x < a, then  x–a < 0  and  c is in the interval  [x,a]  so  c < a.  Since  f ' is increasing,  c < a  implies 

that  f '(c) < f '(a).  Multiplying each side of the inequality  f '(c) < f '(a)  by the negative amount  x–a, 

we get that   f '(c)(x–a) > f '(a)(x–a)  and  f(x) = f(a) + f '(c)(x–a) > f(a) + f '(a)(x–a) = L(x). 
 

 In each case we get that the function  f(x)  is above the tangent line  L(x).  The proof of  (b)  is similar. 



3.4 Second Derivative and Shape Contemporary  Calculus  
3 

 

  (c)  Let  f(x) = x4  , g(x) = – x4  , and  h(x) = x3  (Fig. 5).  The second derivative of each of these functions is 

zero at  a = 0, and at  (0,0)  they all have the same tangent line:  L(x) = 0 , the x–axis.  However, at  (0,0) 

they all have different concavity:  f  is concave up, g is concave down, and h  is neither concave up nor 

down. 
  

 

 

 

 

 

 

 

Practice 1: Use the graph of  f  in Fig. 6  to finish filling in the table with  "+" for positive,  

 "–" for negative" ,  or  "0". 
 
 x f(x) f '(x) f ''(x) Concavity (up or down) 
      
 1 + + – down    
 2 +    
 3 –    
 4     

 
Feeling the Second Derivative 
 

Earlier we saw that if a function  f(t)  represents the position of a car at time  t,  then  f '(t)  is the velocity  

and  f ''(t)  is the acceleration of the car at the instant  t.   
 

If we are driving along a straight, smooth road, then what we feel is the acceleration of the car:   

a large positive acceleration feels like a "push"  toward the back of the car,  

a large negative acceleration  (a deceleration) feels like a "push" toward the front of the car, and 

an acceleration of  0  for a period of time means the velocity is constant and we do not feel pushed in 

either direction. 
 

On a moving vehicle it is possible to measure these "pushes", the acceleration, and from that information to 

determine the velocity of the vehicle, and from the velocity information to determine the position.  Inertial 

guidance systems in airplanes use this tactic:  they measure front–back, left–right and up–down 

acceleration several times a second and then calculate the position of the plane.  They also use computers to 

keep track of time and the rotation of the earth under the plane.  After all, in 6 hours the earth has made a 

quarter of a revolution, and Dallas has rotated more than  5000  miles! 
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Example 1:  The upward acceleration of a rocket was  a(t) = 30 m/s2  for the first 6 seconds of flight, 

  0 ≤ t ≤ 6.  The velocity of the rocket at t=0 was  0 m/s  and the height of the rocket above the 

ground at t=0 was  25 m.  Find a formula for the height of the rocket at time  t  and determine the 

height at  t = 6 seconds. 
 
Solution:  v '(t) = a(t) = 30  so  v(t) = 30t + K for some constant K.  We also know  v(0) = 0  so   

 30(0) + K = 0  and  K = 0.  Therefore,  v(t) = 30t. 

 Similarly,  h '(t) = v(t) = 30t  so  h(t) = 15t2 + C for some constant  C.  We know that  h(0) = 25  so  

15(0)2 + C = 25  and  C = 25.  Then  h(t)  = 15t2 + 25.   h(6) = 15(6)2 + 25 = 565 m. 
 
 

 
f ''  and Extreme Values of  f 
 

The concavity of a function can also help us determine whether a critical point is a 

maximum or minimum or neither.  For example, if a point is at the bottom of a  

concave up function (Fig. 7), then the point is a minimum. 
 
 

 The Second Derivative Test for Extremes: 

 (a)  If  f '(c) = 0  and  f ''(c) < 0  then  f is  concave down  and has a local maximum at  x = c. 

 (b)  If  f '(c) = 0  and  f ''(c) > 0  then  f is  concave up  and  has a local minimum at  x = c. 

 (c)  If  f '(c) = 0  and  f ''(c) = 0  then f may have a local maximum, a minimum or neither at  x = c. 
      
 
Proof:  (a)  Assume that  f '(c) = 0 .  If  f ''(c) < 0 then f is concave down at  x = c  so the graph of  f  will  

 be below the tangent line  L(x)  for values of  x  near  c.  The tangent line, however, is given by  

 L(x) = f(c) + f '(c) (x – c) = f(c) + 0 (x – c) = f(c) ,  so if x is close to  c  then  f(x) < L(x) = f(c)  and  f  

has a local maximum at  x = c .  The proof of (b) for a local minimum of  f  is similar. 
 

  (c)  If  f '(c) = 0 and  f ''(c) = 0, then we cannot immediately conclude anything about local maximums or 

minimums of  f  at  x = c.  The functions  f(x) = x4 ,  g(x) =  –x4 , and  h(x) = x3  all have their first and 

second derivatives equal to zero at  x = 0,  but  f  has a local minimum at 0,  g has a local maximum at  0, 

and  h has neither a local maximum nor a local minimum  at  x = 0. 
 

The Second Derivative Test for Extremes is very useful when  f ''  is easy to calculate and evaluate.  

Sometimes, however, the First Derivative Test or simply a graph of the function is an easier way to 

determine if we have a local maximum or a local minimum ––  it depends on the function and on which 

tools you have available to help you. 
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Practice 2: f(x) = 2x3 – 15x2 + 24x – 7  has critical numbers  x = 1 and 4.  Use the Second Derivative  

 Test for Extremes to determine whether  f(1)  and  f(4)  are maximums or minimums or neither. 

 
Inflection Points 
 
 
   Definition:  An inflection point is a point on the graph of a function where the concavity of the  

  function changes, from concave up to down or from concave down to up. 
     
 

Practice 3: Which of the labelled points in Fig. 8  are inflection points? 
 

To find the inflection points of a function we can use the second derivative 

of the function.  If f ''(x) > 0 , then the graph of  f  is concave up at the point  

(x, f(x))  so (x,  f(x)) is not an inflection point.  Similarly,  if  f ''(x) < 0 , then 

the graph of  f  is concave down at the point (x,f(x)) and the point is not an 

inflection point.  The only points left which can possibly be inflection points are the places where  f ''(x)  is 0 

or undefined  (f ' is not differentiable).  To find the inflection points of a function we only need to check the 

points where  f ''(x)  is  0  or undefined.  If  f ''(c) = 0 or is undefined, then the point  (c,f(c))  may or may not 

be an inflection point –– we would need to check the concavity of  f  on each side of x = c.  The functions in 

the next example illustrate what can happen. 
 

Example 2: Let f(x) = x3 , g(x) = x4  and  h(x) = x1/3  (Fig. 

9).  For which of these functions is the point  

(0,0)  an inflection point? 
 

Solution:  Graphically, it is clear that the concavity of  f(x) = x3  

and  h(x) = x1/3  changes at  (0,0),  so (0,0) is an inflection 

point for  f  and  h.  The function  g(x) = x4  is concave up 

everywhere so  (0,0)  is not an inflection point of  g. 
 

 If  f(x) = x3  , then  f '(x) = 3x2  and  f ''(x) =  6x .  The only point at which  f ''(x) = 0 or is undefined  

 (f ' is not differentiable) is at x = 0.  If  x < 0, then  f ''(x) < 0  so  f  is concave down.  If  x > 0 , then  

 f ''(x) > 0 so  f  is concave up.  At  x = 0 the concavity changes  so the point  (0,f(0)) = (0,0) is an 

inflection point of  x3 . 
 

 If  g(x) = x4  , then  g '(x) = 4x3  and  g ''(x) =  12x2 .  The only point at which  g ''(x) = 0 or is 

undefined is at x = 0.    If  x < 0, then  g ''(x) > 0  so  g  is concave up.  If  x > 0 , then g ''(x) > 0 so  g  

is also concave up.  At  x = 0 the concavity  does not change  so the point  (0, g(0)) = (0,0) is not an 

inflection point of  x4  . 
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 If  h(x) = x1/3 , then  h '(x) =  
1
3  x–2/3  and  h ''(x) = – 

2
9  x–5/3 .  h'' is not defined if  x = 0, but  

h ''(negative number) > 0  and  h ''(positive number) < 0  so  h  changes concavity at  (0,0)  and  (0,0)  

is an inflection point of  h. 
 
Practice 4:   Find the inflection points of   f(x) = x4 – 12x3 + 30x2 + 5x – 7 . 
 

Example 3:   Sketch graph of a function with  f(2) = 3, f '(2) = 1,  and an 

inflection point at  (2,3) .Solution:   Two solutions are given in Fig. 10. 
 

PROBLEMS 
 
In problems 1 and 2,  each quotation is a statement about a quantitity of something changing over time.   

Let  f(t)  represent the quantity at time  t.  For each quotation, tell what  f  represents and whether the first 

and second derivatives of  f  are positive or negative. 
 
1. (a) "Unemployment rose again, but the rate of increase is smaller than last month." 

(b) "Our profits declined again, but at a slower rate than last month." 

(c) "The population is still rising and at a faster rate than last year." 
 

2. (a) "The child's temperature is still rising, but slower than it was a few hours ago." 

(b) "The number of whales is decreasing, but at a slower rate than last year." 

(c) "The number of people with the flu is rising and at a faster rate than last month." 
 
3. Sketch the graphs of functions which are defined and concave up everywhere and which have 

 (a)  no roots. (b)  exactly 1 root. (c)  exactly 2 roots. (d)  exactly 3 roots. 
 

4. On which intervals is the function in Fig. 11   

 (a)  concave up?   (b)  concave down? 
 
5. On which intervals is the function in Fig. 12   

 (a)  concave up?   (b)  concave down? 
 

In problems  6 – 10, a function and values of  x  so that  f '(x) = 0   

are given.  Use the Second Derivative Test to determine whether each 

point  (x, f(x))  is a local maximum, a local minimum or neither  
 
6. f(x) =  2x3 – 15x2 + 6  ,   x = 0 , 5 . 
 
7. g(x) =  x3 – 3x2 – 9x + 7 ,  x = –1 , 3 . 
 
8. h(x) =  x4 – 8x2 – 2 ,   x = –2, 0, 2 . 
 
9. f(x) = sin5(x) ,   x = π/2, π, 3π/2 
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10. f(x) =  x.ln(x) ,   x = 1/e . 
 

11. At which labeled values of  x  in Fig. 13  is the point   

 ( x, f(x) )  an inflection point? 
 

12. At which labeled values of  x  in Fig. 14  is the point   

 ( x, g(x) )  an inflection point? 
 
13. How many inflection points can a 

 (a)  quadratic polynomial have? (b)  cubic polynomial have? 

 (c) polynomial of degree n  have? 
 
14. Fill in the table with  "+", "–", or "0"  for the function in Fig. 15. 
 

x f(x) f '(x) f ''(x)    
0 
1 
2 
3 

 
15. Fill in the table with  "+", "–", or "0"  for the function in Fig. 16 
 

x g(x) g '(x) g ''(x)    
0 
1 
2 
3 

 
16. Sketch functions  f  for  x–values near  1  so  f(1) = 2  and 

 (a)  f '(1) = + ,  f ''(1) = + (b)  f '(1) = + ,  f ''(1) = – 

 (c)  f '(1) = – ,  f ''(1) = +  

 (d)  f '(1) = + , f ''(1) = 0 , f ''(1– ) = – , f ''(1+ ) = + (e)  f '(1) = + , f ''(1) = 0 , f ''(1– ) = + , f ''(1+ ) = – 
  
17. Some people like to think of a concave up graph as one which will "hold water" and of a concave down  

 graph as one which will "spill water."  That description is accurate for a concave down graph, but it 

can fail for a concave up graph.  Sketch the graph of a function which is concave up on an interval, but 

which will not "hold water". 
 

18. The function  f(x) =  
1
2π  e –(x–c)2/(2b2)  is called the Gaussian distribution,  and its graph is a bell–shaped 

curve (Fig. 17) that occurs commonly in statistics. 

(i) Show that  f  has a maximum at  x = c .  ( The  

 value  c  is called the mean of this distribution.) 

(ii)  Show that  f  has inflection points where 

       x = c + b  and  x = c – b .  (The value  b  is called 

       the standard deviation of this distribution. ) 
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Section 3.4 PRACTICE  Answers 

 

Practice 1: See Fig. 6. 
 
 x f(x) f '(x) f ''(x) Concavity (up or down) 
                         
 1 + + – down  
 2 + – – down 
 3 – – + up 
 4 – 0 – down 

 

Practice 2: f(x) = 2x3 – 15x2 + 24x – 7.    

 f '(x) = 6x2 – 30x + 24  which is defined for all x.     

 f '(x) = 0 if  x = 1, 4  (critical values). 
  

 f ''(x) = 12x – 30. 

 f ''(1) = –18  so  f  is concave down at the critical  

  value x = 1 so  (1, f(1)) = (1,4)  is a rel. max. 

 f ''(4) = +18  so  f  is concave up at the critical  

  value x = 4 so  (4, f(4)) = (4, –23)  is a rel. min. 

 Fig. 18 shows the graph of  f. 

 

Practice 3: The points labeled  (b)  and  (g)  in Fig. 8  are inflection points. 

 

Practice 4: f(x) = x4 – 12x3 + 30x2 + 5x – 7.  f '(x) = 4x3 – 36x2 + 60x + 5 . 

  f ''(x) = 12x2 – 72x + 60 = 12(x2 – 6x + 5) = 12(x – 1)(x – 5). 

   The only candidates to be Inflection Points are x = 1  and x = 5. 

 

 If x < 1, then  f ''(x) = 12(x – 1)(x – 5) = 12( neg )( neg ) is positive. 

 If 1 < x < 5, then  f ''(x) = 12(x – 1)(x – 5) = 12( pos )( neg ) is negative. 

 If 5 < x, then  f ''(x) = 12(x – 1)(x – 5) = 12( pos )( pos ) is positive. 

  

 f  changes concavity at  x = 1  and  x = 5  so   

 x = 1  and  x = 5  are Inflection Points. 
 
 Fig. 19 shows the graph of  f. 
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3.5 APPLIED MAXIMUM AND MINIMUM PROBLEMS 
 
We have used derivatives to help find the maximums and minimums of some functions given by equations,  

but it is very unlikely that someone will simply hand you a function and ask you to find its extreme values.  

More typically, someone will describe a problem and ask your help in maximizing or minimizing 

something:  "What is the largest volume package which the post office will take?"; "What is the quickest 

way to get from here to there?"; or "What is the least expensive way to accomplish some task?"  Usually 

these problems have some restrictions or constraints on what is allowed, and sometimes neither the 

problem nor the constraints are clearly stated. 
 

Before we can use calculus or other mathematical techniques to solve the max/min problem, we need to 

understand what is really being asked.  We need to translate the problem into a mathematical form which 

we can solve, and we need to check our mathematical solution to see if it is really a solution of the original 

problem.  Often, the hardest parts of the problem are understanding the problem and translating it into a 

mathematical form. 
 

In this section we examine some problems which require understanding, translation, solution, and checking.  

Most of these problems are not as complicated as those a working scientist, engineer or economist needs to 

solve, but they represent a step in developing the required skills. 
 

Example 1: The company you own has a large supply of 8 inch by 15 inch rectangular pieces of tin, and 

you decide to make them into boxes by cutting a square from each corner and folding up the sides (Fig. 

1).  For example, if you cut a 1 inch square from each corner the resulting  6 inch by 13 inch by 1 inch 

box has a volume of 78 cubic inches.  The amount of money you get for a box depends on how much 

the box holds, so you want to make boxes with the largest possible volumes.  How large a square 

should you cut from each corner? 
 

Solution: First we need to understand the 

problem, and a diagram can be very 

helpful.  Then we need to translate it into 

a mathematical problem:  

*  identify the variables,  

*  label the variable and constant parts of 

the  diagram, and  

 *  represent the quantity to be maximized as a function.   

 If we label the side of the square as  x  inches, then the box is  x inches high, 8 – 2x inches wide, and   

 15 – 2x inches long, so the volume is  (length).(width).(height) = (15 – 2x).(8 – 2x).(x)  

 = 4x3 – 46x2 + 120x  cubic inches.  Now we have a mathematical problem,  maximize   

 V(x) = 4x3 – 46x2 + 120x , and we can use the calculus techniques from the previous sections. 

 



3.5 Applied Max/Min Problems Contemporary  Calculus  
2 

 V '(x) = 12x2 – 92x + 120,  and we need to find the critical points.  (i)  We can find where  V '(x) = 0 

by factoring or using the quadratic formula:  V '(x) = 12x2 – 92x + 120 = 4(3x – 5)(x – 6) = 0  if  

x = 5/3  or  x = 6,  so  x = 5/3  and  x = 6 are critical points of  V.  (ii)  V '(x) is a polynomial so it is 

always defined and there are no critical points from an undefined derivative.  (iii)  What are the 

endpoints for  x  in this problem?  A square cannot have a negative length so  x ≥ 0 .  We cannot 

remove more than half of the width, so  8 – 2x ≥ 0  and  x ≤ 4 .  Together, these two inequalities say 

that  0 ≤ x ≤ 4, so the endpoints are  x = 0  and  x = 4.  (Note that the value  x = 6 is not in this interval, 

so  x = 6  does not maximize the volume and we do not consider it further.) 
 

 The maximum volume must occur at one of the critical points x = 0, 5/3, or 4:  V(0) = 0,  

 V(5/3) = 2450/27 ≈ 90.74 cubic inches, and V(4) = 0.  The maximum volume of the box occurs when 

a 5/3 inch by 5/3 inch square is removed from each corner, and resulting box  is  5/3 inches high,   

 8 – 2(5/3) = 14/3 inches wide, and  15 - 2(5/3) = 35/3 inches long. 
  

Practice 1: If you start with  7 inch by 15 inch pieces of tin, what size square should you remove from 

each corner so the box will have as large a volume as possible?   

 (Hint:  12x2 – 88x + 105 = (2x – 3)(6x – 35) ) 
 

We were fortunate in the previous example and practice problem because the functions we created to 

describe the volume were  functions of only one variable.  In some problems, the function we get will have 

more than one variable, and we will need to use additional information to change our function into a 

function of one variable.  Typically the constraints will contain the additional information we need. 
 

Example 2: We want to fence a rectangular area in our backyard for a garden.  One side of the garden is 

along the edge of the yard which is already fenced, so we only need to build a new fence along the 

other 3 sides of the rectangle  (Fig. 2).  If we have 80 feet of fencing available, what dimensions should 

the garden have in order to enclose the largest possible area? 
 

Solution: The first step is to understand the problem, and a diagram or picture of the situation  

 often helps.  Next, we need to identify the variables: in this case, the length, call it x, and  

 width, call it y, of the garden.  Fig. 3 shows the labeled diagram so now we can write a  

 formula for the function which we want to maximize: 
 
  Maximize  A = area of the rectangle = (length).(width) = x.y . 

 

 Unfortunately, our function  A  has two variables,  x  and  y , so we need to find a 

relationship between them (an equation containing both x and y) which we can solve 

for one of  x  or  y.  The constraint in this problem says that  "we have 80 feet of 

fencing available"  so      x + 2y = 80  and  y = 40 – (x/2) .  Then 
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 A = x.y = x.( 40 – (x/2) ) = 40x – 
x2
2    , a function of one variable.  We want to maximize  A. 

 
 A ' = 40 – x .  The only time  A ' = 0  is when  x = 40, so  x = 40 so there is only one critical point of  

 type (i).  A is differentiable for all  x so there are no critical numbers of the type (ii).  Finally,   

 0 ≤ x ≤ 80  (why?)  so the only critical points of type (iii)  are when  x = 0  and  x = 80.  The only critical 

points of  A  are when  x = 0, 40 , and 80 , and the maximum area occurs at one of them: 
 

  at the critical number  x = 0,  A = 40(0) – 
(0)2

2    = 0  square feet 

  at the critical number  x = 40,  A = 40(40) – 
(40)2

2    = 800  ft2 

  at the critical number  x = 80,  A = 40(80) – 
(80)2

2    = 0  ft2 
 

 so the largest rectangular garden has an area of 800 square feet and dimensions  x = 40 feet by   

 y = 40 – (x/2) = 40 – (40/2) = 20  feet. 
 
 
Practice 2: Suppose you decide to fence the rectangular garden in the corner of your yard.  Then two  

 sides of the garden are bounded by the yard fence which is already there, so you only need to use the 

80 feet of fencing to enclose the other two sides.  What are the dimensions of the new garden of largest 

area?  What are the dimensions of the rectangular garden of largest area in the corner of the yard if you 

have  F  feet of new fencing available? 
 
 

Example 3: You need to reach home as quickly as possible, but you are 

in a rowboat 4 miles from shore and your home is 2 miles up the coast  

(Fig. 4).  If you can row at 3 miles per hour and walk at  5 miles per 

hour, toward which point on the shore should you row?  Toward which 

point should you row if your home is 7 miles up the coast? 
 

Solution:  Fig. 4 shows a labeled diagram with the variable  x representing the distance from point  A, the 

nearest shore point,  to point  P, the point you row toward.  Then the total time, rowing and walking, is 
 
 T = total time = (rowing time from boat to P) + (walking time from P to B) 

  = (distance from boat to P)/(rate from boat to P) + (distance from P to B)/(rate from P to B) 

  = x2 + 42 /3 + (2 – x)/5  =  
x2 + 16

3    +  
2 – x

5   . 

 It is not reasonable to row to a point below A and then walk home, so  x ≥ 0.  Similarly, we can 

conclude that  x ≤ 2, so our interval is  0 ≤ x ≤ 2  and the endpoints are  x = 0  and  x = 2. 

 To find the other critical numbers of  T  between  x = 0 and x = 2, we need the derivative of  T. 
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 T '(x)  = 
1
3  .

1
2 (x2 + 16) –1/2 (2x)  –  

1
5   =  

x

 3 x2 + 16
   – 

1
5  . 

 
 To find where  T '(x)  is zero, set  T '(x) = 0 and solve: 

 T '(x)  =   
x

 3 x2 + 16
   – 

1
5   = 0  so   

x

 3 x2 + 16
   =  

1
5   and 

 

 5x = 3 x2 + 16    so  25x2 = 9x2 + 144  and  x = ± 3.  Neither of these numbers, however, is in our 

interval  0 ≤ x ≤ 2  so neither of them gives a minimum time. 
 

 T is differentiable for all values of x, so there are no critical numbers of type (ii). 
 

 The only critical numbers for  T  on this interval are  x = 0  and  x = 2:  T(0) =  
0 + 16

3    +  
2 – 0

5   = 

   
4
3  + 

2
5   ≈ 1.73 hours  and  T(2) =   

22 + 16
3    +  

2 – 2
5    = 

20
3    + 0 ≈ 1.49 hours.  The quickest 

 route is when  P  is  2 miles down the coast.  You should row directly toward home. 
 

 If your home is 7 miles down the coast, then the interval for  x  is  0 ≤ x ≤ 7  which has the endpoints   

 x = 0  and  x = 7.  Our function for the travel time is  T(x)  =  
x2 + 16

3    +  
7 – x

5     and   

 T '(x) =   
x

 3 x2 + 16
   – 

1
5    so the only point in our interval where  T(x) ' = 0  is at  x = 3. 

 The only critical numbers for T in the interval are  x = 0, x = 3, and x = 7: 
  

 T(0) =   
02 + 16

3    +  
7 – 0

5    = 
4
3   + 

7
5   ≈ 2.73 hours 

 T(7) =   
72 + 16

3    +  
7 – 7

5    = 
65
3    + 0  ≈  2.68 hours 

 T(3) =   
32 + 16

3    +  
7 – 3

5    = 
5
3   + 

4
5   ≈ 2.47 hours. 

 
 The quickest way home is to aim for a point P  which is  3  miles down the coast, row directly to  P, 

 and then walk along the coast to home. 
 

One challenge of max/min problems is that they may require geometry or 

trigonometry or other mathematical facts and relationships.  
 

Example 4: Find the height and radius of the least expensive closed cylinder  

 which has a volume of  1000  cubic inches.  Assume that the materials are  

 free, but that it costs  80¢  per inch to weld the top and bottom onto the  

 cylinder and to weld the seam up the side of the cylinder  (Fig. 5). 
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Solution:  If we let  r  be the radius of the cylinder and  h  be its height,  then  the volume 

 V = π r2 h = 1000.  The function we want to minimize is cost,  and   

     C  = total welding cost = (top seam cost) + (bottom seam cost) + (side seam cost) 

  = (top  seam length).(80¢/inch) + (bottom seam length).(80¢/in) + (side seam length).(80¢/in) 

  = (2πr).(80) + (2πr).(80) + (h).(80) = 320πr + 80 h. 

 Unfortunately, our function  C  is a function of two variables,  r  and  h , but we can use the 

information in the constraint,  V = π r2 h = 1000, to solve for h  and then substitute this  h  into the 

formula for  C:   1000 = π r2 h  so  h = 
1000
π r2

   and then  C = 320πr + 80 h = 320πr + 80( 
1000
πr2   ), a 

function of one  variable.  C ' = 320π – 
160000
πr3

   ,  and  C is a minimum  when  C ' = 0: at  

 

 r = 
3 500

π2   
 
≈   3.7 inches  and  h = 

1000
π r2

    ≈  
1000
π (3.7)2

    ≈ 23.3 inches. 

 

Practice 3: Find the height and radius of the least expensive closed 

cylinder which has a volume of 1000 cubic inches.  Assume that the 

only cost for this cylinder is the cost of the materials:  the material 

for the top and bottom costs  5¢ per square inch, and the material 

for the sides costs 3¢ per square inch  (Fig. 6). 
 

Example 5: Find the dimensions of the least expensive rectangular box which is three times as long as it 

is wide and which holds 100 cubic centimeters of water.  The material for the bottom costs 7¢ per cm2, 

the sides cost 5¢ per cm2  and the top costs 2¢ per cm2. 
 
Solution:  Label the box so  w = width,  l = length, and  h = height.  Then our cost function  C  is  

       C =  (bottom cost) + (cost of front and back) + (cost of ends) + (top cost) 

  =  (bottom area).(7¢) + (front and back area).(5¢) + (ends area).(5¢) + (top area).(2¢) 

  =  (wl).(7) + (2lh).(5) + (2wh).(5) + (wl).(2) = 7wl + 10lh + 10wh + 2wl = 9(wl) + 10(lh) + 10(wh). 

 Unfortunately,  C  is a function of 3 variables,  w, l, and h,  but we can use the other information in the 

constraints to eliminate some of the variables: 

 the box is "three times as long as it is wide"  so  l = 3w  and 

 C =  9wl + 10lh + 10wh = 9w(3w) + 10(3w)h + 10wh = 27w2 + 40wh. 
 

 We also know that the volume V  is 100 in3  and  V = lwh = 3w2h  (since l = 3w),  so h = 
100
3w2   .   

 Then  C = 27w2 + 40wh = 27w2 + 40w( 
100
3w2  )  =  27w2 + 

4000
3w    , a function of one variable. 
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 C ' = 54w – 
4000
3w2    ,  and  C  is minimized when  w = 

3 4000
162  

 
≈ 2.91 inches ( l = 3w ≈ 8.73 inches, 

and  h = 
100
3w2  ≈ 3.94 inches).  The minimum cost is approximately  $6.87 . 

 

Problems described in words are usually more difficult to solve because we first need to understand and 

"translate" the problem into a mathematical problem, and, unfortunately, those skills only seem to come with 

practice.  With practice, however, you will start to recognize patterns for understanding, translating, and 

solving these problems, and you will develop the skills you need.  So read carefully, draw pictures, think 

hard, and do the best you can. 

 
Problems 
 

1. (a) You have 200 feet of fencing to enclose a rectangular vegetable garden.  What should the 

dimensions of your garden be in order to enclose the largest area?   

 (b) Show that if you have P feet of fencing available, the garden of greatest area is a square. 

 (c) What are the dimensions of the largest rectangular garden you can enclose with P feet of fencing if 

one edge of the garden borders a straight river and does not need to be fenced? 

 (d)  Just thinking –– calculus will not help with this one:  What do you think is the shape of the largest 

garden which can be enclosed with P feet of fencing if we do not require the garden to be 

rectangular?  What do you think is the shape of the largest garden which can be enclosed with P 

feet of fencing if one edge of the garden borders a river and does not need to be fenced? 
 

2. (a) You have 200 feet of fencing available to construct a rectangular pen with a fence divider down 

the middle  (see Fig. 7).  What dimensions of the pen enclose the largest total area? 

 (b) If you need 2 dividers, what dimensions of the pen enclose the largest area? 

 (c) What are the dimensions in parts (a) and (b) if one edge of the pen borders on a  

  river and does not require any fencing? 
 
 

 

3.  You have 120 feet of fencing to construct a pen with 4 equal sized stalls. 

 (a) If the pen is rectangular and shaped like the Fig. 8, what are the  

  dimensions of the pen of largest area and what is that area? 

 (b) The square pen in Fig. 9 uses 120 feet of fencing and encloses a larger area  

  (400 square feet) than the best design in part (a).  Design a pen which uses  

  only 120 feet of fencing and has 4 equal sized stalls but which encloses even  

  more than 400 square feet.  (Suggestion: don't use rectangles and squares.) 
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4. (a) You have a 10 inch by 15 inch piece of tin which you plan to 

form into a box (without a top) by cutting a square from each 

corner and folding up the sides (see Fig. 10).  How much should 

you cut from each corner so the resulting box has the greatest 

volume? 

 (b) If the piece of tin is A inches by B inches, how much should you 

cut from each corner so the resulting box has the greatest volume? 
 
 

5. You have a 10 inch by 10 inch piece of 

cardboard which you plan to cut and fold as 

shown in Fig. 11 to form a box with a top.  

Find the dimensions of the box which has 

the largest volume. 
 
 

6. (a) You have been asked to bid on the construction of a square-bottomed box with no top which will 

hold 100 cubic inches of water.  If the bottom and sides are made from the same material, what are 

the dimensions of the box which uses the least material?  (Assume that no material is wasted.) 

 (b) Suppose the box in part (a) uses different materials for the bottom and the sides.  If the bottom 

material  costs 5¢ per square inch and the side material costs 3¢ per square inch, what are the 

dimensions of the least expensive box which will hold 100 cubic inches of water? 

 (This is a "classic" problem which has many variations.  We could require that the box be twice as long 

as it is wide, or that the box have a top, or that the ends cost a different amount than the front and back, 

or even that it costs some amount of money to weld each inch of edge.  You should be able to set up 

the cost equations for these variations.) 
 

7. (a) Determine the dimensions of the least expensive cylindrical can which will hold 100 cubic inches 

if the materials cost 2¢, 5¢ and 3¢ respectively for the top, bottom and sides. 

 (b) How do the dimensions of the least expensive can change if the bottom material costs more than 

5¢ per square inch? 
 

8. You have 100 feet of fencing to build a pen in the shape of a circular sector, 

the "pie slice" in Fig. 12.  The area of such a sector is rs/2.   

 (a)  What value of r  maximizes the enclosed area?   

 (b)  What is the central angle when the area is maximized? 
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9. You are a lifeguard standing at the edge of the water when 

you notice a swimmer in trouble  (Fig. 13).  Assuming you 

can run about 8 meters per second and swim about 2 m/s,  

how far along the shore should you run before diving into the 

water in order to reach the swimmer as quickly as possible?   

 
 

10. (a) You have been asked to determine the least expensive route for a telephone cable which connects 

Andersonville with Beantown (see Fig. 14).  If it costs $5000 per mile to lay 

the cable on land and $8000 per mile to lay the cable across the river and the 

cost of the cable is negligible, find the least expensive route.  

(b)  What is the least expensive route if the cable costs $7000 per mile plus  

 the  cost to lay it. 
 

 

11. You have been asked to determine where a water works should be 

built along a river between Chesterville and Denton (see Fig. 15) to 

minimize the total cost of the pipe to the towns. 

 (a) Assume that the same size (and cost) pipe is used to each town.  

(This part can be done quickly without using calculus.) 

 (b) Assume that the pipe to Chesterville costs $3000 per mile and to 

Denton it costs $7000 per mile. 
 

12. Light from a bulb at A is reflected off a flat mirror to your 

eye at point B  (see Fig. 16).  If the time (and length of the path) 

from A to the mirror and then to your eye is a minimum, show 

that the angle of incidence equals the angle of reflection.  (Hint:  

This is similar to the previous problem.)  
 

13. U.S. postal regulations state that the sum of the length and girth (distance  

 around) of a package must be no more than 108 inches.  (Fig. 17) 

 (a) Find the dimensions of the acceptable box with a square end  

  which has the largest volume. 

 (b) Find the dimensions of the acceptable box which has the largest  

      volume if its end is a rectangle  twice as long as it is wide. 

         (c) Find the dimensions of the acceptable box with a circular end  

      which has the largest volume. 
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14. Just thinking  ––  you don't need calculus for this problem:  A spider and 

a fly are located on opposite corners of a cube (see Fig. 18).  What is the 

shortest path along the surface of the cube from the spider to the fly? 
 

15. Two sides of a triangle are 7 and 10 inches respectively.  What is the 

length of the third side so the area of the triangle will be greatest?    

 (This problem can be done without using calculus.  How?  If you do  

 use calculus, consider the angle  θ  between the two sides.) 
  

16. Find the shortest distance from the point (2,0) to the curve 

 (a)  y = 3x – 1 (b)  y = x2 (c)  x2 + y2 = 1 (d)  y = sin(x) 
 

17. Find the dimensions of the rectangle with the largest area if the base must be on the x-axis and its other 

two corners are on the graph of  

  (a) y = 16 – x2   on  [ –4, 4] (b) x2 + y2 = 1   on  [ –1, 1] 

  (c) |x| + |y| = 1   on  [ –1, 1] (d) y = cos(x)     on [ –π/2, π/2] 
 

18.  The strength of a wooden beam is proportional to the product of its width and the  

 square of its height  (Fig. 19).   

 (a) What are the dimensions of the strongest log which can be cut from a log with diameter 12 inches? 

 (b) What are the dimensions of the strongest log which can be cut from a log with diameter  d  inches? 

 

19.  You have a long piece of 12 inch wide metal which you are going to fold along  

 the center line to form a V–shaped gutter  (Fig. 20).  What angle θ  will give the  

 gutter which holds the most water  (the largest cross–sectional area)? 

 

 

20. You have a long piece of 8 inch wide metal which you are going to 

make into a gutter by bending up 3 inches on each side  (Fig. 21).  What 

angle θ  will give the gutter which holds the most water  (with the 

largest cross–sectional area)?  

 
 

21. You have a 6 inch diameter circle of paper which you want to form into a  

 drinking cup by removing a pie–shaped wedge and forming the remaining  

 paper into a cone  (Fig. 22).  Find the height and top radius of so the volume of  

 the cup is as large as possible. 
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22.  (a) What value of  b  minimizes the sum of the squares of the vertical distances of  

  the line y=2x+b from the points ( 1, 1), ( 1, 2) and ( 2, 2)?   (Fig. 23) 

 (b) What slope  m  minimizes the sum of the squares of the vertical distances of  

  the line y=mx from the points ( 1, 1), ( 1, 2) and ( 2, 2)? 

 (c) What slope  m  minimizes the sum of the squares of the vertical distances of  

  the line y = mx  from the points  ( 2, 1), ( 4, 3), ( –2, –2), and ( –4, –2)? 

 

23.  You own a small airplane which holds a maximum of 20 passengers.  It costs you $100 per flight from 

St. Thomas to St. Croix for gas and wages plus an additional $6 per passenger for the extra gas 

required by the extra weight.  The charge per passenger is $30 each if 10 people charter your plane (10 

is the minimum number you will fly), and this charge is reduced by $1 per passenger for each 

passenger over 10 who goes (that is, if 11 go they each pay $29, if 12 go they each pay $28, etc.).  

What number of passengers on a flight will maximize your profits? 
 

24. Prove:  If  f  and  g  are differentiable functions and if the vertical distance 

between  f  and  g  is greatest at  x = c,  then  f '(c) = g '(c)  and the tangent lines 

to  f  and  g  are parallel when  x = c. (Fig. 24) 

 

25. Profit is revenue minus expenses.  Assume that revenue and expenses are 

differentiable functions and show that when profit is maximized, then marginal 

revenue (dR/dx) equals marginal expense (dE/dx). 

 

26. D. Simonton claims that the "productivity levels" of people in different fields can be described as a 

function of their "career age"  t  by  p(t) = e–at – e –bt  where  a  and  b  are constants which depend on 

the field of work,  and career age is approximately 20 less than the actual age of the individual. 

(a) Based on this model, at what ages do mathematicians (a=.03, b=.05), geologists (a=.02, b=.04), 

and historians (a=.02, b=.03)  reach their maximum productivity? 

(b) Simonton says  "With a little calculus we can show that the curve ( p(t) ) maximizes at  

t =   
1

b – a   ln(  
b
a   )."  Use calculus to show that Simonton is correct. 

Note:  Models of this type have uses for describing the behavior of groups, but it is dangerous and 

usually invalid to apply  group descriptions or comparisons to individuals in the group.   

(Scientific Genius, by Dean Simonton, Cambridge University Press, 1988, pp. 69 – 73) 
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27. After the table was wiped and the potato chips dried off, the question 

remained:  "Just how far could a can of cola be tipped before it fell over?"  

(i) For a full can or an empty can the answer was easy:  the center of gravity  

(cg)  of the can is at the middle of the can, half as high as  

 the height of the can, and we can tilt the can until the  cg  is directly 

above the bottom rim.  (Fig. 25a)  Find  θ.  

(ii) For a partly filled can more thinking was needed.  Some ideas you  

 will see in chapter 5 let us calculate that the  cg  of a can containing  x  cm of cola is   

 C(x)  =   
360 + 9.6x2

60 + 19.2x     cm  above the bottom of the can.  Find the height  x  of cola  

 in the can which will make the  cg  as low as possible. 

(iii) Assuming that the cola is frozen solid (so the top of the cola stays parallel to the bottom of the can), 

how far can we tilt a can containing  x  cm of cola.  (Fig. 25b) 

(iv) If the can contained  x  cm of liquid cola, could we tilt it more or less far than the frozen cola before 

it would fall over?   

 
28.  Just thinking ––  calculus will not help with this one:   

 (a) Four towns are located at the corners of a square (see Fig. 26).  What is the shortest length of road 

we can construct so that it is possible to travel along the road from any town to any other town?   

 (b) What is the shortest connecting path for 5 towns located on the corners of a pentagon? 

 

 

 

 

 
 

 (The problem of finding the shortest path connecting several points in the plane is called the 

"Steiner problem."  It is important for designing computer chips and telephone networks to be as 

efficient as possible.) 
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Generalized Max/Min Problems   
 

The previous max/min problems were all numerical problems:  the amount of fencing in problem 2 was 200 

feet, the sides of the piece of tin in problem 4 were 10 and 15, and the parabola in problem 17a was  

y = 16 – x2.  In doing those problems you might have noticed some patterns among the numbers in the 

problem and the numbers in your answers, and you might have wondered if the pattern was an accident of 

the numbers or if it there really was a pattern at work.  Rather than trying several numerical examples to see 

if the "pattern" holds, mathematicians, engineers, scientists and others sometimes resort to generalizing the 

problem.  We free the problem from the particular numbers by replacing the numbers with letters, and then 

we solve the generalized problem.  In this way, relationships between the values in the problem and those 

in the solution can become more obvious.  Solutions to these generalized problems are also useful if you 

want to program a computer or calculator to quickly provide numerical answers. 
 
29. (a) Find the dimensions of the rectangle with the greatest area that can be built so the base of the  

  rectangle is on the x–axis between 0 and 1 (0≤x≤1) and one corner of the rectangle is on the curve  

y = x2 (Fig. 27a).  What is the area of this rectangle? 

 (b) Generalize the problem in part (a) for the parabola y = Cx2  with C > 0  and   0≤x≤1 (Fig. 27b). 

 (c) Generalize for the parabola y = Cx2  with C > 0  and   0≤x≤B (Fig. 27c). 
 
 
 
 
 
 
 
 
 
 
30. (a) Find the dimensions of the rectangle with the greatest area that can be built so the base of the  

  rectangle is on the x–axis between 0 and 1 (0≤x≤1) and one corner of the rectangle is on the curve  

y = x3 .  What is the area of this rectangle? 

 (b) Generalize the problem in part (a) for the curve y = Cx3  with C > 0  and   0≤x≤1. 

 (c) Generalize for the curve y = Cx3  with C > 0  and   0≤x≤B . 

 (d) Generalize for the curve y = Cxn  with C > 0,  n a positive integer, and 0≤x≤B. 
 

31. (a) The base of a right triangle is 50 and the height is 20  (Fig. 28a).  Find the dimensions and area of 

the rectangle with the greatest area that can be enclosed in the triangle if the base of the rectangle 

must lie on the base of the triangle. 

 (b) The base of a right triangle is B and the height is H  (Fig. 28b).  

Find the dimensions and area of the rectangle with the greatest 

area that can be enclosed in the triangle if the base of the 

rectangle must lie on the base of the triangle. 

 (c) State your general conclusion from part (b) in words. 
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32. (a) You have T dollars to buy fence to enclose a rectangular plot of land (Fig. 

29).  The fence for the top and bottom costs $5 per foot and for the sides 

it costs $3 per foot.  Find the dimensions of the plot with the largest area.  

For this largest plot, how much money was used for the top and bottom, 

and for the sides? 

 (b) You have T dollars to buy fence to enclose a rectangular plot of land.   

  The fence for the top and bottom costs $A per foot and for the sides it costs $B per foot.  Find the 

dimensions of the plot with the largest area.  For this largest plot, how much money was used for 

the top and bottom (together), and for the sides (together)? 

 (c) You have T dollars to buy fence to enclose a rectangular plot of land.  The fence costs $A per foot 

for the top, $B/foot for the bottom, $C/ft for the left side and $D/ft for the right side.  Find the 

dimensions of the plot with the largest area.  For this largest plot, how much money was used for 

the top and bottom (together), and for the sides (together)? 

 

33. Determine the dimensions of the least expensive cylindrical  

 can which will hold  V cubic inches if the top material costs  

 $A per square inch, the bottom material costs $B/in2, and the 

side material costs $C/in2. 
 

34. Find the location of  C  in Fig. 30 so the sum of the distances 

from A to C and from C to B is a minimum. 
 
 
Section 3.5 PRACTICE  Answers 
 
Practice 1: V(x) = x(15 – 2x)(7 – 2x) = 4x3 – 44x2 + 105x. 

V '(x) = 12x2 – 88x + 105  =  (2x – 3)(6x – 35)  which is defined for all x  so the only critical numbers 

are the endpoints  x = 0 and x = 7/2  and the places where  V '  equals 0,  at x = 3/2  and  x = 35/6  (but  

35/6  is not in the interval  [0, 7/2]  so it is not practical for this applied problem). 
 

The maximum volume must occur when  x = 0, x = 3/2, or x = 7/2): 

V(0) = 0.(15 – 2.0).(7 – 2.0) = 0 
 

V( 
3
2  ) = 

3
2  .(15 – 2. 

3
2  ).(7 – 2. 

3
2  )  

 = 
3
2 ( 12 )( 4 )  = 72   max. 

 

V( 
7
2  ) = 

7
2  .(15 – 2. 

7
2  ).(7 – 2. 

7
2  )  

 = 
7
2 ( 8 )( 0 )  = 0 

Fig. 31 shows the graph of  V(x). 
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Practice 2: (a)  We have  80 feet of fencing.  (See Fig. 32).  Our assignment is to maximize the area  

 of the garden:  A = x.y   (two variables).  Fortunately we have the constraint that  x + y = 80  so   

 y = 80 – x, and our assignment reduces to maximizing a function of one variable:   

  maximize  A = x.y = x.(80 – x) = 80x – x2 . 

  A ' = 80 – 2x  so  A ' = 0  when  x = 40. 

  A '' = –2  so  A  is concave down, and  A  has a  

   maximum at x = 40. 

  The maximum area is  A = 40.40 = 1600 square feet  when   

  x = 40 ft. and  y = 40 ft.  The maximum area garden is a square. 
 
  
(b)  This is very similar to part (a) except we have  F  feet of fencing instead of 80 feet. 

  x + y = F  so  y = F – x, and we want to maximize  A = xy = x(F – x) = Fx – x2 . 

A ' = F – 2x  so  A ' = 0  when  x = F/2  and  y = F/2.  The maximum area is A = F2/4  square  

feet  and that occurs when the garden is a square and half of the new fence is used on each of the  

two new sides. 

 
Practice 3:  Cost C = 5(area of top) + 3(area of sides) + 5(area of bottom)  = 5(πr2) + 3(2πrh) + 5(πr2) 

so our assignment is to minimize  C = 10πr2 + 6πrh , a function of two variables  r  and  h. 
 

Fortunately we also have the constraint that  volume = 1000 in3 = πr2h  so  h = 
1000
πr2

  .  Then 

 C = 10πr2 + 6πr( 
1000
πr2

  )  =  10πr2 + 
6000

r    so  C ' = 20πr – 
6000

r2
   .  C ' = 0 if  20πr – 

6000
r2

   = 0  

so  20πr3 = 6000  and  r = (  
6000
20π    )1/3 ≈ 4.57 in.  Then  h =  

1000
πr2

  ≈   
1000

π( 4.57 )2
   ≈  15.24 in. 

(  C '' = 20π + 
12000

r3
   > 0  for all  r > 0  so  C  is concave up and we have found a minimum of C.) 
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3.6 ASYMPTOTIC BEHAVIOR OF FUNCTIONS 
 

When you turn on an automobile or a light bulb many things happen, and some of them are uniquely part of 

the start up of the system.  These "transient" things occur only during start up, and then the system settles 

down to its steady–state operation.  The start up behavior of systems can be very important, but sometimes 

we want to investigate the steady–state or long term behavior of the system:  how is the system behaving 

"after a long time?"  In this section we consider ways of investigating and describing the long term 

behavior of functions and the systems they may model:  how is a function behaving "when  x  (or –x) is 

arbitrarily large?" 

   
Limits As  X  Becomes Arbitrarily Large  ("Approaches Infinity")  
 
The same type of questions we considered about a function  f  as  x  approached a finite number can also be  

asked about  f  as  x  "becomes arbitrarily large,"  "increases without bound," and is eventually larger than 

any fixed number. 
 

Example 1: What happens to the values of  f(x) =  
5x

2x + 3   (Fig. 1)   and  g(x) =  
sin(7x + 1)

3x     as   

 x becomes arbitrarily large, as  x increases without bound? 
 
Solution: One approach is numerical:  evaluate  f(x)  and  g(x)  for some "large" values of  x  and see if  

 there is a pattern to the values of  f(x)  and  g(x).  Fig. 1 shows the values of  f(x)  and  g(x)  for several 

large values of  x.  When  x  is very large, it appears that the values of  f(x)  

are close to  2.5 = 5/2  and the values of  g(x)  are close  

 to 0.  In fact, we can guarantee that the values of  f(x)  are as close to  5/2  

as someone wants by taking  x  to be "big enough."  The values of   

 f(x) =  
5x

2x + 3   may or may not ever equal  5/2  (they never do), but if   

 x  is "large," then  f(x)  is "close to"  5/2.  Similarly, we can guarantee that 

the values of  g(x)  are as close to  0  as someone wants by taking   

 x  to be "big enough."  The graphs of  f  and  g  are shown in Fig. 2  for  

"large"  values of  x. 

2x + 3

5x
3x

sin(7x + 1)
x

10

100

1000

10,000

2.17

2.463

2.4962

2.4996

0.03170

–0.00137

0.00033

0.000001

Fig. 1
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Practice 1: What happens to the values of  f(x) =  
3x + 4
x – 2     and  g(x) =  

cos(5x)
2x + 7     as  x  becomes 

arbitrarily large? 
 

The answers for Example 1  can be written as limit statements:   
 

"As  x  becomes arbitrarily large,   

the values of    
5x

2x + 3   approach   
5
2   " can be written   "

! 

lim
x"#

 
5x

2x + 3
 =  

5
2   "  and 

 

"the values of  
sin(7x + 1)

3x    approach  0." can be written  "

! 

lim
x"#

 
sin(7x +1)

3x
 =  0  ." 

 
The  symbol  "

! 

lim
x"#

 "  is read  "the limit as  x  approaches infinity"  and means  "the limit as  x  becomes 

arbitrarily large"  or as  x  increases without bound.  (During this discussion and throughout this book, we 

do not treat "infinity" or  "∞", as a number, but only as a useful notation.  "Infinity" is not part of the real 

number system, and we use the common notation  "x→∞"  and the phrase  "x approaches infinity"  only to 

mean that  "x  becomes arbitrarily large."  The notation  "x → –∞,"  read as  "x  approaches negative 

infinity," means that the values of  –x  become arbitrarily large.) 
 

Practice 2: Write your answers to Practice 1  using the limit notation. 

 
The   

! 

lim
x"#

 f(x)   asks about the behavior of  f(x)  as the values of  x get larger and larger without any 

bound,  and one way to determine this behavior is to look at the values of  f(x)  at some values of  x  which 

are "large".  If the values of the function get arbitrarily close to a single number as  x  gets larger and larger, 

then we will say that number is the limit of the function as  x  

approaches infinity.  A definition of the limit as "x→∞" is given at 

the end of this section. 
 

Practice 3: Fill in the table in Fig. 3  for  f(x) =  
6x + 7
3 – 2x    

 and  g(x) =  
sin(3x)

x    , and then use those values   
 
 to estimate   

! 

lim
x"#

 f(x)  and  

! 

lim
x"#

 g(x) . 

 

Example 2: How large does  x  need to be to guarantee that  f(x) = 
1
x   < 0.1?  0.001?   < E (assume  E>0)? 

 

Solution: If  x > 10, then  
1
x  < 

1
10  = 0.1  (Fig. 4).  If  x > 1000, then  

1
x  < 

1
1000   = 0.001.   

 
 In general, if E  is any positive number, then we can guarantee that  | f(x) | < E  by picking only  

10

200

5000

20,000

x 6x + 7

3 – 2x

sin(3x)
x

Fig. 3
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 values of  x > 
1
E  > 0:  if  x > 

1
E  ,  then  

1
x  < E.   

 From this we can conclude that     

! 

lim
x"#

 
1

x
 = 0 . 

 
Practice 4: How large does  x  need to be to guarantee that   

 f(x) = 
1
x2   < 0.1?  0.001?   < E (assume  E>0)? 

 Evaluate   

! 

lim
x"#

 
1

x
2

 . 

 

The Main Limit Theorem (Section 1.2) about limits of combinations of functions is true if the limits as  "x→a"  

are replaced with limits as "x→∞", but we will not prove those results. 

 

Polynomials occur commonly, and we often need the limit,  as x → ∞ , of ratios of polynomials or 

functions containing powers of  x.  In those situations the following technique is often helpful:  

(i) factor the highest power of  x  in the denominator from both the numerator and the 

denominator,  and 
 

(ii) cancel the common factor from the numerator and denominator. 
 

The limit of the new denominator is a constant, so the limit of the resulting ratio is easier to determine. 
 

Example 3: Determine  

! 

lim
x"#

 
7x

2
+ 3x $ 4

3x
2
$ 5

 and    

! 

lim
x"#

 
9x + 2

3x
2
$ 5x +1

 . 

 

Solutions: 

! 

lim
x"#

 
7x

2
+ 3x $ 4

3x
2
$ 5

 = 

! 

lim
x"#

 
x

2
(7 + 3/ x $ 4 / x

2
)

x
2
(3$ 5 / x

2
)

  factoring out  x2  

 

 = 

! 

lim
x"#

 
7 + 3/ x $ 4 / x

2

3$ 5 / x
2

 =  
 7 
3   canceling x2  and noting  

3
x  , 

4
x2  , 

5
x2   → 0 . 

  

Similarly, 

! 

lim
x"#

 
9x + 2

3x
2
$ 5x +1

  = 

! 

lim
x"#

 
x

2
(9 / x $ 2 / x

2
)

x
2
(3$ 5 / x +1/ x

2
)

  

 

  = 

! 

lim
x"#

 
9 / x $ 2 / x

2

3$ 5 / x +1/ x
2

  =   
0
3    =  0  . 

 

If we have a difficult limit, as x → ∞ , it is often useful to algebraically manipulate the function into the 

form of a ratio and then use the previous technique. 

 

If the values of the function oscillate and do not approach a single number as  x  becomes arbitrarily large, 

then the function does not have a limit as  x approaches infinity:  the limit Does Not Exist. 
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Example 4: Evaluate   

! 

lim
x"#

 sin(x)    and   

! 

lim
x"#

  x – [x]  . 

 
Solution:  f(x) = sin(x)  and  g(x) = x – [x]  do not have limits as  x → ∞.  As  x  grows without bound, the  

 values of  f(x) = sin(x)  oscillate between  –1  and  +1  (Fig. 5), and  these values of sin(x)  do not 

approach a single number.  Similarly,  g(x) = x – [x]   continues to take on values between 0  and  1, 

and these values are not approaching a single number. 

 

 

 

 

 

 

 

 

 

 
 

 Using Calculators To Help Find  Limits as  "x →  ∞"  or  "x →  – ∞" 
 

 Calculators only store a limited number of digits of a number, and this is a severe limitation when we are 

dealing with extremely large numbers. 
 

 Example: The value of  f(x) = (x + 1) – x  is clearly equal to  1  for all values of  x, and your calculator 

will give the right answer if you use it to evaluate  f(4) or f(5).  Now use it to evaluate f  for a big value  

 of x, say  x = 1040 .  f(1040) = (1040 + 1) –1040 = 1 , but most calculators do not store 40 digits of a 

number, and they will respond that  f(1040) = 0  which is wrong.  In this example the calculator's error is 

obvious, but the same type of errors can occur in less obvious ways when very large numbers are used on 

calculators.   
 
 You need to be careful with and somewhat suspicious of the answers your calculator gives you. 
 

 Calculators can still be helpful for examining some limits as "x → ∞"  and  "x → –∞"  as long as we do  

 not place too much faith in their responses.   

 

 Even if you have forgotten some of the properties of natural logarithm function  ln(x)  and the  

 cube root function  3 x  ,  a little experimentation on your calculator can help you determine  

 that   

! 

lim
x"#

 
ln(x)

x
3

 = 0 . 
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The Limit is Infinite 
 

The function  f(x) =   
1
x2   is undefined  at  x = 0, but we can still ask about the 

behavior of  f(x)  for values of x  "close to" 0.  Fig. 6  indicates that if x is very 

small, close to 0, then  f(x) is very large.  As the values of  x  get closer to  0, the 

values of  f(x) grow larger and can be made as large as we want by picking  x  to 

be close enough to  0.  Even though the values of  f  are not approaching any 

number, we use the "infinity" notation to indicate that the values of  f  are 

growing without bound, and write 
 
  

! 

lim
x"0

 = ∞ . 

 

The values of    
1
x2     do not equal "infinity:" 

! 

lim
x"0

 = ∞  means that the values of   
1
x2    can be made 

arbitrarily large by picking values of  x  very close to  0. 

 

The limit, as  x → 0,  of   
1
x    is slightly more complicated.  If  x  is close to 0, then the value of  f(x) = 1/x  

can be a large positive number or a large negative number, depending on the sign of  x.   

The function  f(x) = 1/x  does not have a (two–sided) limit as  x approaches 0, but we can still ask about 

one–sided limits: 

 

! 

lim
x"0

+
 
1

x
 =  ∞    and   

! 

lim
x"0

#
 
1

x
 =  – ∞  . 

 

Example 5: Determine    

! 

lim
x"3

+
 
x # 5

x # 3
  and  

! 

lim
x"3

#
 
x # 5

x # 3
 . 

 
Solution:   (a)  As  x→ 3+,  then  x – 5 → –2  and  x – 3 → 0 .  Since the denominator is approaching  0  we  

 cannot use the Main Limit Theorem, and we need to examine the functions more carefully.  If  x→ 3+, 

then  x > 3  so  x – 3 > 0.  If  x  is close to  3  and slightly larger than  3,  then the ratio of  x – 5  to   
 

 x – 3  is the ratio    
a number close to –2

small positive number    = large negative number.  As  x > 3  gets closer to 3,   
x – 5
x – 3     

 is   
a number closer to –2

positive and closer to 0   =  larger negative number.  By taking  x > 3  closer  to 3,  the denominator gets 

closer to  0  but is always positive, so the ratio gets arbitrarily large and negative: 

! 

lim
x"3

+
 
x # 5

x # 3
 =  –∞ . 

  (b)   As   x→ 3–,  then    x – 5 → –2  and  x – 3  gets arbitrarily close to 0, and  x – 3  is negative.  The  

 value of the ratio   
x – 5
x – 3    is   

a number close to –2
arbitrarily small negative number   =  arbitrarily large positive  

 number: 

! 

lim
x"3

#
 
x # 5

x # 3
 =  + ∞ . 
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Practice 5: Determine   

! 

lim
x"2

+
 

7

2 # x
 , 

! 

lim
x"2

+
 

3x

2x # 4
 ,   

! 

lim
x"2

+
 
3x

2
# 6x

x # 2
    

 

Horizontal Asymptotes 
 

The limits of  f , as "x → ∞" and  "x → –∞," give us information about horizontal asymptotes of f. 

 
 
 Definition:  The line  y = K  is a horizontal asymptote of f  if  

! 

lim
x"#

 f(x)  = K  or  

! 

lim
x"#$

 f(x)  = K. 

    
 
 

Example 6: Find any horizontal asymptotes of  f(x) =   
2x + sin(x)

x    . 
 

Solution:   

! 

lim
x"#

 
2x + sin(x)

x
=   

! 

lim
x"#

 
2x

x
 +  

sin(x)

x
  =  2 + 0 = 2  so the line  y = 2  is a  

 

 horizontal asymptote of  f.  The limit,  

as  "x → – ∞,"  is also  2  so  y = 2  is 

the only horizontal asymptote of  f.  

The graphs of  f  and  y = 2  are given 

in Fig. 7 .  A function may or may not 

cross its asymptote. 

 

 
Vertical Asymptotes 
 

 Definition: The vertical line  x = a  is a vertical asymptote of the graph of  f   
 
  if either or both of the one–sided limits, as  x → a–  or  x → a+ , of  f  is infinite. 
      

 

If our function  f  is  the ratio of a polynomial P(x) and a polynomial Q(x),  f(x) = 
P(x)
Q(x)   ,  then the only 

candidates for vertical asymptotes are the values of  x  where  Q(x) = 0.  However, the fact that  Q(a) = 0 is 

not enough to guarantee  that the line  x = a  is a vertical asymptote of  f ;  we also need to evaluate  P(a).  

If  Q(a) = 0  and  P(a) ≠ 0, then the line  x = a  is a vertical asymptote of  f.  If  Q(a) = 0  and  P(a) = 0, then 

the line  x = a  may or may not be a vertical asymptote. 
 

Example 7: Find the vertical asymptotes of  f(x) =   
x2 – x – 6

x2 – x
    and  g(x) =   

x2 – 3x
x2 – x

   . 
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Solution: f(x) =   
x2 – x – 6

x2 – x
   =   

(x – 3)(x + 2)
x(x – 1)     so the only values which make the denominator  0  are  

x = 0  and  x = 1,  and these are the only candidates to be vertical asymptotes. 
 
 

! 

lim
x"0

+
 f(x) = +∞    and   

! 

lim
x"1

+
 f(x) = –∞  so x = 0  and  x = 1  are both vertical asymptotes of  f. 

 

 g(x) =   
x2 – 3x
x2 – x

   =   
x(x – 3)
x(x – 1)   so the only candidates to be vertical asymptotes are  x = 0  and  x = 1. 

  

 

! 

lim
x"1

+
 g(x) = 

! 

lim
x"1

+
 
x(x # 3)

x(x #1)
 = 

! 

lim
x"1

+
 
x # 3

x #1
 =  –∞   so x = 1  is a vertical asymptote of g.    

 

 

! 

lim
x"0

 g(x) = 

! 

lim
x"0

 
x(x # 3)

x(x #1)
 = 

! 

lim
x"0

 
x # 3

x #1
 =  3 ≠ ∞  so  x = 0  is not a vertical asymptote. 

 

Practice 6: Find the vertical asymptotes of  f(x) =   
x2 + x

x2 + x – 2
    and  g(x) =   

x2 – 1
x – 1    . 

 

Other Asymptotes as  "x → ∞" and  "x →  –∞" 

 

If the limit of  f(x)   as  "x → ∞" or  "x → –∞"  is a constant  K, then the graph of  f  gets close to the 

horizontal line y = K , and  we said that  y = K  was a horizontal asymptote of  f.  Some functions, however, 

approach other lines which are not horizontal. 
 

Example 8: Find all asymptotes of  f(x) =   
x2 + 2x + 1

x    = x + 2 + 
1
x    .   

 
Solution:   If  x  is a large positive number or a large negative number,  
 

 then   
1
x    is very close to  0, and the graph of  f(x)   is very close to the line  

y = x + 2  (Fig. 8).  The line  y = x + 2  is an asymptote of the graph of  f.   
 

 If  x  is a large positive number, then  1/x  is positive, and the graph of  f   

 is slightly above the graph of  y = x + 2.  If  x  is a large negative number, 

then  1/x  is negative, and  the graph of  f  will be slightly below the graph  

 of  y = x + 2.  The  1/x  piece of  f  never equals  0  so the graph of  f  never  

 crosses or touches the graph of the asymptote  y = x + 2. 
 

 The graph of  f  also has a vertical asymptote at  x = 0  since  

! 

lim
x"0

+
 f(x) = ∞   and   

! 

lim
x"0

#
 f(x) =  – ∞ . 
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Practice 7: Find all asymptotes of  g(x) =   
2x2 – x – 1

x + 1    =  2x – 3 + 
2

x + 1  . 
 

Some functions even have nonlinear asymptotes, asymptotes which are not straight lines.  The graphs of 

these functions approach some nonlinear function when the values of  x  are arbitrarily large. 

 

Example 9: Find all asymptotes of  f(x) =   
x4 + 3x3 + x2 + 4x + 5

x2 + 1
   =  x2 + 3x + 

x + 5
x2 + 1

   . 

 

Solution:  When  x  is very large, positive or negative,  then   
x + 5
x2 + 1

    is very close to  0,  and the  

 graph of  f  is very close to the graph of  g(x) = x2 + 3x .  The function  g(x) = x2 + 3x  is a nonlinear 

asymptote of  f.  The denominator of  f  is never 0, and  f  has no vertical asymptotes. 
  

Practice 8: Find all asymptotes of  f(x) =  
x3 + 2sin(x)

x    =  x2 +  
2sin(x)

x    . 

 
If  f(x)  can be written as a sum of two other functions,  f(x) = g(x) + r(x) , with   

! 

lim
x"±#

 r(x) = 0, then  the 

graph of  f  is asymptotic to the graph of  g , and  g  is an asymptote  of f. 

 
Suppose  f(x) =  g(x) + r(x)  and    

! 

lim
x"±#

 r(x) = 0: 

 if g(x) = K , then  f  has a horizontal asymptote  y = K; 

 if g(x) = ax + b , then  f  has a linear asymptote   y = ax + b; or 

 if g(x) = a nonlinear function, then  f  has a nonlinear asymptote  y = g(x). 
 
 
Definition of   

! 

lim
x"#

 f(x) = K  

 
The following definition states precisely what is meant by the phrase  "we can guarantee that the values  

of  f(x)  are arbitrarily close to  K  by using sufficiently large values of  x." 

 
 
   Definition: 

! 

lim
x"#

 f(x) = K   

 means 

 for every given  ε > 0,  there is a number  N  so that 

 if x is larger than  N 

 then f(x)  is within  ε  units of  K. 

 (equivalently;   | f(x) – K | < ε  whenever  x > N. ) 
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Example 10: Show that    

! 

lim
x"#

 
x

2x +1
= 

1
2  . 

 

Solution: Typically we need to do two things.  First we need to find a value of  N, usually depending on  ε.  

Then we need to show that the value of  N  we found satisfies the conditions of the definition. 

 (i)  Assume that  | f(x) – K |  is less than  ε  and solve for  x > 0. 

  If  ε > | 
x

2x + 1   – 
1
2  | = | 

2x – (2x + 1)
2(2x + 1)    | =  |  

–1
4x + 2    | =  

1
4x + 2   , then  4x + 2 > 

1
ε   and   

  x > 
1
4 ( 

1
ε – 2 ) .  For any  ε > 0, take  N =  

1
4 ( 

1
ε – 2 ) . 

 (ii)  For any  ε > 0,  take  N =  
1
4 ( 

1
ε – 2 ) .  (Now we can just reverse the order of the steps in part (i). ) 

  If  x > 0  and  x > N =  
1
4 ( 

1
ε – 2 ) ,  

  then  4x + 2 > 
1
ε   so  ε > 

1
4x + 2   =  | 

x
2x + 1   –  

1
2   | = | f(x) – K |.   

  We have shown that  "for every given  ε, there is an  N"  that satisfies the definition. 
 
 
PROBLEMS 
 

1. Fig. 9  shows  f(x)  and  g(x)  for  0 ≤ x ≤ 5.  Let  h(x) =  
f(x)
g(x)   . 

(a) At what value of  x  does  h(x)  have a root? 

(b) Determine the limits of  h(x)  as  x→ 1+, x→ 1–, x→ 3+, and   x→3– . 

(c) Where does  h(x)  have a vertical asymptote? 
 

2. Fig. 10  shows  f(x)  and  g(x)  for  0 ≤ x ≤ 5.  Let  h(x) =  
f(x)
g(x)   . 

(a) At what value(s)  of  x  does  h(x)  have a root? 

(b) Where does  h(x)  have vertical asymptotes? 
 

3. Fig. 11  shows  f(x)  and  g(x)  for  0 ≤ x ≤ 5.  Let  h(x) = 
f(x)
g(x) ,  and determine 

the limits of  h(x)  as  x→ 2+, x→ 2–, x→ 4+, and   x→ 4–. 
 
 
For problems  4 – 24, calculate the limit of each expression as  "x→  ∞." 

4. 
6

x + 2  5. 
28

3x – 5   
 

6. 
7x + 12
3x – 2   7. 

4 – 3x
x + 8    

 

8. 
5sin(2x)

2x   9. 
cos(3x)
5x – 1    
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10. 
2x – 3sin(x)

5x – 1   11. 
4 + x.sin(x)

2x – 3   12. 
x2 – 5x + 2
x2 + 8x – 4

   

 

13. 
2x2 – 9

3x2 + 10x
  14. 

x + 5
4x – 2  15. 

5x2 – 7x + 2
2x3 + 4x

   

 

16. 
x + sin(x)
x – sin(x)  17. 

7x2 + x.sin(x)
3 – x2 + sin(7x2)

  18. 
7x143 + 734x – 2
x150 – 99x83 + 25

   

 

19. 
9x2 + 16

2 + x3 + 1
  20. sin( 

3x + 5
2x – 1   ) 21. cos(  

7x + 4
x2 + x + 1

   )  

 

22. ln(  
3x2 + 5x

x2 – 4
   ) 23. ln( x + 8 ) – ln( x – 5 ) 24. ln( 3x + 8 ) – ln( 2x + 1 ) 

 
25. Salt water with a concentration of 0.2 pounds of salt per gallon flows into a large tank that initially  

 contains 50 gallons of pure water. 

(a) If the flow rate of salt water into the tank is 4 gallons per minute, what is the volume V(t) of water  

and the amount  A(t)  of salt in the tank  t minutes after the flow begins? 

(b) Show that the salt concentration C(t)  at time t is  C(t) =  
.8t

4t + 50   . 

(c) What happens to the concentration  C(t)  after a "long" time?  

 (d) Redo parts  (a) – (c)  for a large tank which initially contains 200 gallons of pure water. 
 

26. Under certain laboratory conditions, an agar plate contains  B(t) = 100( 2 – 
1
et  )  = 100( 2 – e–t ) 

bacteria  t  hours after the start of the experiment. 

 (a) How many bacteria are on the plate at the start of the experiment (t = 0)? 

 (b) Show that the population is always increasing.  (Show  B '(t) > 0 for all  t > 0.) 

 (c) What happens to the population  B(t)  after a "long" time? 

 (d) Redo parts  (a) – (c)  for  B(t) = A( 2 – 
1
et  )  = A( 2 – e–t ). 

 

For problems  27 – 41 , calculate the limits. 
 

27. 

! 

lim
x"0

 
x + 5

x
2

 28. 

! 

lim
x"3

 
x #1

(x # 3)
2

  29. 

! 

lim
x"5

 
x # 7

(x # 5)
2

  

 

30. 

! 

lim
x"2

+
 
x #1

x # 2
  31. 

! 

lim
x"2

#
 
x #1

x # 2
  32. 

! 

lim
x"2

 
x #1

x # 2
   

 

33. 

! 

lim
x"4

+
 
x + 3

4 # x
  34. 

! 

lim
x"1

#
 
x

2
+ 5

1# x
  35. 

! 

lim
x"3

+
 

x
2
# 4

x
2
# 2x # 3
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36. 

! 

lim
x"2

 
x

2
# x # 2

x
2
# 4

  37. 

! 

lim
x"0

 
x # 2

1# cos(x)
  38. 

! 

lim
x"#

 
x

3
+ 7x $ 4

x
2

+11x
  

 

39. 

! 

lim
x"5

 
sin(x # 5)

x # 5
  40. 

! 

lim
x"0

 
x +1

sin
2
(x)

  41. 

! 

lim
x"0

+
 
1+ cos(x)

1# e
x

  

 

In problems  42 – 50, write the equation of each asymptote for each function and state whether it is a 

vertical or horizontal asymptote. 
 

42. f(x) =   
x + 2
x – 1  43. f(x) =   

x – 3
x2   44. f(x) =   

x – 1
x2 – x

  

 

45. f(x) =   
x + 5

x2 – 4x + 3
  46. f(x) =   

x + sin(x)
3x – 3   47. f(x) =   

x2 – 4
x2 + 1

  

 

48. f(x) =   
cos(x)

x2   49. f(x) =   2 +   
3 – x
x – 1  50. f(x) =   

x.sin(x)
x2 – x

  

 
In problems  51 – 59, write the equation of each asymptote for each function. 
 

51. f(x) =  
2x2 + x + 5

x   52. f(x) =   
x2 + x
x + 1   53. f(x) =   

1
x – 2   + sin(x) 

 

54. f(x) =   x +   
x

x2 + 1
  55. f(x) =   x2 +   

x
x2 + 1

  56. f(x) =   x2 +   
x

x + 1  

 

57. f(x) =   
x.cos(x)

x – 3   58. f(x) =   
x3 – x2 + 2x – 1

x – 1   59. f(x) =   
x2 + 3x + 2

x + 3     

 
 

Section 3.6 PRACTICE  Answers 
 

Practice 1: As  x  becomes arbitrarily large, the values of  f(x)  approach  3  and the values of   

  g(x)  approach  0. 

 

Practice 2: 

! 

lim
x"#

 
3x + 4

x $ 2
 = 3  and   

! 

lim
x"#

 
cos(5x)

2x + 7
 = 0   

 

Practice 3: The completed table is shown in Fig. 12. 
 

Practice 4: If  x > 

! 

10  ≈ 3.162 , then  f(x) = 
1
x2  < 0.1. 

  If  x > 

! 

1000  ≈ 31.62, then  f(x) = 
1
x2  < 0.001. 

  If  x > 1/E  , then  f(x) = 
1
x2  < E. 

10

200

5000

20,000

x 6x + 7

3 – 2x

sin(3x)
x

Fig. 12

–3 .94117647

–3 .04030227

–3.00160048 

–3 .00040003

–0 .09880311

0 .00220912

0 .00017869

0 .00004787

0– 3
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Practice 5: (a) 

! 

lim
x"2

+
 

7

2 # x
 = – ∞  . 

 As  x  → 2+  the values  2 – x → 0,  and  x > 2  so   2 – x  < 0:  2 – x  takes small negative values. 
 

 Then the values of   
7

2 – x   =  
7

small negative values    are large negative values so we represent the 

limit as  "– ∞." 
 

 (b) 

! 

lim
x"2

+
 

3x

2x # 4
 = +∞  . 

  

 As  x  → 2+  the values of  2x – 4 → 0,  and  x > 2  so  2x – 4  > 0:  2x – 4  takes small positive 

values.  As  x  → 2+  the values of  3x → +6. 
 

 Then the values of   
3x

2x – 4   =  
values near +6

small positive values    are large positive values so we represent the 

limit as  "+∞."   
 

 (c) 

! 

lim
x"2

+
 
3x

2
# 6x

x # 2
 =  6 . 

 

 As  x  → 2+ , the values of  3x2 – 6x → 0  and  x – 2 → 0  so we need to do more work.  The 

numerator can be factored  3x2 – 6x = 3x(x – 2)  and then the rational function can be reduced (since 

x → 2  we know  x ≠ 2): 
 

  

! 

lim
x"2

+
 
3x

2
# 6x

x # 2
 =  

! 

lim
x"2

+
 

3x(x # 2)

x # 2
 =  

! 

lim
x"2

+
 3x = 6 . 

 

Practice 6: (a) f(x) =  
x2 + x

x2 + x – 2
   =  

x(x + 1)
(x – 1)(x + 2)  .   

    f  has vertical asymptotes at  x = 1  and  x = –2. 
 

 (b) g(x) =  
x2 – 1
x – 1    =  

(x + 1)(x – 1)
x – 1   .   

  The value  x = 1  is not in the domain of  g.  If  x ≠ 1, then  g(x) = x + 1. 

  g  has a "hole" when  x = 1  and no vertical asymptotes. 
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Practice 7: g(x) = 2x – 3 + 
2

x + 1  .   

  g  has a vertical asymptote at  x = –1.   

  g  has no horizontal asymptotes.   

  

! 

lim
x"#

 
2

x +1
 = 0  so  g  has the linear asymptote  y = 2x – 3. 

 

Practice 8: f(x) = x2 + 
2.sin(x)

x    . 
 
  f  is not defined at  x = 0, so f  has a vertical asymptote or a  "hole"  when x = 0. 
 

   

! 

lim
x"0

 x2 + 
2.sin(x)

x    = 0 + 2 = 2 so  f  has a "hole"  when x = 0. 

 

  

! 

lim
x"#

 
2 $ sin(x)

x
 = 0  so  f  has the nonlinear asymptote  y = x2 . 

 
 
 
Appendix:  MAPLE, infinite limits and limits as  "

! 

x"#" 
 
command output comment 
 
limit( 1/x, x = 0 ); undefined Maple uses the convention "x=0" even   

  though what we really mean is "x approaches 0" 
 
limit( 1/x, x=0, right); 

! 

"  "x=0, right" means 

! 

0 " x  
 
limit( 1/x. x=0, left); 

! 

"#  "x=0, left" means 

! 

x " 0  
 
limit( sin(x)/x, x = infinity ); 0 
 
limit( 2*x, x= infinity ); 

! 

"  
 
limit( 5-3*x, x= infinity ); 

! 

"#  
 
limit( (1=cos(x) )/( 1-exp(x) ). x = 0, right );        

! 

"#  
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3.7 L'HÔ PITAL'S RULE  
 

When we began taking limits of  slopes of secant lines,  msec  =  
f(x+h) – f(x)

h     as h

! 

" 0 , we frequently 

encountered one difficulty:  both the numerator and the denominator approached  0.  And since the 

denominator approached  0,  we could not apply the Main Limit Theorem.  In each case, however, we 

managed to get past this  "0/0"  difficulty by using algebra or geometry or trigonometry, but there was no 

common approach or pattern.  The algebraic steps we used to evaluate 
 

! 

lim
h"0

 
(2 + h)

2
# 4

h
 seem quite different from the trigonometric steps needed for  

! 

lim
h"0

 
sin(2 + h) # sin(2)

h
 . 

 

In this section we consider a single technique, called l'Hô pital's Rule (pronounced Low–Pee–Tall),  which 

enables us to quickly and easily evaluate limits of the form  "0/0"  as well as several other difficult forms. 
  

A Linear Example 
 

Two linear functions are given in  Fig. 1, and we need to find   
 

! 

lim
x"5

 
f (x)

g(x)
 .  Unfortunately, 

! 

lim
x"5

 f(x) = 0  and   

! 

lim
x"5

 g(x) = 0  so  

 

we cannot apply the Main Limit Theorem.  However, we know  f  

and  g  are linear, we can calculate their slopes from Fig. 1, and we 

know that they both go through the point  (5,0)  so we can find  

their equations:    f(x) = –2(x – 5)  and  g(x) = 3(x – 5).   
   

Now the limit is easier:   

! 

lim
x"5

 
f (x)

g(x)
 =  

! 

lim
x"5

 
#2(x # 5)

3(x # 5)
 =  

 –2 
3     =   

slope of f
slope of g   .   

 

In fact, this pattern works for any two linear functions:   
 

If  f  and  g  are linear functions with slopes  m  and  n ≠ 0  and a common root at  x = a,   

 ( f(x) – f(a) = m(x – a)  and  g(x) – g(a) = n(x – a)   so  f(x) = m(x – a)  and  g(x) = n(x – a) ) 
 

 then    

! 

lim
x"a

 
f (x)

g(x)
 =  

! 

lim
x"a

 
m(x # a)

n(x # a)
 =   

 m 
n    =   

slope of f
slope of g    . 

 

The really powerful result, discovered by John Bernoulli  and  named for the Marquis de l'Hô pital who 

published it in his calculus book, is that the same pattern is true for differentiable functions even if they are 

not linear. 
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 L'Hô  pital's Rule  ( "0/0" form ) 
 
  If f  and  g  are differentiable at  x = a ,  
 
   and  f(a) = 0, g(a) = 0, and g '(a) ≠ 0 , 
 

  then 

! 

lim
x"a

 
f (x)

g(x)
 =   

 f '(a) 
g '(a)    =   

slope of f at a
slope of g at a   . 

     
 
Idea for a proof:  Even though  f  and  g  may not be linear functions, they are differentiable so at the point   

 x = a  they are  "almost linear"  in the sense that they are well approximated by their tangent lines at  

 that point  (Fig. 2):   since f(a) = g(a) = 0 
 

 f(x) ≈ f(a) + f '(a)(x–a) = f '(a)(x–a)   and  g(x) ≈ g(a) + g '(a)(x–a) = g '(a)(x–a). 
 

 Then    

! 

lim
x"a

 
f (x)

g(x)
 ≈  

! 

lim
x"a

 
f '(a)(x # a)

g'(a)(x # a)
 =   

 f '(a) 
g '(a)    . 

 

 (Unfortunately, we have ignored a couple subtle difficulties such as  g(x)  or   

 g '(x)  possibly being  0  when  x  is  close to  a.  A proof of l'Hô pital's  

 Rule is difficult and is not included.) 
 

Example 1: Use  l'Hô pital's Rule to determine  

! 

lim
x"0

 
x

2
+ sin(5x)

3x
 and   

! 

lim
x"1

 
ln(x)

e
x
# e

  

 
Solution:  (a)  We could evaluate this limit without l'Hô pital's Rule but let's use it.  We can match the  

 pattern of  l'Hô pital's Rule by letting  a = 0,  f(x) = x2 + sin( 5x )  and  g(x) = 3x.  Then  f(0) = 0,  g(0) 

= 0, and  f  and  g  are differentiable with  f '(x) = 2x + 5cos( 5x )  and  g '(x) = 3  so 
 

  

! 

lim
x"0

 
x

2
+ sin(5x)

3x
 =   

f '(0)
g '(0)    =   

2.0 + 5cos( 5.0 )
3    =   

 5 
3    . 

  (b)  Let  a = 1, f(x) = ln(x)  and  g(x) = ex – e.  Then  f(1) = 0, g(1) = 0,  f  and  g  are differentiable for  x  

near  1  (x ≠ 0), and  f '(x) = 1/x  and  g '(x) = ex .  Then    
 

  

! 

lim
x"1

 
ln(x)

e
x
# e

 =   
f '(1)
g '(1)    =  

1/1
 e1 

   =   
1
e   . 

Practice 1: Use l'Hô pital's Rule to find   

! 

lim
x"0

 
1# cos(5x)

3x
 and     

! 

lim
x"2

 
x

2
+ x # 6

x
2

+ 2x # 8
 . 

 

Strong Version of L'Hô  pital's Rule 
 

L'Hô pital's Rule can be strengthened to include the case when  g '(a) = 0  and the indeterminate form  "∞/∞",  

the case when both  f  and  g  increase without any bound. 
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 L'Hô  pital's Rule  (Strong  " 0/0 "  and  " ∞/∞ "  forms) 
 
  If f  and  g  are differentiable on an open interval  I  which contains the point  a,  

   g '(x) ≠ 0  on  I  except possibly at  a, and 
 

   

! 

lim
x"a

 
f (x)

g(x)
 = " 

0
0  "  or  " 

∞
∞  " 

 

  then 

! 

lim
x"a

 
f (x)

g(x)
 =   

! 

lim
x"a

 
f '(x)

g'(x)
  provided the limit on the right exists.      

                                              ( "a"  can represent a finite number  or  "∞." ) 
      

 

Example 2: Evaluate  

! 

lim
x"#

 
e

7x

5x
 . 

 

Solution:  As  "x 

! 

"∞", both  f(x) =  e7x  and  g(x) = 5x  increase without bound  so we have an  "∞/∞"   

  indeterminate form and can use the Strong Version l'Hô pital's Rule:  
 

    

! 

lim
x"#

 
e

7x

5x
 =  

! 

lim
x"#

 
7e

7x

5
 = ∞ . 

 
The limit of  f '/g '   may also be an indeterminate form,  and then we can apply l'Hô pital's Rule to the ratio   

f '/g '.  We can continue using l'Hô pital's Rule at each stage as long as we have an indeterminate quotient. 

 

Example 3: 

! 

lim
x"0

 
x

3

x # sin(x)
  

 
Solution:  As  x 

! 

" 0,  f(x) = x3  

! 

" 0  and  g(x) = x – sin(x) 

! 

" 0  so   
 

 

! 

lim
x"0

 
x

3

x # sin(x)
 =   

! 

lim
x"0

 
3x

2

1# cos(x)
  

! 

" " 
0
0   " so  we can use  l'Hô pital's Rule again 

 

  =   

! 

lim
x"0

 
6x

sin(x)
 

! 

"  " 
0
0   "   and again 

 

  =  

! 

lim
x"0

 
6

cos(x)
 =   

6
1    =  6 . 

 

Practice 2: Use l'Hô pital's Rule to find   

! 

lim
x"#

 
x

2
+ e

x

x
3

+ 8x
 . 
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Which Function Grows Faster? 
 
Sometimes we want to compare the asymptotic behavior of two systems or functions for large values of  x,  

and l'Hô pital's Rule can be a useful tool.  For example, if we have two different algorithms for sorting 

names, and each algorithm takes longer and longer to sort larger collections of names, we may want to know 

which algorithm will accomplish the task more efficiently for really large collections of names.   
 
Example 4: Algorithm A requires n.ln(n)  steps to sort  n names and algorithm  B requires  n1.5 steps .   

  Which algorithm will be better for sorting very large collections of names? 
 

Solution:  We can compare the ratio of the number of steps each algorithm requires,  
n.ln(n)

n1.5    ,  and then  

 take the limit of this ratio as  n  grows arbitrarily large: 

! 

lim
n"#

 
n $ ln(n)

n
1.5

 .  If this limit is infinite, we 

say that  n.ln(n)  "grows faster"  than  n1.5 .  If  the limit is  0, we say that n1.5  grows faster than  

n.ln(n).  Since  n.ln(n)  and  n1.5  both grow arbitrarily large when  n  is  large, we can algebraically  

 

 simplify the ratio to   
ln(n)
n0.5     and then use L'Hopital's Rule: 

 

   

! 

lim
n"#

 
ln(n)

n
0.5

 =   

! 

lim
n"#

 
1/n

0.5n
$0.5

 = 

! 

lim
n"#

 
2

n
 = 0 .  

 

 n1.5  grows faster than  n.ln(n)  so  algorithm  A  requires fewer steps for really large sorts. 
 
Practice 3: Algorithm A requires  en  operations to find the shortest path connecting  n  towns, algorithm  

 B requires  100.ln(n)  operations for the same task, and algorithm C  requires  n5  operations.  Which 

algorithm is best for finding the shortest path connecting a very large number of towns?  Worst? 

 

Other  "Indeterminate Forms" 
 

"0/0"  is called an indeterminate form because knowing that  f  approaches  0  and  g  approaches  0  is not 

enough to determine the limit of   f/g, even if it has a limit.  The ratio of a "small" number divided by a 

"small" number can be almost anything as the three simple  "0/0"  examples show:   
 
  

! 

lim
x"0

 3x/x = 3 , 

! 

lim
x"0

 x2/x = 0 , and  

! 

lim
x"0

 5x/x3 = ∞ .   

 

Similarly,  "∞/∞"  is an indeterminate form because knowing that  f  and  g  both grow arbitrarily large  is 

not enough to determine the value limit of  f/g  or if the limit exists:    
 
 

! 

lim
x"#

 3x/x = 3 , 

! 

lim
x"#

 x2/x = ∞ , and   

! 

lim
x"#

 5x/x3 = 0 . 
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Besides the indeterminate quotient forms  "0/0"  and  "∞/∞"  there are several other "indeterminate forms."  In 

each case, the resulting limit depends not only on each function's limit but also on how quickly each function 

approaches its limit.   
 

Product: If f approaches 0, and g grows arbitrarily large, the product f . g  has the indeterminant form  "0 . ∞." 

Exponent: If  f  and  g  both approach  0, the function  fg  has the indeterminant form  "00 ."  

 If f approaches 1, and  g grows arbitrarily large, the function  fg  has the indeterminant form  "1∞. " 

 If f grows arbitrarily large, and g approaches 0, the function  fg  has the indeterminant form  "∞0. "  

Difference: If  f  and  g  both grow arbitrarily large, the function  f – g  has the indeterminant form "∞ – ∞." 
 

Unfortunately, l'Hô pital's Rule can only be used directly with an indeterminate quotient ("0/0" or "∞/∞'),  

but these other forms can be algebraically manipulated into quotients, and then l'Hô pital's Rule can be 

applied to the resulting quotient. 
 
Example 5: Evaluate  

! 

lim
x"0

+
 x.ln(x)     ( " 0.(–∞) " form ) 

 
Solution:  This limit involves an indeterminate product,  and we need a quotient in order to apply l'Hô pital's  

 Rule.  We can  rewrite the product  x.ln(x)  as the quotient  
ln(x)
1/x    , and then  

 

  

! 

lim
x"0

+
 x ln(x)  =   

! 

lim
x"0

+
 
ln(x)

1/ x
 

! 

"  
∞
∞  so apply l'Hô pital's Rule 

 

  =   

! 

lim
x"0

+
 

1/ x

#1/ x
2

 =

! 

lim
x"0

+
 –x  =  0  .   

 

 A product  f.g  with the indeterminant form  "0.∞"  can be rewritten as a quotient,  
f

1/g   or  
g

1/f  ,   

 and then  l'Hô pital's Rule can be used. 
 

 
Example 6: Evaluate    

! 

lim
x"0

+
 xx  ( " 00 " form) 

 
Solution:  An indeterminate exponent can be converted to a product by recalling a property of exponential 

and  

 logarithm functions:  for any positive number  a,  a = eln( a )   so    fg  =  eln( f g  ) =  e g ln( f )  . 
  

  

! 

lim
x"0

+
 xx  =   

! 

lim
x"0

+
 eln( xx )  =   

! 

lim
x"0

+
 ex.ln( x )    and this last limit involves an indeterminate 

 
 product   x.ln(x) 

! 

"  0.(–∞)   which we converted to a quotient and evaluated to be  0  in Example 5.   

 Our final answer  is then  e0 = 1 : 
 

   

! 

lim
x"0

+
 xx  =   

! 

lim
x"0

+
 eln( xx )  =   

! 

lim
x"0

+
 ex.ln( x )   =     e0 = 1 . 
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 An indeterminate form involving exponents, fg  with the form  "00 ,"  "1∞ ," or  "∞0, " can be 

converted to an indeterminate product by recognizing that  fg  =  eg.ln(f)  and then determining  

 the limit of  g.ln(f).    The final result  is  e(limit of  g.ln(f) ) . 
 

 

Example 7: Evaluate   

! 

lim
x"#

 1+
a

x

$ 

% 
& 

' 

( 
) 

x

  ( " 1∞ " form) 

 

Solution: 

! 

lim
x"#

 1+
a

x

$ 

% 
& 

' 

( 
) 

x

  =  

! 

lim
x"#

 e x
.ln( 1 + a/x )   so we need   

! 

lim
x"#

 x.ln( 1 + 
a
x  ) .  

  

! 

lim
x"#

 x.ln( 1 + 
a
x  )  

! 

"  "∞.0" an indeterminate product so rewrite it as a quotient 

 

  =  

! 

lim
x"#

 

ln 1+
a

x

$ 

% 
& 

' 

( 
) 

1/ x
   

! 

"  " 
0
0  " an indeterminate quotient so use l'Hô pital's Rule 

 

  =  

! 

lim
x"#

 

$a / x
2

1+
a

x

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

$
1

x
2

% 

& 
' 

( 

) 
* 

  =  

! 

lim
x"#

 
a

1+
a

x

 

! 

"  
a
1   = a . 

 

 Finally, 

! 

lim
x"#

 1+
a

x

$ 

% 
& 

' 

( 
) 

x

  =  

! 

lim
x"#

  e x
.ln( 1 + a/x )  =  ea  . 

 
PROBLEMS 
 
Determine the limits in problems  1 – 15. 
 

1. 

! 

lim
x"1

 
x

3
#1

x
2
#1

  2. 

! 

lim
x"2

 
x

4
#16

x
5
# 32

  3. 

! 

lim
x"0

 
ln(1+ 3x)

5x
  

4. 

! 

lim
x"#

 
e
x

x
3

  5. 

! 

lim
x"0

 
x # e

x

1$ e
x

  6. 

! 

lim
x"0

 
cos(a + x) # cos(a)

x
  

 

7. 

! 

lim
x"#

 
ln(x)

x
  8. 

! 

lim
x"#

 
ln(x)

x
  9.  

! 

lim
x"#

 
ln(x)

x
p

    (p is any positive number) 

 

10. 

! 

lim
x"0

 
e

3x
# e

2x

4x
  11. 

! 

lim
x"0

 
1# cos(3x)

x
2

  12. 

! 

lim
x"0

 
1# cos(2x)

x
  

 

13. 

! 

lim
x"a

 
x
m
# a

m

x
n
# a

n
  14. 

! 

lim
x"0

 
2
x
#1

x
  15. 

! 

lim
x"0

 
1# cos(x)

x $ cos(x)
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16. Find a value for  p  so  

! 

lim
x"#

 
3x

px + 7
 =  2. 

 

17. Find a value for  p  so  

! 

lim
x"0

 
e
px
#1

3x
 =  5. 

 

18. 

! 

lim
x"#

 
3x + 5

2x $1
  has the indeterminate form  "∞/∞" .  Why doesn't  l'Hô pital's Rule work with this 

limit?  (Hint:  Apply  l'Hô pital's Rule twice and see what happens.)  Evaluate the limit without using 

l'Hô pital's Rule. 
 

19. (a)  Evaluate     

! 

lim
x"#

 
e
x

x
 , 

! 

lim
x"#

 
e
x

x
2

 ,

! 

lim
x"#

 
e
x

x
5

 . 

(b) An algorithm is  "exponential"  if it requires  a.ebn  steps (a and b are positive constants).  An 

algorithm is  "polynomial"  if it requires  c.nd  steps  (c and d are positive constants).  Show that 

polynomial algorithms require fewer steps than exponential algorithms for large problems. 
 

20. The problem    

! 

lim
x"0

 
x

2

3x
2

+ x
 appeared on a test.   

 
 One student determined the limit was an indeterminate  "0/0"  form, and applied l'Hô pital's Rule to get: 

                "

! 

lim
x"0

 
x

2

3x
2

+ x
 =  

! 

lim
x"0

 
2x

6x +1
 =  

! 

lim
x"0

 
2

6
 =  

 1 
3   ." 

 
 Another student also determined the limit was an indeterminate  "0/0"  form  and  wrote, 
 

  "

! 

lim
x"0

 
x

2

3x
2

+ x
 = 

! 

lim
x"0

 
2x

6x +1
  =  

0
0 + 1    =  0 ." 

 
 Which student is correct?  Why? 

  
Determine the limits in problems  21 – 29. 
 
21. 

! 

lim
x"0

+
 sin(x).ln(x) 22. 

! 

lim
x"#

 x3.e–x  23. 

! 

lim
x"0

+
 x # ln(x)     

 
24. 

! 

lim
x"0

+
 xsin(x) 25. 

! 

lim
x"#

 (1$ 3/ x
2
)
x

  26. 

! 

lim
x"#

 (1$ cos(3x))
x
   

 

27. 

! 

lim
x"0

 
1

x
#

1

sin(x)

$ 

% 
& 

' 

( 
)   28. 

! 

lim
x"#

 (x $ ln(x))   29. 

! 

lim
x"#

 
x + 5

x

$ 

% 
& 

' 

( 
) 

1/ x

   

 
30. 

! 

lim
x"#

 (1+ 3/ x)
2 / x  
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Section 3.7 PRACTICE  Answers 
 

Practice 1: (a) 

! 

lim
x"0

 
1# cos(5x)

3x
 . The numerator and denominator are both differentiable and both 

  equal  0 when x = 0, so we can apply l'Hô pital's Rule: 
 

      

! 

lim
x"0

 
1# cos(5x)

3x
 =  

! 

lim
x"0

 
5 # sin(5x)

3
 

! 

"  
0
3   = 0 . 

 (b)    

! 

lim
x"2

 
x

2
+ x # 6

x
2

+ 2x # 8
 . The numerator and denominator are both differentiable functions  

   and they both equal 0  when  x = 0, so we can apply l'Hô pital's Rule: 
   

  

! 

lim
x"2

 
x

2
+ x # 6

x
2

+ 2x # 8
 =  

! 

lim
x"2

 
2x +1

2x + 2
 =  

5
6   . 

 

Practice 2: 

! 

lim
x"#

 
x

2
+ e

x

x
3

+ 8x
 .  The numerator and denominator are both differentiable  

 and both become arbitrarily large  as  x  becomes large, so we can apply l'Hô pital's Rule: 
 

   

! 

lim
x"#

 
x

2
+ e

x

x
3

+ 8x
 =   

! 

lim
x"#

 
2x + e

x

3x
2

+ 8
 

! 

"    " 
∞
∞  " .  Using l'Hô pital's Rule again: 

 

  

! 

lim
x"#

 
2x + e

x

3x
2

+ 8
 =  

! 

lim
x"#

 
2 + e

x

6x
 

! 

"    " 
∞
∞   " and  again: 

 

   

! 

lim
x"#

 
2 + e

x

6x
 =  

! 

lim
x"#

 
e
x

6
 

! 

"  ∞  . 

 
Practice 3: Comparing  A with en operations to B  with  100.ln(n)  operations. 

   

! 

lim
n"#

 
e
n

100 $ ln(n)
 

! 

"    " 
∞
∞  "  so use L'Hopital's Rule: 

   

! 

lim
n"#

 
e
n

100 $ ln(n)
 =  

! 

lim
n"#

 
e
n

100 /n
 =  

! 

lim
n"#

 
n $ e

n

100
 = ∞  so  B  requires fewer operations than A. 

  

Comparing  B  with  100.ln(n)  operations to  C with  n5 operations. 

  

! 

lim
n"#

 
100 $ ln(n)

n
5

 

! 

"     
∞
∞   .   

! 

lim
n"#

 
100 $ ln(n)

n
5

   =  

! 

lim
n"#

 
100 /n

5n
4

 =  

! 

lim
n"#

 
100

5n
5

 = 0   

 so  B requires fewer operations than  C.  B requires the fewest operations of the three algorithms. 
 

 Comparing  A  with  en  operations to  C with  n5 operations.  Using l'Hô pital's Rule several times: 

  

! 

lim
n"#

 
e
n

n
5

 =  

! 

lim
n"#

 
e
n

5n
4

=  

! 

lim
n"#

 
e
n

20n
3

=  

! 

lim
n"#

 
e
n

60n
2

=  

! 

lim
n"#

 
e
n

120n
=  

! 

lim
n"#

 
e
n

120
=  ∞   

       so  A  requires more operations than  C.  A requires the most operations of the three algorithms. 
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Chapter Three 
 
Section 3.1 
 
1.  Local maximums at x = 3, x = 5, x = 9, and x = 13.  Global maximums at x = 3 and x = 13. 
 Local minimums at x = 1, x = 4.5, x = 7, and x = 10.5 .  Global minimun at x = 7 . 
 
3. f(x) = x2 + 8x + 7  so   f '(x) = 2x + 8  which is defined for all values of  x.  f '(x) = 0 when   
 x = –4  so  x = –4 is a critical number.  There are no endpoints.   
 The only critical number is  x = –4 , and the only critical point is  (–4, f(–4) ) = (–4, –9)  which is the 

global (and local) minimum. 
 

5. f(x) = sin(x)  so  f '(x) = cos(x)  which is defined for all values of  x.  f '(x) = 0  when  x = 
π
2  + nπ  so  

the values  x = 
π
2  + nπ  are critical numbers.  There are no endpoints. 

 f(x) = sin(x)  has local and global maximums at  x = 
π
2   + 2nπ,  and global and local minimums at   

 x = 
3π
2    + 2nπ . 

 
7. f(x) = (x – 1)2(x – 3)   so  f '(x) = (x – 1)2 + 2(x – 1)(x – 3) = (x – 1)(3x – 7)  which is defined for all 

values of  x.  f '(x) = 0  when  x = 1  and  x = 7/3 so x = 1  and  x = 7/3 are critical numbers.  There are 
no endpoints. 

 The only critical points are  (1, 0)  which is a local maximum  and  (7/3, –32/27)  which is a local 
minimum.  When the interval is the entire real number line, this function does not have a global 
maximum or global minimum. 

 
9. f(x) = 2x3 – 96x + 42  so  f '(x) = 6x2 – 96  which is defined for all values of  x.   
 f '(x) = 6(x + 4)(x – 4) = 0  when  x = –4  and  x = 4  so  x = –4  and  x = 4  are critical numbers.  There 

are no endpoints.  The only critical points are  (–4, 298)  which is a local maximum  and  (4,–214)  which 
is a local minimum.    When the interval is the entire real number line, this function does not have a 
global maximum or global minimum. 

 
11. f(x) = 5x + cos(2x + 1)  so  f '(x) = 5 – 2sin(2x + 1)  which is defined for all values of x.  f '(x)  is always 

positve (why?)  so  f '(x) is never equal to 0.  There are no endpoints.  The function   
 f(x) = 5x + cos(2x + 1)  is always increasing and has no critical numbers, no critical points, no local or 

global maximums or minimums. 
 

13. f(x) = e–(x–2)2  so  f '(x) = –2(x – 2) e–(x–2)2   which is defined for all values of  x.  f '(x) = 0  when   
 x = 2  so  x = 2  is a critical number.  There are no endpoints.  The only critical point is  (2, 1)  which is 

a local and global maximum.  When the interval is the entire real number line, this function does not 
have a local or global minimum. 

 
15. See Fig. 3.1P15 
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17. f(x) = x2 – 6x + 5  on  [ –2, 5 ]  so  f '(x) = 2x – 6 which is defined for all values of  x.  f '(x) = 0  when  
x = 3  so  x = 3  is a critical number.  The endpoints are x = –2  and  x = 5 which are also critical 
numbers.  The critical points are  (3, –4) which is the local and global minimum, (–2, 21) which is a 
local and global maximum,  and  (5, 0)  which is a local maximum. 

 
19. f(x) = 2 – x3  on  [–2, 1]  so  f '(x) = –3x2   which is defined for all values of  x.  f '(x) = 0  when  x = 0  so  

x = 0 is a critical number.  The endpoints  are  x = –2  and  x = 1  which are also critical numbers.  The 
critical points  are  (–2, 10)  which is a local and global maximum,  (0,2)  which is not a local or global 
maximum or minimum, and  (1,1)  which is a local and global minimum. 

 
21. f(x) = x3 – 3x + 5  on  [ –2, 1]  so  f '(x) = 3x2 – 3 = 3(x – 1)(x + 1)  which is defined for all values of  x.  

f '(x) = 0  when  x = –1  and  x = +1  so  these are critical numbers.  The endpoints  x = –2  and   
 x = 1  are also critical numbers.  The critical points are  (–2, 3) which is a local and global minimum on 

[–2, 1], the point (–1, 7) which is a local and global maximum on [ –2, 1], and the point (1, 3) which is a 
local and global minimum on [ –2, 1]. 

 
23. f(x) = x5 – 5x4 + 5x3 + 7  so  f '(x) = 5x4 – 20x3 + 15x2 = 5x2(x2 – 4x + 3) = 5x2(x – 3)(x – 1)  which is 

defined for all values of  x.  f '(x) = 0  when  x = 0  and  x = 1  in the interval  [0, 2]  so each of these 
values is a critical number.  The endpoints x = 0  and  x = 2  are also critical numbers.  The critical points 
are  (0, 7)  which is a local minimum, (1, 8)  which is a local and global maximum, and  (2, –1) which is 
a local and global minimum.  ( f '(3) = 0  too, but  x = 3 is not in the interval  [0, 2].) 

 

25. f(x) =  
1

x2 + 1
     so  f '(x) = 

–2x
(x2 + 1)2

    which is defined for all values of  x.  f '(x) = 0  when  x = 0  but x 

= 0  is not in the interval [1, 3]  so  x = 0 is a not a critcal number.   The endpoints  x = 1  and   
 x = 3  are critical numbers.  The critical points are  (1, 1/2)  which is a local and global maximum, and  

(3, 1/10)  which is a local and global minimum. 
 

27. A(x) = 4x 1 – x2  (0<x<1) .   

 A '(x) = 4 [ 
–x2

1 – x2   +  1 – x2  ]  = 4 
1 – 2x2

1 – x2     ⎩
⎨
⎧ > 0 if  0 < x < 1/ 2
 < 0 if  1/ 2 < x < 1   

 A maximum is attained when  x = 1/ 2  :  A( 1/ 2  ) = 4 
1
2  1 – 

1
2   = 4 

1
2  

1
2   =  2. 

29. V = x(8 – 2x)2   for  0 < x < 4.   
 V ' = x(2)(8 – 2x)(–2) + (8 – 2x)2  =  (8 – 2x)( –4x + 8 – 2x) = (8 – 2x)(8 – 6x) = 4(4 – x)(4 – 3x)  so 

 V '   { < 0 if  4/3 < x
 > 0 if  0 < x < 4/3.   

  V( 4/3 ) = 
4
3 ( 8 – 

8
3 ) 2  =  

4
3 ( 

16
3  ) 2  =  

1024
27    ≈  37.926  cubic units  is the largest volume. 

  Smallest volume is  0  which occurs when  x = 0  and  x = 4. 
31. (a) 4.  The endpoints and two values of  x  for which  f '(x) = 0. 
 (b) 2.  The endpoints. 
 (c) At most n + 1.  The 2 endpoints and the  n – 1  interior points  x  for which  f '(x) =0. 
  At least  2.  The  2  endpoints. 

33. (a) local minimum at  (1,5) (b) no extrema at (1,5)  
 (c) local maximum at (1,5) (d) no extrema at  (1,5) 
 
35. (a) 0, 2, 6, 8, 11, 12 (b) 0, 6, 11 (c) 2, 8, 12 
 
37. If  f  does not attain a maximum on  [a,b]  or  f does not attain a mimimum on  [a,b],  then  f  must have a 

discontinuity on  [a,b]. 
39 (a) yes, –1 (b) no (c) yes, –1 (d) no (e) yes, 1 – π 
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41. (a) yes, 0 (b) yes, 0 (c) yes, 0 (d) yes, 0 (e) yes, 0 
 
43. (a) S(x) is minimum when  x ≈ 8. (b) S(x) is maximum when x = 2. 
 
Section 3.2 
1.  c ≈ 3,  10, and  13. 3. (a) c = π/2  (b)  c = 3π/2, 5π/2, 7π/2, 9π/2 
 
5. Rolle's Theorem asserts that the velocity  h '(t)  will equal 0  at some point between the time the ball is 

tossed and the time it comes back down.  The ball is not moving as fast when it reaches the balcony from 
below. 

 
7. The function does not violate Rolle's Thm. because the function does not satisfy the hypotheses of the 

theorem:  f is not differentiable at 0, a point in the interval  –1 < x < 1. 
 
9. No.  The velocity is not the same as the rate of change of altitude, since altitude is only one of the 

components of position.  Rolle's Theorem only says there was a time when my altitude was not changing. 
 
11. Since  f '(x) = 3x2 + 5 ,  f '(x) = 0  has no real roots.  If  f(x) = 0  for a value of  x  other than 2, then by 

the corollary from Problem 8, we would have an immediate contradiction. 
 

13. (a) f(0) = 0, f(2) = 4, f '(c) = 2c.  
4 – 0
2 – 0  = 2c  implies that  c = 1. 

 (b) f(1) = 4, f(5) = 8, f '(c) = 2c – 5.  
8 – 4
5 – 1   = 2c – 5  implies that  c = 3. 

14. (a) f(0) = 0, f( π/2 ) = 1, f '(c) = cos( c ).  
1 – 0
π/2 – 0   = cos( c )  implies  c = arccos( 2/π ) ≈ 0.88 . 

 (b) f(–1) = –1, f(3) = 27, f '(c) = 3c2 .   
27 + 1
3 + 1    = 3c2  implies  c2 = 7/3  so  c = 7/3  (since c > –1)  

15 (a) f(1) = 4, f(9) = 2,  f '(c) =  
–1

2 c   .  
2 – 4
1 – 9   =  

–1
2 c    implies  

–1
4    =  

–1
2 c   so  c = 4. 

 (b) f(1) = 3, f(7) = 15,  f '(c) = 2.  
15 – 3
7 – 1    = 2  so any  c  between  1  and  7  will do. 

 
17. The hypotheses are not all satisfied since  f '(x) does not exist at  x = 0  which is between  –1  and  3. 
 
19. Guilty.  All we know is that  f '(c) = 17  at some point, but this does not prove that the motorist "could not 

have been speeding." 
21. f(x) = x3 + x2 + 5x + c.  f(1) = 7 + c  = 10  when  c = 3.  Therefore,  f(x) = x3 + x2 + 5x + 3. 
 
23. (a) f '(x) = 2Ax.  We need  A(1)2 + B = 9  and  2A(1) = 4  so  A = 2  and  B = 7  and  f(x) = 2x2 + 7. 

 (b) A(2)2 + B = 3  and  2A(2) =–2  so  A = –1/2  and  B = 5  and  f(x) = 
–1
2   x2  + 5. 

 (c) A(0)2 + B = 2  and  2A(0) = 3.  There is no such  A.  The point  (0,2) is not on the  
  parabola  y = x2 + 3x – 2. 
25. f(x) = x3 + C,  a family of "parallel" curves for different values of  C. 
 
27. v(t) = 300.  Assuming the rocket left the ground at  t = 0,  we have  y(1) = 300 ft, y(2) = 600 ft,  y(5) = 1500 ft. 
 
29. f ''(x) = 6, f '(0) = 4, f(0) = –5.  f(x) = 3x2 + 4x – 5. 
 
31. (a) A(x) = 3x (b) A '(x) = 3. 33. (a) A(x) = x2 + x (b) A '(x) = 2x + 1. 
 
35. a1 = 5, a2 = a1 + 3 = 5 + 3 = 8, a3 = a2 + 3 = (5 + 3) + 3 = 11,  a4 = a3 + 3 = (5+3) + 3 + 3 = 14.   
 In general,  an  =  5  + 3(n – 1)  =  2 + 3n. 
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Section 3.3       
 
1. See Fig. 3.3P1. 
 
3. See Fig. 3.3P3. 
 
4. See Fig. 3.3P4. 
 
5. See Fig. 3.3P5. 
 
6. See Fig. 3.3P6. 
 
7. A–Q, B–P, C–R 
 

 

 
 

 

9. f '(x) = 
1
x   > 0  for  x > 0  so  f(x) = ln(x) is increasing on  (0, ∞ ). 

 
11. If  f  is increasing then  f(1) < f(π)  so  f(1) and f(π)  cannot both equal 2. 
 
13. (a)  x = 3,  x = 8   (b)  maximum at  x = 8 (c)  none  (or only at right endpoint) 
 
14. Relative maximum height at  x = 2 and  x = 7 .  Relative minimum height at  x = 4. 
 
15. Relative maximum height at  x = 6 .  Relative minimum height at  x = 8. 
 
17. f(x) = x3 – 3x2 – 9x – 5  has a relative minimum at  (3, –32)  and a relative maximum at  (–1, 0). 
 
19. h(x) = x4 – 8x2 + 3  has a relative maximum at (0, 3)  and relative minimums at  (2, –13)  and  (–2, –13). 
 
21. r(t) = 2(t2 + 1)–1  has a relative maximum at  (0, 2)  and no relative minimums.    
 
23. No positive roots.  f(x) = 2x + cos(x) is continuous.  f(0) = 1 > 0 .   Since   
 f '(x) = 2 – sin(x) > 0 for all x,   f is increasing  and never decreases back to the x–axis (a root). 
 
24. One positive root.  g(x) = 2x – cos(x) is continuous.  g(0) = –1 < 0  and  g(1) = 2 – cos(1) > 0 so by the 

Intermediate Value Theorem  g  has a root between  0  and  1.  Since  g '(x) = 2 + sin(x) > 0 for all x,  g is 
increasing  and can have only that 1 root. 
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25. h(x) = x3 + 9x – 10  and  h(1) = 0.  h '(x) = 3x2 + 9 = 3(x2 + 3) > 0 for all x  so  h is always increasing 
and can cross the  x–axis at most at one place.  Since the graph of  h  crosses the x–axis at x = 1, that is 
the only root of  h. 

 
27.  
 
 
 
 
 
 
 
 
 
 
29. (a) h(x) = x2, x2 + 1, x2 – 7, or, in general, x2 + C  for any constant  C. 
 (b) f(x) = x2 + C  for some value  C  and  20 = f(3) = 32 + C  so  C = 20 – 9 = 11.  f(x) = x2 + 11. 
 (c) g(x) = x2 + C  for some value  C  and  7 = g(2) = 22 + C  so  C = 7 – 4 = 3.  g(x) = x2 + 3. 
 
Section 3.4    
 
1. (a) f(t) = number of workers unemployed at time  t.  f '(t) > 0  and  f ''(t) < 0 
 (b) f(t) = profit at time  t.  f '(t) < 0  and  f ''(t) > 0. 
 (c) f(t) = population at time  t.  (f '(t) > 0  and  f ''(t) > 0. 
 
3. See Fig. 3.4P3. 
 
 
 
 
 
 
5. (a)  Concave up on  (0, 2), (2, 3+), (6, 9).  Concave down on (3+, 6).  (A small technical note:  we have 

defined concavity only at points where the function is differentiable, so we exclude the endpoints and 
points where the function is not differentiable from the intervals of concave up and concave down.)  

 
7. g(x) = x3 – 3x2 – 9x + 7.  g ''(x) = 6x – 6.  g ''(–1) < 0  so  (–1, 12) is a local maximum.  g ''(3) > 0  so  (3, 

–20)  is a local minimum. 
 
9. f(x) = sin5(x).  f ''(x) = 5{ –sin5(x) + 4sin3(x).cos2(x) }.  f ''(π/2) < 0  so  ( π/2, 1) is a local maximum.  f 

''( 3π/2 ) > 0  so  ( 3π/2, –1)  is a local minimum. 
 f ''(π) = 0  and  f  changes concavity at  x = π  so  (π, 0)  is an inflection point. 
 
11. d  and  e. 13. (a)  0 (b)  at most 1 (c)  at most  n – 2. 
 
15.  x g(x) g '(x) g ''(x) 
  0 – + + 
  1 + 0 – 
  2 – – + 
  3 0 + + 
 
17. See Fig. 3.4P17. 
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Section 3.5    
 
1. (a) 2x + 2y = 200  so  y = 100 – x.  Maximize  A = x.y = x.(100 – x) = 100x – x2. 
  A ' = 100 – 2x   and  A ' = 0  when  x = 50  ( y = 100 – x = 50).  A '' = – 2 < 0  so   
  x = 50  yields the maximum enclosed area.  When  x = 50,   
  A = 50(100 – 50) = 2500 square feet. 
 (b) 2x + 2y = P  so  y = P/2 – x.  Maximize  A = x.y = x.( P/2 – x) = (P/2)x – x2. 
  A ' = P/2 – 2x  and  A ' = 0  when  x = P/4  ( then y = P/2 – x = P/4 ).  A '' = –2 < 0   
  so  x = P/4 yields the maximum enclosed area.   
  This garden is a  P/4  by  P/4  square. 
 (c) 2x + y = P  so  y = P – 2x.  Maximize  A = xy = x(P – 2x) = Px – 2x2. 
  A ' = P – 4x  and  A ' = 0 when  x = P/4  ( then  y = P – 2x = P/2 ). 
 (d) A circle.  A semicircle. 
 

3. (a) 120 = 2x + 5y  so  y = 24 – 
2
5  x .  Maximize  A = xy = x( 24 – 

2
5  x ) = 24x –  

2
5  x2 . 

  A ' = 24 – 
4
5  x  and  A ' = 0  when  x = 30  (then  y = 12).  A '' = – 4/5 < 0  so   

  x = 30  yields the maximum enclosed area.  Area is  (30 ft)(12 ft) = 360 square feet. 
 
 (b) A circular pen divided into 4 equal stalls by two diameters shown in  
  diagram (a)  does a better job than a square with 400 square feet.  If the  
  radius is  r, then  4r + 2πr = 120  so  r = 120/(4 + 2π) ≈ 11.67 . 
    The resulting enclosed area is  A = πr2 ≈ π( 11.67 )2 ≈ 427.8 sq. ft. 
 
  The pen shown in diagram (b) does even better.  If each semicircle  
  has radius r, then the figure uses   4 2  r + 4πr = 120 feet of fence  
  so  r = 120/(4 2  + 4π)  ≈ 6.585 .  The resulting enclosed area is 

  A = (square) + (four semicircles) = (2r)2 + 4( 
1
2  πr2) ≈ 445.90 sq. ft. 

 
5. 2x + 2y = 10  so  y = 5 – x.   

 Maximize  V = xy(10 – 2x) = x(5 – x)(10 – 2x) = 50x – 20x2 + 2x3 . 

 V ' = 50 – 40x + 6x2 = 2(3x – 5)(x – 5)  and  V ' = 0  when  x = 5  and  x = 5/3.  When  x = 5, then  V = 0, clearly 

not a maximum,  so  x = 5/3.  The dimensions of the box with the largest volume are  5/3, 10/3, and 20/3. 
 

7. (a) V = πr2h = 100  so  h = 
100
πr2

  .   

  Minimize  C = 2(top area) + 5(bottom area) + 3(side area)  

    =  2(πr2 ) + 5(πr2) + 3(2πrh ) = 7πr2 + 6πr (  
100
πr2

  ) =  7πr2 + 
600

r   .   

  C ' = 14πr – 
600
r2

    and  C ' = 0  when  r = 
3

 600/(14π)     ≈  2.39  (then  h =  
100
πr2

   ≈  5.57 ).   

 (b) Let  k = top + bottom rate = 2¢ + the bottom rate > 2¢ + 5¢ = 7¢.  Minimize  C = kπr2 + 
600

r   .  

  C ' = 2kπr – 
600
r2

    and  C ' = 0  when  r = 
3

 600/(2kπ)     .  If  k = 8, then  r ≈ 2.29.   

  If  k = 9, then  r ≈ 2.20.  If k = 10, then  r ≈ 2.12.  As the cost of the bottom material increases,  
  the radius of the least expensive cylindrical can decreases: the least expensive can becomes  
  narrower and taller 
 

area ! 427.8  ft2

(a)
r

area ! 445.9  ft2

r

(b)
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9. Time = distance/rate.  Run distance = x  ( 0 ≤ x ≤ 60  Why?)  so  run time = x/8.   

 Swim distance = 402 + (60–x)2   so  swim time = 
1
2 402 + (60–x)2    and the total time is   

  T = 
x
8   +  

1
2 402 + (60–x)2   . 

  T ' = 
1
8   + 

1
2 

1
2 (402 + (60–x)2) –1/2 .2.(60 – x).(–1)  =  

1
8   – 

60 – x

2 402 + (60–x)2
   .   

  T ' = 0  when  x = 60 ± 
40
15  .  The value  x = 60 + 

40
15  > 60  so the least total time occurs when  

  x = 60 – 
40
15   ≈  49.7 meters.  In this situation, the lifeguard should run about  5/6  of the way 

 along the beach before going into the water. 
 
 
11. (a) Consider a similar problem with a new town  D*  located at the "mirror image" of  D  across the 

river  (Fig. 3.5P11a).  If the water works is built at any location  W  along the river, then the 
distances are the same from  W  to D  and to D*:  dist(W,D) = dist(W,D*).   

  Then  dist(C,W) + dist(W,D) = dist(C,W) + dist(W,D*).  The shortest distance from C to D* is a 
straight line (Fig. 3.5P11b), and this 
straight line gives similar triangles with 

equal side ratios:  
x
3   =  

10 – x
5    so   

  x = 15/4  = 3.75 miles.  A consequence of 
this "mirror image" view of the problem 
is that "at the best location  W  the angle 
of incidence α equals the angle of 
reflection  β " 

  
 
 

 (b) Minimize C = 3000dist(C,W) + 7000dist(W,D)  = 3000 x2 + 9   +  7000 (10 – x)2 + 25  .   

   C ' = 
3000x

x2 + 9
   +  

–7000(10 – x)

(10 – x)2 + 25
   so    

   C ' = 0  when   
3x

x2 + 9
   =  

7(10 – x)

(10 – x)2 + 25
    and  x ≈ 7.82 miles.   

  As it becomes relatively more expensive to build the pipe from a point  W  on the river to  D, the 
cheapest route tends to shorten the distance from  W  to  D. 

 
13. (a) Let  x be the length of one edge of the square end.  Then  V = x2(108 – 4x) = 108x2 – 4x3 .   
  V ' =  216x – 12x2  = 6x(18 – x)  so  V ' = 0  when  x = 0 or x = 18.  The dimensions of the 

greatest volume acceptable box with a square end are 18 by 18 by 36  inches:  V = 11,664 in3. 
 (b) Let  x be the length of the shorter edge of the end.  Then  V = 2x2(108 – 6x) = 216x2 – 12x3 .   
  V ' =  432x – 36x2  = 36x(12 – x)  so  V ' = 0  when  x = 0  or  x = 12.  The dimensions of the 

largest box acceptable box with this shape are  12 by 24 by 36  inches:  V = 10,368 in3. 
 (c) Let  x be the radius of the circular end.  Then  V = πx2(108 – 2πx)  = 108πx2 – 2π2x3 . 
  V ' = 216πx – 6π2x2 = 6πx(36 – πx)  so  V ' = 0  when  x = 0  or  x = 36/π ≈ 11.46 inches.  The 

dimensions of the largest box acceptable box with a circular end are a radius of  36/π ≈ 11.46 and 
a length of 36  inches:  V ≈ 14,851  in3. 

 



Odd Answers:  Chapter Three Contemporary  Calculus 8 

15. Without calculus:  The area of the triangle is  
1
2 (base)(height)   = 

1
2 (7)(height)   and the height is 

maximum when the angle between the sides is a right angle.    
 Using calculus:  Let  θ  be the angle between the sides.  Then the area of the triangle is 

  A =   
1
2 (base)(height)   = 

1
2 (7)(height)   = 

1
2 (7)( 10 sin θ )  = 35 sin θ .  A ' = 35 cos θ  so  A ' = 0  

when    θ = π/2, and the triangle is a right triangle with sides  7  and  10. 

 Using either approach, the maximum area of the triangle is  
1
2 (7)(10)  = 35 square inches, and the other 

side is the hypotenuse with length  72 + 102   =  149   ≈  12.2  inches. 
 
17. (a) A = 2x(16 – x2) = 32x – 2x3 .  Then  A ' = 32 – 6x2  so  A ' = 0  when  x = 32/6   ≈  2.31. 
  The dimensions  are  2 32/6   ≈  4.62  and  16 – ( 32/6  )2  = 64/6 ≈ 10.67. 

 (b) A = 2x( 1 – x2  )  .  Then  A ' = 2( 1 – x2   –  
x2

1 – x2   )  so  A ' = 0  when   

  x = 1/ 2   ≈ 0.707 .  The dimensions are  2( 1/ 2  ) ≈ 1.414  and   1/ 2   ≈ 0.707 . 
 (c) The graph of  |x| + |y| = 1  is a "diamond" (a square) with corners at (1,0), (0,1), (–1,0) and (0,–1). 

For 0 ≤ x ≤ 1, A = 2x.2(1 – x)  so  A = 4x – 4x2 .  Then  A ' = 4 – 8x  and  A ' = 0  when   
  x = 1/2.  A " = – 8  so we have a local max.  The dimensions are  2( 1/2 ) = 1  and  2(1 – 1/2) = 1. 
 (d) A = 2x cos(x)  (0 ≤ x ≤ π/2).  Then  A ' = 2 cos(x) – 2x.sin(x)  so  A ' = 0  when  x ≈ 0.86 .  The 

dimensions are  2( 0.86 ) = 1.72  and  cos( 0.86 ) ≈ 0.65 . 
 

19. A = 6.sin( θ/2 ).6.cos( θ/2 ) =  36. 12  sin( θ )  = 18 sin( θ )  and this is a maximum when  θ = π/2.  Then 

the maximum area is  A = 18 sin( π/2 ) = 18 square inches.  (This problem is similar to problem 

15.) 
 

21. V = 
1
3  π r2 h  and  h = 9 – r2   so  V = 

1
3  π r2 9 – r2   = 

π
3 9r4 – r6   .  Then 

  V ' = 
π
3  

36r3 – 6r5

9r4 – r6
   ,  and  V ' = 0  when  36r3 = 6r5  so  r = 6   ≈ 2.45 inches  and   

  h = 9 – r2   =  3   ≈  1.73  inches.  
 
23. Let  n ≥ 10  be the number of passengers.  The income is  I = n( 30 – (n–10) ) = 40n – n2 .  The cost is   
 C = 100 + 6n  so the profit is  P = Income – Cost = (40n – n2) – (100 + 6n) = 34n – n2 – 100. 
 P ' = 34 – 2n  and  P ' = 0  when  n = 17.  17 passengers on the flight maximize your profit. 
 (This is an example of treating a naturally discrete variable, the number of passengers, as a continuous variable.) 
  
25. Apply the result of problem 24 with  R = f  and  E = g. 
 
27. (i) Let  D = diameter of the base of the can,  and  let  H = the height of the can.   

  Then  θ = arctan(  
radius of can
height of cg    )  =  arctan( 

D/2
H/2   ). 

  For this can, D = 5 cm  and  H = 12 cm (sorry this should be in the statement of the problem) so 
  θ = arctan( 2.5/6 ) = arctan( 0.42 ) ≈ 0.395  which is about  22.6o  .  The can can be tilted about  22.6o   

before it falls over. 
 

 (ii) C(x) = 
360 + 9.6x2

60 + 19.2x    so  C '(x) =  
(60 + 19.2x)(19.2x) – (360 + 9.6x2)(19.2)

(0 + 19.2x)2
   .  C '(x) = 0  when 



Odd Answers:  Chapter Three Contemporary  Calculus 9 

  (19.2)( 9.6x2 + 60x – 360 ) = 0  so  x = 3.75 :  the height of the cola is  h = 3.75 cm. 
 
 (iii) C(3.75) = 3.75  (The center of gravity is exactly at the top edge of the cola.  It turns out that when 

the  cg  of a can and liquid system is as low as possible then the  cg  is at the top edge of the liquid.)  
Then  θ = arctan( radius/(height of cg) ) = arctan( 2.5/3.75 ) = arctan( 0.667 ) ≈ 0.588  which is about  

33.7o .  In this situation, the can can be tilted about 33.7o  before it falls over. 
 
 (iv) Less. 
 
28. (a)  &  (b)  See Fig. 3.5P28.  In the solutions to  

  these "shortest path" problems, the roads all  
  meet at 120o  angles. 
 
 
29. (a) A=(base)(height)= 

! 

(1" x)(x 2) = x 2 " x 3   for  0 # x #1.  

! 

A'= 2x " 3x 2 = 0   if  x = 2 /3. 

  (Clearly the endpoints x=0 and x=1 will not give the largest area.) 

! 

Then  A =
1
3
" 

# 
$ 
% 

& 
' 

2
3
" 

# 
$ 
% 

& 
' 

2

=
4

27
. 

 (b) A=(base)(height)= 

! 

(1" x)(Cx2) = Cx2 "Cx3  for 0 # x #1. 

  

! 

A'= 2Cx " 3Cx2 = 0  if x = 2/3.   

! 

Then A =
1
3
" 

# 
$ 
% 

& 
' C( ) 2

3
" 

# 
$ 
% 

& 
' 
2

=
4C
27

 . 

 (c) A=(base)(height)= 

! 

(B" x)(Cx2) = BCx2 "Cx3  for 0 # x #1. 

  

! 

A'= 2BCx " 3Cx2 = 0  if x =
2
3

B.   

! 

Then A =
B
3
" 

# 
$ 
% 

& 
' C( ) 2B

3
" 

# 
$ 

% 

& 
' 
2

=
4

27
B3C . 

 
31. (a) 

! 

y = 20 " 20
50

x .  A = (base)height) = xy = x(20 " 2
5

x) = 20x " 2
5

x2 . 

  

! 

A'= 20 " 4
5

x = 0  when x = 25.  Then y =10 and Area = 250. 

 (b) 

! 

y = H "
H
B

x .  A = (base)height) = x(H "
H
B

x) = Hx" H
B

x2. 

  

! 

A'= H "
2H
B

x = 0  when x =
B
2

.  Then y =
H
2

 and Area =
BH
4

. 

 
33. 

! 

F = cost = (top cost) + (bottom) + (sides)= 

! 

("r2)A+ ("r2)B+ (2"rh)C  

  

! 

But we know V = "r2h so h =
V
"r2

  so 

! 

F = "r2(A+ B) +
2CV
r

. 

  Then 

! 

F '= 2"r(A + B) # 2CV
r2  = 0  when  r =

CV
" (A + B)

3   .  Now you can find h  and F. 

 
Section 3.6      
 
1. (a) h  has a root at  x = 1.  
 (b) limits of  h(x) = f(x)/g(x):  as x → 1+ is  0:  as x → 1– is   0:  as x → 3+ is  –∞ :  as x → 3– is  +∞ 
 (c) h  has a vertical asynptote at  x = 3. 
 
3. limits of  h(x) = f(x)/g(x):  as x → 2+ is +∞:  as x → 2– is –∞ :  as x → 4+ is  0 :  as x → 4– is  0 
 
5. 0  7. –3 9. 0 11. DNE   
 
13. 2/3  15. 0 17. –7 19. 0  
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21. cos(0) = 1 23. ln(1) = 0 
 
25. (a) V(t) = 50 + 4t gallons,  and  A(t) = 0.8t  pounds of salt  

 (b)  C(t) = 
amount of salt

total amount of liquid    =  
A(t)
V(t)   =  

0.8t
50 + 4t    

 (c) "after a long time"  (as  t → ∞),  C(t)  → 0.8/4  =  0.2 pounds of salt per gallon. 

 (d) V(t) = 200 + 4t,  A(t) = 0.8t ,  C(t)  =  
0.8t

200 + 4t   → 0.8/4  =  0.2 pounds of salt per gallon. 
 
27. +∞  29. –∞ 31. –∞ 33. –∞  
 
35. +∞  37. –∞ 39. 1 41. –∞  
 
42. Horizontal: y = 1.  Vertical:  x = 1. 43. Horizontal: y = 0.  Vertical: x = 0. 
 
44. Horizontal:  y = 0.  Vertical: x = 0  (a "hole" at x = 1). 45. Horizontal: y = 0.  Vertical: x = 3  and  x = 1. 
 
46. Horizontal:  y = 1/3.  Vertical: x = 1. 47. Horizontal: y = 1. 
 
48. Horizontal: y = 0.  Vertical: x = 0. 49. Horizontal: y = 1.  Vertical: x = 1. 
 
50. Horizontal:  y = 0.  Vertical:  x = 1.  (and a "hole"  at  x = 0) 
 
51. y = 2x + 1. x = 0 52. y = x 53. y = sin(x).  x = 2 54. y = x  
 
55. y = x2  56. y = x2 + 1. x = –1 57. y = cos(x).  x = 3. 58. y = x2 + 2.  x = 1. 
 
59. y = x  .  x = –3. 
 
 
Section 3.7     
 
1. 3/2  3. 3/5 5. –1 7. 0 
 
9. 0  11. 9/2 
 

13. For  a ≠ 0:  
f '
g '   =  

m
n    x(m–n)  →    

m
n    a(m–n)  .   

 

 For  a = 0,       

! 

lim
x"a

 xm # am

xn # an   =   
⎩⎪
⎨
⎪⎧ 0 if m > n

 1 if m = n
 +∞ if m < n and (m – n) is even
 DNE if m < n and (m – n) is odd

  

 

15. 0   17.     
f '
g '   =  

pepx
3    →  

p
3    so  p = 3(5) = 15.  

 
19. (a)  All three limits are  +∞  . 

 (b) After applying  L'Hopital's Rule  d  times,  
f (d)

g (d)   =  
a.bn .ebn

c(d)(d–1)(d–2) ... (2)(1)   =  
constant .ebn

another constant   → +∞ . 

 
21. 0  23. 0 24. 1 25. 1 26. 1  
 
27. 0  28. +∞ 29. 1 30. 1 



   B 1 
TRIGONOMETRY FACTS 

 
Right Angle Trigonometry 
 

sin( θ ) =  
opp
hyp  cos( θ ) = 

adj
hyp  

 

tan( θ ) = 
opp
adj     cot( θ ) = 

adj
opp    sec( θ ) =  

hyp
adj     csc( θ ) =  

hyp
opp    

 
Trigonometric Functions 

sin( θ ) =  
y
r   cos( θ ) =  

x
r     

tan( θ ) =  
y
x   cot( θ ) =  

x
y  sec( θ ) =  

r
x  csc( θ ) =  

x
y  

 
Fundamental Identities 
 

tan( θ )  =  
sin( θ )
cos( θ )  cot( θ )  =  

cos( θ )
sin( θ )   sec( θ )  =  

1
cos( θ )  csc( θ )  =  

1
sin( θ )  

 
sin2( θ  ) + cos2( θ  ) = 1 tan2( θ ) + 1 = sec2( θ ) 1 + cot2( θ ) = csc2( θ ) 
 
sin( –θ ) = – sin( θ ) cos( –θ ) = cos( θ ) tan( –θ ) = – tan( θ ) 

sin( 
π
2  – θ ) = cos( θ ) cos( 

π
2  – θ ) = sin( θ ) tan( 

π
2  – θ ) = cot( θ ) 

 

Law of Sines:    
sin( A )

a    =  
sin( B )

b    =  
sin( C )

c   

Law of Cosines: a2 = b2 + c2 – 2bc.cos( A ) 

  b2 = a2 + c2 – 2ac.cos( B )  

 c2 = a2 + b2 – 2ab.cos( C ) 
 
Angle Addition and Subtraction Formulas 
sin( x + y ) = sin( x ).cos( y ) + cos( x ).sin( y ) sin( x – y ) = sin( x ).cos( y ) – cos( x ).sin( y ) 
cos( x + y ) = cos( x ).cos( y ) – sin( x ).sin( y ) cos( x – y ) = cos( x ).cos( y ) + sin( x ).sin( y ) 

tan( x +y ) =  
tan( x ) + tan( y )

1 – tan( x ).tan( y )
  tan( x – y )  =  

tan( x ) – tan( y )
1 + tan( x ).tan( y )

  

 
Function Product Formulas Function Sum Formulas 

sin( x ).sin( y ) =  
1
2  cos( x – y ) – 

1
2  cos( x + y ) sin( x ) + sin( y ) = 2sin( 

x + y
2   ).cos( 

x – y
2   ) 

cos( x ).cos( y ) =  
1
2  cos( x – y ) + 

1
2  cos( x + y ) cos( x ) + cos( y ) = 2cos( 

x + y
2   ).cos( 

x – y
2   ) 

sin( x ).cos( y ) =  
1
2  sin( x + y ) + 

1
2  sin( x – y ) tan( x ) + tan( y ) = 

sin( x + y )
cos( x ).cos( y )

  

 
Double Angle Formulas Half Angle Formulas 

sin( 2x ) = 2 sin( x ).cos( x ) sin( 
x
2  )  = ±  

1
2 (1 – cos( x ) )         ± depends on 

cos( 2x ) = cos2( x ) – sin2( x )  =  2cos2( x ) – 1 cos( 
x
2  )  = ±  

1
2 ( 1 + cos( x ) )       quadrant of x/2 

tan( 2x ) =  
2tan( x )

1 – tan2( x )
  tan( 

x
2  )  =  

1 – cos( x )
sin( x )   

opp

adj

hyp

! 

 

x

y
r

! 

 

a
b

c
A

B
C

 



 Appendix A   

 
Math 151 

 
Derivative Reference Facts 

 
 

Notation:   D( f(x) ) =  
d
dx  f(x)  = f '(x)  represents the derivative with respect to x  of the function  f(x)  

 
 
 
General Derivative Patterns: 
 

D( k ) = 0 k a constant D( f + g ) = Df + Dg  D( f.g ) = f.Dg + g.Df 
 

D( k.f ) = k.Df k a constant D( f – g ) = Df – Dg D( f/g ) = 
g.Df – f.Dg

g2   

 
D( fn(x)) =  n fn–1(x).Df D( f( g(x) ) ) = f '( g(x) ).Dg      (Chain Rule !!) 

 
 
 
For Parametric Equations: 
 

! 

slope  =  dy /dt
dx /dt

  

! 

speed  =  dx
dt

" 

# 
$ 

% 

& 
' 

2

+
dy
dt

" 

# 
$ 

% 

& 
' 

2

 

 
 
 
For Particular Functions: 
 

D( sin( x ) ) = cos( x ) D( tan( x ) ) = sec2( x ) D( sec( x ) ) = sec( x ).tan( x ) 
 
D( cos( x ) ) = – sin( x ) D( cot( x ) ) = – csc2( x ) D( csc( x ) ) = – csc( x ).cot( x ) 
 
 
D( ex ) = ex   D( ax ) = ax ln(a)     for any positive constant  a 
 
 

D( ln| x | ) =  
1
x    

 
 

D( arcsin( x ) ) =  
1

1 – x2    D( arctan( x ) ) =  
1

1 + x2    D( arcsec( x ) ) =  
1

| x | x2 – 1
    

 

D( arccos( x ) ) =  
– 1

1 – x2    D( arccot( x ) ) =  
– 1

1 + x2    D( arccsc( x ) ) =  
– 1

| x | x2 – 1
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